
Mach Learn (2014) 96:5–31
DOI 10.1007/s10994-013-5403-2

Distributional learning of parallel multiple context-free
grammars

Alexander Clark · Ryo Yoshinaka

Received: 8 December 2012 / Accepted: 26 July 2013 / Published online: 3 October 2013
© The Author(s) 2013

Abstract Natural languages require grammars beyond context-free for their description.
Here we extend a family of distributional learning algorithms for context-free grammars to
the class of Parallel Multiple Context-Free Grammars (PMCFGs). These grammars have two
additional operations beyond the simple context-free operation of concatenation: the ability
to interleave strings of symbols, and the ability to copy or duplicate strings. This allows the
grammars to generate some non-semilinear languages, which are outside the class of mildly
context-sensitive grammars. These grammars, if augmented with a suitable feature mecha-
nism, are capable of representing all of the syntactic phenomena that have been claimed to
exist in natural language.

We present a learning algorithm for a large subclass of these grammars, that includes
all regular languages but not all context-free languages. This algorithm relies on a general-
isation of the notion of distribution as a function from tuples of strings to entire sentences;
we define nonterminals using finite sets of these functions. Our learning algorithm uses a
nonprobabilistic learning paradigm which allows for membership queries as well as positive
samples; it runs in polynomial time.

Keywords Mildly context-sensitive · Grammatical inference · Semilinearity

1 Introduction and motivation

Natural languages present some particular challenges for machine learning—primarily the
fact that the classes of representations that will ultimately be required for a satisfactory de-
scription of natural language syntax are clearly much richer than the simple Markov models
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that underpin much machine learning work. Indeed, even context-free grammars are insuffi-
ciently powerful to represent many linguistic phenomena. Accordingly it is important to be
able to develop learning algorithms that are capable of learning the sorts of dependencies
that we observe in natural languages.

We situate this problem in the field of grammatical inference. In its purest form, we are
interested in algorithms which receive as input a sequence of strings of symbols, and are re-
quired to infer a grammar that represents a formal language: a set of strings that is typically
infinite. We recall at this point the classic negative results of Gold (1967), who considered
the situation where the learner only has access to the strings that are in the language, and
there are no nontrivial restrictions on the sequences of examples that the learner must learn
from. Within such a restrictive framework we can only learn classes of languages that have
some language theoretic closure properties; see for example the structurally very similar
algorithms for learning subclasses of regular languages given by Angluin (1982), for learn-
ing subclasses of context-free grammars by Clark and Eyraud (2007) and for subclasses of
multiple context-free grammars (MCFGs) by Yoshinaka (2011a). These classes of languages
become increasingly limited as we ascend the hierarchy: indeed, in the case of the MCFG

learning approach, even some languages consisting of only a single string are not learnable.
It seems important therefore to consider a somewhat weaker and less restrictive learning
model. As an alternative to considering a probabilistic learning model, which enlarges the
class of languages that can be learned by limiting the data sequences and the convergence
criterion in a realistic way, we approach this problem by allowing the learner an additional
very high quality source of information: we consider an active learning model where the
learner can ask membership queries. In other words, the learner is not entirely a passive
recipient of examples but can query an oracle as to whether a particular string of symbols is
in the language or not. This takes us partly towards the minimally adequate teacher model
(MAT) introduced by Angluin (1987); also called exact query learning. We do not however
go this far—we keep a stream of positive examples as part of the learning model.

We are motivated at a high level by a desire to understand first language acquisition—
in general by attempting to operationalise and extend the discovery procedures of Ameri-
can structuralist linguistics, for which we use the umbrella term “distributional learning”.
Clearly the situation of language acquisition is quite different from the highly idealised
learning models we consider in this paper, notably in that the child learner can interact with
the environment in a number of ways not captured by the simple idealisation of a mem-
bership query and in the importance of semantics or meaning in the acquisition process.
This raises a number of methodological issues that are outside the scope of this paper: see
Clark and Lappin (2011) for a further justification of the approach in this article, but see also
Berwick et al. (2011) for an opposing view.

There are two fundamental language-theoretic boundaries that are closely related: the
first is the boundary between regular languages and non-regular languages, the second is
between semilinear languages and non-semilinear languages. Semilinear languages are,
roughly speaking, those where the lengths of the strings in the language are linear com-
binations of a finite set of fixed lengths.1 Joshi et al. (1991) say that semilinearity:

Is intended to be an approximate characterization of the linguistic intuition that sen-
tences of a natural language are built from a finite set of clauses of bounded structures
using certain simple linear operations.

1See Michaelis and Kracht (1997) for a precise definition.
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These two boundaries are clearly related because of the following theorem: a language is
semilinear iff it is letter equivalent to a regular language. Clearly the class of semilinear lan-
guages is not directly useful as it is uncountable and thus contains undecidable languages,
but it serves to help demarcate the class(es) of mildly context-sensitive (MCS) languages
(Joshi et al. 1991). All standardly used grammatical formalisms are semilinear—regular
grammars, context-free grammars, multiple context-free grammars, tree adjoining grammars
and so on all define subsets of the class of semilinear languages. Examples of non-semilinear
languages include {a2n | n > 0} and {an2 | n > 0}, which can be parsed in linear time, yet
cannot be expressed by MCS formalisms. Formalisms that can define non-semilinear lan-
guages include Elementary Formal Systems (Smullyan 1961), Range Concatenation Gram-
mars (Boullier 1999), Literal Movement Grammars (Groenink 1995) and the representation
we will use in this paper, Parallel Multiple Context-Free Grammars (Seki et al. 1991), that
we define in Sect. 3.

Recent work in grammatical inference has made significant progress in learning semilin-
ear, non-regular languages using representations such as context-free grammars (Clark and
Eyraud 2007) and multiple context-free grammars (Yoshinaka 2011a). Crucially, these rep-
resentations just use concatenation—substrings are combined, but never copied. The richer
operations used by MCFGs are just generalisations of concatenation to tuples of strings; these
include for example various types of intercalation where a string can be inserted into a gap
in another string.

There is a broad consensus that natural language string sets are semilinear, and so atten-
tion has focused largely on properties of formalisms that generate semilinear languages. We
review these formalisms in Sect. 2. However there are a number of cases where linguistic
data suggest that there are richer processes involved, processes that either require or might
benefit from a more powerful formalism. These data, which we examine in detail in the
second half of Sect. 2, are still controversial. However, regardless of what the final determi-
nations on these examples are, it is still useful to have richer learning algorithms available
since even if these formalisms are not strictly speaking necessary, the additional descriptive
power that they give us may allow for a more compact and succinct grammar than we could
obtain with a semilinear formalism.

In this paper we extend distributional learning to the inference of non-semilinear lan-
guages; the major technical detail is the extension of the notion of context. We give an
intuitive explanation of this in Sect. 4, and present the technical details of the learning target
and algorithm together with the proof of its correctness in Sect. 5.

2 Language theory and linguistics

For many years, a default assumption in computational linguistics has been that context-free
grammars are more or less adequate for defining natural language syntax. In linguistics on
the other hand, the orthodox view has been that they are clearly inadequate. The starting
point for this debate is invariably the Chomsky hierarchy (Chomsky 1956). While semi-
nal, and an immensely important contribution, this hierarchy is now showing its age in a
number of respects. Most importantly since it predates the discovery or invention of the
theory of computational complexity, there is no natural characterisation within this family
of the class of efficiently recognizable languages—under standard assumptions this is the
class PTIME. Similarly, the class of context-sensitive grammars is far too powerful to be of
any practical use, and moreover it is difficult to define classes between context-free gram-
mars and context-sensitive grammars within this family of formalisms. Finally, it is hard to
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attach semantics to a top-down derivation: as Kracht (2011) argues, in our view convinc-
ingly, semantic interpretation is a process that can only be viewed naturally as a process of
composition proceeding bottom-up.

Recently a broad consensus has been forming that it is more appropriate to base a lan-
guage hierarchy on a family of bottom-up systems, as in Smullyan (1961), rather than the
top-down string rewriting systems in the original Chomsky hierarchy. Accordingly in this
paper we consider a family of formalisms that are bottom-up in this sense. A long-standing
debate in computational linguistics is over the exact language-theoretic position of natural
languages, with respect to the original Chomsky hierarchy or its more modern derivatives.
There are several important distinctions that we wish to keep distinct. Suppose we have a
natural language like English or Kayardild, and we assume that we can in some way stipulate
a sharp dividing line between grammatical and ungrammatical utterances, given a presum-
ably infinite set of possible grammatical sentences. For each such language and a putative
class of grammars G we can ask the following questions. Firstly, whether the language, con-
sidered as a set of strings, lies in the class generable by the formalism—this is the weakest
claim; and therefore a negative answer to the question provides the strongest evidence that
G is inadequate. Secondly, supposing that we can find a grammar that generates the right
set of strings, we can ask further whether there is a grammar that generates the right set of
structures. For example, we might have a language like Dutch, which is apparently “weakly”
context-free, in the sense that the set of strings is a context-free language, but not strongly
context-free, in the sense that no context-free grammar can generate an adequate set of struc-
tures. Finally, we can ask whether we can find a reasonably sized grammar that generates
it.

It is important to remember that so far nobody has been able to construct an adequate
grammar for any natural language in any formalism. Therefore our answers to these ques-
tions above will only be partial. We can come up with convincing negative answers: it is pos-
sible to show that a given formalism is inadequate using various mathematical techniques,
typically exploiting closure properties of the formalism, such as closure under intersection
with regular languages. However, we cannot at the moment come up with a definitive posi-
tive argument that a particular natural language is in a given class, since that would require
producing a completely adequate grammar for that language, where adequacy is defined in
one of the senses above. The absence of an argument showing that a formalism G is inad-
equate can of course be taken as defeasible evidence that the class is adequate for natural
language description. We review here the current status of this debate, and take an integrated
view of the various examples that appear to be weakly or strongly beyond the expressive
power of CFGs. Though our focus in this paper is on learning languages as sets of strings,
we nonetheless want to be able to produce grammars that give reasonable structures.

The Chomsky hierarchy in its original form has the (nontrivial) classes of regular,
context-free and context-sensitive grammars. In Fig. 1 we show a fraction of the more mod-
ern hierarchy of bottom-up systems.

We start by giving an informal ostensive definition of a format for our rules (Groenink
1997), before giving a formal definition in Sect. 3. We assume we have some fixed alphabet
Σ whose elements we will call letters, though they may in fact correspond to phonemes
or words. We will use the symbols a, b, c here to refer to elements of Σ . We assume we
have a set of nonterminals which we label A,B,C, . . . , together with some variables which
we write as xi, yi . We will proceed from the simplest rules to the most complex. Every
production is written in Horn clause notation and consists of a single clause on the left and
a possible empty sequence of clauses on the right. Terminal symbols can only appear on
the left hand side of the rule. The most basic production is one with an empty clause on the
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Fig. 1 A view of a part of the
language-theoretic hierarchy
below PTIME. All inclusions are
proper

right:

A(a) :− .

This asserts that a terminal symbol a can be derived from the nonterminal symbol A. The
next most basic production is one like

A(ax1) :− B(x1).

This means that if an arbitrary string u is derived from the nonterminal symbol B , then A

may derive au. Here we constrain the rules to have only one variable, and the body of the
clause on the left hand side can only be of length 2, with the terminal symbol occurring first.
We call this type of production regular. The next type is a type exemplified by

A(x1ay1b) :− B(x1),C(y1).

If B and C derive strings u and v, respectively, A may derive uavb. We call this a context-
free production. It is not limited to the case where we only have two nonterminals on the
right of the rule, but allows an unbounded number, and we may have unlimited numbers of
terminal symbols on the right. Note that there is a bijection between the variables that occur
on the left and the variables that occur on the right hand side of the rule, and that they are
distinct.

We can now extend the rules in three qualitatively distinct ways. First we may allow the
nonterminals to take more than one argument. This we call an mcfg rule.

A(x1y1, x2) :− B(x1, x2),C(y1).

Here the nonterminals A and B take two arguments—we say that they are of dimension 2.
Whenever B derives a pair of strings (u, v) and C derives w, the nonterminal A derives the
pair (uw,v). The second generalisation is that we allow a variable to occur more than once
on the left hand side of the production.

A(x1ay1bx1) :− B(x1),C(y1).
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We call this a parallel cfg rule or a copying rule. This has the semantic effect, which we
define later, of copying the substring x1. So if B derives u and C derives v, then A will
derive uavbu. The third generalisation is where we allow a variable to occur more than
once on the right hand side of the production.

A(x1) :− B(x1),C(x1).

We call this a conjunctive rule: here if B derives w and C also derives w then A derives w.
We do not consider this type of rule in this paper, though we remark briefly on it in the
conclusion.

If we allow all three types of rule together, allowing a rule which may have multiple
symbols occur both on the right and on the left, then we have the class of all unrestricted
rules, of which we give the following illustrative example.

A(x1x1, by1y2) :− B(x1, y1),C(y1, y2).

Corresponding to this syntactic hierarchy of productions we have a corresponding strict
hierarchy of grammars and languages shown in Fig. 1. At the top we have the class PTIME,
which is the set of all languages that can be defined using grammars of this type (Ljunglöf
2005; Groenink 1997). In this paper we target the class of PMCFGs which allows all but con-
junctive rules. If we allow only conjunction together with CFG rules, then we obtain the class
of Conjunctive grammars (Okhotin 2001). If we allow only mcfg rules, then we obtain the
class of Multiple context-free grammars (MCFGs), which are equivalent, modulo some mi-
nor technical details, to the class of Linear Context-Free Rewriting Systems (Vijay-Shanker
et al. 1987). We note that the class of four convergent mildly context-sensitive formalisms
studied by Vijay-Shanker and Weir (1994) are equivalent to a class intermediate between
MCFG and CFG which we mark with TAG in the diagram; this is equivalent to the class of
well-nested MCFGs of dimension 2; indeed there is a complex infinite hierarchy on the arc
between CFG and MCFG (Seki et al. 1991). As we shall see we will use two parameters, the
dimension and rank, to describe the classes of grammars that we use, together with a third
which controls the degree of copying.

We now consider various phenomena which motivate the use of a formalism more pow-
erful than CFGs.

2.1 Displacement/movement

A phenomenon which was taken to indicate the necessity for a formalism more powerful
than context-free grammars is displacement or movement—typified by wh-movement in
English. For example, we have the declarative sentence ‘John liked that restaurant’. We can
form a question from this using what is called wh-movement: ‘Which restaurant did John
like’?

We emphasize that these examples do not show that the set of strings is not a context-free
language. One can stay within the class of context-free languages, and represent these by
using a richer formalism that is capable of modeling these structures by using richly struc-
tured nonterminals, using for example the meta-grammar approach of GPSG (Gazdar et al.
1985). However from a learnability point of view it seems to be desirable to learn these us-
ing a richer formalism, which can directly represent the displacement, rather than folding it
into some feature system. More precisely, within the framework of distributional learning,
displacement causes a significant problem with the inference of context-free grammars, be-
cause it causes a potentially exponential increase in the number of nonterminals we need in
a grammar. In addition, the sorts of derivation trees that we get for these examples seem to
be inappropriate for supporting natural language interpretation.
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Fig. 2 Derivation tree for the
Swiss German example

2.2 Cross-serial dependencies

The example which definitively established that CFGs were not weakly adequate was the
case of cross-serial dependencies in Swiss German (Huybrechts 1984; Shieber 1985). We
present here the data in a form very close to the original presentation. In the particular dialect
of Swiss German considered by Shieber, the data concerns a sequence of embedded clauses.

Let’s abstract this a little bit and consider a formal language for this non context-free
fragment of Swiss German. We consider that we have the following words or word types:
Na,Nd which are respectively accusative and dative noun phrases, Va,Vd which are verb
phrases that require accusative and dative noun phrases respectively, and finally C which is
a complementizer which appears at the beginning of the clause. Thus the “language” we are
looking at consists of sequences like CNaVa and CNdVd and CNaNaNdVaVaVd , but cru-
cially does not contain examples where the sequence of accusative/dative markings on the
noun sequence is different from the sequence of requirements on the verbs. So it does not
contain CNdVa , because the verb requires an accusative and it only has a dative, nor does
it include CNaNdVdVa , because though there are the right number of accusative and dative
arguments (one each) they are in the wrong order—the reverse order.2 More precisely, for
a string w in {Va,Vd}+, we write w for the corresponding string in {Na,Nd}∗: formally we
define Va = Na,Vd = Nd , Vaα = Naα and Vdα = Ndα. The sublanguage we are concerned
with is the language Lsg = {Cww | w ∈ {Va,Vd}+ }. This language is defined through in-
tersection of the original language with a suitable regular language and a homomorphism
relabelling the strings. Since CFGs are closed under these operations, and Lsg is clearly not
context-free, this establishes the non-context-freeness of the original language.

We present a PMCFG for this fragment: since we do not use any copying this is formally
equivalent to an MCFG. Figure 2 gives a derivation tree for the string CNaNaNdVaVaVd with
respect to this grammar.

Example 1 This grammar has two nonterminals S of dimension 1, and D of dimension 2,
and the following set of productions:

S(Cx1x2) :− D(x1, x2)

D(Nax1,Vax2) :− D(x1, x2)

2Actually this is incorrect: according to Shieber the nested orders are acceptable as well. We neglect this for
ease of exposition.
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D(Ndx1,Vdx2) :− D(x1, x2)

D(Na,Va):−
D(Nd,Vd):−

2.3 Copying

While semilinearity is generally considered to be a property that holds for all natural lan-
guages, there is an increasing amount of evidence that there are some phenomena that take
natural languages out of the class of semilinear languages. None of the arguments here
are as conclusive as Shieber’s argument that natural languages are not weakly context-free
(Shieber 1985) but are nonetheless suggestive. In what follows we will describe fragments
of languages that are not semilinear and will provide toy PMCFGs for these fragments.

2.4 Reduplication

Another important area where (non-recursive) copying operations may occur is in morphol-
ogy and phonology (Inkelas and Zoll 2005; Inkelas 2008). This can range from duplication
of a limited amount of material at the beginning of a word to the complete copying of a full
stem.

The classic example of this is in Indonesian where plurals are formed by duplication of a
stem. Thus the singular form of the word ‘man’ is ‘orang’ and the plural is ‘orangorang’. In
principle there is no limit to the length of material that can be copied. Similarly in Dyirbal
we have the same construction (Inkelas 2008):

Singular Plural Gloss

midi midi-midi ‘lots of little ones’
gulgiri gulgiri-gulgiri ‘lots of prettily painted men’

Language-theoretically we need to be clear about the exact status of this copying; we
focus on the most interesting case of full-stem reduplication. Let us assume that we are
dealing with a language where the plural is formed by duplicating the entire stem. There
are three positions: (A) one could say that the lexicon is finite, and as a result the learner
need only memorise the correct plural form for each word, and thus there is no language-
theoretic issue at all; (B) one could say that it is sufficient to have a grammar which gives
the copy language over some finite alphabet of phonemes; or finally (C) one could say that
the learner must have a true primitive copying operation. There are two related differences
between these three approaches—the first is the size of the grammars. The Type A learner
will produce a grammar with one rule per lexical item. The Type B learner will have a
grammar with one rule per phoneme; but the Type C learner has only one rule in total. The
second difference is the rapidity of learning, or equivalently the generalisation ability of the
algorithm. For example, if a Type A learner is confronted with an unseen word, then it will
fail to generalise correctly, whereas a Type B learner will be able to generalize correctly.
Correspondingly if we give a Type B learner a new phoneme, it will fail to generalise—only
the Type C learner has learned a real copying rule. Thus deciding whether it is appropriate to
require a Type A, B or C learner in each case depends on the ability of the extent to which we
require the learner to generalise. If we are interested in modeling language acquisition then
the three different learners make different predictions about the behaviour: Type A learners
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Fig. 3 Derivation trees for the
derivations of the word ‘hakhak’
(rights) with respect to two
grammars of the Indonesian
plural. On the left we have the
MCFG without copying and on
the right we have the PMCFG

which does use copying

will not be able to produce the correct plural for a novel word. Type B learners will be
unable to generalise if it is presented with a word containing a novel phoneme. Only Type C
learners can generalise fully.

In the specific case of reduplication these three learners correspond to three different
levels of the hierarchy: Type A learners can just use list grammars, Type B can use MCFGs,
and Type C requires a PMCFG. We claim that a full explanation of acquisition may require a
PMCFG acquisition model that has a true copying operation even if from a purely descriptive
language-theoretic approach we only need a much weaker model (see Chandlee and Heinz
2012 for an alternative view). Thus in this model we consider both full stem and partial
reduplication as instances of the same copying process.

We present two grammars for this morphological process; a more realistic model would
use phonemes or some other level of phonological representation, but for ease of under-
standing we use letters instead. Indonesian is written with the Roman alphabet. The first
grammar uses an MCFG without copying, and the second uses a PMCFG. Figure 3 shows
example derivations for these two grammars.

Example 2 The MCFG has two nonterminals, S of dimension 1, and P of dimension 2. We
only give the rules for the letters ‘a’ and ‘z’ and suppress the other 24 rules of the two types.

S(x1x2) :− P (x1, x2)

P (x1a, x2a) :− P (x1, x2)

P (x1z, x2z) :− P (x1, x2)

P (a, a):−
P (z, z):−

Example 3 The second grammar uses a primitive copying operation, and only has nonter-
minals of dimension 1.

S(x1x1) :− P (x1)

L(a) :−
L(z) :−

P (x1x2) :− P (x1),L(x2)

P (x1) :− L(x1)
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Fig. 4 Example from
Martuthunira (Sadler and
Nordlinger 2006). The word
‘thara’ receives 3 distinct
suffixes, a locative, proprietive
and accusative case markers

2.5 Case-stacking

Case-stacking (or Suffixaufnahme) is a comparatively rare phenomenon that occurs in some
European and several Australian languages such as Martuthunira and Kayardild. In lan-
guages with case-stacking a single word may receive more than one case-marker—a suffix
that indicates the grammatical status of a word. In languages without case-stacking, like
German, a noun may receive a marking that depends on the case it receives from the verb.
This serves to indicate the syntactic relationship between the noun and the verb which gov-
erns it. In English for example, which has only a vestigial case system, in the noun phrase
“John’s dog” the proper noun “John” bears a genitive suffix or clitic which indicates that
John is the possessor of the dog. In the noun phrase, “John’s father’s dog” (the dog of the
father of John), the word “John” is embedded deeply but still only receives one suffix.

In other languages however, such as Martuthunira, a noun can receive multiple case mark-
ers (Andrews 1996; Sadler and Nordlinger 2006) if it is embedded deeply. Figure 4 gives an
example. In Martuthunira, as in Kayardild, it seems that the same noun cannot be marked
more than once with the same case marker, and therefore there is a finite bound on the
number of case markers that an individual noun can receive. This means that from a weak
language-theoretic perspective there is no problem—there are a finite number of possible
sequences of case markers and we can capture each of these with a different state or symbol
in our grammar. However, the same argument that we used in the previous section applies
here: in order to adequately account for learning we will still need to represent this com-
pactly rather than exhaustively listing all of the exponentially many options.

Consider the following example from Kayardild (example 1–15 of Evans 1995)

– maku-wa yalawu-jarra yakuri-na dangka-karra-nguni-na mijil-nguni-na
– woman-NOM catch-PST fish-MABL man-GEN-INSTR-MABL net-INSTR-MABL
– The woman caught fish in the man’s net.

Here the word ‘dangka’ receives three case markers—karra GEN (a genitive marker),
nguni INSTR (an instrumental case marker) and MABL a modal ablative which indicates
that it is past.

A particular example of Suffixaufnahme has received recent theoretical attention: Old
Georgian is a now dead language that has a particularly extreme form of suffix-stacking.
The exact status of the data is controversial (Michaelis and Kracht 1997; Bhatt and Joshi
2004); unfortunately Old Georgian is extinct so there is no way of verifying the exact data.
Here we assume that the arguments are valid.
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For reasons of space we will just describe the string set concerned, rather than attempt to
describe the linguistic data: n can be thought of as a noun, g a genitive suffix and v a verb.
We have a string set over three letters {n,g, v} where the language is:

{nv,nngv,nngnggv,nngnggngggv, . . .} More formally, defining ui = ngi this is the lan-
guage: LOG = {nu1 · · ·ukv | k ≥ 0}. This is not semilinear, since the total number of occur-
rences of g will be a quadratic function of the number of ns in the string. We can describe
this string set with the following grammar.

Example 4 This grammar has just two nonterminals S and N of dimension 2.

S(x1x2v) :− N(x1, x2);
N(x1x2n,x2g) :− N(x1, x2);

N(n,λ) :− .

We can see that L(G,N) = {(n,λ)} ∪ {nu1 · · ·ukn,gk+1 | k ≥ 0}.

2.6 Yoruba

Kobele (2006) argues that Yoruba, a Nigerian language, has a certain type of recursive copy-
ing in relative clauses. Yoruba can form relative clauses by copying entire verb phrases—the
verb phrases can have nouns which can have relative clauses; the end result of this is a lan-
guage which under intersection with a suitable regular language, and after homomorphism
gives the language {a2n | n ≥ 0}. This means that Yoruba cannot be adequately represented
by an MCFG. Yoruba has noun phrases of the form (Example 4.48 of Kobele 2006) ‘rira
NP ti Ade ra NP’ (the fact that Ade bought NP) where NP is a noun phrase which must be
copied; the two occurrences of NP must be identical.3

Noun phrases can also be formed into sentences like ‘Ade ra NP’ (Ade bought NP) or
‘NP ko da’ (NP is not good).

Example 5 We can represent this tiny non-semilinear fragment of Yoruba with the grammar:

S(x1x2) :− NP(x1),VP(x2);
NP(n):−;

NP(vnx1tx2rx1) :− NP(x1),NP(x2);
VP(vf ):−,

where we write n for nouns like ‘adie.’ (chicken) and proper nouns like ‘Ade’, vn for nonfinite
verbs like ‘rira’ (buying), vf for finite verb phrases, and t, r for ‘ti’ and ‘ra’.

We can verify that this language is not semilinear by counting the number of occurrences
of t in grammatical sentences. Similar phenomena occur widely in other West African lan-
guages, such as Wolof, though Yoruba has perhaps the most complex system of this type.

3There can apparently be slight differences in the NPs which we neglect here.
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Fig. 5 Derivation trees for these examples; from left to right: Old Georgian, Chinese numbers, Yoruba

2.7 Chinese number names

In Mandarin Chinese, a certain subset of number names can be formed from ‘wu’ (5) and
‘zhao’ (1012). Here we will write a for ‘wu’ and b for ‘zhao’. The well-formed expressions
intersected with a suitable regular language form the language LCN = {abk1abk2 · · ·abkn |
k1 > k2 > · · · > kn ≥ 0}. This data is controversial as it is not clear whether the well-
formedness of number expressions should form part of the syntax of the language. Here
we assume that it does, in which case the language is not semilinear (Radzinski 1991).
A grammar for this is:

Example 6

S(ax1x2) :− N(x1, x2);
N(bx1, x2) :− N(x1, x2);

N(bx1, ax1x2) :− N(x1, x2);
N(λ,λ) :− .

Figure 5 shows an example derivation tree for each of the three examples here.

3 Preliminaries

We now define our formalism more precisely, starting with some basic definitions.
The sets of non-negative and strictly positive integers are denoted by N and N+, respec-

tively. A sequence over an alphabet Σ is called a word. The empty word is denoted by λ.
Σ∗ denotes the set of all words and Σ+ = Σ∗ − {λ}. Any subset of Σ∗ is called a language
(over Σ ). An m-word is an m-tuple of words and we denote the set of m-words by Sm for
m ∈ N. Any m-word is a multiword. We define S≤m = ⋃

i≤m Si and S∗ = ⋃
i∈N Si . We note

that the only 0-word is the empty tuple. We usually identify a 1-word (u) with a word u, and
a string of length 1 with an element of Σ .

We fix a countably infinite set X of variables x1, x2, . . . . We use y, y ′, yi etc. as meta-
variables for variables in X. A pattern is a string over Σ ∪ X. For a pattern π , we denote
by Xπ the set of variables that occur in π . An m-pattern π is a pattern such that |Xπ | = m.
Hence a 0-pattern is a synonym of a word. A pattern is said to be n-copying if each variable
occurs at most n times in it. An m-context is an m-pattern π such that Xπ = {x1, . . . , xm}.
We denote the set of m-contexts by Cm and that of n-copying m-contexts by Cm,n. Note that
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every element of Cm,n contains exactly m variables, each of which occurs at most n times.
In preceding papers on distributional learning algorithms (e.g. Clark and Eyraud 2007),
a context is defined to be a pair (l, r) of words. Those correspond to lx1r in our notation and
particularly the empty context (λ,λ) is denoted by x1 in this paper. One can see an m-context
as a function that takes an m-word as an argument and returns a word formed from the
components of the m-word and other words that form part of the m-context. For example,
from a 2-context ax1bx2x1 and a 2-word (c, d), one will get a word acbdc. We formally
define the composition of an m-context and an m-word through a substitution. A substitution
θ is a finite partial function from X to Σ∗, which is extended to the homomorphism θ̂ from
(Σ ∪ X)∗ to (Σ ∪ X)∗ such that θ̂ (y) = θ(y) if y is in the domain of θ , and θ̂ (y) = y

otherwise for y ∈ Σ ∪ X. We identify θ̂ and θ if no confusion arises. A substitution θ is
often denoted as a suffix operator [y1 �→ θ(y1), . . . , yk �→ θ(yk)] where {y1, . . . , yk} is the
domain of θ . When the domain is understood, particularly when the domain is {x1, . . . , xk},
it is denoted by [θ(y1), . . . , θ(yk)] omitting the domain. E.g., for θ = {x1 �→ c, x2 �→ d}, we
write

θ(ax1bx2x1) = ax1bx2x1[c, d] = acbdc.

(The homomorphic extension of) a substitution operation is naturally generalised for sets
C ⊆ Ck and K ⊆ Sk as C[K] = {w[v] | w ∈ C,v ∈ K}. For example, for C = {ax1bx2x1}
and K = {(c, d), (e, f )}, we have

C[K] = {acbdc, aebf e}.
In what follows, we will consider a fixed language L ⊆ Σ∗ and we denote the set of

m-words that every m-context in a set C ⊆ Cm accepts with respect to the language L by

C† = {
v ∈ Sm | π [v] ∈ L for all π ∈ C

}
.

By definition, C[K] ⊆ L iff K ⊆ C† for any K ⊆ Sm. Note that if C = {x1} then C† = L.
For a set of strings D ⊆ Σ∗, we let Sub≤p(D) and Con≤p,r (D) denote the sets consisting of
m-words and of r-copying m-contexts with m ≤ p that are “extracted” from strings in D,
respectively. Those are formally defined as

Sub≤p(D) = {
v ∈ Sm | π [v] ∈ D for some π ∈ Cm,1 with m ≤ p

}
,

Con≤p,r (D) = {
π ∈ Cm,r | π [v] ∈ D for some v ∈ Sm with m ≤ p

}
.

Typically D here will be a finite set of example strings drawn from some target infinite
language. When p = 1, Sub≤p(D) is just the set of substrings of strings in D. Note that
Con≤0,r (L) = L and that replacing Cm,1 in the definition of Sub≤p(L) by Cm gives an equiv-
alent definition.

3.1 Parallel multiple context-free grammars

A ranked alphabet is a pair 〈N,dim〉 of an alphabet N and a function dim : N → N+. The
number dim(A) is called the dimension of A. We often simply express a ranked alphabet
〈N,dim〉 by N if no confusion arises. By Nd we denote the subset of N whose elements
have dimension d .

Seki et al. (1991) introduced parallel multiple context-free grammars (PMCFGs) as a
generalization of context-free grammars. A PMCFG is a tuple G = 〈Σ,N,S,P 〉 where Σ is
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an alphabet whose letters are called terminals, N is a ranked alphabet whose elements are
called nonterminals, S ∈ N is a special nonterminal of dimension 1 called the start symbol,
and P is a set of production rules.

Production rules in P have the following form:4

B0(π1, . . . , πd0) :− B1(y1,1, . . . , y1,d1), . . . ,Bk(yk,1, . . . , yk,dk
)

where B0,B1, . . . ,Bk ∈ N for some k ≥ 0, di = dim(Bi) for each i ∈ {0, . . . , k}, variables
y1,1, . . . , yk,dk

are distinct, and each πj for j = 1, . . . , d0 is a pattern such that

⋃

1≤j≤d0

Xπj
= {yi,j | 1 ≤ i ≤ k,1 ≤ j ≤ di}.

If k = 0 then the right-hand side is empty, and the production is of the form B(v):− where
v ∈ Sdim(B). We say that a rule is r-copying if the concatenation of the patterns on its left-
hand side is r-copying, that is, no variables occur more than r times on the left-hand side.

Example 7 A tuple G1 = 〈{a},N,S,P 〉 where N = N1 = {S} and P consists of the two
rules

S(x1x1) :− S(x1); S(a):−
is a PMCFG.

A tuple G2 = 〈{a},N,S,P 〉 where N = {S,A} with N1 = {S} and N2 = {A} and P

consists of the three rules

S(x1x2a) :− A(x1, x2); A(x1x2a, x2aa) :− A(x1, x2); A(λ,λ):−
is a PMCFG.

Another PMCFG is G3 = 〈{a},N,S,P 〉 where N = {S,A,B} with N1 = {S,A} and
N2 = {B} and P consists of the 6 rules

S(x1x2,1x1x2,2) :− A(x1),B(x1, x2);
A(x1x2) :− A(x1),A(x2); A(a) :− ; A(b) :−

B(x1c, x2d) :− B(x1, x2); B(λ,λ) :− .

We define the derivation process of a PMCFG G by derivation trees. A node labeled by
A(v) is a derivation tree of G if A(v):− is a rule of G. We naturally generalise the domain of
a substitution θ to tuples π of patterns as θ(π) = (θ(π1), . . . , θ(πk)) for π = (π1, . . . , πk).
If we have derivation trees ti whose roots are labeled by Bi(vi ) for i = 1, . . . , k and G has a
rule

B0(π1, . . . , πd0) :− B1(y1), . . . ,Bk(yk),

then the tree whose root is labeled by

B0

(
θ(π1, . . . , πd0)

)

4The notation adopted in this paper follows Smullyan’s elementary formal systems (1961) rather than Seki
et al. (1991). We only consider non-deleting productions in this paper.
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Fig. 6 Example derivation trees
of G1, G2, G3 from left to right

where θ(yi) = vi for all i = 1, . . . , k with immediate subtrees t1, . . . , tk is also a derivation
tree. We will abbreviate this substitution θ as [v1, . . . ,vk]. If there is a derivation tree whose
root is labeled by A(v), we write 
G A(v).

We then define the language of A by

L(G,A) = {
v ∈ Sdim(A) |
G A(v)

}
.

The language of G is L(G) = L(G,S).
Figure 6 shows some examples of derivation trees of grammars G1, G2 and G3 from

Example 7. For the grammar G1, we have 
G1 S(a2n
) for all n ∈ N and in fact L(G1) =

{a2n | n ∈N}. For the grammar G2, it is easy to see that we have 
G2 A(an2
, a2n) for all n ∈N

and in fact L(G2) = {an2 | n ∈N+}. For G3, it is clear that L(G3,A) = {a, b}+, L(G3,B) =
{(cn, dn) | n ∈ N} and L(G3, S) = {wcnwdn | w ∈ {a, b}+ and n ∈ N}. See Sect. 2 for some
more examples together with some derivation trees.

The following lemma states that the pattern in a rule is easily reconstructed from a word
derived using that rule.

Lemma 1 Suppose that a rule B(π) :−B1(x1), . . . ,Bk(xk) is used to obtain u ∈ L(G). Then
u can be represented by u = π0[θ(π)] for some π0 ∈ Cdim(B),1 and some substitution θ whose
domain consists of the variables of x1, . . . ,xk exactly.

Proof (Sketch) Suppose that we have 
G B(θ(π)) following 
G Bi(vi ) for i = 1, . . . , k

where θ = [v1, . . . ,vk]. The derivation process solely consists of concatenation operations.
Strings obtained during the derivation process are never deleted or split. Therefore, it is eas-
ily seen that if some derivation tree for 
G A(u) contains the derivation tree corresponding
to 
G B(θ(π)), then u can be represented as u = π ′[θ(π)] for some tuple of patterns π ′.
Particularly for u ∈ L(G), we have u = π ′

0[θ(π)] for some π ′
0 ∈ Cd,∗ with d = dim(B). By

replacing all but one occurrences of a variable x by θ(x) in π ′
0, one obtains π0 ∈ Cd,1 with

the desired property. �

We denote by G(p, q, r) the class of PMCFGs such that the dimension of every nontermi-
nal is at most p and every production rule has at most q nonterminals on the right-hand side
and is r-copying. For the grammars in Example 7, we have G1 ∈ G(1,1,2), G2 ∈G(2,1,2)

and G3 ∈ G(2,2,2).

Theorem 1 (Seki et al. 1991) The uniform membership problem for G(p, q, r) is solvable
in polynomial time whose degree is linear in pq .
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Fig. 7 Example of a context as a
function from strings to strings

4 Intuition

We will now give an informal introduction to the extension of distributional learning to
these formalisms; the basic idea is quite natural but may be obscured by the unavoidable
complexity of the notation.

In distributional learning we typically consider a context (l, r) which we can wrap around
a substring u to give a complete string lur . Consider this context rather as a function f from
a substring to a full sentence. u �→ lur , which in our notation is represented by what we call
a 1-copying 1-context lx1r , an element of C1,1.

In the derivation of a string with respect to a CFG, these functions correspond to the
operation that takes the yield of a nonterminal and integrates into the rest of the sentence:
given a derivation like S

∗⇒ lNr
∗⇒ lur , we can consider the derivation S

∗⇒ lNr to be
applying a function f ∈ C1,1 to the yield of N .

In a parallel CFG, we might again have a nonterminal N that derives a string u. However,
the part of the derivation that produces the whole sentence from u may include rules that
copy u.

Example 8 Consider for example the language {ww | w ∈ {a, b}+}. This could be defined
as a parallel CFG with two nonterminals S and W , together with productions:

S(x1x1) :− W(x1); W(a):−; W(b):−; W(x1x2) :− W(x1),W(x2).

Figure 7 shows a derivation tree of abbabb; we can pick one node in the tree (marked
with a box). If we consider the “context” of the node W(ab), then this is not a simple context,
but rather the function x1 �→ x1bx1b. We can see this by replacing this node in the tree with
a variable x1, as on the right hand side of Fig. 7.

Therefore, with this richer class of grammars we need to consider a larger class of func-
tions that correspond to r-copying contexts, and when we consider tuples of strings in the
full PMCFG formalism, to r-copying d-contexts: the class Cd,r . Given such a set of functions
we can consider the ‘distribution’ in this extended sense of a substring in a language to be
the set of functions that when applied to that substring give an element of the language.

In this paper we use a dual approach—the nonterminals are defined by small finite sets
of patterns/functions, and incorrect rules will be eliminated by strings or tuples of strings.

In Example 8, we can see how the nonterminals that we need can be picked out. The
symbol S will correspond as usual to the single simple pattern x1—the identity function
which corresponds to the empty context (λ,λ) in distributional learning of CFGs (e.g. Clark
and Eyraud 2007). The symbol W corresponds to the 2-copying context x1x1. It is easy to see
that the set of strings generated by W is exactly the same as the set of strings which can occur
in the context x1x1. In the notation we defined earlier we have a singleton set CW = {x1x1}
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such that L(G,W) = {v ∈ Σ∗ | CW [v] ⊆ L(G)}. Note that for any grammar, the start symbol
S will be characterised by the single context x1. We shall show that languages that have this
nice property—that the languages defined by each nonterminal can be picked out by a small
set of contexts—are learnable by a straightforward algorithm, very similar to ones that have
been used before for distributional learning of CFGs.

4.1 Algorithm description

We will now give an informal description of the algorithm. The algorithm receives some
examples of strings from a target language: we use D to denote the finite set of examples.
In addition we assume that the learner can ask membership queries (MQs). This means that
the learner, in addition to passively observing the examples it is given can construct a string
and query whether it is in the language being learned or not. We discuss below in Sect. 5.2
the implications of this choice of learning model.

We are interested in modelling the relationship between sets of contexts and sets of sub-
yields. The algorithm therefore considers every possible decomposition of the positive ex-
amples into contexts and subyields, which can be done in polynomial time: this gives us a
set of subyields, which are tuples of strings, K , and a set of contexts, F . We then construct a
grammar which has a nonterminal for every small subset of F ; every subset of size at most s.
Each such subset C defines a set of strings or tuples of strings in K : namely those which
when inserted into the context give a string in the language: we will denote this set C(K),
which is finite and can be computed using a polynomial number of membership queries.
We then construct all possible rules, of bounded complexity, that can be made using these
nonterminals. Suppose we have a possible rule like

�C0 �(π) :− �C1 �(x1), . . . , �Ck �(xk). (1)

This rule is correct if when we apply the rule π to each of the strings in C
(K)
i the result

is in fact in C
†
0 . So we take all of the strings or tuples of strings that correspond to the

nonterminals on the right hand side of the rule, combine them using the recipe in the pattern
π and then test, using membership queries that the resulting tuple can occur in each of the
contexts in C0. The final grammar that we construct consists of all rules that pass this test.

5 Learning target and algorithm

Definition 2 We say that a PMCFG G has the (r, s)-finite context property ((r, s)-FCP) if
each nonterminal A ∈ Nd admits a nonempty set CA ⊆ Cd,r of r-copying d-contexts such
that |CA| ≤ s and

L(G,A) = C
†
A = {

v ∈ Sd | CA[v] ⊆ L(G)
}
.

Such a set CA is called a characterising set of A.
By G(p, q, r, s) we denote the subclass of G(p, q, r) where grammars have the

(r, s)-FCP. The class of languages generated by grammars in G(p, q, r, s) is denoted by
L(p, q, r, s).

Clearly the above definition is a generalisation of the s-FCP (Clark 2010). All regular
languages are in L(1,1,1,1) and the Dyck language is in L(1,2,1,1).
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Recall the grammar G1 in Example 7, which has only one nonterminal symbol. We have
L(G1) = {a2n | n ≥ 0} ∈ L(1,1,2,1) since the 1-context x1 always characterises the start
symbol S.

There are context-free languages which are not in L(p, q, r, s) for any values of p,q, r, s

such as for example, the language {anbm | n,m > 0,m �= n}. This is because the required
nonterminals cannot be picked out by any finite set of contexts.

5.1 Linguistic examples

We now consider the examples in Sect. 2 with respect to this representational assumption.
In the case of Swiss German, we do not need any copying operations, and we need to be

able to define the two nonterminals in the grammar in Example 1: S which is of dimension 1,
and D which is of dimension 2. S is trivially definable using the single context x1. D could
be defined using the single context π = CNax1NdVax2Vd , which is a 1-copying 2-context.
We can easily verify that {π}† which is the set of 2-words that can occur in this context is
the set {(w̄,w) | w ∈ {Va,Vd}∗}. This differs slightly from the set of strings generated by
the nonterminal D in the specific grammar we defined earlier, in that it includes the empty
bi-word (λ,λ). However we can modify that grammar slightly to get the following slightly
larger grammar:

Example 9 This grammar generates the same language as Example 1, but is slightly larger.

S(CNax1Vax2) :− D(x1, x2)

S(CNdx1Vdx2) :− D(x1, x2)

D(Nax1,Vax2) :− D(x1, x2)

D(Ndx1,Vdx2) :− D(x1, x2)

D(λ,λ):−
Note that now L(G,D) = {CNax1NdVax2Vd}† and as a result the language is in L(2,1,1,1).

In the Old Georgian case, Example 4, we can use the single context π = x1x2nx2gv to
pick out the multiwords generated by the nonterminal N of dimension 2. We recall that
L(G,N) = {(n,λ)} ∪ {nu1 · · ·ukn,gk+1 | k ≥ 0}. Note that π is a 2-copying 2-context—the
variable x1 occurs twice. Suppose that (w1,w2) ∈ {π}†. This means that w1w2nw2gv ∈ L.
By considering the number of occurrences of the symbols n and g in w1 and w2 we can
verify that this can only happen if w2 is a string of zero or more occurrences of g, and
therefore if (w1,w2) ∈ L(G,N). Moreover we can see that π[L(G,N)] ⊆ L(G). Therefore
we have that {π}† = L(G,N) as desired.

In the case of the duplication in Indonesian, as shown in Examples 2 and 3, we can
in both cases find appropriate sets of contexts. Taking the MCFG grammar first, the single
context x1x2 does not suffice to pick out the nonterminal of dimension 2, P , since {x1x2}
includes strings like (ha, khak) as well as the desired 2-words. Indeed no single 1-copying
2-context can pick out exactly the right set of 2-words. Suppose we have a 1-copying 2-
context which will be of the form ux1vx2w for some strings u,v,w; then {ux1vx2w}† will
include for any string y both the 2-words (y,wuyv) and (vywu,y). However, we can pick
out the correct set of 2-words using two distinct contexts. If we define C = {ax1ax2, bx1bx2},
then C† = {(w,w) | w ∈ Σ+}. Therefore this grammar is in the class G(2,1,1,2) and the
language is in L(2,1,1,2).
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If we consider now the PMCFG grammar for the same language, as shown in Example 3,
we can define the nonterminal of dimension 2 P using the single 2-copying 1-context x1x1.
Therefore this grammar is G(1,2,2,1); indeed although we have written it using a grammar
with a rule with two nonterminals on the right hand side, we could also have used a simpler
grammar using only rules of rank 1, which would give a grammar in G(1,1,2,1).

In the Yoruba case, Example 5, the NP class is picked out by the context x1vf and the VP
class (just the symbol vf in this trivial example) by the context nx1. Therefore the grammar
belongs to G(2,2,2,1).

Finally in the Chinese number example, Example 6, we can prove that the context
abx1ax1x2 characterises the nonterminal N . It is easy to see that

L(G,N) = {(
bk0 , abk1 · · ·abkn

) | n ≥ 0, k0 > k1 > · · · > kn ≥ 0
}

and

π
[
L(G,N)

] = {
abbk0abk0abk1 · · ·abkn | n ≥ 0, k0 > k1 > · · · > kn ≥ 0

} ⊆ LCN.

Thus it is enough to show that π [u,v] = abuauv ∈ LCN implies (u, v) ∈ L(G,N). Let
n be the number of occurrences of a in u. There are k0, . . . , kn ∈ N such that u =
bk0abk1a · · ·abkn . Then π [u,v] should be represented as abk0+1abk1a · · ·abknabk0aw for
some w. The fact k0 + 1 > k1 > · · · > kn > k0 implies n = 0. That is, u = bk0 for some
k0 ∈N. We now have π [u,v] = abk0+1abk0v ∈ LCN. The leftmost symbol of v cannot be b.
That is, v = abk1abk2 · · ·abkn for some n ≥ 1 and k1, . . . , kn ∈ N such that k0 > k1 > · · · >

kn ≥ 0. Therefore (u, v) ∈ L(G,N). The grammar belongs to G(2,1,2,1).

5.2 Learning model

The learner receives a presentation of positive data in the identification in the limit paradigm.
We assume that our learner has in addition access to an oracle which answers membership
queries (MQs), which says whether an arbitrary string u belongs to the learning target L∗.
See for example Yoshinaka (2010) for details.

A positive presentation of a language L∗ over Σ is an infinite sequence of words
w1,w2, . . . ∈ Σ∗ such that L∗ = {wi | i ≥ 1}. A learner is given a positive presentation of the
language L∗ = L(G∗) of the target grammar G∗ and each time a new example wi is given,
it outputs a grammar Gi computed from w1, . . . ,wi with the aid of a membership oracle.
One may query the oracle whether an arbitrary string w is in L∗, and the oracle answers in
constant time. We say that a learning algorithm identifies G∗ in the limit from positive data
and membership queries if for any positive presentation w1,w2, . . . of L(G∗), there is an
integer n such that Gn = Gm for all m ≥ n and L(Gn) = L(G∗). Trivially every grammar
admits a successful learning algorithm. An algorithm should learn a rich class of grammars
in a uniform way. We say that a learning algorithm identifies a class G of grammars in the
limit from positive data and membership queries if and only if it identifies all G ∈ G.

We remark that as we have membership queries, learning algorithms based on exhaustive
enumeration will work, hence a learner should have further properties in terms of efficiency.
Accordingly we require the learner to operate in polynomial time: we assume that the mem-
bership queries can be answered in constant time (or equivalently time polynomial in the
length of the example). Thus at each step t , the learner can only use time that is bounded by
a polynomial of the total size of the data seen so far, |w1| + · · · + |wt |.

We note that our interest here is in showing that a particular algorithm is correct and
efficient, and not in showing that a particular class of languages is learnable with respect
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to a particular learning model. However, we note that this learning model is not restrictive
in the sense that it is possible to find trivial enumerative algorithms that can also learn the
classes L(p, q, r, s) we discuss in this paper using a delaying trick. The algorithm we present
here does not use such tricks.

5.3 Construction of hypothesis

Hereafter we arbitrarily fix rather small natural numbers p,q, r, s ≥ 1 and a target language
L∗ ∈ L(p, q, r, s) to be learnt.

Our learner is a straightforward generalisation of the one for CFGs with the s-FCP given
in Yoshinaka (2011b). The learner constructs its conjecture Ĝ = G(K,F ) from finite sets
of multiwords K ⊆ Sub≤p(D) and r-copying contexts F ⊆ Con≤p,r (D) where D is a set of
positive examples. We let Ki = K ∩ Si for i = 1, . . . , p and Fj = F ∩ Cj,r for j = 0, . . . , p.
We assume that x1 ∈ F1. The nonterminal set N̂ = ⋃

1≤i≤p N̂i of Ĝ is given by

N̂i = {
�C� | C ⊆ Fi with 1 ≤ |C| ≤ s

}
,

where �C� simply means a symbol indexed with C. The start symbol is �{x1}�.
We would like each nonterminal �C� ∈ N̂ to generate C† = {v | C[v] ∈ L∗}. If a gram-

mar G∗ generating the target language L∗ has a nonterminal A which is characterised by a
context set CA and CA ⊆ K , then the nonterminal �CA� of our grammar should be used to
simulate A. Recall that the start symbol of any grammar is characterised by {x1}, which is
the reason why �{x1}� is the start symbol of our grammar.

If we have a rule of the form

�C0 �(π) :− �C1 �(x1), . . . , �Ck �(xk), (2)

according to the semantics of the nonterminals, it should hold that C
†
0 ⊇ π [C†

1 , . . . ,C
†
k ] by

the nature of the derivation. Equivalently, we should have

C0

[
π

[
C

†
1 , . . . ,C

†
k

]] ⊆ L∗, (3)

where π [C†
1 , . . . ,C

†
k ] = {π [v1, . . . ,vk] | vi ∈ C

†
i for i = 1, . . . , k}. Yet in general we cannot

decide the inclusion relation (3) since we have no means to compute sets C
†
i . We substitute

C
†
i ∩K for C

†
i , which is computable by the aid of MQs; for each v ∈ K , we have v ∈ C

†
i ∩K

if and only if for all w ∈ Ci , w[v] ∈ L∗. For C ⊆ Cj,r , we let denote C† ∩ Kj by C(K). Since
the sets C

(K)

1 , . . . ,C
(K)
k are finite, the relation

C0

[
π

[
C

(K)

1 , . . . ,C
(K)
k

]] ⊆ L∗ (4)

can be decided by finitely many MQs.
Consequently our grammar G(K,F ) has rules of the form (2) if and only if the following

conditions hold, where di are such that �Ci � ∈ Ndi
for i = 0, . . . , k and d = ∑

1≤i≤k di :

– 0 ≤ k ≤ q ,
– π is a d0-tuple of patterns whose concatenation is an r-copying d-context,
– |xi | = di for each i = 1, . . . , k and the variables from x1, . . . ,xk constitute Xπ ,
– there are vi ∈ Sdi

for i = 1, . . . , k and π0 ∈ Cd0,1 such that π0[π [v1, . . . ,vk]] ∈ F0,
– the inclusion (4) holds.
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We call a rule satisfying the above conditions but the last a potential rule. Note that the
condition to be a potential rule is subject to the target class L(p, q, r, s) but not to a target
language; we use MQs only to decide the condition (4).

Example 10 Let (p, q, r, s) = (1,1,2,1). If a, aa ∈ F0 and x1 ∈ F1, we have the following
potential rules among others:

�{x1}
�
(x1x1) :− �{x1}

�
(x1),

�{x1}
�
(a):−,

�{x1}
�
(x1a) :− �{x1}

�
(x1).

Suppose that the learning target is generated by G1 of Example 7:

L(G1) = {
a2n | n ∈ N

}
.

The first two rules always satisfy (4) whatever K is. On the other hand, if aa ∈ K , the last
rule does not satisfy (4) since x1[aa] ∈ L(G1) and x1a[aa] /∈ L(G1).

Example 11 Let (p, q, r, s) = (2,1,2,1). Consider the fragment of the Old Georgian (Ex-
ample 4)

LOG = {
u0 · · ·ukv | k ≥ 0, ui = ngi

}
.

If nngv ∈ F0 and x1x1x2v, x1x2nx2gv ∈ F2, we have the following potential rules:

�{x1x1x2v}�
(x1, x2nx1g) :− �{x1x1x2v}�

(x1, x2),

�{x1x1x2v}�
(x1, x2g) :− �{x1x2nx2gv}�

(x1, x2),

�{x1x2nx2gv}�
(x1x1n,x2g) :− �{x1x2nx2gv}�

(x1, x2).

If (n, g) ∈ K , the first rule does not satisfy (4) since x1x1x2v[n,g] ∈ LOG and
x1x1x2v[n,gnng] /∈ LOG.

If (nn,g) ∈ K , the second rule does not satisfy (4) since x1x2nx2gv[nn,g] ∈ LOG and
x1x1x2v[nn,g] /∈ LOG.

The third rule always satisfies (4) whatever K is.

Lemma 2 One can construct G(K,F ) in polynomial time in ‖D‖.

Proof By F ⊆ Con≤p,r (D) and K ⊆ Sub≤p(D), ‖F‖ and ‖K‖ are bounded by a polynomial
in ‖D‖ with a degree linear in pr and p, respectively. For each �C� ∈ N̂ , the fact |C| ≤ s

implies |N̂ | ≤ |F |s .
We first estimate the number of potential rules of the form (2). By k ≤ q , at most

(|N̂ | + 1)q+1 combinations of nonterminals are possible. It remains to count the num-
ber of possible π . There must exist u ∈ F0 ⊆ D, vi ∈ Sub≤p(u) for i = 1, . . . , k and
π0 ∈ Con≤p,1(u) such that u = π0[π [v1, . . . ,vk]]. Determining π can be seen as determining
the left and right positions in u to which each occurrence of variables in π0 and π corre-
sponds. Note that π0 and π contain at most p and pqr occurrences of variables, respectively.
Thus we extract at most |u|2(p+pqr) variants of π from a string u ∈ F0. Therefore, we have
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at most (|N̂ | + 1)q+1|F0|�2(p+pqr) production rules in G(K,F ) where � is the length of a
longest word in F0.

The algorithm verifies whether potential rules satisfy the last condition (4). To compute
C

(K)
i , we call the membership oracle on at most |Ci ||K| words. To see whether (4) holds, it

is enough to check the membership on at most |C0|∏1≤i≤k |C(K)
k | ≤ s|K|q words.

All in all, one can compute G(K,F ) in polynomial time in ‖D‖, where the degree of the
polynomial linearly depends on pqrs. �

Just like the algorithms based on syntactic concept lattices (e.g. Clark 2010), we estab-
lish the following monotonicity lemma: expansion of F expands the hypothesised language
while expansion of K shrinks the hypothesised language.

Lemma 3 (Monotonicity) Let Ĝ = G(K,F ) and Ĝ′ = G(K ′,F ′).

(1) If K ⊆ K ′ and F = F ′, then L(Ĝ) ⊇ L(Ĝ′).
(2) If K = K ′ and F ⊆ F ′, then L(Ĝ) ⊆ L(Ĝ′).

Proof (1) Every rule of Ĝ′ is also a rule of Ĝ. (2) Every rule of Ĝ is also a rule of Ĝ′. �

We say that a rule of the form (2) is correct if it satisfies (3). In other words, for any
v1, . . . ,vk ∈ S∗,

Ci[vi] ⊆ L∗ for all i ∈ {1, . . . , k} =⇒ C0

[
π [v1, . . . ,vk]

] ⊆ L∗.

If a rule is not correct, it is incorrect.

Lemma 4 Every context set F admits a multiword set K of a polynomial cardinality in ‖F‖
such that Ĝ = G(K,F ) has no incorrect rules.

Proof Suppose that a rule �C0 �(π) :− �C1 �(x1), . . . , �Ck �(xk) is incorrect. There exist mul-
tiwords vi ∈ C

†
i for i = 1, . . . , k such that C0[π [v1, . . . ,vk]] � L∗. If v1, . . . ,vk ∈ K , such

a rule is suppressed. That is, at most q multiwords are enough to get rid of an incor-
rect rule. Recall that the number of potential rules is polynomially bounded by |F |� with
� = max{|u| | u ∈ F0} by the proof of Lemma 2. This proves the lemma. �

We say that K is fiducial on F (with respect to L∗) if G(K,F ) has no incorrect rules. If
K is fiducial on F , then so is every superset of K by definition.

Lemma 5 If Ĝ = G(K,F ) has no incorrect rules, then L(Ĝ) ⊆ L∗.

Proof We show by induction that 
Ĝ �C�(v) implies C[v] ⊆ L∗. This implies particularly
for 
Ĝ �{x1}�(v), where �{x1}� is the start symbol of Ĝ, we have v ∈ L∗.

Suppose that we have 
Ĝ �C0 �([π [v1, . . . ,vk]]) by the rule �C0 �(π) :− �C1 �(x1),

. . . , �Ck �(xk) and 
Ĝ �Ci �(vi ) for i = 1, . . . , k. By the induction hypothesis we have
Ci[vi] ⊆ L∗ for i = 1, . . . , k. (When k = 0, it is the base case.) Since the rule is correct,
we have C0[π[v1, . . . ,vk]] ⊆ L∗. �

Let G∗ = 〈Σ,N∗,P∗, S∗〉 ∈ G(p, q, r, s) generate L∗. We say that F is adequate (with
respect to G∗) if F includes a characterising set CA for every nonterminal A ∈ N∗ and F0
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contains a string vρ ∈ L(G∗) derived by using ρ for every rule ρ ∈ P∗. If F is adequate, then
so is every superset of F .

Lemma 6 If F is adequate, then L∗ ⊆ L(G(K,F )) for any K .

Proof Let Ĝ = G(K,F ). For a rule A0(π) :−A1(x1), . . . ,Ak(xk) of G∗, let Ci ⊆ Fdim(Ai ) be
a characterising set of Ai for i = 0, . . . , k. By the assumption, there are vi ∈ L(G∗,Ai)

for i = 1, . . . , k and a dim(A0)-pattern π0 such that π0[π [v1, . . . ,vk]] ∈ L(G) ∩ F0 by
Lemma 1. Thus �C0 �(π) :− �C1 �(x1), . . . , �Ck �(xk) is a potential rule. For any ui ∈ C

(K)
i =

L(G∗,Ai)∩K , we have π [u1, . . . ,uk] ∈ L(G∗,A0) = C
†
0 . That is, C0[π[u1, . . . ,uk]] ⊆ L∗.

Hence the rule is present in Ĝ whatever K is. �

Lemmas 2, 4–6 mean that one can construct a right grammar from a small amount of
data efficiently.

5.4 Learning algorithm

Algorithm 1, A(p, q, r, s), wants an adequate set F and a fiducial set K on the set F ,
from which it can compute a grammar generating the target language. Expanding K in-
finitely causes no problem because it is used only for removing incorrect rules; after all
incorrect rules have been removed, any further increase in K will have no effect. On the
other hand, expansion of F leads to an increase in the number of nonterminal symbols and
production rules, which should not happen infinitely many times. Thus A(p, q, r, s) expands
F only when it knows that F does not include all characterising sets CA for nonterminals A

of G∗, i.e., when it observes that it is undergenerating.

Lemma 7 If the current conjecture Ĝ is such that L∗ � L(Ĝ), then the learner will discard
Ĝ at some point.

Proof At some point, some element u ∈ L∗ − L(Ĝ) is given to the learner. The rule
�{x1}�(u):− is correct but not present in Ĝ. Once the learner gets u, we obtain this rule
by u ∈ F0. �

Lemma 8 If L(Ĝ) � L∗, then the learner will discard Ĝ at some point.

Proof By Lemma 5, the fact L(Ĝ) � L∗ implies that Ĝ has an incorrect rule �C0 �(π) :−
�C1 �(x1), . . . , �Ck �(xk), where C0[π [C†

1 , . . . ,C
†
k ]] � L∗. That is, there are v1, . . . ,vk ∈ S≤p

Algorithm 1 A(p, q, r, s)

Data: A sequence of strings w1,w2, . . . ∈ L∗; membership oracle O
Result: A sequence of PMCFGs G1,G2, . . . ∈ G(p, q, r)

let D := K := F := ∅; Ĝ := G(K,F );
for n = 1,2, . . . do

let D := D ∪ {wn}; K := Sub≤p(D);

if D �L(Ĝ) then
let F := Con≤p,r (D);

end if
output Ĝ = G(K,F ) as Gn;

end for
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such that Ci[vi] ⊆ L∗ for all i = 1, . . . , k and C0[π [v1, . . . ,vk]] � L∗. By vi ∈ Sub≤p(L∗),
at some point the learner will have D ⊆ L∗ such that vi ∈ Sub≤p(D) for all i = 1, . . . , k.
For K = Sub≤p(D) we have vi ∈ C

(K)
i and C0[π [C(K)

1 , . . . ,C
(K)
k ]] � L∗. The incorrect rule

must be removed. �

Theorem 3 The learner A(p, q, r, s) identifies G(p, q, r, s) in the limit.

Proof Let L∗ ∈ L(p, q, r, s) be the learning target. By Lemmas 7 and 8, the learner never
converges to a wrong hypothesis. It is impossible that the set F is changed infinitely many
times because F is monotonically expanded and at some point F will become adequate with
respect to a target grammar G∗ generating L∗, in which case the learner never updates F any
more by Lemma 6. Then sometime K will be fiducial on F by Lemmas 8 and 4, where Ĝ

has no incorrect rules. Thereafter no rules will be added to or removed from Ĝ any more. �

6 Discussion and conclusion

6.1 Related work

There is very little work that this paper can be directly compared to; it is of course, as noted
earlier, an extension of recent work on distributional learning of context-free and multiple
context-free grammars; in particular it subsumes the dual approaches to learning context-
free grammars taken in Clark (2010) as corrected by Yoshinaka (2011b). Under a different
learning model, the minimally adequate teacher (MAT) model, Yoshinaka and Clark (2012)
show that a class of multiple context-free grammars can be learned using distributional tech-
niques. The class of grammars there is based on a different representational assumption: each
nonterminal of dimension d corresponds to an equivalence class of d-words that are distribu-
tionally identical. As in the case of context-free grammars, this representational assumption
limits the class of languages that can be learned significantly.

We can contrast the algorithm here with the approach taken in Shinohara (1994), which
concerns the inference of elementary formal systems in the Smullyan sense, in a number
of respects. First, the algorithm presented here is polynomial, whereas the Shinohara result
studies learnability without constraints on the computational resources of the learner, and
indeed includes languages which are not in PTIME. On the other hand, Shinohara considers
a learning model where the learner only has positive examples, whereas we allow the learner
to ask membership queries. Finally, Shinohara obtains learnability by bounding the number
of clauses in the grammar. Here we do not need a priori bounds on the number of clauses—as
we can learn grammars of unbounded complexity—but we do put bounds on the parameters
that define the language-theoretic hierarchy.

A different class of representations, Marcus contextual grammars, is studied by Oates
et al. (2006). These are incomparable to the classes of representations that we use, but are
capable of representing some non-context-free languages, though the class studied there
cannot represent all regular languages. Again this is a learning approach which only con-
siders positive data as a source, but in this case the algorithm is also efficient, although the
class of languages that can be learned is rather small. We use patterns in the definition of our
rules, but the languages are very different from the pattern languages studied by Angluin
(1980), though it is worth noting that every such pattern language can be defined easily by a
PMCFG.
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6.2 Hardness of primal approach

Among two different types of approaches in distributional learning, this paper takes the
so-called dual approach for learning PMCFGs in the sense of Yoshinaka (2011b). Dual ap-
proaches are those where the nonterminals are defined by sets of contexts or generalisations
of contexts. One might expect that the other, called primal approach, would work as well;
these approaches define nonterminals using sets of yields of nonterminals—sets of tuples
of strings. For example, using the same learning model that we use here, Yoshinaka (2010)
presents a learner for learning some MCFGs using a primal approach. There the nonterminals
are defined using sets of tuples of strings, and the contexts are used to eliminate the incorrect
rules.

A primal counterpart to the s-FCP could be defined as follows:

Let us say that a grammar G has the s-FKP (finite kernel property) if every nonterminal
A admits a finite string set KA of cardinality at most s such that π[KA] ⊆ L(G) iff
π[L(G,A)] ⊆ L(G) for any context π .

However, the simplest non-linear grammar with the rule set {S(x1x1) :−S(x1), S(a):−} does
not have the 1-FKP, which contrasts with the fact that every grammar with a single nonter-
minal has the 1-FCP. This grammar still has the 2-FKP, but the authors did not yet find a
non-semilinear language generated by a grammar with the 1-FKP.

An even more serious problem is in the hardness of avoiding overgeneralisation while
still only using polynomial-time computation (cf. Lemma 5). To get a primal learner for
PMCFGs with the s-FKP, it seems a natural idea to combine the techniques proposed in this
paper and by Yoshinaka (2011b). Nonterminal symbols should be indexed by string sets K

of cardinality at most s. A rule of the form

�K0 �(π) :− �K1 �(x1), . . . , �Kk �(xk)

would be said to be correct if π0[π [K1, . . . ,Kk]] ⊆ L∗ for every π0 such that
π0[K0] ⊆ L∗ where L∗ is our learning target. However, to avoid exponential growth of
computation time, we have to consider only r-copying contexts as π0 for some fixed num-
ber r . Suppose, for example, r = 2 and L∗ = {a4, b4, ad, bd, cd}. Since π[{a, b}] ⊆ L∗
iff π[{c}] ⊆ L∗ for every 2-copying context π , though x4

1 [{a, b}] ⊆ L∗ and x4
1 [{c}] � L∗,

our learner will construct a rule �{a, b}�(x1) :− �{c}�(x1). Together with other rules
�{a4, b4}�(x1x1) :− �{aa, bb}�(x1), �{aa, bb}�(x1x1) :− �{a, b}�(x1) and �{c}�(c):−, we
can derive c4 /∈ L∗. Thus, we can even find a finite language that this primal approach fails
to learn. In the dual approach we have taken to learn PMCFGs, strings are used to exclude
incorrect rules, and gathering all substrings from positive data can be done in polynomial
time. On the other hand, in the primal approach, extracting all contexts from positive data is
computationally intractable and thus we have to consider only r-copying contexts, though
actually strings may be recursively copied any number of times during a derivation process.
This limits our ability to control overgeneralisation in the primal approach.

6.3 Conclusion

In this paper, we have extended distributional learning to the inference of non-semilinear
languages. This result also includes as a corollary a significant extension of the learnable
classes of MCFGs where the nonterminals are based on contexts: a dual model in the sense
of Yoshinaka (2011b).
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These algorithms are all polynomial but the degree, as stated earlier, depends on the
product of the parameters p,q, r and s. As a result, these algorithms will not be practical,
in their naive forms, for anything other than very small values for these parameters: 1 or 2
at most. Of course, there are numerous heuristic modifications that could be made to only
restrict the format of the rules that are considered to some more limited subset.

The combination of these two extensions gives, for the first time, an efficiently learnable
class of languages that plausibly includes all natural languages, even under the worst case
that all of the questionable examples in Sect. 2 are valid; more precisely, a class where
there are no arguments that suggest that there is a natural language which is not in the
class. In particular we are able to learn the particular example from Swiss German, which
motivated the development of the theory of mildly context-sensitive grammars. Previous
primal algorithm for MCFGs were not able to learn this precise case, though they could learn
some closely related languages.

This leaves open two interesting issues: finding an appropriate learnable feature calculus
to represent the large set of nonterminals required, and the more fundamental question of
whether these grammars are also strongly adequate: adequate not just in terms of the sets of
strings that they generate but in terms of the sets of structural descriptions.

From a technical point of view, it is naturally to ask whether this learning approach can be
extended beyond the class of PMCFGs to use conjunction as well. The linguistic motivations
for this extension do not seem to be particularly compelling, though there may be reasons to
study this in other application domains such as program induction.
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