
Mach Learn (2014) 94:371–399
DOI 10.1007/s10994-013-5397-9

Hierarchical constraints
Providing structural bias for hierarchical clustering

Korinna Bade · Andreas Nürnberger

Received: 12 February 2010 / Accepted: 17 June 2013 / Published online: 7 September 2013
© The Author(s) 2013

Abstract Constrained clustering received a lot of attention in the last years. However, the
widely used pairwise constraints are not generally applicable for hierarchical clustering,
where the goal is to derive a cluster hierarchy instead of a flat partition. Therefore, we
propose for the hierarchical setting—based on the ideas of pairwise constraints—the use of
must-link-before (MLB) constraints. In this paper, we discuss their properties and present
an algorithm that is able to create a hierarchy by considering these constraints directly.
Furthermore, we propose an efficient data structure for its implementation and evaluate its
effectiveness with different datasets in a text clustering scenario.

Keywords Constrained clustering · Hierarchical clustering · Semi-supervised learning

1 Introduction

Automatic structuring of data is a very helpful tool for improving a user’s understanding of
the data and providing an overview over the information contained therein. If the amount of
data increases, a structuring into a hierarchy is especially useful since it can group the data
on different levels of granularity. This gives a more detailed insight into the data and enables
a user to concentrate on interesting parts of the data, analyzing details only when necessary.
Hierarchical clustering methods were developed in the past to fulfill this task. The goal of
these approaches is to group data only based on their features, i.e. information assigned to

Editor: Jennifer Dy.

K. Bade (�)
Department of Computer Science and Languages, Anhalt University of Applied Sciences,
Lohmannstraße 23, 06366 Köthen (Anhalt), Germany
e-mail: k.bade@inf.hs-anhalt.de

A. Nürnberger
Fakultät für Informatik, Institut für Technische und Betriebliche Informationssysteme,
Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany
e-mail: andreas.nuernberger@ovgu.de

mailto:k.bade@inf.hs-anhalt.de
mailto:andreas.nuernberger@ovgu.de

372 Mach Learn (2014) 94:371–399

or extracted from the objects themselves. However, there is usually more than one way to
create useful clusters. Without additional criteria, it cannot be decided, which of these is the
best one. It depends on various aspects including the user’s preferences, knowledge, task, or
context. Therefore, more recent research analyzes how any kind of prior knowledge about
an optimal final structure can be integrated into the clustering process. Pairwise constraints,
as originally introduced by Wagstaff et al. (2001), gained much attention for this purpose.
While their idea is simple and effective, pairwise constraints are limited to partitional clus-
tering (Wagstaff and Cardie 2000). Therefore, this paper discusses a hierarchical constraint
type that extends the ideas of pairwise constraints to hierarchical clustering.

The main contribution of this paper is to discuss how hierarchical clustering can be con-
strained appropriately to integrate prior knowledge about the target cluster structure. We
suggest the use of must-link-before (MLB) constraints and formally discuss their proper-
ties here. We show the effectiveness of these constraints through an approach that extends
hierarchical agglomerative clustering (Hastie et al. 2009, Chap. 14.3.12) to obey MLB con-
straints and its application in a document clustering task. In some former publications (Bade
and Nürnberger 2006, 2008, 2009), we already presented some preliminary results of this
research and different ideas of constraint integration. However, these articles only introduce
briefly the general concepts of MLB constraints. In Bade and Nürnberger (2006) we pro-
posed a first—from the current perspective unnecessary complex—formalization of MLB
constraints. In the current contribution we provide a much clearer formal introduction of the
concept and its properties. Furthermore, in prior work we focused on learning a modified
metric rather than a direct, instance-based integration of constraints in the clustering process
itself. In Bade and Nürnberger (2008, 2009) we presented basic ideas of the iHAC algorithm.
However, no detailed description was given. This contribution provides additional details in-
cluding an algorithm for an efficient implementation of the ideas. Furthermore, this paper
includes a discussion on evaluation measures for hierarchies.

From the algorithmic point of view, we solve a hierarchical semi-supervised clustering
task. The overall goal is to derive a hierarchical cluster structure guided through some kind
of supervision. Likewise to clustering with pairwise constraints, we are dealing with sim-
ilarly simple and general partial knowledge about the target cluster structure. Hence, our
supervision is provided through a set of constraints which are specifically designed to work
with the hierarchical clustering task. These constraints are formalized on the data object
level, describing the (hierarchical) relationship between specific objects.

1.1 Application scenarios

As with pairwise constraints, MLB constraints naturally occur in quite diverse application
scenarios. Some of those are briefly discussed in the following. Our research was mainly mo-
tivated in providing a solution for the task of hierarchical clustering documents in personal
information management (Jones and Teevan 2007; Jones 2008). Here, a user is creating
and maintaining a hierarchy of documents that s/he needs to re-access later on. An auto-
matic method shall assist the user in this task. To take into account the user’s preferences on
the target hierarchy, constraints can be used to guide the automatic clustering process. Two
different modes of interaction are possible, which should be supported by the clustering
algorithm.

First option is an interactive feedback scenario, in which users rate selected items con-
cerning their (hierarchical) relationship. Specifically, they would critique an initial clustering
through the system similar to relevance feedback in information retrieval systems (Manning
et al. 2008). This feedback is translated directly into MLB-constraints and applied to provide
an improved clustering of the data.

Mach Learn (2014) 94:371–399 373

Fig. 1 Semi-supervised
hierarchical clustering of
documents (left: given hierarchy
with training examples and
refinement through clustering
(node A: new class; nodes B, C:
new subclasses); right: collection
of new documents)

In the second mode, the system analyzes an existing hierarchical structure on old data
and applies this to new available data. The existing hierarchy is translated into a (large)
set of MLB-constraints, which is applied for clustering the new data. Here, the goal is to
extend the user’s existing information space (represented through a hierarchy filled with
data) with new data. The existing hierarchy might not be sufficient to cover the new data
as new topics naturally arise over time. Hence, we again need to learn a new hierarchical
cluster structure, covering both old and new data. As we already know the user’s structuring
preferences on the old data, this is incorporated as constraints to the clustering. From a
user interaction perspective, it is also a necessity that the user can easily navigate through
the data. Therefore, it is crucial that the learned/adapted hierarchy is very similar to the
existing one to improve the user’s ease of use. The strongest limitation would be to only
allow for hierarchy extension, which is visualized in Fig. 1. The given hierarchy on the left
(which corresponds to the user collection) is extended with new nodes (A, B, C) based on
the collection on the right describing categories not described by the user collection yet.
The new nodes can correspond to new classes, which are sibling nodes of existing nodes
in the hierarchy (e.g., node A), or to new subclasses, which refine existing nodes in depth
(e.g., nodes B and C). The unlabeled documents on the right are inserted into this refined
hierarchy, i.e., either in new or existing nodes. Of course, the tasks of hierarchy refinement
and insertion of items are accomplished in parallel.

Please note that this scenario can be solved in different ways. One alternative is the use
of incremental algorithms starting with the existing hierarchy and incrementally adding new
data. Instead of reclustering the data, the existing hierarchy is modified through a certain set
of operators. This is especially beneficial, if data points emerge one by one in a sequence
over time. Examples for such approaches can be found in McKusick and Langley (1991),
Fisher (1987), Choi and Peng (2004). Fisher (1987) introduced the COBWEB algorithm to
build a cluster hierarchy. It uses a heuristic measure of category utility to decide where to
add the new object and uses four different operators to modify the hierarchy: classifying
the object with respect to an existing class, creating a new class, combining two classes
into a single class, and dividing a class into several classes. McKusick and Langley (1991)
proposed ARACHNE, an algorithm based on COBWEB. It has the same underlying idea
but uses different operations to modify the tree structure. Specifically, they test nodes for
vertical and horizontal fitting, which either moves nodes upwards in the hierarchy or merges
them with a sibling. Choi and Peng (2004) split their proposed algorithm in two different
phases. In the first phase, an initial hierarchy is learned using a batch learning algorithm.
In the second phase, new items are incrementally added to the hierarchy. This is especially
interesting, if we have already given a hierarchy as a starting point as in our example.

All of those algorithms could be extended to incorporate (hierarchical) constraints. They
do not handle them so far as the operations for altering the current hierarchy might lead to
constraint violations. In this paper, we decided on a batch learning algorithm to show the
effectiveness of the proposed constraints. However, in the future, different algorithms (batch

374 Mach Learn (2014) 94:371–399

as well as incremental) should be analyzed on their behavior with these constraints. This
is out of the scope of this paper. Here, we focus on introducing the constraints itself and
discussing their capabilities.

Another good source for constraints are spatial information. As also mentioned and fur-
ther investigated by Wagstaff (2002), spatial information is better expressed through con-
straints than through straight forward methods like adding additional features. In this way,
spatial constraints can be enforced by the algorithm or in other ways handled more explicitly
than through a feature representation. Wagstaff (2002) worked with pairwise constraints. It
is our hypothesis that hierarchical constraints as proposed in this paper are an interesting
alternative. However, we have not done any experiments yet as the focus of this paper is on
document data. This is left for future work. Nevertheless, we want to roughly discuss, how
constraints could be applied for spatial data on two different scenarios.

One such application is image segmentation (for a more detailed introduction on image
segmentation see, e.g., Gonzalez and Woods 2007). Here, the goal is to cluster pixels of an
image to form coherent regions which are assumed to reflect certain objects. While image
segmentation can mean to create a partition of pixels, a hierarchical segmentation can give
a more detailed description of an image. For example, one could be interested in extracting
the car as a whole as well as extracting its door or tire. A clustering approach can be used to
create a partition or cluster hierarchy of pixels based on features like pixel color. However,
this could lead to clusters with no spatial coherence, which is not useful for image segmen-
tation. MLB constraints can be used to encode these spatial constraints. Those constraints
can be computed automatically from the image without the need for manual interference.
Through the MLB constraints, the clustering algorithm can be modified to find spatially co-
herent clusters. Furthermore, additional available information can be integrated in the same
manner, not requiring a different approach.

The same is possible for other clustering tasks, where spatial position does matter, e.g.,
like in approaches for the automatic learning of management zones in precision agriculture
(Khosla et al. 2010; Ruß and Kruse 2011). Here, we have geo-referenced data of individual
regions on large farms. Depending on the properties, different regions are handled differ-
ently by the farmer in terms of watering, adding fertilizer and so on. Forming regions that
should receive the same handling is the goal of management zone learning. As in image seg-
mentation, these regions must have spatial coherence. Hence, we have an identical clustering
problem of individual elements with certain properties and additional spatial constraints.

1.2 Structure of the paper

The paper is structured as follows. We start with a review on pairwise constraints in the next
section. Then, we introduce hierarchical constraints in Sect. 3 and discuss their properties
and applicability. In Sect. 4, we focus on constrained hierarchical clustering and discuss an
algorithm that integrates MLB constraints efficiently into hierarchical agglomerative clus-
tering (HAC). Finally, we evaluate the algorithm under different scenarios of supervision in
terms of clustering quality and runtime in Sect. 5.

2 Pairwise constraints

The goal of pairwise constraints is to express the relative cluster assignment of two items
(Wagstaff et al. 2001). As they are defined on pairs of items, they do not require the knowl-
edge of explicit categories. It is sufficient to know whether two items belong to the same or

Mach Learn (2014) 94:371–399 375

Fig. 2 An example of must-link
(left) and cannot-link constraints
(right)

to different categories without the need to name or describe these categories. Nonetheless,
if training data is given in the form of instances and their respective target class, a repre-
sentation with pairwise constraints can always be extracted. Hence, the usage of pairwise
constraints allows for a more general applicability.

There are two types of pairwise constraints, must-link constraints and cannot-link con-
straints. A must-link constraint expresses that two items belong to the same cluster, and a
cannot-link constraint describes an item pair that should be separated through clustering. An
example is given in Fig. 2.

Several approaches were developed in the past that use pairwise constraints during clus-
tering. They can be divided in two broad types of approaches, i.e., instance-based and
metric-based approaches. Instance-based approaches use constraints to influence the clus-
ter algorithm directly based on the constraint pairs. This is done in different ways, e.g., by
using the constraints for initialization (e.g., as in Kim and Lee 2002), by enforcing them
during the clustering (e.g., as in Wagstaff et al. 2001), or by integrating them in the cluster
objective function (e.g., as in Basu et al. 2004a). Furthermore, instance-based approaches
can be divided into approaches that require hard constraint satisfaction (e.g., as in Wagstaff
et al. 2001) and those that allow violation of some constraints (e.g., as in Basu et al. 2004a).

The metric-based approaches try to generalize the given knowledge by mapping the con-
straints to a distance metric or similarity measure, which is then used during the clustering
process (e.g., as in Bar-Hillel et al. 2003). The basic idea of most of these approaches is
to weight features differently, depending on their importance for the distance computation.
While the metric is usually learned in advance using only the given constraints, the approach
of Bilenko et al. (2004) adapts the distance metric during clustering. Such an approach al-
lows for the integration of knowledge from unconstrained items.

2.1 A review of selected approaches

In the following, specific approaches from the literature are presented in more detail. These
papers form a representative selection of the existing literature showing the diversity of
existing approaches.

Instance-based approaches The first one to propose pairwise constraints was Kiri
Wagstaff. Wagstaff and Cardie (2000) first integrated them in the COBWEB clustering
method, enforcing hard constraint satisfaction. Following up their work, Wagstaff et al.
(2001) proposed COP-KMEANS. This approach alters the assignment of items to the clus-
ter center in k-means. Items are only assigned to clusters such that no constraint is violated.
If such an assignment is not possible at any time, the algorithm terminates without a solution.
Basu et al. (2002) used labeled data as seeds for initializing cluster centers. Additionally, the
labeled data remains fixed to the same clusters during re-computation of cluster assignment.
Two years later, they defined an objective function for k-means that is a trade-off between
the standard k-means objective and constraint violations (Basu et al. 2004a). They also ini-
tialize the clusters using the transitive closure of must-link constraints. Bilenko et al. (2004)
combines this approach with metric learning. The Euclidean distance is weighted through
a matrix, whereby each cluster adapts its own matrix. It is noteworthy that the metric is
adapted during the clustering instead before clustering as done in most other approaches.

376 Mach Learn (2014) 94:371–399

This work is also embedded in a framework based on hidden Markov random fields (Basu
et al. 2004b).

Instance-based approaches were furthermore combined with other clustering methods.
Grira et al. (2004) integrated pairwise constraints into fuzzy clustering. They propose a new
objective function that combines the standard objective with constraint violations, similar
to the work of Basu et al. (2004a). Based on this, they derived a new update formula for
the individual refinement steps of the algorithm. Ruiz et al. (2007b) extended density-based
clustering. Their algorithm ensures that all constraints are satisfied by design. This, however,
leads to the creation of many small clusters. After an evaluation with benchmark data, they
also applied their method on query log data (Ruiz et al. 2007a).

Metric learning Bar-Hillel et al. (2003, 2005) learn a Mahalanobis metric from must-link
constraints only. They propose a Relevant Component Analysis which provides a closed
form solution for different optimization problems. However, this is only possible because
cannot-links are neglected. Nevertheless, they show comparable results to Xing et al. (2003)
while requiring less computation time. Xing et al. (2003) also learned a weighted metric
similar to the Mahalanobis distance using both types of constraints. A restricted problem
using only a diagonal matrix is solved as an optimization problem while a gradient descent
search is used for learning a full matrix. Both Bar-Hillel et al. (2005) and Xing et al. (2003)
showed the superiority of metric learning over instance based approaches. Kim and Lee
(2002) also learned a weighted metric similar to the Mahalanobis distance. They solved an
optimization problem that aims at minimizing distance between must-links and maximizing
distance between cannot-links with a gradient descent search.

A different approach was taken by Klein et al. (2002). They directly modified the sim-
ilarity matrix, which can be used directly in hierarchical agglomerative clustering. First,
entries of must-link pairs are set to 0. However, this can result in a violation of the triangu-
lar inequality for some points. This problem is fixed with a shortest-path-algorithm, which
actually lets the must-link constraints also influence other item pairs. Then, all cannot-link
pairs are set to a maximal value, which again destroys metric properties. However, it is ar-
gued that this does not prohibit using the matrix during clustering. In fact, it is identical to
enforcing the constraints during clustering. No fixing is applied, i.e., cannot-link pairs only
influence themselves.

Cohn et al. (2003) learn a feature weighting for a probabilistic model. Clustering is
done with the EM algorithm. The weights are learned using a gradient descent. Schultz and
Joachims (2004) and Finley and Joachims (2005) both use SVMs to learn a metric. Schultz
and Joachims (2004) use relative comparisons between pairs of similarities to learn the ma-
trix of a Mahalanobis distance. With these pairs of similarities an optimization problem is
formalized and solved with an SVM algorithm. Finley and Joachims (2005) directly train
a binary classifier that outputs an item pair’s associated similarity value. This is done with
the structural SVM algorithm. The learned similarity function is then used in correlation
clustering.

2.2 Problems of constraint usage

Feasibility issues A number of interesting theoretical work concerning constraints was
done by Davidson and Ravi. They analyzed the feasibility problem, i.e., the question whether
a partition with k clusters can be derived without violating any constraints. Even though a
solution might exist, the constrained clustering might not be able to determine this solution.
They studied feasibility in connection with k-means (Davidson and Ravi 2005b, 2007a) and

Mach Learn (2014) 94:371–399 377

Fig. 3 Pairwise constraints for
hierarchies: different constraints
between the same objects on
different hierarchy levels

HAC (Davidson and Ravi 2005a, 2009). In the latter work, they also consider the problem of
irreducibility, which is the possibility to reach a dead-end during cluster merging, although a
solution with a smaller number of clusters exists. In further work, they describe a heuristic to
generate easy constraint sets from labeled data, i.e., constraint sets that do not suffer from the
feasibility problem (Davidson and Ravi 2006). They also show that the number of clusters
cannot be estimated efficiently from a constraint set and that using a too small value for k

can be problematic for performance also in metric learning (Davidson and Ravi 2007b).

Beneficial constraints Although it is widely reported that introducing constraints largely
improves clustering quality, not all constraints are equally suited to increase the effective-
ness of clustering. Davidson et al. (2006) empirically show that not all constraints im-
prove performance. They identify two properties of constraints which influence the clus-
tering performance, i.e., informativeness and coherence. Informativeness describes how
much information is provided that cannot be determined by the algorithm alone. Coher-
ence is the amount of agreement between constraints themselves, given a certain metric.
Other work addresses the different benefit of constraints through active learning that aims
at identifying constraints that will provide the highest performance gain (Basu et al. 2004a;
Klein et al. 2002).

Both problems are very important and also apply to the hierarchical constraints as dis-
cussed in this paper. Although it is out of the scope of this paper to discuss and analyze these
problems in detail, they need to be kept in mind during algorithm design and evaluation of
results.

2.3 Limitations for hierarchies

In a hierarchy of clusters, clusters are part of other, larger clusters. Therefore, items belong in
fact to many clusters. As pairwise constraints are not related to a specific cluster and instead
generally declare whether two items belong to the same or different clusters, they cannot
distinguish between the different clusters an item can belong to in hierarchical clustering.
Nevertheless, two items separated in specific clusters are always together in more general
clusters—at least in the root (see Fig. 3). Therefore, pairwise constraints are not suitable
in the hierarchical setting. This was already mentioned but not solved in the initial work
on constrained clustering by Wagstaff and Cardie (2000). Kestler et al. (2006) also identi-
fied this problem. They use hierarchical agglomerative clustering and solve the problem by
fixing the constraints to a certain dendrogram level. More specifically, they only consider
constraints for the top-most dendrogram level. However, in most cases, it is not clear, on
which dendrogram level the constraints should be applied.

Hierarchical learners vs. learning hierarchies The use of a hierarchical learner like hi-
erarchical agglomerative clustering does not necessarily mean that the goal is to learn a

378 Mach Learn (2014) 94:371–399

Fig. 4 A MLB constraint in the
hierarchy

hierarchy. Those learners can as well be used to derive a cluster partition. However, this
simplifies the task because a less complex target structure (partition instead of hierarchy)
is derived and evaluated. There are many work, in which hierarchical clustering and pair-
wise constraints are analyzed (e.g., Davidson and Ravi 2005a, 2009; Bae and Bailey 2006;
Klein et al. 2002). However, neither of this work aims at deriving a true cluster hierarchy.
Therefore, these articles solve a different problem.

3 Hierarchical constraints

Because of the previously mentioned limitations of pairwise constraints, this work suggests
another type of constraints that is suitable for hierarchical clustering tasks, the must-link-
before (MLB) constraints. The goal is to stress the hierarchical order, in which data objects
di are related. To this end, item pairs are replaced with item triples:

MLBxyz = (dx, dy, dz). (1)

A constraint is labeled with MLB and has three indices relating to the three data objects in-
volved. The order is important as it determines the exact hierarchical relationship according
to an underlying cluster hierarchy H as defined in the following:

Definition 1 (Cluster Hierarchy) A cluster hierarchy H is a tuple (C,≺, root). C is the set
of clusters. ≺ defines the hierarchical parent-child-relation between clusters, which is a strict
partial ordering between the clusters. root ∈ C is the root node of the hierarchy.

A constraint as in (1) expresses a relative relationship according to hierarchy levels of
an underlying hierarchy H . This hierarchy need not to be specified explicitly. It can be
implicitly given through the data. MLB constraints are a means to describe those implicit
(or explicit) hierarchical relations. Specifically, MLBxyz states that the data objects dx and
dy are related on a more specific hierarchy level than the data objects dx and dz as shown in
Fig. 4. This can be summarized in the following two properties:

Property 1 Given the MLB constraint MLBxyz, any cluster c in the cluster hierarchy H that
contains dx and dz also contains dy : ∀c ∈ H : dx ∈ c ∧ dz ∈ c → dy ∈ c.

Property 2 Given the MLB constraint MLBxyz, there exists at least one cluster c in the
cluster hierarchy H , which only contains dx and dy but not dz: ∃c ∈ H : dx ∈ c ∧ dy ∈
c ∧ dz /∈ c.

Based on the previous ideas, a must-link-before constraint is defined as follows:

Definition 2 (Must-Link-Before constraint) A Must-Link-Before (MLB) constraint MLBxyz

is a triple of items MLBxyz = (dx, dy, dz), for which Properties 1 and 2 hold according to an
underlying cluster hierarchy H .

Mach Learn (2014) 94:371–399 379

Fig. 5 Example of MLB
constraint extraction from a
hierarchy

Sources for constraints MLB constraints can come from different sources as shown
through several examples in the introduction (see Sect. 1.1). Often they occur naturally (as
item triples). Furthermore, existing hierarchical structures (like a folder hierarchy of docu-
ments or tagged documents in combination with an ontology between the tags) are a typical
source of MLB constraints. Those hierarchies can be formalized through MLB constraints
to be used as source of supervision in (clustering) algorithms. This is demonstrated in the
following, where we describe how to extract the clustering constraints from a given training
set and class hierarchy. A simple example is shown in Fig. 5. On the right side, some MLB
constraints are shown, which were extracted from the hierarchy on the left. The first one
expresses that a data object in class 4 is closer to a data object in class 5 than to a data object
in class 2. The second constraint formalizes that two data objects of class 2 are closer to
each other than to a data object in class 3. The third one states that a data object in class 3
is closer relative to a data object in class 5 than with a data object in class 1, which holds
because 3 and 5 are grouped together on a more specific hierarchy level than 3 and 1. Of
course, it is useful to extract all possible constraints in a systematic manner to gain as much
information from the hierarchy as possible.

Generality Although MLB constraints specifically target hierarchical clustering, they can
also be applied to flat clustering. A partition of clusters can be viewed as a very simple
hierarchy with a root node and all clusters of the partition as direct subclusters of this
root node. In this case, the following MLB constraint can be formulated: two data ob-
jects belonging to one cluster ci must-link-before a data object of a different cluster cj :
MLBxyz = (dx ∈ ci, dy ∈ ci, dz ∈ cj). Hence, a cluster partition can be extracted as a special
hierarchy.

However, please note the following difference between MLB constraints and pairwise
constraints, which might impact the clustering behavior. MLB constraints add a further
meta-relationship on top of the relative cluster assignment relationship defined by pairwise
constraints. In fact, MLB constraints compare the strength of two must-link constraints stat-
ing that the must-link between the first and the second item is stronger than the must-link
between the first and the third item. However, nothing is said about the quantity of the dif-
ference. Hence, MLBxyz can describe data objects, which are just one hierarchy level away,
but also data objects, which are much further apart, e.g., over 5 or 10 hierarchy levels. In
fact, this means that MLB constraints enforce the creation of a hierarchy, which is at least
detailed enough to ensure the hierarchical differences of data objects as described by the
constraint set. However, they allow for an arbitrarily finer hierarchy as well.

In the case of a cluster partition, the partition (as represented through the simple hier-
archy described above) is the least detailed hierarchy that can be learned. However, further
sub-clusters are allowed through the constraint set and, therefore, could be possibly derived
through a hierarchical clustering algorithm. However, if a partitioning algorithm is used,
sub-clusters are not possible and the MLB constraint set exactly describes the partition like it
is the case for pairwise constraints. In fact, MLB constraints can be transformed to pairwise
constraints in this case (and only in this case). Specifically, one MLB constraint (dx, dy, dz)

can be transformed to one must-link constraint con=(dx, dy) and two cannot-link constraints
con �=(dx, dz) and con �=(dy, dz). Therefore, if it is explicitly known in advance that the clus-

380 Mach Learn (2014) 94:371–399

tering goal is a partition rather than a hierarchy, there is no need to use MLB constraints
instead of pairwise constraints.

The MLB constraints have the same generality as must-link and cannot-link constraints
as they also do not require knowledge about class labels. Formulating an MLB constraint
merely requires to specify a relative relatedness between three data objects. As mentioned
before, no statement is made on how strong this relationship is. A constraint can consider
data objects which are close together—concerning an underlying hierarchy—as well as data
objects very far apart. It might be useful to explicitly weigh the relationship, similar to
soft must-link and cannot-link constraints (Wagstaff 2002). A weighted MLB constraint
therefore associates a weight to a document triple:

MLBxyz = (dx, dy, dz,w). (2)

However, constraint weighting is not further considered here. It is mentioned here as a side
note for the sake of completeness and as a basis for further discussion in the future.

Transitivity of MLB constraints From a set of must-link constraints and a set of cannot-link
constraints, one can transitively infer further constraints (Basu et al. 2008, Chap. 1). Like-
wise, transitive inference is possible for MLB constraints. This can increase the constraint
set. Of course, such an inference requires non-conflicting constraints, i.e., no errors or noise
in the given constraints. In the following, we discuss and prove three theorems describing
transitive inference for MLB constraints.

Theorem 1 (Symmetry) The first two data objects of an MLB constraint are symmetric:

(d1, d2, d3) ⇒ (d2, d1, d3).

If d1 and d2 are related on a more specific hierarchy level than d1 and d3, this also implies
that d2 and d3 are grouped together only after d1 and d2. This can be proven using the
properties of MLB constraints given before.

Proof Given is the constraint (d1, d2, d3). Therefore, it holds according to Properties 1 and
2 that

(1) ∀c ∈ H : d1 ∈ c ∧ d3 ∈ c → d2 ∈ c and (2) ∃c ∈ H : d1 ∈ c ∧ d2 ∈ c ∧ d3 /∈ c.

(d2, d1, d3) is also a valid constraint, if it can be shown that both properties hold, i.e.,

(I) ∀c ∈ H : d2 ∈ c ∧ d3 ∈ c → d1 ∈ c and (II) ∃c ∈ H : d2 ∈ c ∧ d1 ∈ c ∧ d3 /∈ c.

The second property (II) holds as it is identical with the given fact (2). The first property (I)
can be shown by contradiction. The question is: Does a cluster exist that contains d2 and d3

but not d1? If so, the following assumption would be true:

(a) ∃c ∈ H : d2 ∈ c ∧ d3 ∈ c ∧ d1 /∈ c,

which contradicts (I). Data objects in a hierarchy that are assigned to the same node (at
one certain hierarchy level) stay together in all ancestor nodes on more general hierarchy
levels as given through the parent-child-relation ≺. Hence, they cannot be split up again.

Mach Learn (2014) 94:371–399 381

Our previously made assumption (a) therefore implies that a cluster containing d1 and d2

but not d3 cannot exist, because otherwise one would need to split up a node again:

¬∃c ∈ H : d1 ∈ c ∧ d2 ∈ c ∧ d3 /∈ c.

This violates fact (2). Therefore, the assumption made is wrong and (I) holds for (d2, d1, d3).
Hence, the symmetry theorem is proven. �

Further transitive inference is possible, if two MLB constraints are combined that overlap
in two of three items.

Theorem 2 (Transitivity inside a subtree) Given two MLB constraints with an identical
data object to identify a subtree and an identical reference data object in a different subtree
(at the third position), a third MLB constraint with the same reference data object can be
inferred through:

(d1, d2, d4) ∧ (d2, d3, d4) ⇒ (d1, d3, d4).

Theorem 3 (Transitivity over different hierarchy levels) Given are two MLB constraints
with two identical data objects. The first data object identifies the intermediate hierarchy
level and is positioned third in one constraint and first or second in the second constraint.
The second data object identifies the deeper hierarchy level and is positioned first or second
in both constraints. Then, a third constraint can be inferred between the lower and the higher
level without the intermediate level:

(d1, d2, d3) ∧ (d1, d3, d4) ⇒ (d1, d2, d4).

Both theorems can be proven again based on the properties of MLB constraints. Let us
start with proving Theorem 2.

Proof Given are the constraints (d1, d2, d4) and (d2, d3, d4). Therefore, it holds according to
Properties 1 and 2 for both constraints that

(1) ∀c ∈ H : d1 ∈ c ∧ d4 ∈ c → d2 ∈ c and

(2) ∃c ∈ H : d1 ∈ c ∧ d2 ∈ c ∧ d4 /∈ c and

(3) ∀c ∈ H : d2 ∈ c ∧ d4 ∈ c → d3 ∈ c and

(4) ∃c ∈ H : d2 ∈ c ∧ d3 ∈ c ∧ d4 /∈ c.

(d1, d3, d4) is also a valid constraint, if it can be shown that both properties hold, i.e.,

(I) ∀c ∈ H : d1 ∈ c ∧ d4 ∈ c → d3 ∈ c and

(II) ∃c ∈ H : d1 ∈ c ∧ d3 ∈ c ∧ d4 /∈ c.

To prove the first part, we can combine the given facts (1) and (3):

∀c ∈ H : d1 ∈ c ∧ d4 ∈ c
(1)→ d1 ∈ c ∧ d4 ∈ c ∧ d2 ∈ c

(3)→ d1 ∈ c ∧ d2 ∈ c ∧ d3 ∈ c ∧ d4 ∈ c,

which reduces to (I). To prove the second part, we need again the definition of a cluster
hierarchy. So have in mind that items in a hierarchy that are assigned to the same node (at

382 Mach Learn (2014) 94:371–399

one certain hierarchy level) stay together in all ancestor nodes on more general hierarchy
levels as given through the parent-child-relation ≺. Without loss of generality, we assume
that d2 is grouped together with d1 earlier than with d3. The first cluster (on the most specific
hierarchy level) containing both, d2 and d3, therefore also contains d1. Because of (4), it
cannot contain d4, otherwise the cluster in (4) would not exist. Therefore, this cluster looks
as follows:

d1 ∈ c ∧ d2 ∈ c ∧ d3 ∈ c ∧ d4 /∈ c.

Property (II) applies for this cluster, which proves that such a cluster exists. Hence, the
transitivity is proven. �

And finally, here is the proof for Theorem 3.

Proof Given are the constraints (d1, d2, d3) and (d1, d3, d4). Therefore, it holds according to
Properties 1 and 2 for both constraints that

(1) ∀c ∈ H : d1 ∈ c ∧ d3 ∈ c → d2 ∈ c and (2) ∃c ∈ H : d1 ∈ c ∧ d2 ∈ c ∧ d3 /∈ c and

(3) ∀c ∈ H : d1 ∈ c ∧ d4 ∈ c → d3 ∈ c and (4) ∃c ∈ H : d1 ∈ c ∧ d3 ∈ c ∧ d4 /∈ c.

(d1, d2, d4) is also a valid constraint, if it can be shown that both properties hold, i.e.,

(I) ∀c ∈ H : d1 ∈ c ∧ d4 ∈ c → d2 ∈ c and (II) ∃c ∈ H : d1 ∈ c ∧ d2 ∈ c ∧ d4 /∈ c.

To prove the first part, we can combine the given facts (3) and (1):

∀c ∈ H : d1 ∈ c ∧ d4 ∈ c
(3)→ d1 ∈ c ∧ d4 ∈ c ∧ d3 ∈ c

(1)→ d1 ∈ c ∧ d2 ∈ c ∧ d3 ∈ c ∧ d4 ∈ c,

which reduces to (I). To prove the second part, we start with fact (4) and apply fact (1),
which yields:

∃c ∈ H : d1 ∈ c ∧ d3 ∈ c ∧ d4 /∈ c ∧ d2 ∈ c,

which can be reduced to (II). Hence, the transitivity is proven. �

The MLB constraints introduced in this section can be used as basis for constraining hi-
erarchical clustering. In the following approach, it is assumed that Theorems 1–3 are applied
to an initially given constraint set to get the most out of it.

4 Constrained hierarchical clustering

In the following, we present an instance-based approach that directly integrates MLB con-
straints into hierarchical clustering. In general, this approach addresses the task of con-
strained hierarchical clustering as defined in Definition 3 beneath.

Definition 3 (Constrained Hierarchical Clustering) Given is a data collection D that shall
be structured. Furthermore, a set of must-link-before constraints MLB on some data object
triples on D is given. The constrained hierarchical clustering task is to build a cluster hierar-
chy H = (C,≺, root) and find a mapping for the data objects in D to the clusters in C such
that MLB is not violated.

Mach Learn (2014) 94:371–399 383

Fig. 6 Example of a dendrogram for the two-dimensional dataset on the right. The similarity of combined
clusters is often displayed through the height of the bars that represent a grouping of two clusters

We extended the hierarchical agglomerative clustering (HAC) algorithm (Hastie et al.
2009, Chap. 14.3.12) for this purpose. HAC is a natural choice for the hierarchical cluster-
ing problem as it directly extracts the hierarchical relations between data objects through
building a dendrogram (see Fig. 6). However, the final hierarchy is very detailed since it
splits the data until only individual objects remain in the leaf nodes and several intermediate
splits are present. If a more coarse grained structure is desirable, e.g., for user interaction,
this needs to be extracted in a postprocessing step as it was proposed by Bade et al. (2007)
for unsupervised and semi-supervised clustering.

MLB constraints can be naturally integrated into HAC. In contrast to must-link and
cannot-link constraints, they do not suffer from the problem that a dendrogram level needs to
be specified (cf. Sect. 2.3). This allows for a straight forward integration of MLB constraints
into HAC clustering using our instance-based approach iHAC presented in the following.

4.1 Integrating MLB constraints with iHAC

The HAC algorithm is modified in such a way that merges occur only in accordance with
the given MLB constraints. HAC initially places each data object in an individual cluster
and repeatedly merges the two closest clusters until a single cluster is left. The merging step
is modified in iHAC such that not only similarity but also constraint violations are taken
into account for determining the next two clusters to merge. In fact, the two most similar
clusters are selected from those cluster pairs that do not violate any (or at least the fewest,
as discussed later) constraints. This means for merging that for all constraints (dx, dy, dz),
the cluster containing dz can only be merged with a cluster that either contains both, dx and
dy , or neither. An example is given in Fig. 7. Here, six data objects shall be clustered, given
the constraint (dx, dy, dz). As shown in a), this forbids two merges in the first step, which
are merging dx with dz and merging dy with dz. Assuming that dw and dx were most similar,
the dendrogram after the first merge looks as in b). Again, two merges are forbidden. If the
newly formed cluster is merged with dy in the next step (c), the constraint cannot be violated
anymore and all merges are allowed for the rest of the clustering. This includes the merge
with dz as shown in d). A pseudocode description of the overall iHAC algorithm is shown
in Fig. 8.

Please note that the proposed method is just one way to integrate constraints into the
clustering. The strict enforcement of constraints as done by us is based on the assumption
that it is of high importance to follow user given constraints. In a practical scenario, the user
will expect to find his provided input reflected in the results. However, there might be other
scenarios, where strict enforcement is less important, especially if constraints are generated
through an automated method and might contain errors. In this case, it might be useful to

384 Mach Learn (2014) 94:371–399

Fig. 7 Example of cluster merges in iHAC under the constraint (dx , dy , dz) (a) after initialization, (b) after
first, (c) second, and (d) third merge

iHAC(D, MLB)
Initialize dendrogram DG by adding the lowest level C0 = {c1, . . . , cn} with
∀di ∈ D : ci = {di}
for l = 1 to n do

Choose two clusters c1, c2 ∈ Cl−1 and merge them: cm = c1 ∪ c2, whereby the
merge of c1 and c2 violates the fewest constraints in MLB and from all cluster
pairs satisfying this condition c1 and c2 are the most similar
Cl = (Cl−1 \ {c1, c2}) ∪ {cm}
Add Cl to DG

end for
return DG

Fig. 8 The iHAC algorithm

define a trade-off function between constraint enforcement and item similarity. However,
this is not further analyzed in this paper.

If constraints are not directly conflicting with each other,1 there always exists a solution
with a complete dendrogram that does not violate any constraints. If the constraints were
created from a given class hierarchy, they are always non-conflicting. Previous work on
must-link and cannot-link constraints by Davidson and Ravi (2005a, 2005b, 2007a, 2009)
indicates, however, that a solution with no constraint violations might not be found by the
constrained clustering approach even though it exists. This is referred to as feasibility prob-
lem. For HAC, this would mean that the clustering would stop in a dead end before reaching
the root node. This means that any merge possible at this moment would violate a constraint.
This is referred to as irreducibility (cf. Sect. 2.2).

Considering MLB constraints, irreducibility can also occur. An example is given in
Fig. 9. Here, six data objects shall be clustered, given the constraints (dx, dy, dz) and
(du, dv, dw). The top row shows an iteration of the algorithm that reaches a dead end with
three clusters. Nonetheless, several solutions with a complete dendrogram exist. One is de-
picted at the bottom of Fig. 9. The example shows that irreducibility is possible, but how
severe is this problem for MLB constraints? So far, no specific experiments were performed
to further study this question. However, in all experiments performed with iHAC by us up
to this point, the case of a dead end never occurred. It is our hypothesis that the problem
of irreducibility is less significant for MLB constraints than for must-link and cannot-link
constraints as a higher number of “unfavorable” merges are required to produce a dead end
solution.

Nevertheless, a dead end is possible. As we judge the overall improvement of the clus-
tering to be more important than the strict enforcement of all constraints, we weakened the
condition of the merging step to choose the merge with the fewest constraint violations. This
ensures that also in the case of irreducibility a complete dendrogram is built.

1Two conflicting constraints are, e.g., (dx , dy , dz) and (dx , dz, dy).

Mach Learn (2014) 94:371–399 385

Fig. 9 Example of irreducibility in iHAC under the constraints (dx , dy , dz) and (du, dv, dw); (a)–(d) iter-
ations of iHAC with a dead end; (e) solution with a complete dendrogram; please note that the item order
changes for a better visualization of the dendrogram

4.2 An efficient data structure

A critical issue for the overall runtime complexity of iHAC is whether the two clusters to
be merged in each iteration can be determined and merged efficiently. Clearly, the straight
forward approach of counting in each iteration how many constraints are violated for all data
object pairs is very time consuming. Instead, the following data structure was developed,
which is inspired by the similarity matrix from standard HAC. However, instead of pure
similarity values, the constrained matrix CM includes more complex data. Each matrix entry
cmi,j consists of the similarity value simi,j and a set cvi,j for storing the constraints that are
violated by a merge of the two clusters. For this purpose, constraints between data objects
are transformed to constraints between clusters. As HAC starts with clusters containing
only a single data object, the initial constraints can directly be expressed through replacing
data objects by clusters. During the creation of the dendrogram, the interest is only on the
currently highest dendrogram level. Therefore, constraints are passed on to clusters on the
higher levels as long as they are relevant. This process is described below in more detail.

On that account, the set cvi,j contains all constraints that have the two clusters ci and cj

at first and third position (i.e., both, MLBixj and MLBjxi). These two kinds of constraints
hinder the algorithm to merge the clusters ci and cj as this would violate the constraints.
Rather, the merge between the cluster at the first position (either ci or cj) and the cluster at
the second position (a third, different cluster cx) has to be done first by the algorithm. Please
note that we can omit the exact item order in the constraint and create a symmetric matrix.
For the algorithm, we only need to know, how many constraints are violated for a certain
cluster merge and not the specific constraints. To be able to detect, which constraints are
already solved and therefore no longer active, we need to know the involved third cluster cx .
This is explained later. Therefore, we store in the set cvi,j the clusters cx of all violated
constraints together with the number of constraints associated to these clusters. The latter
is necessary as there can be several constraints between the same set of clusters, especially
on higher dendrogram levels. As the number of violated constraints is important for the
merging criterion, it is stored.

Summarizing, the constrained matrix CM can be described as in (3) below. It is further-
more important to note that it is not necessary to compute the complete matrix. The upper
triangular matrix is sufficient because the constrained matrix is symmetric. Additionally, it
is beneficial to have an index vector cmi that points to the best entry of each row as shown
on the right of (3) (Day and Edelsbrunner 1984; Cathey et al. 2007). For standard HAC that
would be the entry of largest similarity. For iHAC, this is the entry with the fewest constraint
violations and highest similarity in the case of the same number of violations. As shown by
Day and Edelsbrunner (1984), time complexity can be further reduced, if priority queues
are used for each row of the matrix, however, with an increased memory complexity. In the

386 Mach Learn (2014) 94:371–399

removeCluster(CM, cmi, indexrem)
for all rows r < indexrem do

Delete cmr,indexrem from CM
if cmir > indexrem then

cmir := cmir − 1
else if cmir = indexrem then

Go through all entries in row r of CM to find new value of cmir
end if

end for
Delete row indexrem from CM and cmi

Fig. 10 An algorithm for removing a cluster from the constrained matrix in iHAC

implementation for this paper, the index vector cmi was used. The constrained matrix CM
looks as follows:

CM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− cm1,2 · · · · · · cm1,n

− − . . .
...

...
. . .

. . .
...

... − cmn−1,n

− · · · · · · − −

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, cmi =

⎛
⎜⎜⎜⎜⎜⎝

cmi1

...

cmin

⎞
⎟⎟⎟⎟⎟⎠

(3)

with

cmi,j = (simi,j , cvi,j) (4)

and

cvi,j = {
(cx, nx)|(∃MLBixj ∨ ∃MLBjxi) ∧ nx = count(MLBixj) + count(MLBjxi)

}
. (5)

With the constrained matrix CM, the two clusters for the next cluster merge can be effi-
ciently determined with linear complexity (O(n)), because a single iteration over the index
cmi is sufficient. Updating the matrix to execute the merge is, however, a little more difficult.
It consists of two steps: deleting the columns and rows of the two old clusters cold1 and cold2

and adding a row and column for the new cluster cnew.
For deleting a cluster from the matrix, the specific row in the matrix must be deleted.

Furthermore, all rows above the one to remove contain one element concerning this cluster.
All rows below do not include such an entry, because this belongs in the lower triangular
matrix, which is not stored. Removing an entry from the row might require an update of the
index vector cmi. In the worst case, an iteration over all elements of that row is needed to
find the new best value. Figure 10 summarizes the algorithm for removing a cluster from the
matrix. The time complexity of this algorithm is between O(1), if the first row is deleted,
and O(n2), if the last row is deleted and all other rows require a re-computation of the index
vector.

For adding the merged cluster to the matrix, a new element is added to each row. This new
element can be computed based on the old values of the two former clusters. The similarity
value is updated as in standard HAC. For the group average linkage method (also called
UPGMA), which we used in our implementation, this is done as shown in the algorithm
in Fig. 11 (Manning and Schütze 1999, Chap. 14). The new set of constraint violations can

Mach Learn (2014) 94:371–399 387

addCluster(CM, cmi, cm∗,old1, cm∗,old2, cold1, cold2, cnew)
for all rows r of CM do

Add new element cmr,n+1 at the end of row r

Set simr,n+1 as in HAC; for the UPGMA methods this means:
simr,n+1 = (simr,old1|cold1| + simr,old2|cold2|)/(|cold1| + |cold2|)
for all constraint violations cv′ = (c′, n′): cv′ ∈ cvr,old1 ∨ cv′ ∈ cvr,old2 do

if c′ is not on the highest dendrogram level then
Replace c′ by its ancestor cluster on the highest dendrogram level

end if
if c′ = cnew then

Ignore cv′ for this and all higher dendrogram levels, because it is no longer
relevant

else
Add (c′, n′) to cvr,n+1

end if
end for
if cmr,n+1 is better than cmr,cmir then

cmir = n + 1
end if

end for
Add new (empty) row n + 1 to CM and cmi

Fig. 11 An algorithm for adding a cluster to the constrained matrix in iHAC

basically be created by merging the two old sets. However, constraints that are no longer rel-
evant (because the first two items were already clustered and the constraint can therefore not
be violated anymore) are removed from the matrix. This is the case, if the stored constraint
clusters are descendant clusters of the new cluster based on the part of the dendrogram that
was already built. As the stored clusters in the cv values not necessarily refer to the highest
dendrogram level, it is necessary to update them. For this purpose the stored clusters are
replaced by the most general ancestor elements on the highest dendrogram level built so far.
If the most general ancestor element is the newly formed cluster, we can remove this ele-
ment from cv. Otherwise, we update cv by replacing the stored cluster with the most general
ancestor element.

The update of the index vector cmi is fairly easy, because it only changes, if the new
cluster has a better value than the best current one (in each row). The entire algorithm is
shown in Fig. 11. This algorithms has a time complexity between O(n) and O(n2), depend-
ing on whether constraints are relevant for this merge or not. The worst case occurs, if the
considered clusters have constraints to all other remaining clusters in the currently highest
dendrogram level.

Based on the constrained matrix and the algorithms presented above, the overall iHAC
implementation has a time complexity between O(n2) and O(n3). This is identical to the
time complexity of the standard HAC implementation (Day and Edelsbrunner 1984). Hence,
with the constrained matrix, a time complexity very similar to the baseline given by HAC
can be achieved. However, for an increased number of constraints, an increase in runtime can
be expected on average. Section 5.4 further compares runtime complexity with experimental
measurements.

388 Mach Learn (2014) 94:371–399

5 Evaluation

This section presents the experiments that were performed to evaluate the iHAC method.
First, we discuss measures for evaluation in hierarchical clustering and describe the selected
measures. Then, we describe the experimental setup, introducing the evaluation data used
and experiment preparation. The following sections present the experimental results in terms
of clustering quality and runtime.

5.1 Hierarchy evaluation measures

Evaluation of clustering methods can be divided in two different approaches: evaluation
based on internal measures and evaluation based on external measures. Internal measures
aim at evaluating a clustering solely based on the dataset itself and the clustering solution.
These measures are usually based on a comparison between intra-cluster and inter-cluster
similarity. Items assigned to the same cluster should be as similar as possible while items
assigned to different clusters should be as dissimilar as possible. In contrast to this, external
measures use a given external structure that describes the underlying cluster structure in the
data that shall be recovered by the clustering method. The clustering result is compared to
this gold standard to measure how well the method was capable of identifying the known
structure. Evaluation with external measures therefore requires benchmark datasets as for
classification. Recent discussions about evaluation measures for clustering approaches can
be found in Borgelt (2005), Halkidi et al. (2002a, 2002b), Amigó et al. (2009).

Here, we use external evaluation measures as the semi-supervised character of the ap-
proach suggests that a certain structuring exists in the data and shall be uncovered. Hints
on this structure are provided in the form of constraints or labeled data. Therefore, it is rea-
sonable to measure how well this structure was uncovered. The “hidden” structure is the
class structure in the benchmark dataset, on which basis the constraints are also generated.
Although there exist several measures for comparing flat partitions, measures for the eval-
uation of hierarchies are rare. In the following, we present the measures used by us and a
review of alternatives.

5.1.1 Hierarchically applied F measure

The F measure (van Rijsbergen 1979) is a widely applied evaluation measure for classifi-
cation and external clustering evaluation (Sebastiani 2002). This class specific measure is a
trade-off between precision and recall. The precision of a class c is the fraction of all items
predicted to belong to c that also actually belong to c. In contrast to this, the recall of c is
the fraction of all items belonging to this class that are also predicted as such.

To be able to apply the F measure to clustering, a mapping between the created clusters
and the classes in the dataset is necessary. There are two ways to gain such mapping: either
a class is assigned to every cluster or a cluster is assigned to every class. The first case al-
lows that a class is represented through multiple clusters. However, the goal should be that
a class can be represented through a single cluster in the hierarchy. Therefore, we applied
the second method, i.e., for each class in the reference hierarchy, a cluster was selected from
the dendrogram based on which the F-Score of this class is computed. Specifically, from all
clusters in the dendrogram the one with the highest F-Score on the class at hand is chosen.
For higher level (i.e., non-leaf) classes, all items contained in subclasses are also counted
as belonging to this class. Please note that this simple procedure might select clusters in-
consistent with the reference hierarchy or multiple times for different classes in the case

Mach Learn (2014) 94:371–399 389

Fig. 12 Example for F-Score in
hierarchical clustering: both
hierarchies would gain the same
F-score based on the bold,
selected clusters for the two
classes although the right,
non-selected branch differs

of noisy clusters. Determining the optimal and hierarchy consistent selection has a much
higher time complexity. However, the results of the simple procedure are usually sufficient
for evaluation purposes and little is gained from enforcing hierarchy consistency.

In our evaluation, we computed the F-Score only on the unlabeled data, i.e., the data
not used for constraint generation. This is done to estimate the gain on new data and not
optimistically biasing the measure. As the F measure is a class specific value, average values
are computed for overall hierarchy comparison. Here, we distinguished between the average
of all leaf node classes and the average of all non-leaf node classes to evaluate the effects on
different levels of the hierarchy.

Applying the F measure as described potentially evaluates only a part of the cluster hi-
erarchy because it just considers the best cluster per class. Some branches of the learned
dendrogram might not be part of any cluster selected. As an example consider the two hi-
erarchies in Fig. 12. Two classes exist in the reference hierarchy (which is not depicted).
Both hierarchies in the picture are possible solutions of a clustering algorithm. The left
branch in both hierarchies is identical. The bold circled clusters were selected for F-Score
computation. Therefore, the F-score on both hierarchies is identical. The right branch of
both hierarchies is not considered in this computation. Nevertheless, both hierarchies differ
largely in this part. While the right branch of the left hierarchy is very noisy, the right branch
in the right hierarchy again nicely splits both classes. That is why the right hierarchy should
be considered as structuring the data better. From a user’s perspective, it might be sufficient
to focus on the best cluster for each class as a user would anyway focus on a single cluster
that fits his information need. And the better this single cluster, the better for the user. For
comparing the performance of different algorithms, it is nonetheless interesting to evaluate
the complete hierarchy to better grasp changes to the structuring by different methods. For
this, a different evaluation measure is needed.

5.1.2 H-correlation

Such a measure that can compare two entire hierarchies is H-Correlation (Bade and Benz
2010). Similar to the Rand index (Rand 1971), which compares cluster partitions, the clus-
tering is evaluated based on item assignment without requiring a node mapping between the
hierarchies. The Rand index thereby looks at all item pairs. Two cluster partitions cluster
two instances identically, if both partitions either assign both instances to the same clus-
ter or to different clusters. The Rand Index is the fraction of all item pairs that are identi-
cally clustered by both partitions. Instead of item pairs, H-Correlation considers item triples.
More specifically, H-Correlation measures the overlap of the MLB constraint sets that can
be determined from both hierarchies. Based on these two sets, both, a symmetric and an
asymmetric measure, can be defined. In its simplest form, H-Correlation can measure the
overlap of the two sets. This can be extended by weighing individual triples differently. The
symmetric H-Correlation Hs between the learned hierarchy Hl and the reference hierarchy

390 Mach Learn (2014) 94:371–399

Hr from the dataset is defined as:

Hs(Hl , Hr) =
∑

τ∈MLBl∩MLBr
(wl(τ) + wr(τ))∑

τ∈MLBl
wl(τ) + ∑

τ∈MLBr
wr(τ)

, (6)

whereby MLBl and MLBr are all must-link-before triples in the learned and reference hier-
archy, respectively, and wl and wr assign a weight to a triple depending on the learned and
reference hierarchy, respectively.

Furthermore, an asymmetric H-Correlation Ha is of interest, if one hierarchy is allowed
to be more detailed than the other. As a dendrogram is always a more detailed hierarchy
than a given class hierarchy, this measure is especially of interest for our evaluation. In
fact, we want to measure, how much of the hierarchical relationship given through a hier-
archy is reflected in the dendrogram, while neglecting that the dendrogram contains several
more hierarchical relationships as it contains all pairwise merges performed by the clus-
tering. Formally, a hierarchy Hl = (Cl,≺l , rootl) is more detailed than a hierarchy Hr =
(Cr,≺r , rootr), if:

Cl ⊃ Cr ∧ (∀ci, cj ∈ Cr : ci ≺r cj → ci <l cj) ∧ rootl ≥l rootr , (7)

whereby ≺ refers to a direct parent-child-relation and < refers to the ancestor relation. Then
the asymmetric H-Correlation Ha measures how many must-link-before triples from the
reference hierarchy Hr can also be found in the learned hierarchy Hl :

Ha(Hl , Hr) =
∑

τ∈MLBl∩MLBr
wr(τ)∑

τ∈MLBr
wr(τ)

. (8)

The most simple triple weighting function w gives equal weight to all triples. However,
there are a lot more triples describing relations in the upper levels of the hierarchy than
triples describing specific relations. Therefore, this simple weighting makes the value of
H-Correlation strongly dependent on whether the top-level separations were done correctly.
The following triple weight gives equal weight to each hierarchy node:

w
(
(d1, d2, d3)

) = 1

|{(d ′
1, d

′
2, d

′
3)|ca(d1, d3) = ca(d ′

1, d
′
3)}|

(9)

with ca(a, b) is the most specific common ancestor node of a and b in the hierarchy. Through
this weighting, the impact of all triples on the overall value is normalized based on the most
general node that is passed by the triple, which is the common ancestor of the first and
the third item. Experimental evaluation of the behavior of H-Correlation and the different
weightings can be found in the paper by Bade and Benz (2010). Based on these findings, we
use the asymmetric H-Correlation using the triple weighting in (9) in this paper.

5.1.3 Alternative measures for hierarchical comparison

Bade and Benz (2010) give a current review on existing measures for comparing hierarchies
from the field of clustering as well as ontology engineering. This paper shows that hier-
archies can be compared concerning different dimensions, i.e., the hierarchical structure,
the assignment of items to this structure, and the assignment of labels (i.e., cluster names)
to this structure. Measures that depend on cluster labels are not applicable for the evalu-
ation of clustering methods because label generation is usually not part of the clustering.

Mach Learn (2014) 94:371–399 391

Table 1 Banksearch dataset

However, label based measures are predominant in ontology engineering. An exception is
the OntoRand index proposed by Brank et al. (2006) and its extended version proposed by
Bade and Benz (2010). This measure is also based on the Rand index (Rand 1971). The
OntoRand index softens the decision between identically and differently clustered items by
using a distance function between clusters for gradual comparison taking into account how
far apart two items are placed in the hierarchy. Although this measure is in principle an al-
ternative for the hierarchy evaluation, it is not suited for our evaluation as it only allows for
a symmetric hierarchy comparison. We need an asymmetric measure as we compare a more
detailed dendrogram with a given class hierarchy.

Very recently Amigó et al. (2009) proposed the extended BCubed measure, which aims at
evaluating overlapping partitions in general with hierarchies as a specific case. The original
BCubed measure was defined by Bagga and Baldwin (1998) as an algorithm and presented
as a measure by Amigó et al. (2009). It also uses item pairs, however, focuses on those that
were placed in the same cluster in at least one of the two partitions. It consists of a precision
and a recall component. The precision measures the fraction of item pairs assigned to the
same cluster that are also in the same cluster in the reference hierarchy. Recall measures the
opposite viewpoint by the fraction of item pairs assigned to the same cluster in the reference
hierarchy that are also clustered together by the clustering algorithm. The extension for
multiple class assignment then replaces individual cluster comparison by a comparison of
sets of clusters in which an item pair occurs. Again, this measure compares hierarchies
symmetrically and is therefore less suited for our evaluation.

5.2 Experimental setup

Evaluation was done with three datasets shown in Tables 1, 2, and 3. All consist of text
documents structured in a class tree. These datasets are subsets from the publicly available
banksearch dataset2 consisting of websites and the Reuters corpus volume 13 consisting of
news articles. Tables 1–3 show the class structure as well as the number of documents di-
rectly assigned to each class. The first dataset uses the complete structure of the banksearch
dataset but only the first 100 documents per class. For the Reuters 1 dataset, we selected
some classes and subclasses that seemed to be rather distinguishable. We manually picked
rather distinct topics from different parts of the Reuters hierarchy. In contrast to this, the
Reuters 2 dataset contains classes that are more alike. This was done by picking only topics
from one branch of the Reuters hierarchy. We randomly sampled a maximum of 100 doc-
uments per class, while a lower number in the final dataset means that there were less than
100 documents in the dataset.

All documents were preprocessed to obtain a tf × idf document vector representation
(Salton and Buckley 1988). We selected features, removing all terms that occurred less than
5 times, were less than 3 characters long, or contained numbers. From the rest, we selected
5000 terms in an unsupervised manner as described by Borgelt and Nürnberger (2004). To

2Available for download at the StatLib website (http://lib.stat.cmu.edu); Described in Sinka and Corne (2002).
3Available from NIST (http://trec.nist.gov/data/reuters/reuters.html).

http://lib.stat.cmu.edu
http://trec.nist.gov/data/reuters/reuters.html

392 Mach Learn (2014) 94:371–399

Table 2 Reuters 1 dataset

Table 3 Reuters 2 dataset

determine this number we conducted a preliminary evaluation. It showed that this number
still has a small impact on initial clustering performance, while a larger reduction of the
feature space leads to decreasing performance.

As the previous work on constrained clustering using pairwise constraints is not appli-
cable on cluster hierarchies, we could not compare these methods with ours. Therefore, we
compare in our experiments iHAC with the standard, unsupervised hierarchical agglomera-
tive clustering (HAC) algorithm to show the effectiveness of the constraints. Hence, we show
the difference between unsupervised and semi-supervised hierarchical clustering. Both HAC
implementations use the group average linkage method (or UPGMA) as cluster similarity
measure and the cosine similarity to determine document similarities (Manning and Schütze
1999, Chap. 14).

As mentioned earlier, we follow an evaluation approach with an external measure as
usually applied for evaluation of supervised methods. This is reasonable because the goal
of our semi-supervised clustering method is to uncover a specific cluster hierarchy. In the
motivating example from the beginning, this is the hierarchy intended by the user. In our
evaluation, these are the hierarchies given through the dataset. They are presumed to reflect
the view of a certain user. To fulfill our given clustering task, the algorithm must derive a
dendrogram that reflects the underlying hierarchy as much as possible.

The standard procedure for evaluation in such a setting is to split the data in training and
test set. While the training set is used for learning a model (or in our case to define the prior
knowledge on the target structure), the test set is used to evaluate the effectiveness of the
algorithm (which is in our case the clustering of this data in relation to each other and the
training data). This approach was also followed by us. The training data refers to the current
user hierarchy as on the left side of Fig. 1. The test data is the collection of new documents
yet unclustered as on the right side of Fig. 1. The overall class hierarchy in the complete data
set describes the final user hierarchy, which is intended by the user, if he would organize all
data on his own. Hence, this is the structure the algorithm shall also derive.

Both methods (HAC and iHAC) were evaluated with five different samples of training
data (i.e., set of constraints) for each specific setup. The samples were drawn at random
with a uniform distribution. The same samples were used for both algorithms to allow a
fair comparison. Mean and variance of the results over these five runs were computed. In
the following diagrams, only the mean will be shown for the sake of clarity. The variance
was usually very small anyway. We sampled training data and generated all possible MLB
constraints from it as described in Sect. 3, which were used to constrain the clustering.

Mach Learn (2014) 94:371–399 393

Different numbers of labeled data per class were sampled. Specific attention was paid to
small numbers of labeled data (ranging from 5 to 30 items) because it is much more likely
from a practical point of view that labeled data is rare. Furthermore, different settings were
created to reflect different distributions of constraints. Setting (1) assumes evenly distributed
constraints. Labeled data was sampled from all classes. Hence, the hierarchy is already
completely represented in the training data and new data always belongs to already known
topics of the user. However, as discussed in the beginning of this article, it is much more
likely that new data also contains new topics. Therefore, two more settings were evaluated
for every dataset with parts of the hierarchy being unknown. In these settings, either a single
leaf node class (setting (2)) or a whole subtree (setting (3)) of the hierarchy was not used to
sample labeled data. Through this, constraints are unevenly distributed. Those scenarios are
even more challenging than the first one.

5.3 Results: clustering quality

As discussed in Sect. 5.1, clustering quality was measured with H-Correlation and F-Score.
The results are shown in Fig. 13 and 14. At first, we want to discuss setting (1), where
constraints were sampled equally from all classes (row 1 and 4 in Fig. 13 and row 1 in
Fig. 14). The results show that iHAC can successfully integrate domain knowledge into the
hierarchical clustering, improving its performance towards a specific reference structure.
Looking at the overall clustering performance as measured with H-Correlation, it can be
observed that with an increasing number of constraints cluster quality increases. Depending
on the data, the gain reached varies. While constraints strongly improve clustering quality
of the banksearch and the reuters 2 dataset, the reuters 1 data rarely benefits from them. This
indicates that the nature of the data and especially its feature representation influences the
effectiveness of the constraints. In fact, the features of the reuters 1 dataset cannot explain the
top level class separation as the documents in the different subclasses have hardly anything
in common (from a bag of words point of view). Hence, constraints cannot compensate an
inappropriate feature set.

Looking at the different hierarchy levels separately with the F measure, different behavior
can be observed. iHAC is very successful on the higher levels, because it causes the larger,
already merged subclusters to be grouped together correctly for the higher levels (if this
would have been done falsely by the original clustering). A few constraints are sufficient to
achieve this, because the subclusters are already built. Hence, an increasing number does not
bring more benefit. In contrast to this, a constant increase of performance can be measured
on the leaf level.

After having evaluated the case of evenly distributed constraints, let us now analyze the
impact of an increasing imbalance in the available constraints, e.g., as caused through a
partially known hierarchy. These results are shown in row 2 and 5 in Fig. 13 and row 2 in
Fig. 14 for setting (2) and in row 3 and 6 in Fig. 13 and row 3 in Fig. 14 for setting (3). In
general, the results with unevenly distributed constraints are similar to the results with evenly
distributed constraints in terms of differences between the datasets, the number of labeled
data, and sensitivity to the hierarchy level. The overall observed performance gain is usually
a bit smaller, which is reasonable because unknown classes also mean fewer constraints.

The most notable difference can be found in the F-Score of the higher hierarchy lev-
els. With an increasing number of unknown parts of the hierarchy, the performance can
strongly drop for the higher hierarchy level, even below the original baseline given through
the unconstrained HAC algorithm. Furthermore this problem gets more severe with more
constraints. The reason for this can be found in the erroneous clustering of some instances

394 Mach Learn (2014) 94:371–399

Fig. 13 Results for the Banksearch and the Reuters 1 data set

Mach Learn (2014) 94:371–399 395

Fig. 14 Results for the Reuters 2 data set

by the HAC algorithm. Even if a single item (known to belong to a certain class) is merged
falsely with a cluster representing an unknown class, the resulting cluster is merged accord-
ing to this single item and not according to the dominating class which is unknown. Due
to this, a whole subcluster can be merged to the wrong subtree, which terribly reduces its
F-Score measure.

5.4 Runtime performance

Besides clustering quality, runtime and scalability is usually an important criterion for the
applicability of a method. It was already said before that hierarchical agglomerative clus-
tering has a rather high computational complexity. Our implementation has a complexity
between O(n2) for the best case and O(n3) for the worst case, which, however, is very
unlikely (cf. Sect. 4.2). The same bounds hold for iHAC. This section shall show the differ-
ences in the average runtime performance through actual time measurements to discuss the
impact of the integration of constraints.

Figure 15 shows runtime measurements for the clustering experiments on the Reuters 2
dataset. The measurements were done on a PC with a Intel Core 2 Duo CPU E6750 with
2.66 GHz, 4 GB RAM, a Windows XP 32-bit operating system, and a Java 6 virtual ma-
chine. However, please note that the experiments were not done under completely identical
conditions. Most importantly, the work load of the PC was varying. Therefore, the displayed
numbers might vary to some (rather small) extent because of this. However, the tendency of
the runtime behavior is still clearly visible.

396 Mach Learn (2014) 94:371–399

Fig. 15 Measured runtime of the
clustering (in minutes)

It can be noted that the average runtime of iHAC increases with an increasing num-
ber of constraints. This is also expected because iHAC requires additional runtime to keep
track of the forbidden merges due to constraint violations. The used constrained matrix (cf.
Sect. 4.2) can determine the next (allowed and best) cluster merge with the same efficiency
as the HAC implementation itself. However, this comes at the price that updating it after
each merge might but does not necessarily require some additional effort. The more con-
straints are involved, the more time is needed for the update as can be seen from the time
measurements. Nevertheless, the additional effort is very small in comparison to the number
of constraints involved. For this, you should keep in mind that a linear increase in the number
of labeled data causes an exponential increase in constraints. As an example, consider the
hierarchy of the Reuters 1 dataset. Five labeled items per class generate 37,200 constraints,
which increases to 307,800 constraints in the case of ten labeled items per class. Summing
up, the developed iHAC algorithm allows for a quite efficient integration of constraints into
the clustering process.

6 Conclusion

In this paper, we presented MLB-constraints which are intended to constrain the forma-
tion of a cluster hierarchy through some prior knowledge on the target hierarchy. We dis-
cussed the limitations of typical pairwise constraints on this problem and formally intro-
duced MLB-constraints and their properties. In the second part of the paper, we focused on
an instance-based constrained clustering approach to integrate these constraints into hierar-
chical agglomerative clustering. While the approach itself is rather simple, we focused on
efficiency, which is very important for handling large constraint sets as typical in the hierar-
chical scenario. We evaluated this approach in terms of both clustering quality and runtime
performance. With three different datasets, we showed that MLB constraints can success-
fully increase the clustering quality with the instance-based approach iHAC, while requir-
ing only a little extra runtime. However, if parts of the target hierarchy are unknown during
clustering and not represented by the constraint set, small cluster errors can be intensified
through the constrained clustering. To tackle this problem, we suggest the development of
metric-based methods based on MLB constraints. Some ideas for such approaches can be
found in our previous work on the topic (Bade and Nürnberger 2006, 2008, 2009). These
approaches are not the focus of this paper. However, it shall be mentioned that combining
both types of approaches showed to be most beneficial. Having an efficient instance-based
method as presented in this paper is therefore a prerequisite for further experiments on com-
bined methods.

Acknowledgements This work was partially supported by the German Research Foundation (DFG) with
contract no. NU131/1-3.

Mach Learn (2014) 94:371–399 397

References

Amigó, E., Gonzalo, J., Artiles, J., & Verdejo, F. (2009). A comparison of extrinsic clustering evaluation
metrics based on formal constraints. Information Retrieval, 12, 461–486.

Bade, K., & Benz, D. (2010). Evaluation strategies for learning algorithms of hierarchies. In Advances in
data analysis, data handling and business intelligence, proceedings of the 32nd annual conference of
the German classification society (GfKl’08), studies in classification, data analysis, and knowledge
organization (pp. 83–92).

Bade, K., & Nürnberger, A. (2006). Personalized hierarchical clustering. In Proceedings of the 2006
IEEE/WIC/ACM international conference on web intelligence (pp. 181–187). Washington: IEEE Com-
puter Society.

Bade, K., & Nürnberger, A. (2008). Creating a cluster hierarchy under constraints of a partially known hier-
archy. In Proceedings of the 2008 SIAM international conference on data mining (pp. 13–24).

Bade, K., & Nürnberger, A. (2009). Learning a metric during hierarchical clustering based on constraints. In
Proceedings of the LWA 2009 workshop.

Bade, K., Hermkes, M., & Nürnberger, A. (2007). User oriented hierarchical information organization and
retrieval. In J. N. Kok, J. Koronacki, R. L. de Mántaras, S. Matwin, D. Mladenic, & A. Skowron (Eds.),
Lecture notes in computer science: Vol. 4701. Proceedings of the 18th European conference on machine
learning (ECML07) (pp. 518–526). Berlin: Springer.

Bae, E., & Bailey, J. (2006). Coala: a novel approach for the extraction of an alternate clustering of high qual-
ity and high dissimilarity. In Proceedings of the sixth international conference on data mining ICDM’06
(pp. 53–62). Washington: IEEE Computer Society.

Bagga, A., & Baldwin, B. (1998). Entity-based cross-document coreferencing using the vector space model.
In Proceedings of the 17th international conference on computational linguistics (COLING-ACL’98)
(pp. 79–85).

Bar-Hillel, A., Hertz, T., Shental, N., & Weinshall, D. (2003). Learning distance functions using equivalence
relations. In Proceedings of the 20th international conference on machine learning (ICML’03) (pp. 11–
18).

Bar-Hillel, A., Hertz, T., Shental, N., & Weinshall, D. (2005). Learning a mahalanobis metric from equiva-
lence constraints. Journal of Machine Learning Research, 6, 937–965.

Basu, S., Banerjee, A., & Mooney, R. J. (2002). Semi-supervised clustering by seeding. In Proceedings of
the 19th international conference on machine learning (ICML’02) (pp. 27–34).

Basu, S., Banerjee, A., & Mooney, R. (2004a). Active semi-supervision for pairwise constrained clustering.
In Proceedings of the 4th SIAM international conference on data mining (pp. 333–344).

Basu, S., Bilenko, M., & Mooney, R. J. (2004b). A probabilistic framework for semi-supervised clustering.
In Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data
mining (KDD’04). (pp. 59–68).

Basu, S., Davidson, I., & Wagstaff, K. L. (Eds.) (2008). Constrained clustering: advances in algorithms,
theory, and applications. London/Boca Raton: Chapman & Hall/CRC.

Bilenko, M., Basu, S., & Mooney, R. J. (2004). Integrating constraints and metric learning in semi-supervised
clustering. In Proceedings of the 21st international conference on machine learning (ICML’04) (pp. 81–
88).

Borgelt, C. (2005). Prototype-base classification and clustering. Habilitation, Otto-von-Guericke-University
Magdeburg.

Borgelt, C., & Nürnberger, A. (2004). Fast fuzzy clustering of web page collections. In Proceedings of the
workshop on statistical approaches to web mining (SAWM04) at PKDD04, ECML/PKDD organization
committee, Pisa, Italy (pp. 75–86).

Brank, J., Mladenic, D., & Groblenik, M. (2006). Gold standard based ontology evaluation using instance
assignment. In Proceedings of the 4th workshop on evaluating ontologies for the web (EON’06).

Cathey, R. J., Jensen, E. C., Beitzel, S. M., Frieder, O., & Grossman, D. (2007). Exploiting parallelism to
support scalable hierarchical clustering. Journal of the American Society for Information Science and
Technology, 58(8), 1207–1221.

Choi, B., & Peng, X. (2004). Dynamic and hierarchical classification of web pages. Online Information
Review, 28(2), 139–147.

Cohn, D., Caruana, R., & McCallum, A. (2003). Semi-supervised clustering with user feedback (Technical
Report TR2003-1892). Cornell University.

Davidson, I., & Ravi, S. S. (2005a). Agglomerative hierarchical clustering with constraints: theoretical and
empirical results. In Proceedings of the 9th European conference on principles and practice of knowl-
edge discovery in databases (PKDD’05) (pp. 59–70).

Davidson, I., & Ravi, S. S. (2005b). Clustering with constraints: feasibility issues and the k-means algorithm.
In Proceedings of the 2005 SIAM international data mining conference (pp. 138–149).

398 Mach Learn (2014) 94:371–399

Davidson, I., & Ravi, S. S. (2006). Identifying and generating easy sets of constraints for clustering. In Pro-
ceedings of the twenty-first national conference on artificial intelligence and the eighteenth innovative
applications of artificial intelligence conference (pp. 336–341).

Davidson, I., & Ravi, S. S. (2007a). The complexity of non-hierarchical clustering with instance and cluster
level constraints. Data Mining and Knowledge Discovery, 14(1), 25–61.

Davidson, I., & Ravi, S. S. (2007b). Intractability and clustering with constraints. In Proceedings of the 24th
international conference on machine learning (ICML’07) (pp. 201–208).

Davidson, I., & Ravi, S. S. (2009). Using instance-level constraints in agglomerative hierarchical clustering:
theoretical and empirical results. Data Mining and Knowledge Discovery, 18, 257–282.

Davidson, I., Wagstaff, K., & Basu, S. (2006). Measuring constraint-set utility for partitional clustering al-
gorithms. In Knowledge discovery in databases: PKDD 2006, 10th European conference on principles
and practice of knowledge discovery in databases (pp. 115–126).

Day, W. H. E., & Edelsbrunner, H. (1984). Efficient algorithms for agglomerative hierarchical clustering
methods. Journal of Classification, 1(1), 7–24.

Finley, T., & Joachims, T. (2005). Supervised clustering with support vector machines. In Proceedings of the
22nd international conference on machine learning (ICML’05) (pp. 217–224).

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2(2),
139–172.

Gonzalez, R. C., & Woods, R. E. (2007). Digital image processing. New York: Prentice-Hall.
Grira, N., Crucianu, M., & Boujemaa, N. (2004). Fuzzy clustering with pairwise constraints for knowledge-

driven image categorization. In European workshop on the integration of knowledge, semantics and
digital media technology (EWIMT) (pp. 299–304).

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2002a). Cluster validity methods: Part I. ACM SIGMOD
Record, 31(2), 40–45.

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2002b). Clustering validity checking methods: Part II. ACM
SIGMOD Record, 31(3), 19–27.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference
and prediction (2nd ed.). Berlin: Springer. http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

Jones, W. (2008). Keeping found things found. San Mateo: Morgan Kaufmann.
Jones, W., & Teevan, J. (Eds.) (2007). Personal information management. Seatle: University of Washington

Press.
Kestler, H. A., Kraus, J. M., Palm, G., & Schwenker, F. (2006). On the effects of constraints in semi-

supervised hierarchical clustering. In F. Schwenker & S. Marinai (Eds.), LNAI: Vol. 4087. Artificial
neural networks in pattern recognition (pp. 57–66).

Khosla, R., Westfall, D. G., Reich, R. M., Mahal, J. S., & Gangloff, W. J. (2010). Spatial variation and
site-specific management zones (1st ed., pp. 195–219). Berlin: Springer.

Kim, H., & Lee, S. (2002). An effective document clustering method using user-adaptable distance metrics.
In Proceedings of the 2002 ACM symposium on applied computing (pp. 16–20).

Klein, D., Kamvar, S., & Manning, C. (2002). From instance-level constraints to space-level constraints: mak-
ing the most of prior knowledge in data clustering. In Proceedings of the 19th international conference
on machine learning (ICML’02) (pp. 307–314).

Manning, C. D., & Schütze, H. (1999). Foundations of natural language processing. Cambridge: MIT Press.
Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge: Cam-

bridge University Press.
McKusick, K. B., & Langley, P. (1991). Constraints on tree structure in concept formation. In Proceedings of

the 12th international joint conference on artificial intelligence (pp. 810–816).
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American

Statistical Association, 66, 622–626.
van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). London: Butterworths.
Ruiz, C., Menasalvas, E., & Spiliopoulou, M. (2007a). Constraint-based query clustering. In Advances in

intelligent web mastering, proceedings of the 5th Atlantic web intelligence conference (AWIC’07) (pp.
304–309).

Ruiz, C., Spiliopoulou, M., & Menasalvas, E. (2007b). C-dbscan: density-based clustering with constraints.
In Rough sets, fuzzy sets, data mining and granular computing; proceedings of the 11th international
conference (RSFDGrC’07) (pp. 216–223).

Ruß, G., & Kruse, R. (2011). Exploratory hierarchical clustering for management zone delineation in preci-
sion agriculture. In LNAI: Vol. 6870. Proceedings of the industrial conference on data mining 2011 pp.
161–173). Berlin: Springer.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Pro-
cessing & Management, 25(5), 513–523.

http://www-stat.stanford.edu/~tibs/ElemStatLearn/

Mach Learn (2014) 94:371–399 399

Schultz, M., & Joachims, T. (2004). Learning a distance metric from relative comparisons. In Proceedings of
neural information processing systems.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1),
1–47.

Sinka, M., & Corne, D. (2002). A large benchmark dataset for web document clustering. In Frontiers in
artificial intelligence and applications: Vol. 87. Soft computing systems: design, management and ap-
plications (pp. 881–890).

Wagstaff, K. (2002). Intelligent clustering with instance-level constraints. PhD thesis, Cornell University.
Wagstaff, K., & Cardie, C. (2000). Clustering with instance-level constraints. In Proceedings of the seven-

teenth international conference on machine learning (ICML’00) (pp. 1103–1110).
Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001). Constrained k-means clustering with background

knowledge. In Proceedings of 18th international conference on machine learning (pp. 577–584).
Xing, E., Ng, A., Jordan, M., & Russell, S. (2003). Distance metric learning with application to clustering

with side-information. Advances in Neural Information Processing Systems, 15, 505–512.

	Hierarchical constraints
	Abstract
	Introduction
	Application scenarios
	Structure of the paper

	Pairwise constraints
	A review of selected approaches
	Instance-based approaches
	Metric learning

	Problems of constraint usage
	Feasibility issues
	Beneficial constraints

	Limitations for hierarchies
	Hierarchical learners vs. learning hierarchies

	Hierarchical constraints
	Sources for constraints
	Generality
	Transitivity of MLB constraints

	Constrained hierarchical clustering
	Integrating MLB constraints with iHAC
	An efficient data structure

	Evaluation
	Hierarchy evaluation measures
	Hierarchically applied F measure
	H-correlation
	Alternative measures for hierarchical comparison

	Experimental setup
	Results: clustering quality
	Runtime performance

	Conclusion
	Acknowledgements
	References

