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Abstract Cluster analysis lies at the core of most unsupervised learning tasks. However,
the majority of clustering algorithms depend on the all-in assumption, in which all objects
belong to some cluster, and perform poorly on minority clustering tasks, in which a small
fraction of signal data stands against a majority of noise.

The approaches proposed so far for minority clustering are supervised: they require the
number and distribution of the foreground and background clusters. In supervised learn-
ing and all-in clustering, combination methods have been successfully applied to obtain
distribution-free learners, even from the output of weak individual algorithms.

In this work, we propose a novel ensemble minority clustering algorithm, EWOCS, suit-
able for weak clustering combination. Its properties have been theoretically proved under
a loose set of constraints. We also propose a number of weak clustering algorithms, and
an unsupervised procedure to determine the scaling parameters for Gaussian kernels used
within the task.

We have implemented a number of approaches built from the proposed components,
and evaluated them on a collection of datasets. The results show how approaches based on
EWOCS are competitive with respect to—and even outperform—other minority clustering
approaches in the state of the art.
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1 Introduction

The amount of data available in digital form is increasing every day. Given the expensive
costs of human inspection (and annotation), unsupervised approaches to mining these data
become more and more paramount.

Cluster analysis lies at the core of most unsupervised learning tasks. Jain et al. (1999)
define clustering as “the organization of a collection of patterns [. . .] into clusters based
on similarity. Intuitively, patterns within a valid cluster are more similar to each other than
they are to a pattern belonging to a different cluster”. In addition to pattern, each element
to be clustered has also received the names of “object, record, point, vector, [. . .] event,
case, sample, observation, or entity” (Tan et al. 2005, ch. 2). We will stick to the term object
thorough this article.

In this the most common setting, it is assumed that all objects belong to some cluster.
Even if several surveys have reviewed the vast literature on clustering methods (Dubes and
Jain 1980; Jain et al. 1999; Xu and Wunsch 2005), so far they all have focused on this
standard task, which can be named all-in clustering. Two of the most widely used methods
to solve it are the distance-based k-means (MacQueen 1967) and the probabilistic-model-
based Expectation-Maximization (Dempster et al. 1977) algorithms.

However, there is a number of situations in which the data are known not to fit neatly
within this all-in assumption. In such cases, we know there is a fraction of data which are
neither similar to one another nor to the data within the clusters. Often, these data will
correspond to a certain form of noise and should hence be separated from the sought regular
clusters, which constitute the signal. Within this alternative setting, a number of different
tasks can be identified according to the characteristics of the data and the aim of the task
itself.

In one of these tasks, the all-in clustering goal is preserved, but the data are known to
contain a small fraction of noise. This has been called the robust clustering task (Davé and
Krishnapuram 1997). To solve it, some authors have proposed changes to standard clustering
methods to make them more robust to the presence of noise (Kaufman and Rousseeuw 2005;
Peel and McLachlan 2000). Other approaches explicitly incorporate a noise cluster, often
with different properties from the regular signal clusters (Davé 1991; Banfield and Raftery
1993; Guillemaud and Brady 1997; Biernacki et al. 2000). A last family is that of algorithms
specifically devised for robust clustering, such as BIRCH (Zhang et al. 1996) or DBSCAN
(Ester et al. 1996).

It is worth noticing that there is a number of related tasks which share this setting, such
as one-class classification or learning (Moya et al. 1993; Schölkopf et al. 2001; Tax and
Duin 2004) and outlier detection (Hodge and Austin 2004; Chandola et al. 2009). In both
cases, there is also a dataset containing both signal and a fraction of noise objects. However,
the focus of these tasks shifts away from that of clustering, becoming the estimation of a
model which covers the signal objects in the former, and the detection of the objects that
significantly deviate from the rest in the latter.

A different task is that in which there is only a minority of signal objects, standing against
the majority of noise. Most often, the signal objects will be embedded within the noise ones,
becoming respectively foreground and background objects, and the distinction between the
former and the latter must be done on grounds of density criteria. In the literature, this task
has been compared to “clustering needles in a haystack” (Ando 2007), and has received
names such as one-class clustering (Crammer and Chechik 2004), density-based cluster-
ing (Gupta and Ghosh 2006) or minority detection (Ando and Suzuki 2006). As a catchall
term, in this article we will refer to this setting and task as minority clustering. An example
dataset for a minority clustering problem is depicted in Fig. 1.
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Fig. 1 Sample TOY minority
clustering dataset

Even if this new task is related to the previously presented ones, the reversal of the signal-
to-noise ratio can make existing approaches unsuitable. For instance, Crammer and Chechik
(2004) give insights into why existing one-class classification approaches, which are tailored
to finding large-scale structures, may be unable to identify small and locally dense regions
embedded in noise. Empirical comparisons have also stated the low performance exhibited
by all-in and robust clustering methods in the minority clustering task (Gupta and Ghosh
2006).

However, to the best of our knowledge, all the methods proposed so far require as an input
the distribution of the foreground clusters or both the foreground clusters and the background
noise, either in the form of a probability distribution or, equivalently, of a divergence metric.1

This can become a significant issue when facing large amounts of data coming from a new
and unexplored domain, whose distribution may be completely unknown.

With the aim of providing a way to obtain distribution-free methods, a number of
combination methods have appeared for all-in clustering (e.g., Strehl and Ghosh 2002;
Topchy et al. 2003, 2004; Gionis et al. 2005). Among them, Topchy et al. (2003) introduced
the idea of using an ensemble of weak clusterings, which “produce a partition, which is
only slightly better than a random partition of the data”, to obtain a high-quality consensus
clustering.

Ensemble clustering methods are known to offer a greater degree of flexibility with re-
spect to individual algorithms. They allow the reusal of knowledge coming from multiple
and heterogeneous sources, and can be used in a number of settings which are unfeasible
using monolithic approaches, such as feature-distributed or privacy-preserving clustering
(Strehl and Ghosh 2002). Moreover, most of them can be considered embarrassingly paral-
lel, and as such can obtain significant speed-ups when deployed in distributed environments,
using techniques such as Map/Reduce (Dean and Ghemawat 2004).

In this article, we make a three-fold proposal:

– First, we propose an unsupervised minority clustering approach, Ensemble Weak minOr-
ity Cluster Scoring (EWOCS), based on weak-clustering combination. In it, a number of
weak clusterings are generated, and the information coming from each one of them is
combined to obtain a score for each object. A threshold separating foreground from back-
ground objects is then inferred from the distribution of these scores. We have been able

1A Bregman divergence induces a probability distribution of the exponential family (Banerjee et al. 2005).
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to find a theoretical proof of the properties of the proposed method, and we consider a
number of criteria by which the threshold value can be determined.

– Second, we propose Random Bregman Clustering (RBC), a weak clustering algorithm
based on Bregman divergences, for use within EWOCS ensembles; as well as an extension
of the Random Splitting (RSPLIT) weak clustering algorithm of Topchy et al. (2003).

– Third, we propose an unsupervised procedure to determine a set of suitable scaling pa-
rameters for a Gaussian kernel, to be used within RBC.

We have implemented a number of approaches built from the proposed components,
and evaluated them on a collection of datasets. The results of the evaluation show how
approaches based on EWOCS are competitive with respect to—and even outperform—other
minority clustering approaches in the state of the art, in terms of F1 and AUC measures of
the obtained clusterings.

The EWOCS algorithm has already been used in the real-world task of relation detection,
which was reduced to a minority clustering problem (Gonzàlez and Turmo 2009). However,
we now provide a formalization of the approach, as a minority clustering algorithm by itself,
and a study of its theoretical properties, which were both missing from our previous work.

The rest of the article is organized as follows. Sect. 2 gives an overview of related work in
the fields of minority clustering and clustering combination. Next, Sect. 3 contains a descrip-
tion of the EWOCS approach, particularly the derivation of a minority clustering algorithm
whose properties are theoretically proved under a set of conditions. The obtained algorithm
has a number of components which allow different implementations: Sects. 4 and 5 give
details on the specific weak clustering algorithms and threshold score determination meth-
ods we have used, respectively. Sects. 6 and 7 contain the details and results of an empirical
evaluation of the proposed approaches on synthetic and real-world data, respectively. Fi-
nally, Sect. 8 draws conclusions of our work.

2 Related work

One of the first works to identify the minority clustering task in opposition to that of one-
class classification is that of Crammer and Chechik (2004). The authors formalize the prob-
lem in terms of the Information Bottleneck principle (IB) (Tishby et al. 1999), and provide
a sequential algorithm to solve this one-class IB problem. Given a Bregman divergence as
a generalized measure of object discrepancy, and a fixed radius value, the OC-IB method
outputs a centroid for a single dense cluster. The foreground cluster consists of the objects
which fall inside the Bregmanian ball of given radius centered around the given centroid.
More recently, Crammer et al. (2008) propose a different algorithm for the same model,
based in rate-distortion theory and the Blahut-Arimoto algorithm, and extend it to allow for
more than one cluster.

In a different direction, Gupta and Ghosh (2005) reformulate the problem in terms of
cost, defined as the sum of divergences from the cluster centroid to each sample within it,
and extend the OC-IB method to avoid local minima. A triad of methods (HOCC, BBOCC
and Hyper-BB) is proposed. However, the requirement of an a priori determination of the
cluster radius (or equivalently, size) is not removed, and the output remains a single ball-
shaped cluster.

To overcome this second limitation, Gupta and Ghosh (2006) propose Bregman Bubble
Clustering (BBC), as a generalization of BBOCC to several clusters. However, the number
of such clusters must still be given a priori, as well as the desired joint cluster size. The au-
thors also propose a soft clustering version of BBC, as well as a unified framework between
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all-in Bregman clustering (Banerjee et al. 2005) and BBC, in all their hard and soft versions.
Ghosh and Gupta (2011) revisit all the theory of BBC, and present Density Gradient Enu-
meration (DGRADE), a procedure to determine the number of clusters as well as the initial
centroids for BBC. However DGRADE introduces new parameters of its own, whose tuning
requires a potentially expensive exhaustive search in the space of possible values.

The work of Ando and Suzuki (2006) is similar to previous ones in that it also uses the
Information Bottleneck principle as a criterion to identify a single minority cluster. However,
the method is more general in the sense that it allows arbitrary distributions, not only those
induced by Bregman divergences, as foreground and background. Ando (2007) extends this
last proposal, allowing multiple foreground clusters, and also provides a unifying framework
of which not only the task of minority clustering, but also those of outlier detection and one-
class learning, are particular cases.

A last line of research is that opened by Gupta et al. (2010), who propose Hierarchi-
cal Density Shaving (HDS). HDS is built upon the Hierarchical Mode Analysis algorithm
(HMA) introduced forty years before by Wishart (1969), and can be seen as a generalization
of the robust clustering algorithm DBSCAN (Ester et al. 1996). The algorithm produces a
hierarchical clustering which is an approximation of the one which would be obtained by
HMA. Dense clusters are then identified in the hierarchy using a heuristic criterion. The
authors propose the AutoHDS framework, in which the parameters of the algorithm are
manually tuned with the help of an interactive tool. The proposed application provides a
visualization of the obtained minority clustering as the parameter values are updated.

Except for HDS, which is of a more heuristic nature, all the approaches discussed so
far formalize the task of minority clustering as an optimization problem, and differ in the
considered objective function and in the algorithm used to optimize it. In all cases, the
formalization requires to make explicit the distribution of the sought clusters. In the case of
HDS, a divergence function is required, and used throughout the algorithm. This is clearly a
drawback, as the performance of these methods degrades if the distribution of the data does
not match the one used by the model.

As discussed thoroughly in Sect. 3, EWOCS provides a different approach to the problem:
we propose a procedure, based on aggregation of clustering ensembles, by which a score for
each object can be found, and we show how these scores correlate with the fact of whether
an object belongs to the foreground clusters or to the background. This alternative approach
allows the use of much less informed (weak) clustering algorithms, and is the first one
to our knowledge to use ensembles for the task. In addition to providing a distribution-
free clusterer, the use of ensembles also brings practical benefits, as the algorithm becomes
easily parallelizable: the individual clusterings can be found in a distributed fashion, and
synchronization is only needed in batches to add up the object scores.

3 EWOCS

This section presents our Ensemble Weak minOrity Cluster Scoring (EWOCS) algorithm to
solve the task of minority clustering.

As mentioned in the introduction, the aim of EWOCS is to leverage the information pro-
vided by clusterings in an ensemble, combining the evidence from each one of them to
obtain a minority clustering of the dataset. The central idea in the algorithm is that of object
score: from each individual clustering, objects are assigned a certain score, and these scores
will be aggregated across the ensemble. In order to quantify their density, we propose the
use of a score related to the size of the clusters each object is assigned to across the cluster-
ings. In addition to being computationally cheap, we will be able to prove that this function
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shows interesting theoretical properties in minority clustering scenarios. As a consequence
of them, it will be possible to separate foreground from background objects using a threshold
on their aggregated scores.

The following sections detail and formalize the intuitions presented in this overview. First
Sect. 3.1 defines our setting for the task of minority clustering. Sect. 3.2 presents, from a
theoretical point of view, the scoring scheme that lies at the core of our method. Sects. 3.3
and 3.4 then study the conditional probability distributions of the assigned scores: the first
one on a single dataset; the second, across multiple dataset samplings. Next, Sect. 3.5 intro-
duces the concept of consistent clustering, and shows how, when using clustering functions
from a consistent family, an inequality on the score expectations for foreground and back-
ground objects can be established. This inequality will allow us to obtain as a corollary, in
Sect. 3.6, a generic algorithmic procedure for minority clustering, based on the proposed
scores. Finally, it is also possible to obtain a clustering model using this algorithm: its con-
struction and application is described in the last Sect. 3.7.

3.1 Task setting

Our definitions of clustering are based on concepts from fuzzy set theory:

Definition 1 (Fuzzy set) A fuzzy set over an ordinary set X is a pair X̃ = (X , fX̃),
where fX̃ : X → [0,1] is the membership function (or characteristic function) of X̃ .
For xi ∈ X , fX̃(x) expresses the grade of membership of xi to X̃ , and will often be denoted

as grade(xi, X̃ ) (Zadeh 1965).

Definition 2 (Fuzzy c-partition) A fuzzy c-partition (or fuzzy pseudopartition) of an or-
dinary set X is a family of fuzzy sets Π = {π1 . . . πk} over X such that

∀x ∈ X :
∑

πc∈Π

fπc (x) = 1

∀πc ∈ Π : 0 <
∑

x∈X

fπc (x) < ‖X ‖

(Bezdek 1981; Klir and Yuan 1995).

A clustering over a dataset X = {x1 . . . xn} of size n can now be defined as:

Definition 3 (Hard partitional clustering) A hard (partitional) clustering Π of dataset X
is a partition Π = {π1 . . . πk} of X . Each one of the subsets πc ∈ Π is a hard cluster.

Definition 4 (Soft partitional clustering) A soft (partitional) clustering Π of dataset X is
a fuzzy pseudopartition Π = {π1 . . . πk} of X . Each one of the fuzzy subsets πc ∈ Π is a
soft cluster.

Remark 1 A hard clustering can be seen as a particular case of soft clustering where the
grade of membership of a certain xi to the πc is zero for all but exactly one cluster, for
which the grade is one.

Assume we have a finite set of k̂ generative distributions or sources Ψ = {ψ1 . . .ψk̂}, with
a priori probabilities {α1 . . . αk̂}, from which the dataset X has been sampled. Each object xi
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will be generated by one of the sources in Ψ , and we can hence consider a set Y of hidden
variables, with each yi ∈ Ψ containing the source which generated the corresponding xi .

The setting presented so far is common to all-in clustering and minority clustering. How-
ever, in the latter we can make additional assumptions about the sources in Ψ . In particular,
and without loss of generality, we can assume the first of those sources, ψ1, to be a back-
ground source; and the objects generated by it, the background objects. The rest of sources
and objects shall be named the foreground sources (whose set will be denoted as Ψ +) and
the foreground objects, respectively.

The relationship between background and foreground sources satisfies two additional
assumptions which can be stated as follows:

Density: Foreground sources are dense, i.e., objects generated by the same foreground
source are more similar to each other than to those generated by the background source.2

Locality: Foreground sources are local, i.e., objects generated by different foreground
sources are as similar to each other as they are to those generated by the background source.

These two assumptions are similar to those in previous works, for instance, those of atypi-
calness and local distribution defined by Ando (2007), and are implicitly present in others
(e.g., Gupta and Ghosh (2006) look for “locally dense regions”). In fact, we consider these
assumptions to define our task. Thus, minority clustering (in contrast to, for instance, all-in
clustering and robust clustering) can be defined as:

Definition 5 (Minority clustering) Minority clustering is the task of organizing a collection
of objects based on similarity, when we can assume that a minority fraction of them are dense
and local, and are embedded in a majority which are not.

3.2 Per-clustering scoring

Assume now we have a (possibly infinite) family of clustering functions F . From them,
a sequence of functions (f1 . . .) are independently drawn at random, with a certain prob-
ability density. When applied to the dataset, each fr will produce a soft3 clustering Πr =
{πr1 . . . πrkr } with a number kr of clusters.

After clustering function fr is applied, the cluster size and object scores can be calculated
from the output clustering Πr .

Definition 6 (Cluster size) The size of cluster πrc is the sum of the grade of membership to
the cluster of all objects in the dataset:

size(πrc) =
∑

xi∈X

grade(xi,πrc) (1)

Definition 7 (Object score) The score of an object xi by clustering function fr is

sri =
∑

πrc∈Πr

grade(xi,πrc) · size(πrc) (2)

2This concept of density is related to traditional probability density in the sense that foreground clusters will
correspond to regions in which the value of the global probability density function is higher than in their
neighbourhood.
3The result is also valid for hard clustering families, being a particular case of soft clustering.
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i.e., the sum of the sizes of the output clusters, weighted by the grade of membership of xi

to each one of them.

An additional concept will turn out to be of much importance later.

Definition 8 (Co-occurrence vector) The co-occurrence vector for object xi and clustering
function fr is cri = [cri1 . . . crin]T , where each component crij is

crij =
∑

πrc∈Πr

grade(xi,πrc) · grade(xj ,πrc) (3)

Remark 2 Using the co-occurrence vector, the score of object xi by clustering function fr

can be written as

sri =
∑

πrc∈Πr

grade(xi,πrc) · size(πrc)

=
∑

πrc∈Πr

grade(xi,πrc) ·
∑

xj ∈X

grade(xj ,πrc)

=
∑

πrc∈Πr

∑

xj ∈X

grade(xi,πrc) · grade(xj ,πrc)

=
∑

xj ∈X

∑

πrc∈Πr

grade(xi,πrc) · grade(xj ,πrc)

=
∑

xj ∈X

crij

From its definition, we can infer that the co-occurrence vector will satisfy the following
property:

Proposition 1 The values of the entries crij in the co-occurrence vector belong to the inter-
val [0,1].

Proof By the properties of fuzzy pseudopartitions, and hence of soft clusterings, we know
that

∀xi :
∑

πrc∈Πr

grade(xi,πrc) = 1

The product of two of these terms, which will also be equal to 1, can be expressed as

1 =
( ∑

πrc∈Πr

grade(xi,πrc)

)
·
( ∑

πrc∈Πr

grade(xj ,πrc)

)

=
∑

πrc,πrc′ ∈Πr

grade(xi,πrc) · grade(xj ,πrc′)

=
∑

πrc∈Πr

grade(xi,πrc) · grade(xj ,πrc) +
∑

πrc,πrc′ ∈Πr

πrc �=πrc′

grade(xi,πrc) · grade(xj ,πrc′)

= crij + �crij
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Given that the grade of membership is by definition non-negative, all pairwise products of
grades will also be non-negative—and, being sums of pairwise products, both crij and �crij

will at their turn be non-negative too: 0 ≤ crij ,�crij .
Finally, given that crij and �crij are two non-negative terms adding up to 1, it is clear

that neither of them can exceed this value: crij ,�crij ≤ 1. Hence, as we wanted to prove,
0 ≤ crij ≤ 1. �

Rather than considering a single application of one clustering function fr ∈ F on X , we
will mainly be concerned with aggregating the results over a number R of repetitions of the
process. In this context, we can define:

Definition 9 (Average co-occurrence vector) The sequence of average co-occurrence vec-
tors for object xi is (c�

1i . . .), where each component of c�
Ri = [c�

Ri1 . . . c�
Rin]T is

c�
Rij = 1

R

R∑

r=1

crij (4)

Definition 10 (Average score) The sequence of average scores of object xi is (s�
1i , s

�
2i . . .),

where each s�
Ri is

s�
Ri = 1

R

R∑

r=1

sri (5)

Remark 3 Using average co-occurrence vectors, the average score of object xi can be ex-
pressed as

s�
Ri = 1

R

R∑

r=1

sri = 1

R

R∑

r=1

∑

xj ∈X

crij =
∑

xj ∈X

1

R

R∑

r=1

crij =
∑

xj ∈X

c�
Rij

It is interesting to note that

Proposition 2 The sri are linear transformations of cri , and the s�
Ri are linear transforma-

tions of c�
Ri .

Proof Using an all-ones vector,

sri = 1T · cri = [1 1 · · · 1] · [cri1 cri2 · · · crin]T =
∑

xj ∈X

crij

s�
Ri = 1T · c�

Ri = [1 1 · · · 1] · [c�
Ri1 c�

Ri2 · · · c�
Rin]T =

∑

xj ∈X

c�
Rij

�

3.3 Dataset-conditioned distribution

The dataset X and clustering function fr uniquely determine the values for the co-
occurrence vectors cri , and hence for all other values considered in the previous section.
However, as the selection of fr is not deterministic, the crij can be regarded as random
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variables, and their conditional distribution across clustering functions, given a certain
dataset X , can be considered.

As the selection of each fr is independent from the others, the values of the crij for
different r will also be. The cri for different r will hence be independent and identically
distributed random vectors, with a common expectation vector μi and covariance matrix Σi .
We will refer to each element, μij , of μi as the affinity of xi and xj .

Definition 11 (Object affinity) The affinity of objects xi and xj is the conditional expecta-
tion of crij given X ,

μij = E[crij | X ] (6)

Remark 4 Being the expectations of the crij , with crij ∈ [0,1], the affinities μij will also
fall in the [0,1] interval.

We can additionally define

Definition 12 (Object expected score) The expected score of object xi is the conditional
expectation of sri given X ,

μi = E[sri | X ] (7)

It is then easy to successively prove that

Proposition 3 The value of the expected score μi of object xi is

μi = E[sri | X ] =
∑

xj ∈X

μij (8)

Proof As sri is the sum of the crij , its conditional expectation is

μi = E[sri | X ] = E

[ ∑

xj ∈X

crij | X
]

=
∑

xj ∈X

E[crij | X ] =
∑

xj ∈X

μij

�

Remark 5 Being the sum of n = |X | terms within the interval [0,1], the value of μi will fall
in the interval [0, n]. In order to make scores across differently-sized datasets comparable,
we will also consider a normalized expected score μ̄i , defined as μ̄i = μi/n.

Proposition 4 As the number of repetitions R increases, the conditional distributions of
the average co-occurrence vectors c�

Ri approach a multivariate Gaussian distribution with
expectation μi and covariance matrix Σi/R.

Proof As the crij are independent and identically distributed for different r , by the multi-
variate central limit theorem we know that the sequence

√
R

(
1

R

R∑

r=1

cri − μi

)
= √

R
(
c�
Ri − μi

)
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converges in distribution to a multivariate Gaussian distribution with expectation 0 and co-
variance matrix Σi . Hence, for large enough R,

√
R

(
c�
Ri − μi

) ≈ N (0,Σi)

c�
Ri − μi ≈ N (0,Σi/R)

c�
Ri ≈ N (μi,Σi/R) �

Proposition 5 As the number of repetitions R increases, the conditional distributions of the
average scores s�

Ri approach a Gaussian distribution with expectation μi .

Proof Being linear transformations of random vectors c�
Ri approaching a multivariate Gaus-

sian distribution, the s�
Ri also approach a Gaussian distribution

s�
Ri = 1T · c�

Ri ≈ N
(
1T · μi ,

(
Σ�

Ri

)2)

with a certain variance (Σ�
Ri)

2. The conditional expectation of these variables hence con-
verges to

lim
R→∞

E
[
s�
Ri | X

] = 1T · μi =
∑

xj ∈X

μij = μi �

3.4 Sampling distribution

We can now proceed to consider the distribution of the scores across multiple samplings of
the dataset X . In particular, we will first focus on the distribution of the affinity μij between
objects xi and xj , conditioned to their being respectively generated by a certain pair of
sources ψs and ψt . We shall name this measure the affinity of the two sources, ζst .

Definition 13 (Source affinity) The affinity of sources ψs and ψt is the conditional expecta-
tion of the object affinity μij , given that yi = ψs and yj = ψt , across all datasets X sampled
from Ψ :

ζst = E[μij | yi = ψs, yj = ψt ]

A particular case of affinity is that of ψt = ψs , which we shall name the self-affinity ζss of
source ψs .

We can now also consider the conditional expectation of the normalized expected scores
μ̄i for objects from source ψs .

Definition 14 (Source normalized expected score) The normalized expected score of a
source ψs is the conditional expectation of the normalized expected score μ̄i of objects xi

generated by ψs , across all datasets X sampled from Ψ :

ζs = E[μ̄i | yi = ψs]

This newly defined score satisfies that:

Proposition 6 The value of the normalized expected score ζs for a source ψs is

ζs =
∑

ψt ∈Ψ

αt · ζst
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Proof The value of μ̄i is

μ̄i = 1

n
μi = 1

n

∑

xj ∈X

μij

The conditional expectation of μ̄i across samplings of X for which |X | = n can then be
found as

E
[
μ̄i | yi = ψs, |X | = n

] = E

[
1

n

∑

xj ∈X

μij | yi = ψs, |X | = n

]

= 1

n
E

[ ∑

xj ∈X

μij | yi = ψs, |X | = n

]

Assuming the xj ∈ X are independent and identically distributed, and using the law of total
expectation, this can be expressed as

E
[
μ̄i | yi = ψs, |X | = n

] = 1

n

∑

xj ∈X

E
[
μij | yi = ψs, |X | = n

]

= 1

n

∑

xj ∈X

∑

ψt ∈Ψ

P (yj = ψt) · E[
μij | yi = ψs, yj = ψt, |X | = n

]

= 1

n

∑

xj ∈X

∑

ψt ∈Ψ

αt · E[
μij | yi = ψs, yj = ψt, |X | = n

]

= 1

n

∑

ψt ∈Ψ

αt · E[
μij | yi = ψs, yj = ψt, |X | = n

] ·
∑

xj ∈X

1

= 1

n

∑

ψt ∈Ψ

αt · E[
μij | yi = ψs, yj = ψt, |X | = n

] · n

=
∑

ψt ∈Ψ

αt · E[
μij | yi = ψs, yj = ψt, |X | = n

]

Finally, assuming independence of normalized expected scores and source affinities with
respect to dataset size n, and plugging the definition of the latter into the above formula, we
obtain the desired result:

E
[
μ̄i | yi = ψs, |X | = n

] =
∑

ψt ∈Ψ

αt · E[
μij | yi = ψs, yj = ψt, |X | = n

]

ζs = E[μ̄i | yi = ψs] =
∑

ψt ∈Ψ

αt · E[μij | yi = ψs, yj = ψt ] =
∑

ψt ∈Ψ

αt · ζst

�

3.5 Consistent clustering

We will now impose some conditions on the used clustering families, with respect to how
they preserve the density and locality of the sources in Ψ . We will start by considering the
detectability of a source by a clustering family:



Mach Learn (2015) 98:217–268 229

Definition 15 (Source detectability) Given a set of sources Ψ and a clustering family F , a
foreground source ψs ∈ Ψ + is detectable by F if its normalized expected score ζs is larger
than that ζ1 of the background source ψ1.

Proposition 7 (Detectability criterion) Given a set of sources Ψ and a clustering family F ,
a foreground source ψs ∈ Ψ + is detectable by F if:

αs · (ζss − ζ1s) > α1 · (ζ11 − ζs1) +
∑

ψt ∈Ψ +
ψt �=ψs

αt · (ζ1t − ζst )

Proof From the definition of detectability and Proposition 6,

ζs > ζ1
∑

ψt ∈Ψ

αt · ζst >
∑

ψt ∈Ψ

αt · ζ1t

αs · ζss + α1 · ζs1 +
∑

ψt ∈Ψ +
ψt �=ψs

αt · ζst > αs · ζ1s + α1 · ζ11 +
∑

ψt ∈Ψ +
ψt �=ψs

αt · ζ1t

αs · (ζss − ζ1s) > α1 · (ζ11 − ζs1) +
∑

ψt ∈Ψ +
ψt �=ψs

αt · (ζ1t − ζst )

�

Remark 6 This arrangement of the terms in the difference ζs − ζ1 is intended to capture the
degree to which the clustering family captures the density and locality properties of the data
in the minority clustering setting:

– For dense sources, self-affinity should be much larger than affinity to the background
source. Therefore, the value of the left-side term should be large.

– For local sources, affinity to the background source and to other foreground sources
should not be much different than their affinity to the background source itself. There-
fore, the value of the right-side term should be small.

If a clustering family captures the density and locality of all foreground sources in a set,
all of them will be detectable. In this case, the family is said to be consistent with the source
set:

Definition 16 (Clustering family consistency) Given a set of sources Ψ , a clustering family
F is consistent with Ψ if and only if all foreground sources ψs ∈ Ψ + are detectable by F .

The importance of detectable sources and consistent families lies in the fact that:

Theorem 1 Given a dataset X sampled from a set of sources Ψ and a consistent clustering
family F , for a sufficiently large number of repetitions R, the expected value of the average
score s∗

Ri of objects xi generated by a foreground source ψs ∈ Ψ + is larger than the expected
value of the average scores s∗

Rj of objects xj generated by the background source ψ1.
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Proof Using n = |X |, replacing the definitions of the different used quantities, and applying
properties of the expectation, we know that, if ψs is detectable,

ζs > ζ1

n · ζs > n · ζ1

n · E[μ̄i | yi = ψs] > n · E[μ̄j | yj = ψ1]
Assuming independence on the size of the dataset X ,

n · E[
μ̄i | yi = ψs,

∣∣X ′∣∣ = n
]
> n · E[

μ̄j | yj = ψ1,
∣∣X ′∣∣ = n

]

n · E[
μi/n | yi = ψs,

∣∣X ′∣∣ = n
]
> n · E[

μj/n | yj = ψ1,
∣∣X ′∣∣ = n

]

n · E[
E

[
s�
Ri | yi = ψs, X ′,

∣∣X ′∣∣ = n
]]

/n > n · E[
E

[
s�
Rj | yj = ψ1, X ′,

∣∣X ′∣∣ = n
]]

/n

E
[
s�
Ri | yi = ψs, X ′,

∣∣X ′∣∣ = n
]
> E

[
s�
Rj | yj = ψ1, X ′,

∣∣X ′∣∣ = n
]

which, assuming independence again, leads to

E
[
s�
Ri | yi = ψs, X

]
> E

[
s�
Rj | yj = ψ1, X

]
�

3.6 Algorithm

A corollary of this last Theorem 1 is

Corollary 1 Given a dataset X sampled from a set of sources Ψ , and using a clustering
family F which is consistent with Ψ , we can devise an algorithmic procedure to obtain a
minority clustering of X .

Proof Given a dataset X , we can apply a sequence of clustering functions fr , drawn from F ,
and find the average score s�

Ri for each object xi ∈ X . The expected value of the average
scores of the background objects will be lower than that of the foreground ones. If a suit-
able threshold value is determined, we will be able to discriminate most foreground and
background objects according to their score. �

Remark 7 A single threshold suffices to separate background and foreground objects be-
cause Theorem 1 ensures the scores of the former will be lower than those of objects coming
from any of the foreground sources.

Remark 8 It is important to note that, whereas this procedure will allow us to separate
foreground and background objects, it will not find the different clusters formed by the
foreground ones. A regular ensemble clustering algorithm, such as those of Ghosh et al.
(2002) or Topchy et al. (2005), can be applied on the objects that have been deemed to
belong to the foreground for that goal. We will hence focus on the foreground/background
separation problem for the rest of the paper.

The resulting algorithm, which we have named Ensemble Weak minOrity Cluster Scor-
ing (EWOCS), is described in Algorithm 1.

The first step of EWOCS is the initialization of an auxiliary array, which will contain
the accumulated scores s+

i of all objects, to zero (line 1). The main loop is then entered
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Algorithm 1 Ensemble Weak minOrity Cluster Scoring (EWOCS)
Input: A dataset X
Input: A consistent clustering family F

Input: An ensemble size R

Output: A hard minority clustering Π of X

1: Initialize the accumulated scores of all objects xi to zero,

s+
i = 0

2: For r = 1 to R do
3: Draw a clustering function fr at random from F ,

fr ∈ F

4: Apply fr to obtain clustering Πr ,

Πr = fr(X )

5: Find cluster sizes,

size(πrc) =
∑

xi∈X

grade(xi,πrc)

6: Update the accumulated scores of each object,

s+
i ← s+

i + sri = s+
i +

∑

πrc∈Πr

grade(xi,πrc) · size(πrc)

7: Find the final average scores of each object,

s�
Ri = s+

i

R

8: Determine a threshold s�
th separating the scores,

s�
th = find_threshold(s�

R1 . . . s�
Rn)

9: Create the foreground and background clusters, πf and πb ,

πf = {
xi | s�

Ri ≥ s�
th

}

πb = {
xi | s�

Ri < s�
th

}

10: Return The minority clustering Π = {πb,πf }

(lines 2–6). The number of iterations of this loop, R, determines the ensemble size and is a
user-supplied parameter. Larger values of R will yield better results, but at the expense of a
larger computational cost.

At each iteration, a clustering function fr is drawn at random from family F (line 3) and
is then applied to dataset X to obtain a clustering Πr (line 4). The size of each cluster πrc in
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clustering Πr is then found (line 5), and then the score of each object, as defined in Eq. (2),
is found and added to the accumulated score s+

i (line 6).
When the main loop is over, the final average score of each object, s�

Ri is found from
the final accumulated score s+

i and the ensemble size R (line 7). From the distribution of
these scores s�

Ri , a threshold value s�
th which separates the scores of the foreground and the

background objects is inferred (line 8). At this point, the only steps that remain are separating
the objects according to their scores into a foreground and a background cluster (line 9) and
returning the resulting clustering (line 10).

The time complexity of the algorithm prior to the determination of the threshold is dom-
inated by the R repetitions of the main loop. Inside it, if the number of clusters in the
clusterings produced by the functions fr ∈ F is bounded and not dependent on the size of
the dataset X , the cost of each iteration is in the order of O(|X |). In order to keep an overall
complexity of O(R · |X |), linear with respect to the number of repetitions and the size of the
dataset, it is thus necessary to use clustering families and threshold determination methods
whose complexity is also a linear function of this size |X |.

The obtained EWOCS algorithm has a number of components which allow different im-
plementations: neither the consistent clustering function family F (line 3) nor the method
for the determination of the threshold score separating foreground and background objects
(line 8) are specified. As mentioned in the introduction, the following two sections, Sects. 4
and 5, give insights into each one of these two issues, respectively.

3.7 Clustering model

Some algorithms are only devised to build a clustering of an input dataset, and do not provide
any device to determine the hypothetical assignments of new objects to one of the obtained
clusters. This is the case, for instance, of most hierarchical (including HAC) and ensemble
clustering (e.g., Ghosh et al. 2002; Gionis et al. 2005) algorithms. However, most popular
partitional methods—starting with k- and c-means, and continuing with all probabilistic
mixture algorithms—provide, as a byproduct of the clustering process, a clustering model
which may then be later used as a classification model for new data, after identifying the
obtained clusters with classes.

In the case of EWOCS, if the functions in the used family F provide models together with
the clusterings when applied to dataset X , these individual models can be extended to obtain
an aggregated minority clustering model.

More specifically, if the application of fr ∈ F to X produces clustering Πr and clustering
model Mr , after Algorithm 1, an EWOCS minority clustering model ME can be constructed,
containing:

– the inner clustering models Mr ,
– the size of each cluster πrc in the clusterings Πr ,
– and the threshold value s�

th which separates foreground and background objects.

The process of classifying a new object xx using the obtained model ME is described
in Algorithm 2. It follows the main steps of the previous Algorithm 1, but replacing the
application of new clustering functions fr ∈ F , by that of the previously obtained clustering
models Mr (line 3). After all models have been applied, the average score of the object is
found (line 5), and the object is deemed to belong to the foreground or background cluster
according to whether its score exceeds the previously found threshold (line 6).
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Algorithm 2 Classification using an EWOCS clustering model

Input: An EWOCS minority clustering model ME = ({Mr}, {size(πrc)}, s�
th)

Input: An object xx

Output: The cluster πx ∈ {πb,πf } to which xx would belong

1: Initialize the accumulated score of the object xx to zero,

s+
x = 0

2: For r = 1 to R do
3: Apply the clustering model Mr to obtain the grade of membership of xx to each πrc

(
grade(xx,πr1) . . .grade(xx,πrkr )

) = Mr (xx)

4: Update the accumulated score of the object

s+
x ← s+

x + srx = s+
x +

∑

πrc∈Πr

grade(xx,πrc) · size(πrc)

5: Find the final average score of the object

s�
Rx = s+

x

R

6: Assign the object to the foreground or background cluster, πf or πb , according to the
relation between its average score and the separating threshold

πx =
{
πf if s�

Rx ≥ s�
th

πb if s�
Rx < s�

th

7: Return The object cluster πx

4 Weak clustering

As stated in Sect. 3.5, the theoretical properties of the EWOCS algorithm depend only on the
condition of the used clustering family being consistent. We believe that the requirements
for being consistent, according to Definition 16, should be fairly loose—and that, hence, the
EWOCS algorithm is suitable for use with weak clustering algorithms.

In this context, a clustering function family F is a clustering algorithm which includes
elements of randomness. Each sequence of random values will determine a member function
of the family. From a conceptual point of view, drawing a function fr from the family F will
hence correspond to drawing a sequence of random values to be later used by the algorithm.
From a computational one, it can correspond, for instance, to choosing a seed value for the
algorithm’s internal random number generator.

The two weak clustering algorithms that are used in the work of Topchy et al. (2003) are
based on either splitting the dataset using random hyperplanes, or on clustering projections
of the data on random subspaces. We found the first of them particularly convenient for
our purposes, and extended it. Sect. 4.1 reviews this our extension of the random splitting
algorithm.
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However, even if these methods have been proved to produce clusterings useful for com-
bination within an ensemble, they both perform linear mappings of the data and, hence, are
based on the notion of linear separation. Although non-linearly separable clusters can be
successfully identified by linear separators, non-linear weak separators have not been thor-
oughly explored. Besides, linear methods depend on the data being expressible as feature
vectors, and hence cannot directly deal with structured objects such as sequences or trees.

Our proposal in this direction is a new weak clustering algorithm based on Bregman
divergences, which allows non-linear splitting boundaries and, through the use of kernels,
can deal with structured data. This proposed Random Bregman Clustering is described in
Sect. 4.2.

Later, Sect. 6.4.2 will provide an estimation of the consistency of the proposed clustering
families over a number of datasets. The results shall provide an empirical assessment of the
suitability of these two families for use within EWOCS.

4.1 Random splitting

The random splitting algorithm presented in Topchy et al. (2003) performs only binary bi-
sections of the objects in the dataset. Our Random Splitting algorithm (RSPLIT) is a gener-
alization of this algorithm, which allows an arbitrary number of clusters k.

For this algorithm we require the objects in dataset X to be expressible as z-dimensional
real vectors (i.e., X ⊂ R

z). To account for multiple clusters, we have adopted the same rep-
resentation of hyperplanes as in the Multi-Class Support Vector Machines of Crammer and
Singer (2001): each splitting hyperplane is defined by a weight vector ωc = (ωc1 . . . ωcz)

and an offset δc , and objects belong to the cluster (class in the original formulation) from
whose hyperplane they are separated by the largest margin.

Similarly to Topchy et al., in a clustering ensemble setting, the number of clusters k does
not need to be given a priori, but is rather drawn at random between 2 and a user-supplied
value kmax .

This idea leads to the simple procedure described in Algorithm 3. The algorithm takes
three sequential steps. The first of them is the selection of the effective number of clusters

Algorithm 3 Random Splitting (RSPLIT)
Input: A dataset X
Input: A maximum number of clusters kmax

Output: A hard all-in clustering Π of X

1: Draw a number of clusters k at random from the range {2 . . . kmax}
k ∈ {2 . . . kmax}

2: Generate a weight vector ωc = [ωc1 . . .ωcz] and an offset δc at random for each c ∈
{1 . . . k}

ωc1 . . .ωcz, δc ∈ [−1 . . .1]
3: Assign each object xi to the cluster πc whose hyperplane gives the largest margin

πc =
{
xi ∈ X | arg max

q

ωq · xi + δq = c
}

4: Return The clustering Π = {π1 . . . πk}
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k (line 1). Any discrete distribution between 2 and kmax , such as the uniform distribution,
can be used. For each cluster πc , random weights ωc and offsets δc (line 2) are then gen-
erated. Again, we have stuck to the uniform distribution from all the possible continuous
distributions within the [−1 . . .1] range.

Once these values are generated, the margin of each object xi with respect to the hyper-
planes is found as the dot product between the object xi and the hyperplane’s weight vector
ωc , shifted by the latter’s offset δc . Each object is assigned to the cluster induced by the
hyperplane to which its margin is maximal (line 3). The resulting clustering can then be
returned (line 4).

The time complexity of this algorithm is dominated by the calculation of the margin in
step (line 3), and is hence in the order of O(kmax · z · |X |).

The algorithm requires as input the maximum number of clusters kmax in each split.
A part of Sect. 6.4.3 is devoted to the empirical study of the sensitivity of the results of
EWOCS to its value.

We will henceforth refer to this algorithm as RSPLIT, and to its application within
EWOCS as EW-RSPLIT.

4.2 Random Bregman clustering

As stated in the introduction to Sect. 4, two desirable properties of weak clustering algo-
rithms, but to which few attention has been devoted so far, are, first, the ability to find non-
linear boundaries in vectorial data, and, second, the possibility to deal with non-vectorial
and/or structured data. Kernel methods have a long story of successes across a wide spec-
trum of machine learning tasks (Shawe-Taylor and Cristianini 2004) and, specifically, they
are known for their capability to address both of these issues. The use of kernel functions
allows to separate non-linearly separable classes, even with linear methods (Freund and
Schapire 1999); and kernels have been devised and successfully applied for non-vectorial
objects such as word sequences (Cancedda et al. 2003) or parse trees (Collins and Duffy
2002).

Kernel functions induce a distance metric between objects. Any kernel function Kφ is
equivalent to an inner product in a high-dimensional space, onto which there will exist a
certain mapping φ. Hence, if φ(x) and φ(y) are, respectively, the images of two objects x

and y in this space, Kφ(x, y) = φ(x) ·φ(y). Their squared Euclidean distance on the mapped
space, Dφ(x, y), can then be found as:

Dφ(x, y) = ∥∥φ(x) − φ(y)
∥∥2

= (
φ(x) − φ(y)

) · (φ(x) − φ(y)
)

= φ(x) · φ(x) + φ(y) · φ(y) − 2 · φ(x) · φ(y)

= Kφ(x, x) + Kφ(y, y) − 2Kφ(x, y) (9)

This transformation is the basis for existing kernel-based all-in clustering algorithms,
such as kernel k-means (Girolami 2002). In our case, given that these squared Euclidean
distances will be, by construction, Bregman divergences, we can join Mercer kernel theory
and that of Bregman clustering and devise a weak all-in clustering procedure. The idea is
to randomly select a number of objects which can act as seeds for the clustering, and then
define clusters according to the divergence from these seeds of the objects in the dataset.
The resulting Random Bregman Clustering (RBC) method is described in Algorithm 4.
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Algorithm 4 Random Bregman Clustering (RBC)
Input: A dataset X
Input: A Bregman divergence D

Input: A maximum number of clusters kmax

Output: A (hard or soft) all-in clustering Π of X

1: Draw a number of clusters k at random from the range {2 . . . kmax}
k ∈ {2 . . . kmax}

2: Select a subset X̂ of k seeds from X

X̂ = {x̂1 . . . x̂k} ⊂ X

3: If hard clustering desired then
4: Assign each object xi to the cluster πc induced by its nearest seed x̂c ,

πc =
{
xi ∈ X | arg min

x̂q∈X̂
D(x̂q, xi) = x̂c

}

5: Else
6: Find membership grade for each object xi and cluster πc ,

grade(xi,πc) = e−D(x̂c,xi )

∑k

q=1 e−D(x̂q ,xi )

7: Return The clustering Π = {π1 . . . πk}

RBC is thus a seed-based algorithm. Given dataset X , a Bregman divergence D and a
maximum number of clusters kmax , the first step of RBC is selecting the effective number of
clusters in the clustering, k (line 1). Any discrete distribution between 2 and kmax , such as
the uniform distribution, can be used. A subset X̂ of size k is then selected at random from
X (line 2). We shall name this subset the seed subset, and each one of their members will be
a seed. Each seed will induce a cluster in the output clustering.

The output clustering is constructed following the theoretical framework provided by
Bregman clustering (Banerjee et al. 2005). First, the distance of each object xi ∈ X to the
seeds x̂c ∈ X̂ is found. If a hard clustering is desired, each object is then assigned to the
cluster induced by its nearest seed (line 4). If, instead, a soft clustering is desired, the grade
of membership of each object to each cluster is proportional to the exponential of the negated
divergence from the seed of the latter to the former (line 6). In both cases, the only remaining
step is then returning the resulting (hard of soft) clustering (line 7).

The construction of the hard clustering is hence equivalent to a single assignment step of
Bregman hard clustering; and that of the soft clustering is equivalent to a single expectation
step of Bregman soft clustering, with a uniform a priori probability of membership to all
clusters.

The time complexity of the RBC algorithm is dominated by the clustering construction
step (line 4 or 6), and, as long as the kernel computation does not depend on the maximum
number of clusters kmax or on the size of the dataset |X |, it is in the order of O(kmax · |X |).
This is comparable to the cost of RSPLIT, so the increase in expressiveness of the algorithm
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does not come at the expense of an increase in computational complexity. The algorithm
hence remains inexpensive, and suitable for use in a weak clustering ensemble.

In addition to the particular divergence function used, the algorithm only takes as pa-
rameter the maximum number of clusters kmax , whose influence in EWOCS, as mentioned
previously, will be considered in Sect. 6.4.3.

We will henceforth refer to the hard and soft versions of this algorithm as HRBC and
SRBC, respectively, and to their application within EWOCS as EW-HRBC and EW-SRBC.

We have explored the use of the following families of Bregman divergences for two given
objects x and y, at the core of the RBC algorithm:

Squared Euclidean Distance (EUC), widely used in a variety of domains because of its sim-
plicity and good performance. It is simply:

DE(x, y) = (x − y)T (x − y) (10)

Squared Mahalanobis Distance (MAH), which has specifically been reported to give the
best results within previous approaches to minority clustering (Gupta and Ghosh 2005,
2006). It is a version of standard Euclidean distance normalized for a particular dataset:

DM(x,y) = (x − y)T Σ−1(x − y) (11)

where Σ is the covariance matrix of the considered dataset.
Gaussian-Kernel Distance (G(α,γ )), successfully applied in non-parametric (i.e., distribu-

tion-free) clustering algorithms, such as mean shift (Fukunaga and Hostetler 1975; Cheng
1995). The Gaussian kernel Kφ(x, y) between two objects x and y is defined as the ex-
ponential of the negated squared Euclidean distance between them, with two additional
scaling parameters α and γ :

Kφ(x, y) = α · e−γ ‖x−y‖2
(12)

By Eq. (9), their induced squared Euclidean distance mapped space, Dφ(x, y), can be found
as:

Dφ(x, y) = Kφ(x, x) + Kφ(y, y) − 2Kφ(x, y)

= α + α − 2α · e−γ ‖x−y‖2

= 2α
(
1 − e−γ ‖x−y‖2)

(13)

Gaussian kernels locally map the Euclidean space around each point into a hypersphere of
radius

√
2α, and the rate at which neighbouring points are pushed apart towards the edge of

the hypersphere increases with the value of parameter γ . If this Gaussian-kernel distance
is used in RBC, small values of α lead to fuzzy boundaries between the clusters, whereas
large values produce crisp ones. As a particular case, the limit of soft RBC as α → ∞ is
equivalent to hard RBC using squared Euclidean distance.

4.3 Unsupervised tuning of Gaussian-kernel distance

The use of the presented Gaussian-kernel distance requires the choice of the values for α and
γ , which model the degrees of fuzziness and locality of the output clustering, respectively.
The determination of suitable values for α and γ can become a problematic issue, especially
in unsupervised clustering settings.
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Similar problems are to be addressed in all-in fuzzy clustering algorithms which depend
on a parameter. The degree of fuzziness parameter, traditionally referred to as m, of the fuzzy
c-means algorithm (Bezdek 1981) is probably the one whose tuning has received the most
attention in the literature (Deer and Eklund 2003; Yu et al. 2004; Okeke and Karnieli 2006;
Schwämmle and Jensen 2010).

In the approach of Schwämmle and Jensen (2010), the authors study the behaviour of the
cluster centroids as the degree of fuzziness m increases, and find that, at a certain point, the
clustering degrades and the clusters start collapsing on each other. This phenomenon can be
detected by watching the minimum distance between centroids: the moment the degradation
starts, the first two clusters collapse and this distance becomes close to zero. It is interesting
to note that, according to the authors, this happens however many clusters are used, even if
the number does not match the actual one.

Given that “a large fuzzifier value suppresses outliers in data sets”, the authors consider
that maximum fuzziness should be sought, and hence propose selecting the largest m value
for which the minimum centroid distance still remains above a predefined threshold ε (set
so as to reduce floating-point errors).

We have adapted the approach of Schwämmle and Jensen to determine the optimal values
of α and γ for EW-SRBC. The method is particularly suitable to our needs: it does not de-
pend on specific properties of FCM, nor requires knowledge of the exact number of clusters
in the dataset. However, as the EW-SRBC method does not provide centroids for the found
signal clusters, we have instead tuned the parameters with the SOFTBBC-EM algorithm of
Gupta and Ghosh (2006). Given that the optimal divergence metric for clustering will be
more dependant on the dataset than on the used algorithm, we believe that the parameters
detected using SOFTBBC-EM will provide, at least, competitive performance when used
within EW-SRBC.

For a given value of γ , the influence of α on the clustering is equivalent to that of m for
FCM. When moving from α → ∞ to α → 0, the fuzziness of the clustering is increased
from a completely crisp clustering to gradually fuzzier ones. At a certain point αth, the
clustering starts degrading, and each object is eventually assigned a uniform probability of
belonging to any cluster.

On the flipside, for a given value of α, the influence of γ on the clustering gives rise
to two turning points: for values larger than a certain γh, the distance between all pairs of
objects tend to 2α; whereas for those smaller than a certain γl , they all tend to 0. Both
phenomena degrade the clustering, and hence also lead to cluster collapse. However, there
is an interaction between the values of α and γ : larger values of α force crisper decisions,
and hence extend the feasible region for γ .

Hence, the (α, γ ) plane will contain an approximately V-shaped curve on one of whose
sides the value of the minimum centroid distance will fall below the floating-point-precision
threshold ε. Following the criterion of Schwämmle and Jensen, we look for maximum fuzzi-
ness, and hence the algorithm should select the vertex of this curve. At this point, the value
of α is the minimum one which still avoids degradation, and for it γh and γl have become
equal.

We have empirically verified that such curves actually arise across a variety of datasets.
For instance, Fig. 2 shows a contour plot of the minimum centroid distance of the cluster-
ings obtained using SOFTBBC-EM on the TOY dataset. In it, the thicker curve denotes the
contour level for a value of ε = 10−3, and the point at its vertex corresponds to the values of
α and γ detected by the algorithm.

Given that the minimum centroid distance function has to be obtained by sampling, which
introduces an amount of experimental noise, standard numerical methods for optimization
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Fig. 2 Contour plot of minimum
centroid distance (TOY data)

cannot be used, and minimization is instead performed using a recursive logarithmic grid
search algorithm. This allows us to exponentially increase the precision in the detection of
the optimal point, without an exponential increase of the computational burden.

We will henceforth refer to the distance induced by this automatically tuned Gaussian
kernel as G(AUTO).

5 Threshold determination

The last step of the EWOCS algorithm is that of determining, from the sequence of scores
s�

1 . . . s�
n found by the ensemble clustering process,4 a threshold value s�

th which separates
foreground and background objects. We have considered the following procedures to per-
form this decision.

5.1 BEST

In BEST, the score for which the performance of the method is maximal according to a
given measure is taken as threshold. From the metrics that we have used for our evaluation,
we have chosen for our experiments the cutoff point to be the one that maximizes the F1
measure, which will be defined in Sect. 6.3. This criterion is informative as an upper bound
of the performance of the other ones, and we have hence reported it for our experiments.

5.2 SIZE

Following other works in minority clustering (Gupta and Ghosh 2005, 2006; Ghosh and
Gupta 2011), in SIZE the number of foreground objects is assumed to be known a priori.
After sorting the objects by their score, it is this number of highest-scored objects that are
taken to form the foreground cluster, whereas the rest are considered background objects.
The score of the object in the cutoff point is taken as threshold.

However, the proposers of this criterion give no hints about how the number of fore-
ground objects can be estimated, and we believe this limits its applicability for unsupervised

4For the sake of simplicity, we will be omitting in this section the R subindex from s�
Ri

, as we believe there
is no risk of confusion with other than the final scores.
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Fig. 3 Accumulated score
distribution (EW-SRBC on TOY

data)

minority clustering. We have nevertheless included it to allow a comparison to previous
approaches which use it. For our experiments, we have assumed that the exact number of
foreground objects is known, and used this value. Hence, the results for SIZE should also be
regarded as an upper bound.

5.3 DIST

Following our previous work on relation detection (Gonzàlez and Turmo 2009), DIST arises
from the observation of the distribution of the sorted sequence of scores of the clustered
objects (see Fig. 3 for example). A small number of instances are assigned high scores
whereas a large number are assigned low ones, presumably corresponding to foreground and
background objects, respectively. The cutoff point should try to separate these two regions.
Intuitively, this point will lie in the region of maximum convexity of the curve, and hence
close to the lower left corner of the plot. An approximate but efficient way to determine the
threshold is to minimize the distance from the origin in a normalized plot of the scores.

The first step in this criterion is hence sorting the objects xi ∈ X by decreasing scores
assigned to them by the EWOCS algorithm, so that, in the sequence s�

1 . . . s�
n, ∀i : s�

i ≥ s�
i+1.

These scores are then linearly mapped to the range [0 . . .1], obtaining normalized ver-
sions s̄�

i :

s̄�
i = s�

i − min s�
j

max s�
j − min s�

j

(14)

Then, the distance from the origin in the normalized plot is found for each object, and that
at the minimum distance is selected as cutoff object xth:

dist(xi) =
√

(s̄�
i )

2 + (i/max i)2 (15)

xth = arg minxi∈X dist(xi) (16)

5.4 NGAUSS

The theoretical analysis of the EWOCS method presented in Sect. 3 provides us a new ap-
proach to automatically determine the threshold score. In particular, we can much benefit
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Fig. 4 EW-SRBC on TOY data

from the result stated in Proposition 5: the conditional distributions of the average scores
s�
i approach a Gaussian distribution with expectation μi . If we assume that the value of μi

depends mainly on the source ψs which produced xi , we can try to approximate the overall
distribution of average scores s�

i by a mixture of Gaussian components, one for each one of
the sources generating the dataset.

As an example, the histogram of scores generated by the same run of EW-SRBC on
the TOY data is shown in Fig. 4a. As well as the joint distribution of scores (labeled All),
the separate histograms for objects from the foreground and background sources are also
plotted. Two Gaussian peaks are easily identifiable around the scores of 0.05 and 0.25, and
we could expect another minor Gaussian component to explain the probability mass around
the score of 0.9.

The key to threshold selection is thus determining the number of mixtures, identifying
them, and finding the boundaries between them. The cutoff points must lie at one of these
boundaries. There is a wide spectrum of methods to solve this task, and among them we
have chosen Expectation-Maximization (EM), being by far the most popular one. The de-
termination of the number of mixtures reduces to discovering the number of clusters and
hence to a model selection problem. Given that the score distribution will always be one-
dimensional (for whichever dimension of the input dataset), and one-dimensional EM is
fast, we have used the usual approach of running EM for increasing numbers of clusters
and then using a model-selection criterion to select the best one (Fraley and Raftery 1998).
More specifically, we have used the Bayesian Information Criterion (Schwartz 1978). In
Fig. 4b, the arcs denote the mean, variance and a priori probabilities of the identified com-
ponents.

Proposition 5 states than only the mixture with the lowest mean should contain the
background objects. However, it is empirically observed that the selection criterion of-
ten chooses models which split this (and/or other) source into several components (this
can be observed, for instance, in Fig. 4b). It is hence necessary to separate the found
components into those corresponding to the background source and those from the fore-
ground ones. More specifically, if k components ψ̂1 . . . ψ̂k have been identified (sorted by
increasing means μ̂1 > · · · > μ̂k), for each c ∈ {1 . . . k − 1}, the possibility that ψ̂1 . . . ψ̂c

contain background objects and ψ̂c+1 . . . ψ̂k contain foreground ones needs to be consid-
ered.
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The set of cutoff point candidates is hence built from the boundary scores for each c ∈
{1 . . . k − 1}, i.e., the scores s�

c for which:5

p

(
s�
c ∈

c⋃

d=1

ψ̂d | s�
c

)
= p

(
s�
c ∈

k⋃

d=c+1

ψ̂d | s�
c

)

Moreover, and as stated in Sect. 5.3, the small number of foreground instances are as-
signed high scores whereas the large number of background instances are assigned low
scores. As a result, the variances of the scores of the former will differ significantly from
those of the latter, being much larger.

This last fact provides us with a heuristic criterion to choose a single threshold score from
the candidate set: being σ̂ 2

1 . . . σ̂ 2
k the variances of the found components ψ̂1 . . . ψ̂k , we select

the boundary score that maximizes the difference between the average component variances
at both sides:

s�
th = arg max

s�
c

∣∣∣∣∣
1

c

c∑

i=1

σ̂ 2
i − 1

k − c

k∑

i=c+1

σ̂ 2
i

∣∣∣∣∣ (17)

We will refer to this criterion as NGAUSS+VAR. As an upper bound of its performance,
we will also consider a NGAUSS+BEST criterion, which selects the boundary score s�

c which
maximizes the F1 measure. In Fig. 4b, the possible cutoff points are depicted by dashed
vertical rules. The score selected as threshold by both NGAUSS+BEST and NGAUSS+VAR

is emphasized in black.

Remark 9 It is important to note here that need not be a one-to-one correspondence between
mixture components and sources (as mentioned, we have often found the scores from a
single source to be split across several components in the chosen mixture model), so we do
not expect the number components selected at this step to be the number of sources in the
data. We have devised this procedure for threshold determination only, and cannot ascertain
how well correlated the number of components and the number of sources will be.

A slightly different alternative to overcome the foreground and background component
separation problem is that of simplifying the possible models and performing EM with only
2 clusters. In this case, there is no ambiguity in the choice of the background and fore-
ground components, as there must be one of each. We have named this simplified Gaussian
modeling approach 2GAUSS.

Finally, as a last and implementation-related detail, we have found that using the linearly
mapped scores s̄�

i as defined in Eq. (14) as input to the EM algorithm for model fitting,
instead of the actual scores s�

i , reduces the floating point rounding error and improves the
quality of the detected threshold.

6 Evaluation on synthetic data

In order to validate the proposed EWOCS algorithm and to assess the performance of
EWOCS-based approaches, we have performed a series of experiments on synthetic data.

5If several such scores exist for a given c, we have taken the largest value for which, in addition, the proba-
bility of the foreground mixtures is increasing.
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Table 1 Parameter range for
synthetic dataset generation Number of dimensions 2, 3, 5, 8

Data range [−2.0 . . . + 2.0]
Number of background samples 5400 . . .12000

Number of foreground sources 3 . . .8

Number of foreground samples 700 . . .1800

Variance within foreground sources 0.125 . . .0.25

Minimum distance between foreground sources 0.75

In a preliminary stage, the consistency (in the sense of Definition 16) of the different used
weak clustering algorithms has been empirically assessed. Later, a full-fledged comparison
of the performance of EWOCS-based approaches to other methods in the state of the art has
been carried out.

Next sections give details about the evaluation procedure. Sect. 6.1 describes the used
datasets and Sect. 6.2 enumerates the different approaches to be evaluated or employed as
reference. Next Sect. 6.3 describes the evaluation protocol, including the considered metrics,
and, finally, Sect. 6.4 exposes and discusses the obtained results.

6.1 Data

The first dataset we have used for our experiments is the sample data plotted in Fig. 1. It is
a simple 2-dimensional dataset in which five foreground sources, with different shapes and
variances, are scattered against a background filled with a uniform distribution. Even though
evaluation on a single dataset such as TOY scarcely possesses any statistical significance,
“for a 2-dimensional dataset, graphical verification is an intuitive and reliable validation of
clustering” (Ando 2007), and we believe this can be useful as an illustration of most of the
concepts in our work.

For a more serious evaluation, we have prepared a number of synthetic datasets where
foreground Gaussian sources are embedded within a set of uniformly distributed background
objects. Several parameters, such as the number of sources, the number of foreground and
background objects and the means and variances of the Gaussian sources, were chosen at
random for each dataset. A summary of the ranges of these parameters can be found in
Table 1. In total, 160 such datasets have been generated.6 We will refer to this collection as
SYNTH.

Additionally, in order to perform the preliminary experiments on method consistency,
for each dataset in SYNTH, 9 additional samplings using the same source parameters were
generated. The whole 10-dataset groups have been used for consistency estimation.

6.2 Approaches

We have implemented the EWOCS algorithm using each one of the weak clusterers proposed
in Sect. 4.

EW-RSPLIT: EWOCS using the RSPLIT algorithm of Sect. 4.1.
EW-HRBC: EWOCS using the hard RBC algorithm, HRBC, of Sect. 4.2.
EW-SRBC: EWOCS using the soft RBC algorithm, SRBC, of Sect. 4.2.

6Available at http://www.lsi.upc.edu/~egonzalez/data/ml-synth.tar.gz.

http://www.lsi.upc.edu/~egonzalez/data/ml-synth.tar.gz
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The notation EW-RSPLIT/R × k (resp., EW-HRBC/R × k and EW-SRBC/R × k) will be
used to refer to the results obtained by EWOCS with an ensemble of R clusterings, each one
produced by RSPLIT (resp., HRBC and SRBC) with kmax = k.

In order to assess the performance of EWOCS-based approaches with respect to the state
of the art, we have implemented five existing methods for minority clustering:

BBOCC: as proposed by Gupta and Ghosh (2005). We have used the actual number of
foreground objects as the desired clustering size parameter.

BBCPRESS: as proposed by Gupta and Ghosh (2006). Similarly to BBOCC, we have used
the actual number of foreground objects as the desired clustering size parameter. The num-
ber of clusters, however, has been assumed to be given a priori, and by BBCPRESS/k we
will refer to the runs of this algorithm with a number of clusters k.

DGRADE: as proposed by Ghosh and Gupta (2011). Again, the actual number of fore-
ground objects has been used as number of dense points, to be classified into clusters.
Among the three strategies sketched by the authors, we have implemented the only one not
requiring the number of clusters k or a maximum stability parameter from the user. This
strategy has been preferred, despite its greater computational cost, because of its much
lower degree of supervision. Finally, following the original paper, the output of DGRADE
has been refined using the BBC algorithm.

AUTOHDS: as proposed by Gupta et al. (2010).7 The tuning of the smoothing and particle
threshold parameters of the algorithm using the interactive approach proposed by the au-
thors is not feasible in our case (for the SYNTH corpus, it would require the manual tuning
of 160 sets of parameters). We have instead considered a setting in which a single set of
parameter values is used across all datasets. Thus, by AUTOHDS/neps–npart we will refer
to the runs of this algorithm with a smoothing parameter neps and a particle threshold npart .

kMD: as proposed by Ando (2007). The implementation tries to mimic to the maximum
extent that of the original paper: we have used Gaussian distributions for the foreground
clusters and a uniform distribution for the background. The clusters have been initialized
by selecting fixed-size sets of most similar points to a randomly chosen one. To refer to the
runs of this algorithm with a certain parameter tuning, we will use the notation kMD/R ×
s0–smin, where R refers the number of cluster detection iterations, and s0 and smin refer to
the initial and required cluster size parameters.

For the divergence-based approaches (i.e., all but kMD), MAH has been used as metric.
It is important to note that these methods, as well as, to our knowledge, all other existing

minority clustering methods proposed so far, include critical elements of supervision, in the
form of parameters such as the number of foreground objects, the number of foreground
clusters, and/or the foreground cluster sizes.

Additionally, we have considered three pseudo-systems for reference, to give lower and
upper bounds of the performance of the actual systems:

RANDOM: A random clusterer, which assigns foreground and background clusters accord-
ing to a Bernoulli distribution. We have taken the one among such clusterers which assigns
the labels according to the actual source size ratio in the data.

ALLFG: A blind clusterer, which assigns all objects to the foreground cluster.
CONVEX: An oracle clusterer for the SYNTH dataset, which detects as foreground objects
those objects that lie within the convex hull of the actual foreground sources. The out-

7For our experiments, we have used GeneDiver, an implementation of the method made available by its
authors at http://www.ideal.ece.utexas.edu/~gunjan/genediver.

http://www.ideal.ece.utexas.edu/~gunjan/genediver
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put of this CONVEX clusterer will hence detect all foreground objects, but include some
background ones as false positives.

6.3 Protocol

In the preliminary evaluation of clustering consistency, for each one of the 10 samplings
of the datasets in the SYNTH collection, 25 runs of every weak clustering algorithm were
performed, and the source affinities have been estimated from the co-occurrence matrices of
these 250 clusterings. We have then reported the fraction of datasets with which the consid-
ered methods are consistent (Cons), as well as, more precisely, the fraction of sources which
are detectable by them—both macro- (M-Det) and micro-averaged (μ-Det) by dataset.

In order to assess and compare the performance of the different approaches in the full
minority clustering evaluation, we have used the well-known measures of precision (Prc),
recall (Rec) and F1, which have been previously employed for the evaluation of minority
clustering (Ando 2007). The use of percentages when printing values of these metrics is
customary.

Additionally, to evaluate the performance of the scoring phase, isolating it from that of
threshold selection, we have also included information about Receiver Operator Characteris-
tic (ROC) curves, more specifically, the Area Under the ROC Curve (AUC) (Fawcett 2006).
The relation of dominance between ROC curves has been proved equivalent to that of preci-
sion/recall curves (Davis and Goadrich 2006), and they are less sensitive to variances of the
class skew.

To reduce the impact of randomness, we have carried out 5 different runs for each
method, configuration and dataset, and reported the average measures.

Finally, to compare the performance of the different methods across the synthetic
datasets, we have used the Bergmann-Hommel non-parametric hypothesis test (Bergmann
and Hommel 1988). Being non-parametric, the test judges the relative performances of the
different methods with respect to each other, rather than their absolute scores or score dif-
ferences. Recently, works such as that of Demšar (2006) have advocated for non-parametric
tests to assess significance in machine learning tasks, as the assumption of metric commen-
surability across datasets, required by usual parametric tests such as Student or ANOVA, is
often broken. The use of the Bergmann-Hommel test in particular has been recommended
by García and Herrera (2008).

The graphical presentation of the results is that introduced by Demšar (2006): methods
are placed along the horizontal axis according to their average ranks across datasets, and
those for which no statistically significant difference can be found are joined by thick bars.

6.4 Results

The first Sect. 6.4.1 presents the results of the full experiments on the TOY dataset. The next
two sections, 6.4.2 and 6.4.3, detail the results obtained over the SYNTH collection.

6.4.1 Clustering on the TOY dataset

A graphical depiction of the output of a representative subset of the compared approaches
on the TOY dataset is shown in Fig. 5. The plots correspond to the parameter configurations
achieving the best results.

The BBOCC method is unable to detect the multiple foreground sources and instead
creates a single cluster covering two of them. Similarly, the BBCPRESS method, despite
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Fig. 5 System output for the compared methods (TOY data)

being given the correct number of sources, fails to recognize the half-moon-shaped one and
instead splits it into two clusters, and rounds the triangle-shaped one. As a result, the top
right source to be missed. The limitations of these two methods are well-known, and come
from the fixed number and shape (hyperelliptical) of clusters they look for. Seeding BBC
using DGRADE does not work in this case, either.

On the flipside, the AUTOHDS, kMD and EW-SRBC methods are able to recognize the
variously shaped foreground sources. AUTOHDS seems to include too many background
objects into the clusters, whereas the classification of the two other methods is more accu-
rate. For this TOY dataset, kMD produces tighter clusters, favouring precision over recall,
whereas for EW-SRBC this tendency is reversed.

The ROC curves for these approaches are plotted in Fig. 6. kMD and AUTOHDS do
not provide an adjustable decision threshold; instead, their output is a fixed crisp boundary,
and hence their ROC curve is composed of two straight segments. On the contrary, EW-
SRBC, as all other EWOCS-based approaches, assigns a continuous score to all objects, and
the separation between foreground and background ones is based on a threshold. Hence, its
ROC curve, as a function of this threshold, is much smoother. For this reason, even if the
differences in precision, recall and F1 score between the methods are small (see Fig. 6b),
the curves for AUTOHDS and kMD are missing a large fraction of the AUC, which that of
EW-SRBC is able to enclose. The fact will also be relevant to the evaluation on SYNTH.

Regarding the proposed threshold determination approaches, Fig. 7 shows the preci-
sion, recall and F1 curves for the output of EW-SRBC on TOY, according to the number
of objects clustered as foreground. The cutoff points for the different criteria are plotted
above the F1 curve. For this particular case, NGAUSS+VAR finds the same cutoff point as
NGAUSS+BEST, and they are both plotted as NGAUSS.

The threshold values found by SIZE, NGAUSS and 2GAUSS are quite close to the optimal
one, BEST. It is only the threshold found by DIST which falls somehow behind, trading in
this case too much recall for precision.
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Fig. 6 ROC curves for AUTOHDS, kMD and EW-SRBC (TOY data)

Fig. 7 Precision, Recall and F1
curves, and cutoff point
determined by different threshold
detection criteria (EW-SRBC on
TOY data)

6.4.2 Consistency on the SYNTH dataset collection

Table 2 contains the values of consistency and averaged source detectability of the differ-
ent weak clustering algorithms, estimated over all SYNTH datasets. Given that more di-
mensional data will exhibit a larger degree of sparsity which may render the results not
comparable with those of lower dimensional datasets, we have opted to present the results
segregated by the number of dimensions in the datasets.

Our hypothesis that weak clustering algorithms are consistent with data generated by
dense and local sources seems corroborated by the empirical evidence coming from these
experiments. The property holds in all tested datasets for 3-, 5- and 8-dimensional data.
Only for 2-dimensional datasets, the algorithms, especially RSPLIT and SRBC using the
MAH distance, fail to detect some of the sources—up to 7.45 % of them in the case of SRBC

with MAH. Overall, for these two methods full consistency is only achieved in three fourths
of the datasets; and HRBC fulfills the property in 91.67 % of the cases. On the flipside,
the performance of SRBC using G(10,10) is remarkable, as it obtains perfect consistency
even in these harder cases. The results also confirm the intuition that 2-dimensional datasets,
being less sparse, are harder to deal with.

However, even if perfect consistency is not achieved, the fact that, in the worst of the
cases, more than 94% of the sources are detectable suggests that the lack of full consistency
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Table 2 Consistency of the proposed weak clustering algorithms (SYNTH data)

2 Dimensions 3 Dimensions

Cons M-Det μ-Det Cons M-Det μ-Det

RSPLIT ×2 – 81.82 96.10 94.48 100.00 100.00 100.00

×50 – 78.79 95.82 95.71 100.00 100.00 100.00

HRBC ×100 MAH 93.94 99.13 98.77 100.00 100.00 100.00

SRBC ×100 MAH 84.85 94.81 95.71 100.00 100.00 100.00

G(10,10) 100.00 100.00 100.00 100.00 100.00 100.00

5 Dimensions 8 Dimensions

Cons M-Det μ-Det Cons M-Det μ-Det

RSPLIT ×2 – 100.00 100.00 100.00 100.00 100.00 100.00

×50 – 100.00 100.00 100.00 100.00 100.00 100.00

HRBC ×100 MAH 100.00 100.00 100.00 100.00 100.00 100.00

SRBC ×100 MAH 100.00 100.00 100.00 100.00 100.00 100.00

G(10,10) 100.00 100.00 100.00 100.00 100.00 100.00

does not necessarily hamper the actual performance of the EWOCS algorithm. The study of
the clustering results over the same SYNTH collection in next section will shed light on this
issue.

6.4.3 Clustering on the SYNTH dataset collection

Table 3 contains the AUC values for the compared methods across all datasets in the SYNTH

collection, as well as their achievable precision, recall and F1 values, using the BEST thresh-
old selection criterion.8 As mentioned before, the degree of sparsity increases with the num-
ber of dimensions, and this simplifies the clustering task, and the results across datasets with
different dimensionality may not be commensurable. For this reason, we have again opted
to split the results according to dataset dimensionality.

For reasons of brevity, only the parameter configurations which achieve the best results
for each method are included. Later in this same section, experiments studying the sensitivity
of each method to the tuning of their parameters will be presented.

Finally, Fig. 8 contains a graphical representation of the outcome of Bergmann-Hommel
tests on the F1 and AUC measures across all datasets in SYNTH. As mentioned previously,
the position on the line indicates average rank across datasets (with 1 corresponding to a
method consistently obtaining the highest score); and methods without a statistically signif-
icant difference between them are joined by thick bars.

In these experiments, EWOCS-based approaches are able to obtain results in the state of
the art for minority clustering, and particularly, EW-SRBC is able to outperform the exist-
ing approaches for the task, achieving a performance close to the upper bound, given by
CONVEX. We believe this is an excellent result, and one which confirms the validity of the
EWOCS algorithm.

8For the AUTOHDS and kMD methods, which do not provide an adjustable decision boundary, the BEST

results correspond directly to the clustering produced by the algorithm.
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Table 3 Results for SYNTH data

2 Dimensions 3 Dimensions

AUC BEST AUC BEST

Prc Rec F1 Prc Rec F1

RANDOM – 0.500 14.5 14.5 14.5 0.500 14.5 14.5 14.5

ALLFG – 0.500 14.5 100.0 24.9 0.500 14.5 100.0 24.9

BBOCC – MAH 0.752 40.9 69.4 44.5 0.841 61.6 62.3 56.9

BBCPRESS 7 MAH 0.849 55.6 68.1 60.7 0.934 79.0 76.8 77.4

DGRADE – MAH 0.897 68.0 70.4 68.2 0.969 85.2 85.1 84.9

AUTOHDS 200–30 MAH 0.871 54.3 85.6 64.5 0.875 82.6 77.4 78.1

KMD 100 × 800–50 0.808 82.0 63.7 68.5 0.945 93.6 90.0 91.6

EW-RSPLIT 500 × 2 – 0.843 41.1 78.0 52.1 0.911 55.9 77.2 63.6

500 × 50 – 0.862 45.0 75.9 54.5 0.950 66.0 83.9 73.1

EW-HRBC 100 × 100 MAH 0.896 59.1 71.5 63.6 0.971 76.1 85.0 79.9

EW-SRBC 100 × 100 MAH 0.799 37.1 73.3 47.5 0.901 53.6 78.2 62.5

G(10,10) 0.958 66.4 85.9 74.6 0.991 85.3 94.9 89.7

G(AUTO) 0.937 64.5 83.7 72.5 0.986 83.7 93.2 88.1

CONVEX – 0.957 67.6 100.0 79.3 0.996 95.4 100.0 97.6

5 Dimensions 8 Dimensions

AUC BEST AUC BEST

Prc Rec F1 Prc Rec F1

RANDOM – 0.500 14.5 14.5 14.5 0.500 14.5 14.5 14.5

ALLFG – 0.500 14.5 100.0 24.9 0.500 14.5 100.0 24.9

BBOCC – MAH 0.942 87.4 75.7 79.9 0.993 94.5 93.8 94.0

BBCPRESS 7 MAH 0.983 92.2 89.2 90.2 0.996 96.3 97.0 96.6

DGRADE – MAH 0.984 93.7 93.3 93.4 0.998 98.7 97.6 98.1

AUTOHDS 200–30 MAH 0.855 86.3 83.7 78.6 0.843 90.7 78.5 76.8

KMD 100 × 800–50 0.983 98.9 96.7 97.8 0.991 99.8 98.1 99.0

EW-RSPLIT 500 × 2 – 0.961 77.2 84.7 80.1 0.991 91.8 91.3 91.3

500 × 50 – 0.986 87.4 91.2 89.0 0.998 96.0 97.6 96.8

EW-HRBC 100 × 100 MAH 0.985 86.7 90.4 88.3 0.993 91.6 94.2 92.7

EW-SRBC 100 × 100 MAH 0.966 79.9 85.9 82.1 0.992 91.2 94.2 92.3

G(10,10) 0.999 98.3 99.4 98.8 0.996 99.9 99.4 99.6

G(AUTO) 0.972 90.4 96.5 91.4 0.987 96.1 99.7 96.8

CONVEX – 1.000 100.0 100.0 100.0 1.000 100.0 100.0 100.0

BBOCC is the weakest approach among the compared ones. Even if its results are above
the RANDOM and ALLFG baselines, the limitation to a single hyperelliptical cluster pro-
duces clusterings with a lower precision than those from other approaches. The differences
are statistically significant in terms of both F1 and AUC.

Regarding EW-RSPLIT, the extension from 2 to a larger number of hyperplanes improves
the performance of the RSPLIT algorithm within the ensemble. However, the algorithm
favours too much recall over precision, and even if this allows it to achieve a good AUC
measure, its values of F1 are lower than other methods which exhibit a similar performance,
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Fig. 8 Bergmann-Hommel tests for the compared approaches (SYNTH data)

such as EW-HRBC and BBCPRESS. These too approaches trade some of the recall of EW-
RSPLIT for precision, thus obtaining lower AUC but higher F1. The differences between the
three systems, nevertheless, are deemed not significant by the Bergmann-Hommel test, and
can hence be considered similar in terms of minority clustering power.

The results of AUTOHDS are also comparable in terms of F1 to those of these three
methods. Hypothesis testing finds no statistically significant differences among them, ei-
ther. However, the method seems unable to benefit from the increasing sparsity present
in higher-dimensional datasets, obtaining the lowest F1 scores among all methods in the
8-dimensional ones. We believe the high sensitivity of the method to the tuning of its pa-
rameters (which we will consider below) can be an explanation for these poor results: it is
unlikely that the same parameters produce good clusterings across all datasets in SYNTH.
This seems a major drawback of the approach, and one which we think seriously reduces its
utility in unsupervised minority clustering scenarios.

Finally, concerning DGRADE, kMD and EW-SRBC, their performance is significantly
better than that of the other methods in terms of F1, and that of EW-SRBC is also better
in terms of AUC. This is true for EW-SRBC not only when using the G(10,10) distance,
which achieves the best results on SYNTH with a significant difference from the competing
methods, but also when using the unsupervised one G(AUTO). The results for EW-SRBC

using G(AUTO) are only slightly below those of kMD in terms of F1, and slightly below
those obtained using G(10,10) in terms of AUC. In both cases the differences are not sta-
tistically significant. Taking into account that the determination of G(AUTO) is completely
unsupervised, we believe we can qualify these results as really encouraging.

However, the results using the MAH distance within EW-SRBC fall much below those
obtained with the G(α,γ ) family. One reason for this behaviour may lie in the fixed degree of
fuzziness allowed by MAH: the standardized scale that this distance provides may not always
give the most suitable fuzziness. The greater versatility offered by the G(α,γ ) distances is
thus a valuable property.

Note that the high F1 score of kMD comes from its elevate precision, which is particu-
larly high, for instance, in 3-dimensional datasets; whereas EW-SRBC tends to favour recall
over precision and DGRADE seems to find more balanced solutions. These tendencies
agree with the ones observed in the TOY dataset.
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Fig. 9 Effect of parameters on EW-SRBC (2-dimensional SYNTH data)

Finally, the values of AUC for AUTOHDS and kMD are lower than for all other methods
except BBOCC. The difference comes, as mentioned in Sect. 6.4.1, from the lack of an
adjustable threshold in their output.

At the light of these results, we can assert that EWOCS-based approaches perform com-
petitively with respect to the state of the art in the minority clustering task, in terms of AUC
and F1 of the obtained clusterings. Ensemble clustering methods have hence been proven to
be useful for this task.

Moreover, the fact that the EW-SRBC method is able to outperform all other compared
approaches when using the manually tuned Gaussian-kernel distance, and most of them
when using the automatically tuned one, leads us to believe that, on the one hand, kernel-
based distances are a serious alternative to other similarity measures used in clustering tasks;
and that, on the other, the proposed RBC algorithm can be successfully employed to con-
struct individual clusterings suitable for combination within a clustering ensemble.

However, these conclusions require an evaluation of the sensibility to parameter tuning
of the compared approaches.

Parameter sensitivity A number of experiments have been performed to assess the rele-
vance of parameter tuning on the different approaches, in terms of the impact these param-
eters have in their performance on the minority clustering task.

Figure 9 provides two plots of the BEST F1 score as a function of the parameters in EW-
SRBC: the ensemble size R, the maximum number of clusters in each individual clustering
kmax , and the Gaussian-kernel distance scaling factors α and γ . The plots correspond to the
2-dimensional subset of the SYNTH collection, being the datasets where the difference in
performance between approaches is the largest.

First Fig. 9a plots the curves of F1 for a fixed distance function G(10,10). It can be seen
how a change in any of the two parameters does influence the F1 score. However, the dif-
ference in performance is small, and, more importantly, the value stabilizes with increasing
values of both R and kmax . In particular, the ensemble size R controls the convergence of the
object scores to the source affinities. Higher values will provide more accurate clusterings,
with the drawback of an increased computational cost. In these experiments, a value such
as that of R = kmax = 100 we have used, produces good quality clusterings across a wide
range of situations. Nevertheless, we will revisit their influence on clustering performance
in the evaluation on real world collections.

However, the plot in Fig. 9b, which shows the curves of F1 for fixed values of R = kmax =
100, presents a different picture. The scaling parameters of the Gaussian-kernel distance
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Fig. 10 Effect of parameters on BBCPRESS, AUTOHDS and kMD (2-dimensional SYNTH data)

also have an impact on the F1 of the clusterings produced by EW-SRBC, but in this case
the values do not stabilize. Moreover, the curves for different α present a maximum around
γ = 10, and lower values of F1 are obtained at either side of these maxima. The score using
G(α,γ ) distances can exceed significantly that obtained using MAH (both with EW-SRBC

and EW-HRBC), but it can also eventually drop much below.
The selection of the suitable values for α and γ seems indeed a crucial issue when using

EW-SRBC, as intuited in Sect. 4.3. Nevertheless, the plot in Fig. 9b also shows how the value
of F1 obtained using the automatically tuned G(AUTO) distance provides an approximation
to the optimum. We hence believe that G(AUTO) can be used to perform the minority clus-
tering task satisfactorily, even if we must also admit that fine tuning can improve the overall
results.

Regarding non-EWOCS-based approaches, Fig. 10 contains plots of the BEST F1 score
for BBCPRESS, AUTOHDS and kMD, as a function of their various parameters. For refer-
ence, the plots also include the value obtained by EW-SRBC/100 × 100 using G(AUTO).9

DGRADE provides an effective alternative to BBCPRESS to obtain a suitable set of
parameters and seeds for BBC (Fig. 10a). However, their computational cost limits its ap-
plicability for large collections. Concerning AUTOHDS and kMD (Figs. 10b and 10c), the
latter seems more robust to the choice of its parameters. However, no method was proposed
to automate the tuning of either method, other than interactive trial-and-error. EW-SRBC

hence has as an advantage over the compared approaches, because of the automatic tuning

9For space reasons, the name is shortened to EW-G(AUTO).
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Table 4 Results for 2-dimensional SYNTH data

BEST SIZE DIST

Prc Rec F1 Prc Rec F1 Prc Rec F1

RANDOM – 14.5 14.5 14.5 – – – – – –

ALLFG – 14.5 100.0 24.9 – – – – – –

BBOCC – MAH 40.9 69.4 44.5 35.4 35.4 35.4 – – –

BBCPRESS 7 MAH 55.6 68.1 60.7 58.3 58.3 58.3 – – –

DGRADE – MAH 68.0 70.4 68.2 66.1 66.1 66.1 – – –

AUTOHDS 200–30 MAH 54.3 85.6 64.5 – – – – – –

KMD 100 × 800–50 82.0 63.7 68.5 – – – – – –

EW-RSPLIT 500 × 2 – 41.1 78.0 52.1 41.2 41.2 41.2 29.1 85.9 42.2

500 × 50 – 45.0 75.9 54.5 48.0 48.0 48.0 30.2 87.9 43.8

EW-HRBC 100 × 100 MAH 59.1 71.5 63.6 61.2 61.2 61.2 37.8 86.3 51.0

EW-SRBC 100 × 100 MAH 37.1 73.3 47.5 38.1 38.1 38.1 25.0 82.6 37.2

G(10,10) 66.4 85.9 74.6 71.2 71.2 71.2 45.2 97.4 60.6

G(AUTO) 64.5 83.7 72.5 68.7 68.7 68.7 56.6 81.8 63.4

CONVEX – 67.6 100.0 79.3 – – – – – –

NGAUSS+BEST NGAUSS+VAR 2GAUSS

Prc Rec F1 Prc Rec F1 Prc Rec F1

EW-RSPLIT 500 × 2 – 39.5 77.7 50.3 39.2 58.7 35.9 34.2 81.2 45.8

500 × 50 – 42.0 78.5 51.8 25.6 89.3 32.2 35.7 85.2 46.8

EW-HRBC 100 × 100 MAH 56.0 72.2 60.5 41.2 80.0 45.6 38.5 89.9 48.7

EW-SRBC 100 × 100 MAH 35.7 74.1 46.3 24.3 88.8 31.7 32.8 76.1 43.1

G(10,10) 62.0 88.0 70.9 50.3 94.2 64.2 49.3 96.4 64.6

G(AUTO) 58.5 87.2 68.7 63.7 60.1 51.4 51.6 90.2 63.4

procedure of the proposed G(AUTO) distance. Moreover, the results obtained using EW-
SRBC and G(AUTO) are better than those of the compared approaches in terms of AUC
and F1.

We believe the existence of such a tool is a significant difference with respect to other
approaches, and that this makes EW-SRBC suitable for completely unsupervised minority
clustering tasks.

Threshold determination Table 4 contains the values of precision, recall and F1 obtained
when applying the different criteria to the output of each minority clustering method. Again,
for brevity the table contains only the results across the 2-dimensional datasets of SYNTH.
Concerning the statistical significance of the differences, Fig. 11 contains the graphical rep-
resentation of the outcome of Bergmann-Hommel tests on precision, recall and F1 across all
(not only 2-dimensional) datasets in SYNTH.

The results show there is still a gap between the maximum achievable F1 score (criterion
BEST) and that obtained using the different criteria. There is another gap between the F1
scores of the criteria that contain some element of supervision (SIZE and NGAUSS+BEST)
and those of the completely unsupervised ones (DIST, NGAUSS+VAR and 2GAUSS). These
differences are present in a consistent way across all the EWOCS-based approaches.
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Fig. 11 Bergmann-Hommel tests for the compared criteria (EW-SRBC/100 × 100 using G(10,10) on
SYNTH data)

Criterion SIZE is the one to obtain results closest to BEST in terms of F1, and that to
obtain the best figures for precision, but at the cost of being the one which gives the least
recall. All differences are statistically significant.

However, the upper bound achievable using Gaussian modelling of the scores, that of
NGAUSS+BEST, lies quite close to the output of SIZE. For the EW-SRBC/100×100 method
using G(10,10) on 2-dimensional data, the difference is only a 0.3 % in terms of F1.
NGAUSS+BEST also shifts the bias towards recall instead of precision, which is much closer
to the region where the optimal threshold (that of BEST) lies.

Finally, regarding the three unsupervised criteria, NGAUSS+VAR seems the one which
comes closest in terms of performance to NGAUSS+BEST. Even if this does not hold for
the particular subset of 2-dimensional data, overall NGAUSS+VAR gives higher precision
and lower recall than NGAUSS+BEST. These differences are not statistically significant, but
overall the one in F1 score is. DIST and 2GAUSS show a strong bias for recall, particularly
the latter, and fall much below NGAUSS+BEST in precision. They perform worse in terms
of F1 than the other proposed approaches. However, from the statistical point of view, the
difference is not significant between them and NGAUSS+VAR.

Taking these and all obtained results into account, we can affirm that, even if elements
of supervision improve the results in the task of minority clustering, the proposed EWOCS

algorithm allows us to obtain competitive results using an unsupervised10 approach: the
results obtained by EW-SRBC/100 × 100 using G(AUTO) and one of DIST, NGAUSS+VAR

or 2GAUSS are above those obtained by other supervised approaches, such as BBOCC or
BBCPRESS.

Regarding the elements of supervision introduced by each one of the criteria, it is re-
markable that the use of NGAUSS+BEST, which would require an a posteriori selection of
the number of background Gaussian components from a small number of them, suffices for
EW-SRBC/100 × 100 using G(AUTO) to outperform all other approaches, including kMD,
which requires careful tuning of three parameters R, s0, smin.

Even if manual determination of the most suitable G(α,γ ) distance, or more informed
(i.e., supervised) threshold detection criteria, such as SIZE or BEST, allow further increases
in the F1 scores obtained by EW-SRBC, we believe that the fact that, using no or little

10As observed in the previous section, the EW-SRBC method is robust to the tuning of R and kmax , so we
can consider it unsupervised.
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supervision, EW-SRBC outperforms supervised minority clustering approaches in the state
of the art is an excellent result, and one which proves the validity of the whole minority
clustering framework introduced by the EWOCS algorithm.

7 Evaluation on real-world data

We have carried out a number of additional experiments with the goal of extending our
conclusions to larger and higher-dimensional collections coming from real-world problems.

The first dataset we have used belongs to the text classification domain. Specifically, we
have used a subset of the Reuters-21578 corpus,11 which is a popular benchmark for the
task. The Reuters corpus was previously used by Ando (2007) to evaluate their minority
clustering algorithm.

Our second collection of datasets comes from the area of information extraction, within
which, as mentioned previously, Gonzàlez and Turmo (2009) introduced the EWOCS algo-
rithm. More specifically, the authors considered the problem of unsupervised relation detec-
tion (i.e., learning which pairs of entities mentioned in a document collection are linked by
some relation without resorting to annotated data), and proposed a reduction of the prob-
lem to minority clustering. EWOCS was then used to find foreground objects, which in the
context of the task corresponded to pairs of related entities.

The experiments presented in the following sections extend those of the previous work,
and compare the results of EWOCS not only to other relation detection approaches, as in
the original paper, but also to other minority clustering approaches. Sect. 7.1 describes the
used corpora and data generation procedure. Sect. 7.2 reviews the approaches that we have
considered for the task. Finally, Sect. 7.3 presents the obtained results.

7.1 Data

As previously mentioned, the Reuters corpus has been used by other authors to evaluate
minority clustering algorithms. Specifically, Ando (2007) assembled a dataset which con-
tained the documents in topics oilseed, money-supply, sugar and gnp as foreground objects,
and those in acq as background.

However, in preliminary experiments we found this partition not to provide a real minor-
ity clustering problem—but rather an all-in clustering one with unequal cluster sizes. For
this reason, we decided to use a different subset of the collection, in which clusters have to
be determined on the grounds of density. The documents belonging to the largest category,
earn, have been taken as foreground objects, and the rest of documents as background ones.
To reduce the density of the background, only a random 60 % of its documents has been
kept. The resulting dataset12 has a total of 3987 and 10507 documents belonging to each
one of the two classes, respectively.

Similarly to other works in document clustering (Zhao and Karypis 2004), the text in
each document has been tokenized, and numbers and stop words have been removed. Last,
the remaining tokens have been stemmed using the method of Porter (1980), and the tf-
idf vectors have been found (Spärck-Jones 1972). We will refer to the obtained dataset as
REUTERS.

11Available at http://www.daviddlewis.com/resources/testcollections/reuters21578/.
12Available at http://www.lsi.upc.edu/~egonzalez/data/ml-reuters.tar.gz.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.lsi.upc.edu/~egonzalez/data/ml-reuters.tar.gz
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Table 5 ACE entity types
FAC Facility PER Person

GPE Geo-Political ORG Organization

LOC Location VEH Vehicle

Table 6 Size of APW-ACE datasets

Objects Dims. Objects Dims.

APW ACE APW ACE

FAC-GPE 57917 3394 765 GPE-VEH 14713 1241 647

FAC-LOC 9766 630 574 LOC-PER 74286 5110 834

FAC-PER 149677 7098 877 ORG-PER 844331 30558 950

GPE-LOC 39758 4203 738 ORG-VEH 12929 731 636

GPE-ORG 273209 13055 910 PER-VEH 37856 2597 760

GPE-PER 576566 39730 943

Regarding the relation detection datasets, and following Gonzàlez and Turmo (2009),
a hold-out evaluation scheme has been used: minority clustering is first performed on the
objects generated from a large document collection, and the obtained clustering models are
then applied on additional objects from new documents, where performance is measured.
We have used the year 2000 subset of the Associated Press section of the AQUAINT Corpus
to perform the clustering (Graff 2002), and the hold-out datasets are generated from the an-
notated corpora used in the Relation Detection and Recognition task of the ACE evaluation
(ACE 2008), for which ground truth is available. Specifically, we used the training data of
ACE evaluations for years 2003, 2004 and 2008. The corpora add up to almost 29 million
and over half a million words, respectively.

Each dataset in the collection will contain binary feature vectors which capture syntac-
tical properties of the contents of pairs of entities of two considered types (e.g., for ORG-
PER, one of the two entities will be an organization and the other one a person). We have
considered for evaluation the 11 entity type pairs that were already used by Gonzàlez and
Turmo (2009). Table 5 contains a quick overview of the entity types annotated in the cor-
pus.13

The set of syntactic features that have been used to generate the binary vectors to be
clustered is the part-of-speech–based one used in the original paper.14 Features occurring
in less than ten objects are filtered. The number of objects and dimensions in the resulting
datasets are listed in Table 6. We will refer to this dataset collection as APW-ACE.

7.2 Approaches

In order to assess the generality of the results on the SYNTH collection over real-world
data, we have used the same set of methods presented in Sect. 6.2 for this new set of ex-
periments. Thus, the BBOCC, BBCPRESS, DGRADE, AUTOHDS and kMD algorithms
have been applied over REUTERS, as well as the RANDOM and ALLFG baselines. For the

13We refer to the ACE annotation guidelines for details about the entity classification scheme (ACE 2008).
14We refer to Gonzàlez (2012) for a language-processing oriented analysis of more complex features.
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divergence-based approaches, we have resorted to EUC rather than MAH because of the
highest computational cost of the latter as the number of dimensions grows.

Regarding kMD, multinomial distributions have been used for both the foreground and
background clusters. Additionally, for this particular algorithm, instead of using a tf-idf rep-
resentation of the REUTERS dataset, we have employed the unsupervised feature selection
scheme of Slonim and Tishby (2000): documents are represented using raw term frequen-
cies, but, to reduce data dimensionality, only the 200 stems that contribute the most to the
mutual information between stems and documents are selected. This configuration mimics
that used by Ando (2007) on the same corpus.

The much larger sizes of the datasets in APW-ACE renders impossible the use of some of
the previous methods, namely DGRADE and AUTOHDS, because of their cubic computa-
tional complexity. Nevertheless, we have kept the rest of approaches in the comparison; the
only change has been the use of Bernoulli rather than multinomial distributions in kMD, the
former being more suitable for binary feature vectors.

Moreover, in order to compare the performance of minority clustering approaches with
respect to other relation detection methods, we have included an additional method in our
comparison:

GRAMS: as proposed by Hassan et al. (2006). The method uses a combination of n-gram
models and graph-based mutual reinforcement to generate POS-based patterns, sorted by
confidence, which can then be applied on new data. The approach requires no additional
external resources and acquires patterns which can be applied to hold-out data, and thus
allows a fair comparison within the present setting.

The authors of the GRAMS method do not provide a way to determine a threshold value for
the confidence of the patterns so, similarly to other methods, we are taking the BEST value
in terms of obtained F1 score. Thus, the results displayed for GRAMS are an upper bound of
the performance of the method.

7.3 Results

Next two sections expose and analyze the results of the experiments on the two considered
real-world scenarios: Sect. 7.3.1 deals with those on the REUTERS dataset, and Sect. 7.3.2
details the outcome of the evaluation on APW-ACE.

7.3.1 Clustering on the REUTERS dataset

Table 7 contains the AUC values for the compared methods on the REUTERS dataset, as
well as the precision, recall and F1 values obtained using the different threshold selection
criteria. Similarly to Sect. 6.4.3, only the configurations which achieve the best results for
each method are included.

Strikingly, the results obtained by kMD are well below those of the baseline RANDOM

and ALLFG methods—contrary to the excellent performance shown on the SYNTH datasets.
In particular, the obtained recall is extremely poor, below 1 %, and precision barely reaches
25 % for the kMD/100 × 800–5 setting, which is the one to obtain the best results among
those tried. kMD/100 × 800–50, which was used by Ando (2007) on Reuters documents,
achieves even lower precision, down to 18 %. Overall, F1 remains around 1.5 %, clearly
pointing that the feature selection scheme, or the multinomial distribution modelling used,
or both, are not suitable for the task at hand.
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Table 7 Results for REUTERS data

AUC BEST SIZE DIST

Prc Rec F1 Prc Rec F1 Prc Rec F1

RANDOM – 0.500 27.5 27.5 27.5 – – – – – –

ALLFG – 0.500 27.5 100.0 43.1 – – – – – –

BBOCC – EUC 0.971 87.2 88.3 87.7 87.6 87.6 87.6 – – –

BBCPRESS 4 EUC 0.834 74.6 59.7 66.2 65.0 65.0 65.0 – – –

DGRADE – EUC 0.887 79.6 66.0 72.2 71.3 71.3 71.3 – – –

AUTOHDS 200–15 EUC 0.507 27.8 100.0 43.5 – – – – – –

KMD 100 × 800–5 0.499 24.5 0.6 1.3 – – – – – –

100 × 800–50 0.497 18.0 0.8 1.5 – – – – – –

EW-SRBC 100000 × 50 EUC 0.902 76.8 71.8 74.1 73.7 73.7 73.7 97.0 51.7 67.4

AUC NGAUSS+BEST NGAUSS+VAR 2GAUSS

Prc Rec F1 Prc Rec F1 Prc Rec F1

EW-SRBC 100000 × 50 EUC 0.902 85.1 64.2 71.0 94.5 56.8 71.0 59.2 83.3 69.2

AUTOHDS does also perform poorly on this dataset, assigning almost all objects to
the foreground clusters. Its results are hence virtually indistinguishable from those of the
ALLFG baseline.

Regarding the BBOCC, BBCPRESS, DGRADE and EW-SRBC methods, their results
are placed high above the baselines. In fact, the best results for the task are achieved
with BBOCC (equivalently, BBCPRESS/1) which gives an AUC value of 0.971 and F1
of 87.7 %. The values clearly exceed the AUC of 0.902 and F1 of 74.1 % achievable by EW-
SRBC using the BEST threshold. It is surprising how this method, the simplest one after the
baselines, is also the one to obtain the best results, exceeding the proposed EWOCS method
by such a margin.

However, there is a number of factors to take into account concerning the generality of
this statement. First, by the construction of REUTERS dataset, the problem is well-suited for
methods looking for one (and only one) dense foreground cluster surrounded by a sparse
background. One proof of this is that the second best AUC and F1 values obtained by BBC-
PRESS are those with k = 4, lying much below those for k = 1, and also those of EW-SRBC.
There is thus a strong sensitivity to the value of parameter k. In this sense, DGRADE con-
tinues to provide a better (and less supervised) starting model for BBC-style clustering, even
if its results are still slightly below those of EW-SRBC.

Moreover, methods BBOCC and BBCPRESS use the SIZE threshold selection crite-
rion, and hence require the number of foreground objects to be known a priori. Figure 12
shows the precision, recall and F1 values achieved by BBOCC as a function of the pro-
vided number of foreground objects (expressed as a ratio of the total dataset size). The F1
value obtained by EW-SRBC using NGAUSS+VAR—a completely unsupervised approach—
is included for reference: a bad estimation of the foreground cluster size causes the preci-
sion/recall balance to break, and the F1 scores to fall from the optimal ones, located around
the actual foreground ratio value of 27.5 %.

There is thus an inherent brittleness in the fitting of parameters for BBOCC, BBC-
PRESS and, even if to a lesser extent, DGRADE (despite being able to determine the num-
ber of foreground clusters, it does require the number of foreground objects as input) on
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Fig. 12 Effect of foreground
size ratio on BBOCC
performance (SIZE criterion on
REUTERS data)

Fig. 13 Effect of R on EW-SRBC/R × 50 performance (using EUC on REUTERS data)

REUTERS—in the same way as we had found it for SYNTH—and this can become an im-
portant drawback if the dataset characteristics change.

Concerning the different threshold selection criteria available for EW-SRBC, it is encour-
aging to see how the REUTERS dataset allows a much better identification by part of the un-
supervised methods—namely DIST, NGAUSS+VAR and 2GAUSS. The value of F1 achieved
by NGAUSS+VAR matches the upper bound of Gaussian-based criteria NGAUSS+BEST, and
fall only 3 points below the upper bound value obtained with BEST. The gap between the
results obtained with DIST and 2GAUSS and those with the supervised thresholds BEST and
SIZE is also smaller in this case than it was for 2-dimensional SYNTH datasets (Table 4). It is
also worth noting how, for this dataset, NGAUSS+VAR and DIST produce precision-biased
clusterings, whereas 2GAUSS gives more recall-favouring ones.

These results are encouraging, but we believe an analysis of the performance of EWOCS

on REUTERS as the ensemble size parameter R increases is required to obtain insights into
its behaviour. Such an analysis is provided in the following paragraphs.

Ensemble size sensitivity Figure 13a contains a plot of the performance of EW-SRBC

method, in terms of AUC and F1, using a fixed value of kmax = 50 and successively in-
creasing ensemble sizes R, on the REUTERS dataset.
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Increases in the ensemble size lead to an improvement of the performance of EWOCS,
up until a point where the results stabilize. This matches the behaviour observed on
SYNTH (Sect. 6.4.3). Nevertheless, given the greater complexity of the task, a larger number
of individual clusterings are required for the results to converge—in fact, one several orders
of magnitude larger.

This improvement is more relevant for the unsupervised DIST and NGAUSS+VAR. Thus,
we believe the observed performance boost comes more from an increase in the gap between
the scores of foreground and background objects—one which allows unsupervised criteria
to detect the threshold more accurately—than from significant changes in the relative values
of the scores. If this second phenomenon were the case, the improvements would affect
equally both unsupervised and supervised criteria.

Figure 13b contains a plot of the mean and standard deviation of F1 across 10 runs of
EW-SRBC, using two of the proposed criteria.15 One can observe how the standard deviation
of the results is reduced considerably as the ensembles grow in size, almost disappearing by
the time the number of clusters reaches R = 100000.

Overall, the results of this last series of experiments confirm those in Sect. 6.4.3: the
parameter R does have a considerable influence on the results obtained by EWOCS-based
approaches. In particular, a larger clustering ensemble increases the separation between the
scores of background and foreground objects, thus improving the accuracy of the threshold
detection stage. The evaluation on the larger datasets from APW-ACE will provide more
insights about the runtime trade-offs associated to the setting of the R parameter, and we
hence defer further discussion to that point.

7.3.2 Hold-out clustering on the APW-ACE dataset collection

Table 8 contains the full table of results for the compared approaches on each one of the
datasets in the APW-ACE collection. For reasons of space, the divergence used by each
method has been omitted: it is EUC for BBOCC and BBCPRESS, and G(0.1,0.1) for EW-
SRBC. Figure 14 contains the Bergmann-Hommel tests for the F1 score using the BEST

criterion and the AUC metric, which summarize and assess the statistical significance of the
results in the table.

As seen in both the table and the figure, minority clustering algorithms outperform the
reference unsupervised relation detection approach GRAMS both in terms of AUC and F1
score. Only kMD obtains lower scores, as its behaviour degrades towards the ALLFG base-
line: it assigns almost all objects to the foreground. We believe the poor performance ex-
hibited by kMD in both this and the REUTERS collection—compared to the good results
it obtained on SYNTH, where the Gaussian distributions in the data matched those in the
model—casts doubts on the suitability of the method on datasets whose sources follow non-
standard or unknown distributions.

Concerning the other three methods, the hypothesis test finds no significant differences
between BBOCC, BBCPRESS and EW-SRBC, even if the last is the one to provide the best
AUC and F1 scores overall.

Regarding the detection of the threshold, Table 9 contains the results for each one of the
datasets and criteria of the EW-SRBC/50000 × 100 method. The results are similar to those
in SYNTH and REUTERS, with the extra supervision used by SIZE allowing it to stay within
2–3 % of the F1 score of BEST, and the two unsupervised methods DIST and 2GAUSS

15The results are similar for the other four, and are omitted here for brevity.
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Table 8 Results for APW-ACE data

FAC-GPE FAC-LOC FAC-PER

AUC BEST AUC BEST AUC BEST

Prc Rec F1 Prc Rec F1 Prc Rec F1

RANDOM – 0.500 18.1 18.1 18.1 0.500 23.5 23.5 23.5 0.500 16.8 16.8 16.8

ALLFG – 0.500 18.1 100.0 30.6 0.500 23.5 100.0 38.0 0.500 16.8 100.0 28.7

GRAMS – 0.754 67.6 56.8 61.7 0.624 64.7 29.7 40.7 0.592 51.0 22.9 31.6

BBOCC – 0.900 61.1 74.6 67.2 0.818 61.6 62.8 62.2 0.746 35.8 62.6 45.5

BBCPRESS 10 0.899 58.2 79.3 67.0 0.809 65.3 61.6 63.4 0.751 40.9 55.3 47.0

KMD 100 × 800–50 0.500 18.1 100.0 30.6 0.500 23.5 100.0 38.0 0.500 16.8 100.0 28.7

EW-SRBC 50000 × 100 0.907 59.7 78.1 67.6 0.814 62.5 64.1 63.3 0.759 38.3 59.5 46.6

GPE-LOC GPE-ORG GPE-PER

AUC BEST AUC BEST AUC BEST

Prc Rec F1 Prc Rec F1 Prc Rec F1

RANDOM – 0.500 15.6 15.6 15.6 0.500 11.2 11.2 11.2 0.500 12.3 12.3 12.3

ALLFG – 0.500 15.6 100.0 26.9 0.500 11.2 100.0 20.2 0.500 12.3 100.0 21.9

GRAMS – 0.767 67.8 58.6 62.8 0.847 68.3 73.8 70.9 0.777 55.1 62.6 58.6

BBOCC – 0.892 57.1 74.8 64.8 0.923 54.6 73.9 62.8 0.866 58.7 59.5 59.1

BBCPRESS 10 0.894 72.0 62.4 66.8 0.926 66.4 63.5 64.9 0.878 62.9 59.3 61.0

KMD 100 × 800–50 0.500 15.6 100.0 26.9 0.500 11.2 100.0 20.2 0.500 12.3 100.0 21.9

EW-SRBC 50000 × 100 0.897 59.7 73.1 65.7 0.922 59.1 70.5 64.3 0.877 61.0 59.7 60.3

GPE-VEH LOC-PER ORG-PER

AUC BEST AUC BEST AUC BEST

Prc Rec F1 Prc Rec F1 Prc Rec F1

RANDOM – 0.500 12.9 12.9 12.9 0.500 11.1 11.1 11.1 0.500 11.8 11.8 11.8

ALLFG – 0.500 12.9 100.0 22.8 0.500 11.1 100.0 19.9 0.500 11.8 100.0 21.1

GRAMS – 0.738 71.1 50.6 59.1 0.611 47.9 25.7 33.4 0.813 52.1 71.4 60.2

BBOCC – 0.886 65.5 59.4 62.3 0.767 32.3 60.4 42.1 0.894 51.7 62.3 56.5

BBCPRESS 10 0.884 55.4 66.9 60.6 0.798 36.2 55.2 43.7 0.901 55.0 64.3 59.3

KMD 100 × 800–50 0.500 12.9 100.0 22.8 0.500 11.1 100.0 19.9 0.500 11.8 100.0 21.1

EW-SRBC 50000 × 100 0.888 59.7 63.6 61.6 0.798 35.9 57.3 44.1 0.906 53.4 69.5 60.4

ORG-VEH PER-VEH

AUC BEST AUC BEST

Prc Rec F1 Prc Rec F1

RANDOM – 0.500 13.8 13.8 13.8 0.500 10.7 10.7 10.7

ALLFG – 0.500 13.8 100.0 24.3 0.500 10.7 100.0 19.3

GRAMS – 0.749 91.1 50.5 65.0 0.612 59.1 24.5 34.7

BBOCC – 0.889 81.5 65.3 72.5 0.807 34.4 59.2 43.5

BBCPRESS 10 0.880 75.3 63.4 68.8 0.800 41.2 46.2 43.5

KMD 100 × 800–50 0.500 13.8 100.0 24.3 0.500 10.7 100.0 19.3

EW-SRBC 50000 × 100 0.886 79.8 66.3 72.4 0.808 33.0 63.0 43.3
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Fig. 14 Bergmann-Hommel tests for the compared approaches (APW-ACE data)

Table 9 Results for APW-ACE data (EW-SRBC/50000 × 100 using G(0.1,0.1))

BEST SIZE DIST 2GAUSS NGAUSS + VAR

Prc Rec F1 Prc Rec F1 Prc Rec F1 Prc Rec F1 Prc Rec F1

FAC-GPE 59.7 78.1 67.6 65.8 65.9 65.9 70.6 59.6 64.6 60.2 76.0 67.2 86.9 17.4 29.0

FAC-LOC 62.5 64.1 63.3 62.4 62.8 62.6 64.1 54.6 59.0 62.5 64.1 63.3 57.7 17.7 27.1

FAC-PER 38.3 59.5 46.6 43.0 43.1 43.0 46.3 33.4 38.8 40.2 51.9 45.3 60.8 16.3 25.7

GPE-LOC 59.7 73.1 65.7 63.9 64.0 63.9 61.0 69.3 64.9 52.9 80.9 64.0 81.1 31.7 45.6

GPE-ORG 59.1 70.5 64.3 61.2 61.8 61.5 52.2 76.2 61.9 42.3 88.4 57.2 66.4 34.9 45.8

GPE-PER 61.0 59.7 60.3 60.2 60.2 60.2 56.1 63.3 59.5 41.4 77.7 54.0 78.8 37.1 50.4

GPE-VEH 59.7 63.6 61.6 59.2 59.6 59.4 47.5 71.5 57.0 39.5 85.0 54.0 69.4 43.7 53.5

LOC-PER 35.9 57.3 44.1 40.8 40.9 40.8 38.0 44.8 41.1 33.4 60.9 43.1 47.0 18.7 26.7

ORG-PER 53.4 69.5 60.4 58.3 58.3 58.3 59.4 56.7 58.0 41.5 82.5 55.3 73.9 28.0 40.6

ORG-VEH 79.8 66.3 72.4 69.6 70.3 70.0 69.3 69.7 69.5 48.8 79.8 60.6 77.0 58.2 64.5

PER-VEH 33.0 63.0 43.3 39.7 39.9 39.8 37.9 41.7 39.7 32.8 62.6 43.1 53.1 29.3 37.8

providing similar result slightly below those of the supervised ones. Only the behaviour
of NGAUSS+VAR is significantly different, its figures being much lower than those of its
counterparts. We will return to this issue shortly, and try to provide a likely explanation for
it.

With respect to the relation between the performance of the diverse threshold detec-
tion criteria and the size, the trend observed in REUTERS appears again in APW-ACE. For
the DIST and 2GAUSS criteria, increasing the ensemble size improves their scores and re-
duces the gap between them and the supervised BEST and SIZE. However, for criterion
NGAUSS+VAR again, the pattern is not so clear: whereas for a few pairs (GPE-PER, GPE-
VEH, ORG-VEH, PER-VEH) the detected threshold improves as more clusterings are added
to the ensemble, in the rest of the datasets the performance metrics stagnate in the lower
part of the scale. To illustrate this phenomenon, Fig. 15 contains two plots of the F1 score
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Fig. 15 Effect of R on EW-SRBC/R × 100 performance (using G(0.1,0.1) on ACE-APW data)

as a function of the ensemble size R for the ORG-VEH and FAC-LOC datasets.16 The value
achieved by BBCPRESS/10 using the BEST threshold is also included for reference.

This inconsistency can be due to the use of Eq. (17): if, without being as large as the
background one, the variances of diverse foreground sources differ significantly from one
another, it is possible for the point of maximum inter-variance difference to fall among
the foreground objects, thus providing a threshold with higher precision and lower recall.
This could be the case in datasets generated from relation detection problems, because, for
a given entity type pair, some relations can be expressed using a reduced set of linguistic
patterns (and thus give place to particularly dense regions), whereas for other there can be a
wider variety. The criterion thus may not be robust to foreground sources of heterogeneous
density—and further exploration is required in order to improve it.

Convergence and runtime As mentioned at the end of Sect. 7.3.1, augmenting the en-
semble size R increases the separation between the scores of background and foreground
objects, thus improving the accuracy of the threshold detection stage. We believe the larger
datasets in APW-ACE offer a good testbed to study the ratio of convergence of these scores.

Differently from other iterative algorithms, the fact that weak clustering algorithms are
being used means that convergence of the scores is not smooth, but presents an alternation of
larger and smaller steps. To study this process, we have considered the average score change
produced by the R-th clustering:

�sR =
∑

xi∈X (s�
Ri − s�

(R−1)i )
2

|X |
Figure 16a contains a sample plot of the values of �sR , aggregated in disjoint windows of
100 repeats, using DIST on the FAC-LOC dataset.17 It can be seen how the maximum, mean
and minimum values show an overall descending trend, yet present continuous oscillations.
On the contrary, the medians exhibit a smooth decreasing behaviour, and seem thus to be
useful as indicators of the convergence rate of the scores.

To confirm this intuition, Fig. 16b shows the values of F1 achieved with criterion DIST

after R weak clusterings (being of the methods which benefit the most from an increased

16The rest of the plots have been omitted here for brevity.
17Again, the rest of the plots have been omitted here for brevity.
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Fig. 16 Score convergence on EW-SRBC/R × 100 (using G(0.1,0.1) on APW-ACE data)

ensemble size) relative to the ones obtained with the presented R = 50000, as a func-
tion of the median of the score changes �sR in 100 clustering windows. The plot shows
how, for almost all collections, the values of F1 have stabilized by the point the median
�sR falls below 10−10—the only exception being FAC-LOC, which already starts with
median(�s1 . . .�s100) ≈ 10−9, and does not converge until the value reaches 10−12 with an
ensemble of R = 2000 clusterings. This behaviour suggests a replacement of parameter R

by a threshold on median(�sR), and one which gives place to a natural parallelization of the
algorithm: we can obtain a batch of weak clusterings of the dataset in parallel, and then use
the median of the average score changes produced by them to determine whether the scores
have converged. In this direction, Fig. 16c, plots the ensemble size required to achieve this
median(�sR) < 10−10 level, as a function of dataset size. The speed of convergence of the
scores seems to be proportional to |X |0.4.

To inspect how the use of a convergence criterion affects the runtime of the algorithm,
Fig. 17a shows the runtime per clustering (separated in training and testing) of EW-SRBC

for each one of the collections in APW-ACE. As we can see, the runtime cost can be fit
proportionally to |X |1.1, only slightly above the theoretical linear complexity O(|X |) we
had considered in Sect. 3.6. The fact that the larger datasets we have used also have a higher
number of features is likely to be the cause for this quasi-linear behaviour.

Finally, Fig. 17b plots the total runtimes of EW-SRBC up to the point where the median of
�sR falls below 10−10, against the dataset size. The points are distributed quite closely to a
t ∝ |X |1.5 curve, as could be expected from the previous two fits. We believe this is certainly
another positive result: we have seen how other approaches in the state of the art (e.g.,
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Fig. 17 Runtime for EW-SRBC/R × 100 (using G(0.1,0.1) on APW-ACE data)

DGRADE, AUTOHDS) have computational complexities of O(|X |3), which render them
unusable for large-scale datasets. Moreover, the fact that EWOCS is easily parallelizable also
makes it an attractive option in terms of runtime.

8 Conclusions

In this article, we have considered the problem of minority clustering, contrasting it with
regular all-in clustering. We have identified a key limitation of existing minority cluster-
ing algorithms—namely, we have seen how the approaches proposed so far for minority
clustering are supervised, in the sense that they require the number and distribution of the
foreground clusters, as well as the background distribution, as input.

The fact that, in supervised learning and all-in clustering tasks, combination methods
have been successfully applied to obtain distribution-free learners, even from the output of
weak individual algorithms, has led us to make a three-fold proposal.

First, we have presented a novel ensemble minority clustering algorithm, EWOCS, suit-
able for weak clustering combination. The properties of EWOCS have been theoretically
proved under a set of weak constraints. Second, we have presented two weak clustering
algorithms: one, RBC, based on Bregman divergences; and another, RSPLIT, an extension
of a previously presented random splitting one. Third, we have proposed an unsupervised
procedure to determine the scaling parameters for a Gaussian kernel, used within a minority
clustering algorithm.

We have implemented a number of approaches built from the proposed components, and
evaluated them on a collection of synthetic datasets, for a comparison to other minority
clustering methods in the state of the art. The results of the evaluation show how approaches
based on EWOCS, and especially the one built using SRBC as weak clustering algorithm
and G(AUTO) as object divergence function, are competitive with respect to—and even
outperform—other minority clustering approaches in the state of the art, in terms of F1 and
AUC measures of the obtained clusterings.

The completely unsupervised minority clustering approach, built from EWOCS, SRBC,
G(AUTO) and an unsupervised threshold detection criterion (one of DIST, NGAUSS+VAR or
2GAUSS) already outperforms other supervised minority clustering approaches. With only
the minor supervision introduced by replacing the threshold detection by NGAUSS+BEST,
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the resulting approach outperforms all other considered systems, including the much more
supervised kMD.

The results on synthetic data have been corroborated with an evaluation on real-world
data. A first dataset—more specifically, a subset of the classical text classification Reuters
corpus—has allowed us to study the influence of the clustering ensemble size on the results
achieved by EWOCS. Specifically, we have found larger ensembles to boost the accuracy of
the unsupervised threshold detection criteria. The completely unsupervised minority clus-
tering approach built from EWOCS, SRBC, EUC and 2GAUSS obtains a performance within
hundredths of the upper bound of EWOCS.

Additionally, the approach has been applied to a collection of datasets coming from unsu-
pervised relation detection problems of an even larger scale. In that task, the use of EWOCS

after a reduction of the problem to minority clustering allows the detection of pairs of re-
lated entities with more accuracy than using an approach specifically tailored to relation
detection. Moreover, the fact that EWOCS builds a clustering model allows the detection of
related entities in new documents not available at clustering time.

At the light of the results, we believe that the EWOCS algorithm is an effective method
for ensemble minority clustering, and that it allows the building of competitive and un-
supervised approaches to the task. It is appealing because of its simplicity, flexibility and
theoretical well-foundedness, and can hence be taken into account for clustering on a diver-
sity of domains, where unsupervised minority clustering tasks may be the rule and not the
exception.
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