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Abstract In this paper, we consider the multi-task metric learning problem, i.e., the prob-
lem of learning multiple metrics from several correlated tasks simultaneously. Despite the
importance, there are only a limited number of approaches in this field. While the existing
methods often straightforwardly extend existing vector-based methods, we propose to cou-
ple multiple related metric learning tasks with the von Neumann divergence. On one hand,
the novel regularized approach extends previous methods from the vector regularization to
a general matrix regularization framework; on the other hand and more importantly, by ex-
ploiting von Neumann divergence as the regularization, the new multi-task metric learning
method has the capability to well preserve the data geometry. This leads to more appropriate
propagation of side-information among tasks and provides potential for further improving
the performance. We propose the concept of geometry preserving probability and show that
our framework encourages a higher geometry preserving probability in theory. In addition,
our formulation proves to be jointly convex and the global optimal solution can be guar-
anteed. We have conducted extensive experiments on six data sets (across very different
disciplines), and the results verify that our proposed approach can consistently outperform
almost all the current methods.
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1 Introduction

Metric learning has been widely studied in machine learning due to its importance in many
machine learning algorithms (Xing et al. 2003; Weinberger and Saul 2009; Davis et al. 2007;
Huang et al. 2009, 2011; Ying et al. 2009; Ying and Li 2012). The objective of metric
learning is to learn a proper metric function from data, usually a Mahalanobis distance
defined as dA(x,y) =√

(x− y)�A(x− y), while satisfying certain extra constraints called
side-information, e.g., similar (dissimilar) points should stay closer (further).

In this paper, we consider an extended metric learning problem where there exist several
correlated metric learning tasks simultaneously. Two traditional solutions could be exploited
for the problem. The first one is to learn a metric for each task individually. Unfortunately,
this approach is likely to be over-fitting, especially when the training samples of some tasks
are insufficient. On the other hand, the second solution suggests to learn a single global
metric for all the tasks. Since the essential discrepancies among the tasks are neglected by
this method, the performance is limited. To attack this problem, multi-task learning (MTL)
has recently received considerable attention (Caruana 1997; Evgeniou and Pontil 2004;
Argyriou et al. 2008; Argyriou and Evgeniou 2008; Zhang et al. 2008; Zhang and Yeung
2010a). MTL learns an individual model for each task but trains them jointly. Joint train-
ing of multiple tasks enables information sharing among tasks, which helps improve the
performance of each task.

Despite its good performance, MTL has been rarely applied to the multiple metric learn-
ing problems. To our best knowledge, only recently Parameswaran and Weinberger (2010),
Zhang and Yeung (2010a), and Yang et al. (2011) developed a multi-task metric learning
framework separately. Parameswaran and Weinberger (2010) proposed a novel multi-task
framework called the Large Margin Multi-Task Metric Learning (mtLMNN) which is a com-
bination of the Large Margin Nearest Neighbor (LMNN) (Weinberger and Saul 2009) and the
Regularized Multi-task Learning (RegMTL) (Evgeniou and Pontil 2004). It assumes that the
Mahalanobis matrix of each task is composed of a common part and a task-specific part. By
minimizing the Frobenius norm of the task-specific part, each metric could be constrained to
be similar to a common one so that different tasks may share information from each other.
On the other hand, Zhang and Yeung (2010b) proposed to combine the Multi-task Rela-
tionship Learning (MTRL) (Zhang and Yeung 2010a) with the Regularized Distance Metric
Learning (RDML) (Jin et al. 2009). By introducing a regularization item with a task covari-
ance matrix, the relationship among tasks can be learned, which provides the potential for
better sharing information among the tasks. In addition, Yang et al. (2011) also did some
work in this topic by assuming that the metrics of all tasks share a common subspace.

However, all the above mentioned methods have certain limitations. For Yang et al.
(2011), since the formulation is not convex, the global optimal solution is not guaranteed.
Besides, the assumption of the common subspace may be too strict to be used in some
cases. The other two methods exploited vector-based divergence measures to describe the
task relationship. Specifically, if we concatenated all columns of each matrix as a vector,
in Parameswaran and Weinberger (2010), Frobenius norm between two matrices simply
presents the Euclidean distance, while, in Zhang and Yeung (2010a), the regularization ap-
plied a matrix-variate normal prior distribution to the vectors. However, we will show that
these methods designed for vector variables do not apply to the positive semi-definite Maha-
lanobis matrices directly and will lead to inaccurate information propagation among tasks.
This deficiency will further limit the performance improvement.

For example, the squared Frobenius norm of two Mahalanobis matrices are used to mea-
sure the discrepancy of two metrics, but we can show in Fig. 1 that it is not a proper measure
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Fig. 1 Illustration of geometry preserving property. The geometry property between dA2 and dB is better
preserved than the one between dA1 and dB . Besides, the relative distance of d(x1,y1) and d(x1,y2) is
preserved from B to A2 but not preserved to A1

for metrics. There are three figures associated with different distance metrics, determined
by a Mahalanobis matrix A1, B , and A2 respectively for each figure (from left to right). To
visualize the Mahalanobis metric in the Euclidean space (Xing et al. 2003), we transform
each point xi to x̂i =A1/2xi when plotting so that the Euclidean distance of any pair of trans-
formed points d(x̂i , x̂j ) is exactly the Mahalanobis distance of the original points dA(xi ,xj ).
Geometrically observed, the metric B is obviously more similar to A2 than to A1. However,
when calculating the similarity using the squared Frobenius norm of the Mahalanobis ma-
trix difference, surprisingly, B is more similar to A1 than to A2! This shows that minimizing
Frobenius norm of matrix difference cannot preserve the geometry and hence may not be
appropriate for measuring the divergence of metrics.

In contrast to the above methods, in this paper, we engage the Bregman matrix diver-
gence (Dhillon and Tropp 2008) to design a more general regularized framework for multi-
task metric learning. On one hand, this general framework exploits a more general family of
matrix divergences. We show that it naturally incorporates the mtLMNN (using the Frobe-
nius norm) as a special case. On the other hand and more importantly, by exploiting a special
Bregman divergence called von Neumann divergence (Dhillon and Tropp 2008) (denoted by
DvN(A,B)) as the regularization, the new multi-task metric learning method has the capabil-
ity to well preserve the geometry when transferring information from one metric to another.
The geometry preserving property is important because (1) data usually live in a geometric
vector space in the traditional learning tasks and (2) metric learning is also usually con-
ducted in a geometric vector space, e.g., Euclidean space. In this sense, to guarantee a better
performance, it is necessary to preserve the data geometry, e.g., those relative constraints
such as sample xi should be more similar to sample xj than sample xk , when transferring
information among tasks.1

We define the geometry preserving probability to measure the geometry preserving prop-
erty of two metrics mathematically from the statistical point of view. Then a series of theo-
retical analysis is provided to show that our new multi-task metric learning method usually
leads to a higher geometry preserving probability and has the capability to better preserve
geometry. This enables more appropriate information propagation among tasks and hence
provides potential for further raising the performance. In addition to the geometry preserving

1We note that there are many applications where either it is not possible to find satisfactory features or they
are inefficient for learning purposes in a geometric space. In these cases, it may then be unreasonable to
preserve the geometry. However, learning in such domains appears beyond the scope of our paper and hence
we leave it as one of the interesting future explorations.
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property, the new multi-task framework with the von Neumann divergence remains jointly
convex, provided that any convex metric learning is used. This is one of the major advan-
tages against other non-convex formulations, e.g., the model proposed in Yang et al. (2011).
Extensive experimental results on one synthetic data set and five real data sets (across very
different disciplines) also verify that our proposed algorithm can consistently outperform
the current methods. Especially, a toy example in Fig. 4 of Sect. 6.1 can show the advantage
of our method more intuitively.

This paper is an extension of our earlier conference paper (Yang et al. 2012), which
first proposed the concept of geometry preserving property and used to improve multi-task
metric learning problems. This journal version significantly extends the previous paper both
theoretically and empirically. It reviews the related methods and summarizes their strengths
and weaknesses, explains the motivation in more details, enhances the theoretical analysis
in a stricter way with complete proofs of all theorems, and expands the experimental results
by comparing with more methods on more datasets.

The rest of this paper is organized as follows. In Sect. 2, we provide the notations used
in the paper. In Sect. 3, we review the related work. In Sect. 4, we then present the novel
multi-task metric learning framework with Bregman matrix divergence, the concept of ge-
ometry preserving probability, the proposed learning method and optimization algorithm.
We present theoretical analysis in Sect. 5 and experimental evaluation in Sect. 6. Finally, we
give concluding remarks in Sect. 7.

2 Notations and problem definition

In this section, we first present the notations used in the paper and then introduce the problem
definition of multi-task metric learning.

A metric defined on set X is a function d : X×X→ R+ � [0,+∞) satisfying positive-
ness, symmetry, and triangle inequality (Burago et al. 2001). In this paper, we focus on the
Mahalanobis metric defined on R

m by a symmetric positive semi-definite (SPSD) matrix A

as dA(x,y)=√
(x− y)�A(x− y) where A is called Mahalanobis matrix. Denoting the set

composed of all metrics on X by FX and given any pair of metrics dA, dB ∈ FX, a diver-
gence function D : FX × FX → R+ is defined to measure the discrepancy of dA and dB .
Since the Mahalanobis metric dA is parameterized by the Mahalanobis matrix A, we denote
D(dA,dB) � D(A,B) for short.

Assume that there are T related metric learning tasks. For each task-t , its training data set
Xt = {xtk ∈R

m}Nt

k=1 contains Nt data points where m is the dimension. The side-information
defining a set of constraints on the learned metric dt can be generally formulated as dt ∈
Ct (Xt ). For instance, in the Generalized Sparse Metric Learning (GSML) (Huang et al. 2009)
and the LMNN, Ct is defined as a triplet set Tt = {(i, j, k)} which provides side-information
as relative constraints such that xt i is more similar to xtj than to xtk under the new metric
and thus

Ct (Xt )=
{
d ∈ FX | d(xt i ,xtj )≤ d(xt i ,xtk), ∀(i, j, k) ∈ Tt

}
.

In the Informative Theoretical Metric Learning (ITML) (Davis et al. 2007), Ct is defined as
a similar pair set St and a dissimilar pair set Dt which provides side-information such that
similar (dissimilar) pairs should stay closer (further) than a upper bound u (lower bound l)
respectively and thus

Ct (Xt )=
{

d ∈ FX

∣∣∣∣∣

d(xt i ,xtj )≤ u, ∀(i, j) ∈ St ;
d(xt i ,xtj )≥ l, ∀(i, j) ∈Dt .

}

.
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The objective of multi-task metric learning is to learn T proper Mahalanobis matrices
{At }Tt=1 jointly, which is significantly different from single-task metric learning where each
Mahalanobis matrix is learned independently.

3 Related work

There have been some attempts to combine multi-task learning with metric learning. Based
on different assumptions about the relationship among tasks, the researchers proposed some
interesting models of multi-task metric learning.

3.1 Multi-task large margin metric learning

The first multi-task metric learning method is the mtLMNN model proposed by Parames-
waran and Weinberger (2010). Motivated by the RegMTL (Evgeniou and Pontil 2004), the
mtLMNN assumes that the Mahalanobis matrix of the t -th task is composed of a common
part and a task-specific part as At = A0 + Ât . Exploiting further the squared Frobenius
norm (Horn and Johnson 1985) of the task-specific part ‖Ât‖2

F as the regularization term,
mtLMNN encourages the similarity between each task and a common one. This approach
indeed shows better performance in several real data sets. However, this method suffers
from two drawbacks which we explain at the end of Sect. 4.1, which will further limit its
performance in real applications.

3.2 Zhang and Yeung’s method

Zhang and Yeung (2010b) proposed a multi-task metric learning approach by assuming
the matrix composed of vectorized Mahalanobis matrices of all tasks follows a matrix-
variate normal distribution (Zhang and Yeung 2010a; Gupta and Nagar 2000). It first con-
catenates all columns of each At to form a vector Ãt = vec(At ) and then engages the
MTRL (Zhang and Yeung 2010a) regularization ÃΩ−1Ã� to couple different tasks, where
Ã= [vec(A1), . . . ,vec(AT )]. It applies a matrix-variate normal prior distribution

q(Ã)= MN m2×T (Ã|0m2×T , Im2 ⊗Ω)

to Ãt ’s (Zhang and Yeung 2010a) and the task relationship Ω can finally be obtained to-
gether with all the metrics. This approach has demonstrated some desirable properties as the
task relationship can be learned automatically, but there are two irrationalities of the prior
distribution applied to Ã:

− The expectation of each Ãt is a zero vector, which is apparently designed for vector-based
variables rather than Mahalanobis matrices being symmetric semi-positive definite. For
example, A and −A are assigned with equal prior probability, which is improper since
at most one of them is possible to be a feasible Mahalanobis matrix.

− Vectorization of a matrix discards some structure information.

Moreover, the authors surprisingly failed to validate it empirically.
Actually, mtLMNN also applies a multi-variate normal distribution to the vectorized Ma-

halanobis matrices. In contrast to Zhang and Yeung (2010b)’s method which predefines the
mean and learns the task relationship, mtLMNN predefines the task relationship Ω as the
Laplacian matrix of an all connected graph (Chung 1997).
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3.3 Multi-task metric learning based on common subspace

Yang et al. (2011) proposed their multi-task metric learning method based on the assumption
that all the metrics share a common low-dimensional subspace. Supposing At = L�t Lt and
the transformation matrix Lt has the decomposition Lt = RtL0, all tasks are coupled by
the common matrix L0, which has fewer rows than its columns. Hence it actually defines
a common subspace for all the tasks, while Rt defines the metric in this subspace for each
task. With alternating optimization, the subspace L0 and all the metrics Rt can be solved
simultaneously. However, this assumption is sometimes too strict. In addition, this model
involves a non-convex optimization and hence cannot guarantee the global solution.

4 Geometry preserving multi-task metric learning

In this section, we first detail our proposed novel framework, and then show the importance
of preserving geometry among samples when sharing the side-information among tasks.
The concept of geometry preserving probability is then proposed to provide a mathematical
criterion that measures the capability to preserve the geometry relationship, i.e., the relative
distance of samples between two metrics. Following that, we introduce our method that ex-
ploits von Neumann divergence to regularize the relationship among multiple tasks. Finally,
we present a practical algorithm to solve the involved optimization problem.

4.1 General framework

In this section, we propose a general framework for multi-task metric learning including
mtLMNN as a special case.

Assume that a common metric dc is defined and the metric of each (the t -th) task dt is
correlated with dc by a regularization D(dt , dc). All the metrics are coupled by this common
metric. In the case of the Mahalanobis metric, the regularization can be also written as
D(At ,B), where At and B correspond to the t -th task and the common one respectively.
Then the novel framework can be formulated as

min
{At },B

∑

t

(
L(At , Xt )+ γD(At ,B)

)+ γ0D(A0,B)

s.t. At ∈ Ct (Xt ),

At � 0,

(1)

where L is a loss function of the training samples depending on side-information and the
metric learning method, Xt represents the set of training samples of the t -th task, D(·, ·)
is the divergence function to correlate two metrics, and Ct (Xt ) is the set of feasible At

determined by side-information. The predefined metric A0 provides a prior for the common
metric and we can usually use the Euclidean distance, i.e., A0 = Im. In a lot of cases, there
may not exist a feasible solution to strictly satisfy all the constraints defined as Ct (Xt ) and
thus the soft constraints are used instead by reformulating the inequality constraints as loss
functions. For example, the constraint d2

A(xi ,xk)− d2
A(xi ,xj )≥ 1 is reformulated as a loss

[1 + d2
A(xi ,xj ) − d2

A(xi ,xk)]+ where [z]+ = max(z,0). Then, denoting the loss function
including the soft constraints as L̃(At , Xt ), the framework becomes

min
{At },B

∑

t

(
L̃(At , Xt )+ γD(At ,B)

)+ γ0D(A0,B) s.t. At � 0.
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In our framework, all metrics are correlated with each other because the model assumes
that each dAt is encouraged to be similar to a common metric dB by minimizing D(At ,B).
Thus it plays a role of measuring the discrepancy of two metrics so that the less D(At ,B)

is, the more closely At and B are correlated. Therefore, by minimizing D(At ,B), the infor-
mation is enforced to be shared between At and B , and the definition of D(·, ·) determines
the type of shared information. Since multi-task learning improves the performance of each
task by utilizing the information propagated from others, the choice of D(·, ·) is critical to
the performance of this framework.

There is a family of discrepancy measures for two Hermitian matrices called Bregman
matrix divergence (Dhillon and Tropp 2008), which is defined as

Dφ(A,B)= φ(A)− φ(B)− tr
((∇φ(B)

)�
(A−B)

)
, (2)

where φ : H → R is a strictly convex, differentiable generating function of a Hermitian
matrix variable, and tr(A) is the trace of A. Furthermore, if φ(A) depends only on the
eigenvalues of A, it is called a spectral function (Lewis 1996), and Dφ(A,B) is the spectral
Bregman matrix divergence (Kulis et al. 2009). In this case, φ can be written as a composi-
tion φ(A)= (ϕ ◦λ)(A), where λ(A) is the function that lists the eigenvalues in algebraically
decreasing order and ϕ is a strictly convex function on R

m.
By choosing different ϕ, we obtain some famous types of matrix divergences (Kulis

et al. 2009). If the squared 2-norm ϕ(x)= x�x= ‖x‖2 is used, we have φ(A)= ‖A‖2
F and

Dφ(A,B) = ‖A − B‖2
F is the squared Frobenius norm of their difference; if the entropy

ϕ(x)=∑
i xi logxi − xi is used, we have φ(A)= tr(A logA−A)2 and Dφ(A,B) is the von

Neumann divergence, which we will discuss in detail later.
Note that the mtLMNN is a special case of our framework with Dφ(At ,B)= ‖At −B‖2

F
and replacing At � 0 with At � B � 0. By rewriting it in this form, its main drawbacks are
much clearer:

1. The constraints At � B are unnecessarily strong for At to be a Mahalanobis matrix,
which implies that the distance of any task has to be further than the distance defined by
the common metric.

2. Frobenius norm of Mahalanobis matrix difference is inadequate to measure the discrep-
ancy of two metrics, and thus minimizing the Frobenius norm of matrix difference cannot
preserve the geometry relation of data defined by the metrics. We have illustrated it with
an example and will explain it theoretically in Sect. 5.

4.2 Regularization and geometry preserving probability

In this section, we show our motivation to define a proper regularization D(At ,B) which
enables side-information propagate among tasks more appropriately. Then the concept of
geometry preserving probability is proposed to measure whether the side-information is
well propagated.

On one hand, in this framework, a smaller D(At,B) implies more side-information
shared. Noting that the metric is learned by satisfying a set of constraints from side-
information, metric learning can also be regarded as a process to embed the side-information
into the learned metric. Thus closely correlated metrics should contain similar side-
information and minimizing D(At,B) should encourage side-information to propagate be-
tween At and B .

2The logA denotes the matrix logarithm whose definition is given in Sect. 4.3.
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On the other hand, the side-information is usually formulated as a set of constraints on the
relative distance of the samples (Ying and Li 2012). For example, the GSML and the LMNN
define the side-information directly by constraints on the relative distances of samples in a
triplet set. For the ITML, although it defines an upper bound for the distances of similar
pairs and a lower bound for the distances of dissimilar pairs respectively, a set of constraints
on their relative distances are also implicitly defined by the relation of the two bounds.

From the above observations, a proper D(·, ·) for multi-task metric learning should have
the following property: the less D(At ,B) is, the more constraints about relative distances
are satisfied by both At and B . Focusing on the t -th task and fixing the common metric B ,
we obtain the subproblem

min
At

L̃(At , Xt )+ γD(At ,B) s.t. At � 0, (3)

which aims to find an At that is correlated with B while satisfying the side-information of
its own task. According to the above discussion, it is equivalent to solving such a metric At :
on one side, it satisfies the constraints from side-information of the t -th task; on the other
side, it preserves the geometry relationship (relative distances) of the samples measured by
B as better as possible, which we call as “geometry preserving property”.

To illustrate the geometry preserving property, recall the example shown in Fig. 1. There
are two pairs of randomly selected points (x1,y1), (x1,y2). Since dB(x1,y1) < dB(x1,y2), if
we want a metric dA which is similar to dB , it is desirable that dA makes the same judgement
on the relative distance, i.e. dA(x1,y1) < dA(x1,y2). Obviously, such a relative distance
relationship for (x1,y1), (x1,y2) is preserved between A2 and B but not preserved between
A1 and B . Analogously, there are also two pairs (x1,y1), (x1,y3), whose relative distance
relationship is preserved between both A1,B and A2,B . Since there are more relationships
preserved for A2,B , we say the geometry preserving property of them is better, which is
also consistent with our intuition that B is more similar to A2 than to A1.

Based on the idea, we propose the concept of geometry preserving probability to measure
the geometry preserving property mathematically. It is defined as the probability that the
relative distance of arbitrary two pairs of random points is preserved for the two metrics.

Definition 1 (Geometry Preserving Probability) Suppose x1,y1 ∈ X and x2,y2 ∈ X are
two pairs of random points following a certain distribution defined by probability density
f (x1,y1,x2,y2).

If two metrics dA and dB defined on X are used to compare the distances between each
pair of points d(x1,y1) and d(x2,y2), the probability of that dA and dB make the same
judgement about their relative distance is called geometry preserving probability of met-
rics dA and dB with distribution f . It is denoted by PGf (dA, dB) (Probability of Geometry
Preserving) with mathematical formulation shown in (4).

PGf (dA, dB)= P
[
dA(x1,y1) > dA(x2,y2) ∧ dB(x1,y1) > dB(x2,y2)

]

+ P
[
dA(x1,y1) < dA(x2,y2) ∧ dB(x1,y1) < dB(x2,y2)

]

+ P
[
dA(x1,y1)= dA(x2,y2) ∧ dB(x1,y1)= dB(x2,y2)

]
, (4)

where (x1,y1,x2,y2)∼ f and ∧ denotes the logical “and” operator.

By this definition, the higher PGf (dA, dB) is, the better the geometry relation is preserved
between dB and dA. In the example of Fig. 1, using randomly generated samples, the PG can
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be estimated3 as PGf (dA1 , dB) ≈ 0.805 < PGf (dA2 , dB) ≈ 1.000 for some distribution f ,
which shows the geometry is better preserved between B and A2 than between B and A1.

In the following parts, we will discuss the proposed method with von Neumann diver-
gence. Theoretical analysis is given in Sect. 5, which will show that our method is more
likely to make PGf (dA, dB) higher and thus can better preserve geometry.

4.3 Multi-task metric learning with von Neumann divergence

We propose to use the von Neumann divergence (Dhillon and Tropp 2008; Kulis et al. 2009)
as the regularization in framework (1) and obtain our multi-task metric learning method.

Assuming the spectral decomposition of A is A = V ΛV �, the matrix logarithm of A

is defined as logA = V logΛV � = ∑
i logλi(viv�i ), where logΛ is the diagonal matrix

containing the logarithm of eigenvalues.
Then the von Neumann divergence is defined as

DvN(A,B)= tr(A logA−A logB −A+B). (5)

If either A or B is low-rank, the von Neumann divergence is unavailable due to its zero
eigenvalues. In this case, the von Neumann divergence is defined as

DvN(A,B)=DvN,U (A,B)=DvN

(
U�AU,U�BU

)
,

where U is an m× r column orthogonal matrix such that range(B) ⊆ range(U), and this
definition is independent of the choice of U (Kulis et al. 2009). Please refer to Kulis et al.
(2009) for more detail about the treatment of the low-rank case.

The von Neumann divergence has been widely used in quantum information the-
ory (Nielsen and Chuang 2010). It plays the role of relative entropy between two quantum
density operators, which are mathematically represented as SPSD matrices just like the Ma-
halanobis matrices. Exploiting the von Neumann divergence as the regularization between
Mahalanobis matrices A and B , the geometry relationship of samples measured by B is
more liable to be preserved as measured by A. More strictly, it will encourage a higher ge-
ometry preserving probability PGf (A,B). We will detail the theoretical analysis in Sect. 5.

The von Neumann divergence has a nice property that it is jointly convex with both two
arguments (Tropp 2012; Bauschke and Borwein 2001) as shown in Theorem 1.

Theorem 1 (Joint convexity of von Neumann divergence) The von Neumann divergence
(5) is jointly convex, which means that for SPD matrices {Ai,Bi}ni=1 and {pi ∈ [0,1]}ni=1
satisfying

∑
i pi = 1, the following inequality holds.

DvN

(∑

i

piAi,
∑

i

piBi

)
≤

∑

i

piDvN(Ai,Bi).

This theorem can be derived from the Lindblad’s Theorem (Lindblad 1973). A detailed proof
can be seen in Tropp (2012), Bauschke and Borwein (2001).

Therefore, given a convex metric learning algorithm, it can be extended to a jointly con-
vex multi-task metric learning problem using our method. We solve it by the alternating
optimization method. At the initial state, B is set to A0. Then each At and B are solved al-
ternately with other variables fixed. A global optimal solution is guaranteed due to its convex
nature. We elaborate the optimization in the next subsection.

3Please refer to Appendix A.4 for the detail of the procedure to estimate the PG.
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4.4 Optimization

4.4.1 Fix B and optimize on At ’s

When B is fixed, the optimization problem about At ’s is decoupled into T individual single-
task metric learning subproblems (3) and there is an additional regularization DvN(At ,B) for
each of them. Given that the original metric learning optimization is convex, this subproblem
is also convex and they can be solved separately.

If the problem is solved utilizing a gradient descent method or subgradient method, the
gradient ∂DvN

∂At
= logAt − logB is needed in each step. In this paper, we apply our multi-

task framework to the LMNN (Weinberger and Saul 2009) metric learning algorithm which
proved effective in many applications. In each gradient descent step of our algorithm, the
additional calculation is just the matrix logarithm of At ’s and B where a spectral decompo-
sition is needed. However, in order to project the obtained solution into the SPSD cone, the
LMNN algorithm itself includes the spectral decomposition in each updating step. Thus the
calculation of the matrix logarithm can use this result directly. Then the additional calcula-
tion is only the logarithm of the eigenvalues and a matrix multiplication.

It should be again carefully treated when At is low-rank, which means the current solu-
tion moves to the boundary the of domain of DvN(A,B). The gradient cannot be calculated
directly on these points and we can resort to the subspace spanned by the eigenvectors cor-
responding to the positive eigenvalues. Please refer to Sect. 4 of Kulis et al. (2009) for more
details.

4.4.2 Fix At and optimize on B

The optimization problem about B with all At ’s fixed is

min
B

∑

t

γDvN(At ,B)+ γ0DvN(A0,B) s.t. B � 0.

This problem is just a special case of Proposition 1 in Banerjee et al. (2005) where the
optimal solution is called Bregman representative, but in the case of matrix variables. Here
we generalize this result into the case of symmetric matrices where the optimal solution is
also the weighted average of At ’s as shown in Theorem 2.

Theorem 2 (Bregman matrix representative) Let {Xi}ni=1 be a set of symmetric matrices and
{pi}ni=1 form a probability distribution where

∑
i pi = 1. Then for any Bregman divergence,

the problem

min
Y

∑

i

piDφ(Xi, Y )

has a unique minimizer given by Y ∗ =∑
i piXi

Proof The function to be minimized is Jφ(Y ) =∑
i piDφ(Xi, Y ). Let X̄ =∑

i piXi , then
for ∀Y ,

Jφ(Y )− Jφ(X̄)

=
∑

i

piDφ(Xi, Y )−
∑

i

piDφ(Xi, X̄)
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= φ(X̄)− φ(Y )− tr

((∇φ(Y )
)�

(∑

i

piXi − Y

))
+ tr

((∇φ(X̄)
)�

(∑

i

piXi − X̄

))

= φ(X̄)− φ(Y )− tr
((∇φ(Y )

)�
(X̄− Y )

)

=Dφ(X̄,Y )≥ 0.

Since φ is strictly convex, the equality holds only when Y ∗ = X̄ =∑
i piXi . �

It is very interesting that this result does not depend on the choice of φ. Then, in our
problem, the optimal solution of the common metric is

B = γ
∑

t At + γ0A0

γ T + γ0
.

When von Neumann divergence is used, since ∀At � 0 and γ, γ0 > 0, the constraint B � 0
is automatically satisfied.

4.4.3 Convergence of the alternating optimization

Our alternating optimization approach is indeed a block coordinate descent method (Tseng
1988, 2001; Friedman et al. 2007). In this section, we show that this method will converge
to the optimal solution by alternating optimization if von Neumann divergence or squared
Frobenius norm is used and the prior is chosen as A0 = Im.

Tseng (2001) did an in-depth research about the block coordinate descent method and
presented a condition to guarantee the convergence of this algorithm. The objective function
to be optimized in this paper has the following special form:4

f (x1, . . . ,xN)= f0(x1, . . . ,xN)+
N∑

k=1

fk(xk)

for some f0 :Rn1+···+nN →R∪ {∞} and some fk :Rnk →R∪ {∞}.
The condition to guarantee convergence of the coordinate descent method is proposed in

Proposition 5.1 of Tseng (2001) with a series of assumptions:

(B1) f0 is continuous on domf0.
(B2) For each k ∈ {1, . . . ,N} and (xj )j �=k , the function xk �→ f (x1, . . . ,xN) is quasiconvex

and hemivariate (Tseng 2001).
(B3) f0, f1, . . . , fN are lsc (lower semicontinuous).

(C1) domf0 is open and f0 tends to ∞ at every boundary point of domf0.
(C2) domf0 = Y1 × · · · × YN , for some Yk ⊆R

nk , k = 1, . . . ,N .

There are N = T + 1 coordinate blocks in our problem as xi = Ai , i = 1, . . . , T

and xT+1 = B . The function with respect to all the variables is f0(x1, . . . ,xT+1) =
γ

∑T

i=1 Dφ(xi ,xT+1) and the separable functions are fi(xi ) = L̃(xi , Xi ) + δX�0(Ai), i =
1, . . . , T and fT+1(xT+1) = γ0Dφ(A0,xT+1), where δX�0(A) is the characteristic func-
tion (Wikipedia 2012) of the positive semi-definite cone: δX�0(A) = 0 if A � 0 and
δX�0(A)=+∞ otherwise.

4We use the same notations as Tseng (2001) in this subsection, which may cause some confusions with other
sections of this paper.
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Then we can check the conditions above:

(B1) Both ‖A−B‖2
F and DvN(A,B) are continuous and thus (B1) is satisfied.

(B2) L̃(xi , Xi ) is convex because a convex metric learning algorithm is used, and δX�0(A) is
also convex due to the convexity of the positive semi-definite cone (Boyd and Vanden-
berghe 2004). Thus fi(xi ) is convex for i = 1, . . . , T . On the other hand, f0 is convex
due to the strict convexity of ‖A − B‖2

F and DvN(A,B). Then it is straightforward
to obtain that f is quasiconvex. It is also not difficult to check that f is hemivari-
ate (Tseng 2001) and thus (B2) is satisfied.

(B3) We choose the metric learning algorithm with continuous objective functions L̃ in this
paper and both ‖A − B‖2

F and DvN(A,B) are continuous. Because {X|X � 0} is a
closed set, the indicator function δX�0 is lsc (Wikipedia 2013b). Thus f0, f1, . . . , fN

are all lsc and (B3) is satisfied.

(C2) If ‖A − B‖2
F is used, the domain of each coordinate block is R

m×m, and domf0 =
Y1×· · ·×YN where Yi =R

m×m, ∀i = 1, . . . , T +1. If DvN(A,B) is used, each variable
should satisfy Ai � 0 and C(Ai)⊆C(B) where C(X) is the column space of X (Kulis
et al. 2009). This seems to make the domains of coordinate blocks dependent with
each other. However, since we choose A0 as the identity matrix in our algorithm, it
guarantees B to be a full-rank matrix and thus C(Ai)⊆C(B) always holds for any i.
Then the dependency of variables is decoupled and domf0 = Y1 × · · · × YN where
Yi = {X ∈R

m×m|X � 0}, ∀i = 1, . . . , T + 1. This proves that (C) is satisfied.

We have shown in the above that f,f0, f1, . . . , fN satisfy Assumptions B1–B3 and f0

satisfies Assumption C2. In our alternating optimization algorithm, the cyclic rule is used
which is a special case of the essentially cyclic rule (Tseng 2001). Moreover, both the loss
L̃ and the Bregman matrix divergence are always non-negative and thus lower bound ex-
ists. Then by Proposition 5.1 of Tseng (2001), the algorithm is guaranteed to converge to a
minimum point of f .

5 Theoretical analysis of geometry preserving property

In this section, we present a series of theoretical analysis to justify our proposed multi-task
metric learning approach has the capability to better preserve data geometry. Before the
analysis, we define the concepts of scale vector which characterizes the scale property of a
metric, and scale extractor which is an operator transforming a metric to a scale vector. This
provides a tool to analyze the relationship between the geometry preserving probability and
the Bregman matrix divergence.

In general, the relationship between the geometry preserving probability and Bregman
matrix divergence is established in three steps.

1. PGf (dA, dB) and E (A,B) are linked: a higher geometry preserving probability
PGf (dA, dB) usually accompanies with a smaller E (A,B) which is an integration de-
fined with scale vectors in all directions.

2. Dφ(A,B) and Dϕ(A,B) are linked: the Bregman matrix divergence Dφ(A,B) provides
an upper bound for the corresponding Bregman divergence of scales Dϕ(ρ

A
W ,ρB

W ). There-
fore, minimizing Dφ(A,B) has the effect to minimize Dϕ(A,B) which is an integration
of Bregman divergence of scales.

3. PGf (dA, dB) and DvN(A,B) are linked by E (A,B) and DKL(A,B): when the differ-
ence of ρA

W and ρB
W is small, which is usually satisfied in multi-task problems, E (A,B)



Mach Learn (2013) 92:133–175 145

and DvN(A,B) are more consistent, which means a smaller (greater) E (A,B) usually
accompanies with a smaller (greater) DKL(A,B). Therefore, by minimizing DvN(A,B),
the DKL(A,B) is minimized, which furthermore leads to a smaller E (A,B) implying a
higher PGf (dA, dB) ultimately.

5.1 Scale vector and scale extractor

The concept of scale is used to capture the scale (amplified or squashed) property or give
an approximate representation of a metric. It translates a metric defined on the complicated
functional space FX into a simple real vector which contains the most important information
of the metric.

Our motivation comes from the following fact. The essential role of a metric is to define
the distance for any pair of points in the space. Given any pair of points ∀x,y ∈ X, if two
metrics dA and dB are similar, the distances they give, i.e. dA(x,y) and dB(x,y), are expected
to be similar. This motivates us to measure the similarity between two metrics dA, dB in such
a way:

1. Select a set of pairs of points {(xi ,yi )}ni=1 and measure their distances with the two met-
rics respectively {dA(xi ,yi ), dB(xi ,yi )}ni=1;

2. For each metric dM (M =A or B), use a vector ρM = [f (dM(x1,y1)) . . . f (dM(xn,yn))]
as its representation;

3. Since ρA and ρB are both vectors, it’s much easier to define the similarity of them, which
can then be used to estimate the similarity of dA and dB .

If the metric d is translation invariant, i.e., d(x + w,y + w) = d(x,y), ∀x,y,w ∈ X,
such as Mahalanobis metric, we can always translate xi to the origin and briefly denote
d(xi ,yi )= d(zi ,0) � d(zi ) where zi = xi − yi . Then we can imagine that d defines a ruler
in each direction zi and the most important properties are “the scales of these rulers”. Based
on this idea, we propose the concept of scale as a representation of a metric.

Definition 2 (Scale) Given any translation invariant metric d : X × X → R+ and a unit
vector w ∈X where ‖w‖ = 1, the squared distance d2(w,0) � d2(w) is defined as the scale
of d in direction w.

Definition 3 (Scale extractor & scale vector) Define the operator ρW : FX → R
n which

transforms a metric d to a vector consisting of the scales of d on a group of n vectors
Wm×n = [w1 w2 . . . wn] as scale extractor:

ρW(d)= [
ρw1(d) ρw2(d) . . . ρwn(d)

]� = [
d2(w1) d2(w2) . . . d2(wn)

]�

The vector ρW(d) is called the scale vector of d on W . For Mahalanobis metric dA, it simply
equals to ρW(dA)= [w�1 Aw1 w�2 Aw2 . . . w�n Awn]�, and we can denote it as ρW(A) or ρA

W

for brevity.

Imagine that a set of unit vectors {w}ni=1 are measured by the “rulers” defined by dA,
and then all these squared distances compose the scale vector ρW(dA). With any fixed W ,
ρW(dA) is determined by the metric dA and reflects how the information in these directions
is amplified or squashed.
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Fig. 2 Examples showing the scale of three different metrics with the same basis W = [w1 w2] where
w1 = [1 0]� and w2 = [0 1]�

This attitude is illustrated in Fig. 2 where the scales in two directions w1 = [1 0]� and
w2 = [0 1]� are extracted. We always present the two unit vectors w1,w2 (starting from
the origin and ending with a pentagram �) in the original space, and use an ellipse to
show the metric.5 The ellipse contains all the points with unit distance to the origin mea-
sured by dA, i.e., {x | dA(x,0) = 1}. Two rulers corresponding to w1 and w2 are presented
to show the scale properties of dA in these two directions. If the distance is amplified in
one direction, the scale of the ruler becomes denser, such as w1 in Fig. 2(b) and w2 in
Fig. 2(c). In contrast, the scale of the ruler in the squashed direction becomes sparser. The
distances of w1 and w2 can then be read directly on the rulers and they compose the scale
vector ρW(dA).

In this example, the standard basis of X is chosen for W . In Fig. 2(a), the distances are
measured by Euclidean metric and thus the points with unit distance to the origin simply
compose a circle. The scale of a unit vector in any direction is 1. In Fig. 2(b), the Maha-
lanobis matrix is diagonal. Therefore, its eigenvectors are just the standard basis w1,w2 and
the ellipse with unit distance is symmetric with respect to the coordinate axes. Furthermore,
w1,w2 correspond to the mostly amplified direction and the mostly squashed direction re-
spectively. In Fig. 2(c), there is no special property of the metric and we just show the scales
in the two directions.

Since the scale vector characterizes the most important properties of a metric, it can
help to make a study on the metric. This idea is straightforward. Supposing that we are
going to measure the shape of a rapidly spinning object, it’s neither possible nor necessary
to measure directly on its body, but we can take photos of it and measure on the photos
instead. In our problem, the metric is like the spinning object which we focus on but is
difficult to measure directly. Then the scale extractor plays the role of a camera which takes
photos of it. Each scale is one photo characterizing its property from a specific view and
the scale vector is the album consisting of all these photos. Furthermore, if we want to
compare two spinning objects that are difficult to measure directly, we can resort to their
photos instead. Obviously, if the photos of two objects are similar from various views, we
can consider them to be similar. Thus, the similarity between dA and dB can be measured by
ρW(dA) and ρW(dB). In next subsections, utilizing the scale extractor, we will show that a
higher geometry preserving probability PGf (dA, dB) is encouraged by minimizing the von
Neumann divergence DvN(A,B).

5We use a different method from Fig. 1 to visualize a Mahalanobis metric.
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5.2 Preserving the geometry by minimizing a function of scale vectors

We have shown in Sect. 4.2 that the geometry preserving property is mathematically mea-
sured by geometry preserving probability (PG). In this subsection, we show that a higher PG
usually accompanies with a smaller E (A,B), which is a integration defined with the scale
vectors. This result transforms the optimization on the complicatedly defined geometry pre-
serving probability into a tractable optimization on a formula of the scale vectors.

Theorem 3 (Geometry Preserving Theorem) Suppose that there are two pairs of random
points x1,y1 ∈R

m and x2,y2 ∈R
m following some distribution f (x1,y1,x2,y2), the geom-

etry preserving probability PGf (dA, dB) can be formulated as an integration of a function
Rq1,q2(A,B) as

PGf (dA, dB)=
∫∫

Sm−1×Sm−1
Rq1,q2(A,B)dΩ(q1)dΩ(q2) (6)

where dΩ(qi ) is the solid angle element6 corresponding to the direction of qi which contains
all the angular factors, and S

m−1 = {x ∈ R
m | ‖x‖ = 1} is the (m − 1)-dimensional unit

sphere in R
m. The integration is calculated on S

m−1 for both q1 and q2.
Particularly, define

ωq1,q2(A,B)= arctan

√
ρA

q2

ρA
q1

− arctan

√
ρB

q2

ρB
q1

(7)

and assume dB (or dA) is given. Then for ∀q1,q2, both the Rq1,q2(A,B) and |ωq1,q2(A,B)|
are functions of A (or B) and Rq1,q2(A,B) always decreases with |ωq1,q2(A,B)|:

∣∣ωq1,q2(A1,B)
∣∣ < (>)

∣∣ωq1,q2(A2,B)
∣∣⇒ Rq1,q2(A1,B)≥ (≤)Rq1,q2(A2,B),

∣∣ωq1,q2(A,B1)
∣∣ < (>)

∣∣ωq1,q2(A,B2)
∣∣⇒ Rq1,q2(A,B1)≥ (≤)Rq1,q2(A,B2).

The proof of Theorem 3 is presented in Appendix A.1 for clarity.
By Theorem 3, PGf (dA, dB) equals to an integration of Rq1,q2(A,B)dΩ(q1)dΩ(q2),

which reflects the geometry preserving property for all pairs (x1,y1) and (x2,y2) satisfying
x1 − y1 = r1q1 and x2 − y2 = r2q2. In order to obtain a higher PGf (dA, dB), we have to
solve A and B that maximize the integration of Rq1,q2(A,B) shown in (6) and satisfy the
constraints from side-information. It is difficult to give a precise analysis in the general case
because Rq1,q2(A,B) is influenced by the distribution f , which is indeterminate. However,
no matter what the distribution f is, Rq1,q2(A,B) always monotonically decreases with
|ωq1,q2(A,B)|. Thus, considering that we just want to maximize (6) rather than to obtain its
exact value, in general, we can approximately achieve this goal by replacing Rq1,q2(A,B)

in (6) with |ωq1,q2(A,B)| and then minimizing the integration (8) instead.

E (A,B)=
∫∫

Sm−1×Sm−1

∣∣ωq1,q2(A,B)
∣∣dΩ(q1)dΩ(q2). (8)

6Considering an (m − 1)-dimensional sphere in R
m with radius r , the solid angle element dΩ(qi ) is the

corresponding surface element divided by rm−1, which numerically equals to the surface element on a unit
sphere. In the case of m= 2, it degenerates to a common angle element. Please refer to Appendix A.1 for the
definition of dΩ(qi ) in detail.
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Due to the nonnegativity of |ωq1,q2(A,B)|, if E (A,B) = 0, it is obvious that
|ωq1,q2(A,B)| = 0, ∀q1,q2 and PGf (dA, dB) reaches the maximum 1. Along with the in-
crease of E (A,B), the PGf (dA, dB) begins to decrease. Therefore, E (A,B) is a generic
approximation of the deterioration of PGf (dA, dB) without knowledge of f , and minimiz-
ing E (A,B) has the effect to increase PGf (dA, dB).

5.3 Bounding the Bregman divergence of scales by Bregman matrix divergence

In this section, we show how two Mahalanobis metrics dA and dB are enforced to be cor-
related with each other by minimizing the Bregman matrix divergence Dφ(A,B). As two
functions, the relationship between dA and dB is not explicit from Dφ(A,B). Since the scale
vector reveals the important scale properties of one Mahalanobis metric and is much simpler
to deal with, we resort to ρA

W and ρB
W to investigate the relationship between dA and dB .

Bregman divergence (Dhillon and Tropp 2008) is a class of widely-used diversity mea-
sures for vectors in machine learning, including the squared Euclidean distance, generalized
KL-divergence, Itakura-Saito distance, etc. For ∀x,y ∈R

m, it is defined as

Dϕ(x,y)= ϕ(x)− ϕ(y)−∇ϕ(y)�(x− y),

where ϕ(·) is a convex generating function defined on R
m. If ϕ(x) = x�x, we obtain the

squared Euclidean distance Dϕ(x,y)= ‖x− y‖2; if ϕ(x)=∑
i xi logxi − xi , we obtain the

KL-divergence DKL(x,y)=∑
i xi(logxi − logyi)− xi + yi .

Compared with the definition of Bregman matrix divergence (2), the Bregman diver-
gence has an identical form except that it takes real vectors as variable instead of Hermitian
matrices. By Corollary 2 of Kulis et al. (2009), there is the relationship between them as

Dϕ◦λ(X,Y )=
∑

i,j

(
v�i uj

)2
Dϕ(λi, θj ), (9)

where X =∑
i λiviv�i , Y =∑

i θiuiu�i are spectral decompositions, and thus {vi}mi=1, {ui}mi=1
are both orthonormal bases. Since V �U = [v�i uj ]m×m is orthogonal, the matrix [(v�i uj )

2]m×m

is orthostochastic and thus doubly stochastic, whose row and column sums are 1 (Horn and
Johnson 1991). Therefore, the matrix divergence is regarded as the sum of scalar diver-
gences between pairs of eigenvalues, weighted by the squared cosine of the angle between
the corresponding eigenvectors (Dhillon and Tropp 2008).

Among the Bregman matrix divergences, the ‖A− B‖2
F and DvN(A,B) are specifically

appropriate for the framework (1) due to the following reasons:

1. Both of them are jointly convex with respect to the two arguments, which guarantees a
global optimal solution as long as the loss function determined by the metric learning
algorithm is convex. The joint convexity of ‖A−B‖2

F is straightforward, while the joint
convexity of DvN(A,B) is presented in Theorem 1.

2. Both of them provide a bound for its corresponding Bregman divergence of the scale
vectors of the metrics, which links the Bregman matrix divergence of two Mahalanobis
matrices with the Bregman divergence of their scales.7 Specifically, if ϕ(x) = ‖x‖2 or

7Unfortunately, this result cannot be straightforwardly extended to other Bregman divergences. By numerical
experiments, we found that the inequality does not hold for ϕ(x) = −∑

i logxi which corresponds to the
LogDet divergence and the Itakura-Saito divergence (Dhillon and Tropp 2008).
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ϕ(x)=∑
i logxi − xi , then for any orthonormal bases W = [w1 . . . wm], we have

Dϕ

(
ρA

W ,ρB
W

)≤Dφ(A,B), (10)

where φ = ϕ ◦ λ and λ(A) is the function that lists the eigenvalues of A. This result is
formally presented in Theorem 4.

Theorem 4 Suppose dA, dB ∈ FRm are two Mahalanobis metrics defined on R
m. Then for

any orthonormal basis W = [w1 . . . wm] in R
m, the squared Frobenius norm of the differ-

ence and the von Neumann divergence of their Mahalanobis matrices A and B provides
an upper bound for the squared Euclidean distance and the KL-divergence of their scale
vectors ρA

W and ρB
W respectively:

‖A−B‖2
F = sup

W�W=Im

∥∥ρA
W − ρB

W

∥∥2
, (11)

DvN(A,B)≥ sup
W�W=Im

DKL

(
ρA

W ,ρB
W

)
. (12)

In spite of their uniform formulation (10), the two cases resort to very different proofs, and
we leave them in Appendix A.2.

Recall the example we presented at the end of Sect. 5.1 where the discrepancy between
the shapes of two spinning objects (metrics) are measured by comparing their photos (scale
vectors), then ρW with an orthogonal W determines a minimal set of cameras that can cover
the complete views. Each camera ρwi

takes a photo for dA, dB respectively and their discrep-
ancy from this view is measured by Dϕ(ρ

A
wi

, ρB
wi

). Then Dϕ(ρ
A
W ,ρB

W ) gives the discrepancies
of dA and dB by summing up the results from all cameras. Theorem 4 provides an upper
bound for such a total measure on various views, which captures the overall discrepancy of
the two objects (metrics).

Furthermore, define the continuous version of Dϕ(ρ
A
W ,ρB

W )=∑
i Dϕ(ρ

A
wi

, ρB
wi

) as

Dϕ(A,B)=
∫

Sm−1
Dϕ

(
ρA

q , ρB
q

)
dΩ(q), (13)

which summarizes the discrepancy of two metrics measured in all directions. Denote
Dϕ corresponding to ‖ρA

q − ρB
q ‖2 and DKL(ρA

q , ρB
q ) as DEu and DKL respectively. Since

Dϕ(ρ
A
W ,ρB

W ) ≤ Dφ(A,B) holds for any orthogonal W , minimizing Dφ(A,B) has an ef-
fect to minimize Dϕ(A,B). This subsection relates Dφ(A,B) with a discrepancy measure
defined by scale vectors, which enables us to further establish the relationship between
PGf (dA, dB) and Dφ(A,B) as shown in next subsection.

5.4 Preserving geometry property by minimizing von Neumann divergence

In this subsection, based on the results shown in the above subsections, we present our
conclusion that a high geometry preserving probability PGf (dA, dB) is usually better en-
couraged by minimizing DvN(A,B) than by minimizing ‖A−B‖2

F for multi-task problems.
For convenience of explanation, we first informally define the concept of consistent. As-

suming that there are two functions f (x), g(x), if for randomly selected x1,x2 ∈ domf ∩
domg, the assertion f (x1) > f (x2)⇔ g(x1) > g(x2) holds with a high probability, we call
that the two functions are consistent. It is obvious that if two functions are consistent, each
of them is likely to decrease or increase with the other one and thus minimizing either is to
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minimize the other. Then we establish the relationship between Dφ(A,B) and PGf (dA, dB)

in the following steps:

1. Section 5.2 explains that a higher PGf (dA, dB) usually accompanies with a smaller
E (A,B), and thus a better geometry preserving property can be encouraged by mini-
mizing E (A,B). We denote this fact as

PGf (dA, dB)↑ ⇔ E (A,B)↓. (14)

2. Section 5.3 proves that the regularization to be minimized Dφ(A,B) provides an upper
bound for Dϕ(ρ

A
W ,ρB

W ), which furthermore implies that Dϕ(A,B) is minimized in our
framework. We denote this fact as

Dφ(A,B)↓ ⇒ Dϕ(A,B)↓. (15)

3. Our object is to bridge the left side of (14) and (15), while the right side of them, i.e.
E (A,B) and Dϕ(A,B), are both integrations of scale vectors. Thus it provides a way to
bridge Dφ(A,B) and PGf (dA, dB). Specifically, if there is a type of Dϕ(A,B) consistent
with E (A,B), i.e., Dϕ(A,B)↓⇔ E (A,B)↓, we can obtain that

Dφ(A,B)↓⇒ Dϕ(A,B)↓ ⇔ E (A,B)↓ ⇔ PGf (dA, dB)↑,

which means a good geometry preserving property can be obtained by minimizing the
corresponding Bregman matrix divergence.

In this subsection, we will show that DKL(A,B) is more consistent with E (A,B) com-
pared with DEu(A,B), which proves DvN(A,B) a better candidate of the regularization
to preserve geometry between metrics.

In multi-task problems, the difference between any two metrics is usually relatively
small, and we investigate the consistency of E (A,B) and Dϕ(A,B) based on this assump-
tion. When dA = dB , all scales are equal as ρA

q ≡ ρB
q ,∀q and thus |ωq1,q2(A,B)| ≡ 0 ⇒

E (A,B)= Dϕ(A,B)= 0. As dA becomes different from dB so that there is a difference of
scales in some direction ρA

q − ρB
q , both E (A,B) and Dϕ(A,B) will thus increase.

If E (A,B) and Dϕ(A,B) are consistent, a scale difference that brings about a greater
increment of E (A,B) is also expected to produce a greater increment of Dϕ(A,B), and vice
versa. The increments are determined by both the value of scale difference ρA

q − ρB
q and

the direction q. In the same direction q, it’s easy to see that both the two functions increase
with the absolute difference of scales |ρA

q − ρB
q | and keep consistent. In the following, we

investigate the increments of the two functions for scale differences in different directions.
First we study how E (A,B) is influenced by the difference in each direction and the

result is presented in Proposition 1.

Proposition 1 Assume that there are three Mahalanobis metrics dA1 , dA2 , dB ∈ FRm , and
the unit vectors w1,w2 define two directions. Extracting the scales of the metrics by ρW , we
obtain that dA1 and dA2 differ from dB on w1 and w2 respectively as ρ

A1
w1 − ρB

w1
= ρ

A2
w2 −

ρB
w2
=ρ. If the difference ρ is relatively small compared to ρwi

, we have

E (A1,B)

E (A2,B)
≈

(
ρB

w2

ρB
w1

)α

, (16)

where 0.5 < α < 1.5.
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The proof of Proposition 1 is presented in Appendix A.3 for clarity.
From Proposition 1, the increase of E (A,B) brought about by ρA

wi
−ρB

wi
is approximately

inversely proportional to ρB
wi

, and thus the deterioration of the geometry preserving property
is determined by the relative variation of the scale. This coincides with our intuition in
that the geometrical property is more sensitive to the variation of the smaller scale, which
is also a result of the fact that the scale essentially defines a squared magnification factor
for the distance. Assuming that ρB

w1
= 10, ρB

w2
= 0.1, then if ρB

w1
is increased by 1, the dis-

tance of any pair of points in direction w1 is magnified to
√

11/
√

10 = 1.05 times, while
if ρB

w2
is increased by 1, the distance of any pair of points in direction w2 is magnified to√

1.1/
√

0.1= 3.32 times.
To be a discrepancy measure consistent with E (A,B), a proper Dϕ(A,B) should also be

more sensitive to the difference of the smaller scale. Then we analyze how the two types of
Dϕ(A,B) increase with the difference of scales and present the results in Proposition 2.

Proposition 2 Assume that all the variables are identically defined as in Proposition 1, we
have

DEu(A1,B)

DEu(A2,B)
= 1,

DKL(A1,B)

DKL(A2,B)
≈ ρB

w2

ρB
w1

. (17)

We also present the proof of Proposition 2 in Appendix A.3.
If we compare (17) with (16), both DKL(A,B) and E (A,B) are more sensitive to the dif-

ference of the smaller scale, where the increments of them brought about by ρA
wi
− ρB

wi
are

both approximately inversely proportional to ρB
wi

. In contrast, the increment of DEu(A,B)

is independent with the direction or scale but determined by only the value of scale dif-
ference. Thus the increment of DKL(A,B) is more consistent with E (A,B) compared with
DEu(A,B), which implies that if DKL(A1,B) > DKL(A2,B), it is more likely to obtain that
E (A1,B) > E (A2,B) while DEu does not have such a property.

It’s notable that the result of Proposition 1 is obtained by considering only the variation
of one scale and does not precisely hold when several scales change simultaneously because
the partial derivative in (16) becomes more complex. However, in most cases, the conclu-
sion that E (A,B) is more sensitive to the variation of the smaller scale still holds and thus
DKL(A,B) reflects the deterioration of PG more accurately. Then from the discussion of the
beginning of this subsection, DvN(A,B) is a better choice of the regularization to preserve
the geometry.

This phenomenon is illustrated by the example in Fig. 3. The scale vectors of the
three metrics measured in the directions of standard basis are ρB

W = [3.00 0.50]�, ρ
A1
W =

[2.65 0.50]�, and ρ
A2
W = [3.00 0.20]�, where dA1 and dA2 differ from dB on w1 and w2

respectively. Since ρB
w1

> ρB
w2

, the metric is more sensitive to the difference in direction
w2 and PG decreases more rapidly in this direction. Therefore, even though the scale
difference between dA1 and dB is greater as |ρA1

w1 − ρB
w1
| = 0.35 > |ρA2

w2 − ρB
w2
| = 0.30,

the geometry of samples measured by dA1 look more similar to dB compared with dA2 ,
This phenomenon can be explained as that dA1 preserves the geometry (relative distances)
from dB better than dA2 does, which can be verified by comparing the geometry pre-
serving probabilities. Estimating the PG using randomly generated samples,8 we obtain
PGf (A1,B)≈ 0.990 > PGf (A2,B)≈ 0.936, which confirms our conjecture above.

8Please refer to Appendix A.4 for the detail of the procedure.
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Fig. 3 The geometry property of dA and dB is better preserved by minimizing DvN(A,B) rather
than ‖A − B‖2

F. On one hand, with the randomly generated samples, the geometry probabilities are
estimated to be PGf (A1,B) ≈ 0.990 > PGf (A2,B) ≈ 0.936 and thus A1 preserved the geome-
try property from B better than A2 does. On the other hand, it is straightforward to calculate that
‖A1 − B‖2

F = 0.1225 > ‖A2 − B‖2
F = 0.0900, and DvN(A1,B)= 0.0213 < DvN(A2,B)= 0.1167. There-

fore, von Neumann divergence correctly assigns a lower discrepancy measure to A1 which preserves the
geometry properties from B better, and thus minimizing DvN(A,B) prefers A1 to A2 as the metric similar
to B . Furthermore, from the contours of Dϕ(ρA

W
,ρB

W
) with respect to ρA

W
, we see that the DKL(ρA

W
,ρB

W
)

corresponding to DvN(A,B) increases more rapidly in the direction with respect to the smaller scale

On the other hand, calculating the Bregman matrix divergences, we obtain that
‖A1 − B‖2

F = 0.1225 > ‖A2 − B‖F = 0.0900 and DvN(A1,B) = 0.0213 < DvN(A2,B) =
0.1167. Obviously, von Neumann divergence provides a discrepancy measure that is more
consistent with the deterioration of geometry preserving property. Suppose that we want to
encourage dA to be similar to dB by minimizing Dφ(A,B), then dA1 is preferred to dA2 if
Dφ(A,B)=DvN(A,B), while dA2 is preferred to dA1 if Dφ(A,B)= ‖A−B‖2

F. Therefore,
von Neumann divergence can select the correct one with the better geometry preserving
property.

Besides, when the squared Frobenius norm is used, the obtained solution may have neg-
ative eigenvalues and we have to project the solution to the positive semi-definite cone.
Instead, von Neumann divergence can automatically keep the solution to be positive semi-
definite.

In summary, minimizing the von Neumann divergence usually encourages a higher ge-
ometry preserving probability in multi-task problems, and thus it is a more appropriate reg-
ularization to couple different metrics. Using DvN(A,B) as the regularization in (1), it is
expected to obtain a better geometry preserving property.
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Fig. 4 An illustration of multi-task metric learning. (a), (e) The original data of task 1/2. (b), (f) The data
of task 1/2 after single task metric learning. (c), (g) The data of task 1/2 after joint metric learning using von
Neumann divergence as regularization. (d), (h) The data of task 1/2 after joint metric learning using squared
Frobenius norm of difference as regularization. Joint learning of multiple tasks (given by our proposed ge-
ometry preserving framework) can lead to ideal metrics for both task-1 in (c) & task-2 in (g) (Color figure
online)

6 Experiments

6.1 A toy example

In this section, we use a toy example in Fig. 4 to show the advantage of the von Neumann
divergence in preserving the geometry relationship between samples. There are two related
classification tasks, each of which has 3 classes and the samples are shown in Figs. 4(a)
and 4(e) respectively. The color of each point indicates its label and the shape represents its
role in metric learning which we will explain later. A point with a black border represents
a training sample while the one without a border represents a test sample. Unfortunately,
in training set, there is only one green point for task-1 and one red point for task-2, which
cannot represent the distribution of the corresponding class accurately. Observing that the
samples of two tasks have very similar distributions, we are motivated to utilize the infor-
mation from the training samples of the other task to improve the performance for both of
the tasks.

Here we use the idea of LMNN to learn a better metric. Focusing on the yellow point in
the center of the figure, LMNN aims to learn a metric so that the nearest neighbor of this
point belongs to the same class. To obtain such a metric, the nearest yellow point is chosen as
the target point (represented with �) and a circle through this point is drawn. Then any point
belonging to a different class is expected to be further than any target with a large margin
and thus stand outside the dashed perimeter. Any point with a different label lying inside the
dashed perimeter is called imposter (represented with �) and the objective of LMNN is to
pull the target closer while pushing all imposters outside the perimeter. This encourages the
similar samples to be closer to each other. In Fig. 4, we show the learned metric by drawing



154 Mach Learn (2013) 92:133–175

an ellipse formed by the locus of points equidistant from the central point (the same way as
Fig. 2). Then the distance from any point on the dashed ellipse to the central point equals to
the distance from the target to the center, plus a margin. Thus any red or green point lying
inside the perimeter is an imposter and should be pushed out.

Figure 4(b) shows the learned metric of task-1, where all the red imposters (both training
and test points) are pushed outside while Fig. 4(f) shows task-2 with all green imposters
outside. Unfortunately, for task-1, since the green points in training set are too few to repre-
sent the distribution, the learned metric cannot accurately separate the green class from the
yellow one and some test samples invade the perimeter. The same situation also happens for
the red class in task-2.

Since the distribution of two tasks are very similar, we hope to let task-1 borrow in-
formation about the green class from task-2, and task-2 borrow information about the red
class from task-1. Denote the Mahalanobis matrices with respect to Figs. 4(f) and 4(b) as
A1 and A2. We have A1 ∈ C1 and A2 ∈ C2 since they satisfy the constraints from side-
information of task-1 and task-2 respectively. Recall that we propagate information from A

to B by minimizing D(A,B) and solve a better metric for task-1 by

min
A∈C1

D(A,A2). (18)

Since A2 ∈ C2, it is equivalent to solving a metric which satisfies all constraints from C1 and
as many constraints from C2 as possible. In this example, it should push the red imposter
in Fig. 4(f) out of the perimeter while trying the best to keep the green points outside. The
problem is defined in the same way for task-2.

The solutions of (18) using D(A,B)=DvN(A,B) and D(A,B)= ‖A−B‖2
F are shown

in Figs. 4(c) and 4(d) respectively. From the figures, we see that if von Neumann divergence
is used, constraints of both tasks are satisfied by the learned metric, i.e., A ∈ C1∩C2. There is
no imposter in either training set or test set, and both the red and green classes are separated
well. This shows that the geometry property of samples is preserved from task-2 to task-1
and the side-information of task-2 is well propagated to task-1. In contrast, if the Frobenius
norm of difference is used, to push the red imposter outside the perimeter, some green points
invade into this perimeter again, which produces more imposters. This is because the geom-
etry property of A2 that discriminates the green class from the yellow one is not preserved.
For the case to improve task-2 with task-1, the results are shown in Figs. 4(g) and 4(h) and
von Neumann divergence also performs better than Frobenius norm.

6.2 Experiments on real data

To validate our proposed approach, we apply our multi-task framework to the famous
LMNN (Weinberger and Saul 2009) metric learning method and conduct experiments on
several real data sets. We have introduced its basic idea in Sect. 6.1 and the loss func-
tion is simply the sum of all squared distances between samples and their target neigh-
bors, i.e.,

∑
i,j�i d

2
At

(xt i ,xtj ), where j � i means xtj is a target neighbor of xt i . The con-
straints require all imposters stand further than the target neighbors with a margin, i.e.,
d2

At
(xt i ,xt l ) − d2

At
(xt i ,xtj ) ≥ 1 for ∀j � i and ytl �= yti where yti is the label of the i-th

sample of task-t . Since there may be no metric satisfying all constraints, a relaxed version
of the constraints are used by introducing slack variables. The obtained loss function for
task-t is then

(1−μ)
∑

i,j�i

d2
At

(xt i ,xtj )+μ
∑

i,j�i

∑

l

(1− ytil)
[
1+ d2

At
(xt i ,xtj )− d2

At
(xt i ,xt l )

]
+,
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where ytil = 1 if and only if yti = ytl , and ytil = 0 otherwise, [z]+ =max(z,0). We use the
fast solver (Weinberger and Saul 2008) to solve the LMNN and our code is based on the
original LMNN code.9

Every data set contains several related classification tasks, each of which is to predict the
labels of the test samples using their features. For each task, a Mahalanobis metric is learned
from the training samples, and then the label of each test sample is predicted by the nearest
neighbor classifier, where the distance is calculated using the learned metric.

The multi-task learning setting is categorized into the label compatible and label incom-
patible scenarios, according to their label sets (Parameswaran and Weinberger 2010). For
label incompatible scenario where the label sets of these tasks are different, we compared
our method (MT von Neumann) with Euclidean, Single Task, mtLMNN, and MT Frobenius.
The training samples of each task are used as the prototypes of the nearest neighbor classi-
fier. For label compatible scenario where all tasks share the same label set, we also combined
the samples of all tasks and learn a unique metric (Unique Task). Besides, for Unique Task,
mtLMNN, MT Frobenius, and MT von Neumann, we also implement a “pooling” version of
testing (with a suffix “-pool” after the name) on each of them, where the training samples
of all tasks are used as the prototypes. The details of all the compared methods are shown
below with a summary in Table 1.

1. Euclidean—The nearest neighbor of each test sample is searched in the training samples
of this task where the distance is determined by the Euclidean metric directly.

2. Single Task—For each task, a metric is learned individually for each task. Then the clas-
sifier finds the nearest neighbor in the training samples set of this task using the learned
metric.

3. Unique Task—The training samples of all tasks are mixed into one sample set and a
unique metric is learned from it. Then the nearest neighbor is found in the training sam-
ples of this task using the learned metric.

4. Unique Task-pool—The same metric as Unique Task is used while the nearest neighbor
is searched in the training samples of all the tasks using the learned metric.

5. mtLMNN—The method proposed by Parameswaran and Weinberger (2010) which has
been introduced in Sect. 3.1. It is the same as MT Frobenius approach with an additional
constraint10 At � B � 0. The nearest neighbor is searched in the training sample of this
task using the learned metric.

6. mtLMNN-pool—The same metric as mtLMNN is used while the nearest neighbor is
searched in the training samples of all the tasks using the learned metric.

7. MT Frobenius—The framework (1) with D(A,B) = ‖A − B‖2
F. As we indicated in

Sect. 4.1, the constraint At � B in mtLMNN is too strong. By replacing it with At � 0,
the relation of At and B is more flexible and expected to perform better. The nearest
neighbor is searched in the training samples of this task using the learned metric.

8. MT Frobenius-pool—The same metric as MT Frobenius is used while the nearest neigh-
bor is searched in the training samples of all the tasks using the learned metric.

9. MT von Neumann—Our proposed geometry preserving multi-task metric learning. It is
the framework (1) with D(A,B)=DvN(A,B). The nearest neighbor is searched in the
training samples of this task using the learned metric.

10. MT von Neumann-pool—The same metric as MT von Neumann is used while the nearest
neighbor is searched in the training samples of all the tasks using the learned metric.

9The code of LMNN is downloadable from http://www.cse.wustl.edu/~kilian/code/code.html.
10See Sect. 4.1 for detail.

http://www.cse.wustl.edu/~kilian/code/code.html
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Table 1 Summary of our compared methods

Method D(At ,B) Training Prototype Constraints

Euclidean – – Xt –

Single Task – Xt Xt At � 0

Uniform Task At = B
⋃

Xt Xt At � 0

Uniform Task-pool At = B
⋃

Xt
⋃

Xt At � 0

MT Frobenius ‖At −B‖2
F Xt Xt At � 0

MT Frobenius-pool ‖At −B‖2
F Xt

⋃
Xt At � 0

mtLMNN ‖At −B‖2
F Xt Xt At � B � 0

mtLMNN-pool ‖At −B‖2
F Xt

⋃
Xt At � B � 0

MT von Neumann DvN(At ,B) Xt Xt At � 0

MT von Neumann-pool DvN(At ,B) Xt
⋃

Xt At � 0

In the model of LMNN, there are two hyper-parameters: (1) a coefficient to balance the
loss function and the soft constraints; (2) the number of targets. To determine them, we
perform the 5-folder cross-validation on the single-task LMNN using the training samples,
and the optimal parameters are selected according to the average error of all tasks, which are
then used for all methods. We do not adjust the hyper-parameters in the model of LMNN
for each method but use the same values selected for the single-task approach. There are
also two hyper-parameters γ and γ0 in each model of mtLMNN, MT Frobenius and MT von
Neumann. We will show how to select them for each dataset in the following.

6.2.1 Multi-speaker vowel classification

The vowel classification data set consists of 11 vowels uttered by 15 speakers of British
English, each vowel is said six times. The speakers are divided into two subgroups according
to their gender since men pronounce in a different style from women, and each subgroup
is regarded as a task. Then we can utilize the multi-task learning to learn a metric for each
task.

Considering that multi-task learning aims to deal with the situation where training sam-
ples are insufficient, we randomly select only a portion of samples from the vowels of speak-
ers 1–8 and use them to learn a metric, which is tested on the vowels of speakers 9–15. Since
the two tasks share the common label set, all the 10 methods are evaluated on this data set.
The optimal hyper-parameters for each method are selected by a 5-fold cross-validation
using the training samples. Considering that the training data are randomly selected, each
experiment is repeated 10 times and the average error rates of the two tasks are reported in
Fig. 5. The horizontal axis shows the ratio of training samples that are randomly selected to
train the metric, and the vertical axis indicates the average test error rate of all tasks.

From the results, we have the following observations:

1. When only 10 % training samples are used, single task learning is incapable of learning
a reliable metric and tends to be over-fitting. Its performance is even worse than the
Euclidean distance. When more than 20 % training samples are used, its performance is
better than Euclidean.

2. Multi-task methods improves the performance especially when the training samples are
insufficient. In these experiments, all the multi-task methods demonstrate lower error
rates on the test samples than single-task learning.
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Fig. 5 Test results on multi-speaker vowel classification

Fig. 6 Test results on handwritten letter classification

3. The pooling version of testing performs better when the samples are very few. For ex-
ample, MT von Neumann-pool has lower error rate than MT von Neumann when only
10 % samples are used. The more training samples, the worse its performance becomes
compared to the no-pooling version. This phenomenon shows that men and women pro-
nounce in an essentially different way and thus mixing them usually deteriorates the
classification accuracy.

4. The MT Frobenius approach usually performs better than mtLMNN, which is probably
due to the too strict constraint At � B as we have explained.

5. The MT von Neumann approach performs the best (including the pooling version) due
to its capability to propagate the information among tasks properly.

6.2.2 Handwritten letter classification

Handwritten Letter Classification data set11 was collected by Rob Kassel at MIT Spoken
Language System Group. It consists of 8 binary handwritten letter classification problems
where the corresponding letters for each task are: c/e, g/y, m/n, a/g, i/j, a/o, f/t, h/n. The
features are the bitmap of the image of written letters and each classification problem is
regarded as one task.

The binary labels in different tasks represent different letters and thus this is a label-
incompatible problem. Since there is no split training set and test set, we randomly select a
proportion of samples to train a metric and use the remaining for test. Because such a split is
different for each evaluation, we firstly repeat the experiment 10 times and select the optimal
hyper-parameters for each method. Then the hyper-parameters are fixed and the evaluation
is repeat 10 times again. The results on the newly split samples are reported in Fig. 6.

11http://multitask.cs.berkeley.edu/.

http://multitask.cs.berkeley.edu/
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Fig. 7 Test results on USPS digit classification

On this data set, our algorithm performs the best only except when 3 % training samples
are used. Even in this case, its accurate is very close to the best. We also observe that the
single task method produces high error rate when rather few training samples are used.
However, in this dataset, the results on the mtLMNN and the MT Frobenius are very similar.
It is possible that the constraint At � B is satisfied for this data and thus mtLMNN is more
suitable than MT Frobenius. However, both of them perform worse than our method.

6.2.3 USPS digit classification

USPS digit data set12 consists of 7,291 samples of digits 0∼ 9, each of which is a 16× 16
grayscale image. Following Zhang and Yeung (2010b), we construct 5 binary classification
problems to separate the digits 0/1, 2/3, 4/5, 6/7, 8/9 respectively. Then we learn a metric
for each of them jointly. Since each task is to separate a different pair of digits, it is a label-
incompatible problem. The experiment setting is as same as Handwritten letter classification
in Sect. 6.2.2 and the results are shown in Fig. 7.

For the USPS data set, single-task learning gives very bad performance. It is even worse
than the Euclidean metric. This may be due to the over-fitting and thus multi-task learning
is needed. The mtLMNN also gives high error rate on this data set, which is sometimes even
worse than single-task learning. Since the MT Frobenius exploits the same regularization
as mtLMNN but gives a much higher accuracy, it could be caused by the reason that the
constraint At � B is not satisfied in this data. At last, our method also leads to the best
results on all the tests, which again proves its advantage.

6.2.4 Insurance Company Benchmark data

The Insurance Company Benchmark (COIL 2000) data set13 used in the CoIL 2000 Chal-
lenge contains information on customers of an insurance company. The data were collected
to predict what kind of people would be interested in buying a caravan insurance policy
and consists of 86 variables, including product usage data and socio-demographic data. This
dataset consists of 5,822 training samples and 4,000 test samples.

Since each variable is discrete and can be regarded as a label to predict, we consider the
problem to predict some of the variables using others as features (Parameswaran and Wein-
berger 2010). To be specific, we select out a set of related variables from the 86 variables as
the targets to predict, and use the other variables as features to predict the selected targets.
Prediction of each selected variable is regarded as one task and they constitute a multi-task

12http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html.
13http://kdd.ics.uci.edu/databases/tic/tic.html.

http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
http://kdd.ics.uci.edu/databases/tic/tic.html
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Table 2 Description of 5 sets of selected targets on CoIL data set

Selected variables Description

14–15 Variables 14 and 15 describe the data about household without children
and with children respectively

16–18 Variables 16, 17, 18 are data about education respect to high level,
medium level, and lower level respectively

32–34 Variables 32, 33, 34 are MAUT data about user with 1 car, 2 cars, and
no car, respectively

35–36 Variables 35 and 36 are MZ data with respect to national health service
and private health insurance respectively

73–74 Variables 73, 74 are number of tractor policies and number of
agricultural machines policies respectively

Fig. 8 Results using variable 14–15 as targets

Fig. 9 Results using variable 16–18 as targets

learning problem. Apparently, it is a label-incompatible problem due to the different label
sets. This data set has a specified training and test set. We randomly select a certain portion
(10 %, 20 %, 30 %, 40 %, 50 %) of samples from the training set to learn a metric and
predict the labels of test samples. We construct 5 multi-task learning problems by selecting
5 different target sets of related variables, which can be seen in Table 2. Each experiment is
repeated for 10 times and the average error rates are shown in Figs. 8–12.

In these experiment, we can observe that for target sets 14–15, 16–18, 32–24, and 35–36,
the test accuracies of all the methods increase with the training samples used. This shows
the efficiency of utilizing more training samples. When only 10 % training samples are used,
single-task learning does not give an ideal result due to the lack of information. However,
the multi-task metric learning methods usually decrease the error rates a bit because it uti-
lizes the information from other tasks. In most of these experiments, our method gives a
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Fig. 10 Results using variable 32–34 as targets

Fig. 11 Results using variable 35–36 as targets

Fig. 12 Results using variable 73–74 as targets

better result than others, but the improvement is very limited. The reason may be that the
correlation among these targets are weak.

For the target set 73–74, the results are very different from the former 4 target sets. In
this case, all metric learning methods give significantly better performances than Euclidean
distance and this proves the advantage of metric learning. However, the multi-task learning
methods do not improve result of single-task learning. We try to explain this phenomenon
as three possible reasons. (1) Noting that the error rates are almost the same with differ-
ent number of training samples, information from more training samples cannot improve
the performance. Therefore, multi-task learning cannot benefit from propagating more in-
formation from other tasks and the accuracy does not increase using multi-task methods.
(2) These methods cannot propagate the information among tasks properly. (3) The selected
targets are not correlated with others at all. However, we see that even the problem is not
appropriate for the multi-task learning, our method doesn’t deteriorate the performance of
the single-task method.
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Fig. 13 Test results on Isolet spoken alphabet recognition

6.2.5 Isolet spoken alphabet recognition

In the Isolet data set,14 150 speakers spoke the name of each letter of alphabet twice. The
task is to classify the letters to be uttered. Since the speakers are grouped into 5 groups, the
problem is naturally suitable for multi-task learning where each group is treated as a task.
We directly use the data from the website,15 which has been preprocessed with PCA and
split into the training set, validation set, and test set randomly (Parameswaran and Wein-
berger 2010). To determine the hyper-parameters, we select a specific proportion of training
samples to learn a metric with various combinations of hyper-parameters and then test on the
validation set. Such an evaluation is repeated 5 times and the hyper-parameters producing
the lowest average error rate are chosen as the optimal hyper-parameters. Then the metrics
are learned using different proportions of training samples and used for predicting the labels
of the test samples. Each experiment is repeated 10 times and the average error rates are
shown in Fig. 13.

For this data set, we observe that the unique-task usually generates better performance
than single-task, which shows the tasks may be very similar to each other. However, multi-
task learning can furthermore improve their accuracies. Moreover, MT Frobenius performs
better than mtLMNN and MT von Neumann performs even better than MT Frobenius. Our
methods (MT von Neumann and MT von Neumann-pool) again demonstrate the best results
in most cases. Finally, we found that the pooling version of methods lead to better results
when training samples are fewer, which also indicates these tasks are very similar. This
implies that, when we have more training samples, it is better to utilize only the samples in
this task as prototypes.

7 Conclusion

In this paper, we propose a novel multi-task metric learning framework using Bregman ma-
trix divergence. On one hand, the novel regularized approach extends previous methods from
the vector regularization to a general matrix regularization framework; on the other hand
and more importantly, by exploiting von Neumann divergence as the regularization, the new
multi-task metric learning has the capability to well preserve the data geometry. This leads
to more appropriate propagation of side-information among tasks and proves very impor-
tant for further improving the performance. We propose the concept of geometry preserving

14Available from UCI Machine Learning Repository.
15http://www.cse.wustl.edu/~kilian/code/code.html.

http://www.cse.wustl.edu/~kilian/code/code.html
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probability (PG) and justify our framework with a series of theoretical analysis. Further-
more, our formulation is jointly convex and the global optimal solution can be guaranteed.
A series of experiments verify that our proposed approach can significantly outperform the
current methods.
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Appendix

A.1 Proof of Theorem 3

For convenience of calculating PG, we first define the geometry preserving indicator. In the
following discussion, we always denote zi = xi − yi as the difference of two points.

Definition 4 (Geometry preserving indicator) The geometry preserving indicator ΨA,B(x1−
y1,x2− y2)= ΨA,B(z1, z2) is a function that takes two metrics dA, dB as parameters and the
differences of two pairs of points as variables. We use dA and dB to measure the distances of
the two pairs of points and compare which pair of points are relatively further to each other.
Then Ψ = 1 if the two metrics give the same judgement and Ψ = 0 otherwise. Mathemati-
cally, it is defined as

ΨA,B(z1, z2)= 1
[(

dA(z1) > dA(z2)∧ dB(z1) > dB(z2)
)

∨ (
dA(z1) < dA(z2)∧ dB(z1) < dB(z2)

)

∨ (
dA(z1)= dA(z2)∧ dB(z1)= dB(z2)

)]
, (19)

where ∧/∨ represents the logical “and/or” operator and 1[E] is the indicator function so
that

1[E] =
{

1, if expression E holds;
0, if expression E does not hold.

Noting that any f (x1,y1,x2,y2) uniquely determines a probability density for their dif-
ferences with

f̃ (z1, z2) � P[x1 − y1 = z1,x2 − y2 = z2]

=
∫

Rm

∫

Rm

f (y1 + z1,y1,y2 + z2,y2)dy1dy2,

the geometry preserving probability PGf (dA, dB) can be calculated by an integration

PGf (dA, dB)=
∫ ∞

−∞
· · ·

∫ ∞

−∞
ΨA,B(z1, z2)f̃ (z1, z2)dz

(1)

1 · · ·dz
(m)

1 dz
(1)

2 · · ·dz
(m)

2 , (20)

where zi = [z(1)
i z

(2)
i . . . z

(m)
i ]� and the superscript indicates the dimension of the coordinate.
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Then we can give the proof of Theorem 3.

Proof of Theorem 3 For the integration to calculate PG shown in (20), the Cartesian co-
ordinate system can be transformed to the spherical coordinate system by the following
transformation (Wikipedia 2013a; Kingravi 2007):

z
(1)
i = riq

(1)
i = ri cos

(
ψ

(1)
i

)

z
(2)
i = riq

(2)
i = ri sin

(
ψ

(1)
i

)
cos

(
ψ

(2)
i

)

...

z
(k)
i = riq

(k)
i = ri

(
k−1∏

j=1

sin
(
ψ

(j)

i

)
)

cos
(
ψ

(k)
i

)

...

z
(m−1)
i = riq

(m−1)
i = ri sin

(
ψ

(1)
i

)
sin

(
ψ

(2)
i

) · · · sin
(
ψ

(d−2)
i

)
cos

(
ψ

(d−1)
i

)

z
(m)
i = riq

(m)
i = ri sin

(
ψ

(1)
i

)
sin

(
ψ

(2)
i

) · · · sin
(
ψ

(d−2)
i

)
sin

(
ψ

(d−1)
i

)

Then we have zi = riqi (ri ≥ 0) and ‖qi‖ = 1 which means ri is the length of zi and qi

is a unit vector indicating the direction of zi . The volume element can be calculated by a
Jacobian determinant (Kingravi 2007) as

rm−1
i sinm−2

(
ψ

(1)
i

) · · · sin
(
ψ

(m−2)
i

)
dridψ

(1)
i · · ·dψ

(m−1)
i � rm−1

i dridΩ(qi ),

where dΩ(qi ) = sinm−2(ψ
(1)
i ) · · · sin(ψ

(m−2)
i )dψ

(1)
i · · ·dψ

(m−1)
i is the solid angle element

corresponding to the direction determined by {ψi}m−1
i=1 , or equivalently by qi .

Then the geometry preserving probability (20) can be reformulated by coordinate trans-
formation as

PGf (dA, dB)

=
∫ 2π

ψ
(m−1)
2 =0

∫ π

ψ
(m−2)
2 =0

· · ·
∫ π

ψ
(1)
2 =0

∫ 2π

ψ
(m−1)
1 =0

∫ π

ψ
(m−2)
1 =0

· · ·
∫ π

ψ
(1)
1 =0

×
∫ ∞

r2=0

∫ ∞

r1=0
ΨA,B(r1q1, r2q2)f̃ (r1q1, r2q2)

· rm−1
1 sinm−2

(
ψ

(1)

1

) · · · sin
(
ψ

(m−2)

1

)
rm−1

2 sinm−2
(
ψ

(1)

2

) · · · sin
(
ψ

(m−2)

2

)

· dr1dr2dψ
(1)

1 · · ·dψ
(m−2)

1 dψ
(m−1)

1 ψ
(1)

2 · · ·dψ
(m−2)

2 dψ
(m−1)

2

=
∫∫

Sm−1×Sm−1

∫∫

R+×R+
ΨA,B(r1q1, r2q2)f̃ (r1q1, r2q2)r

m−1
1 rm−1

2 dr1dr2dΩ(q1)dΩ(q2)

�
∫∫

Sm−1×Sm−1
Rq1,q2(A,B)dΩ(q1)dΩ(q2),

where

Rq1,q2(A,B)=
∫∫

R+×R+
ΨA,B(r1q1, r2q2)f̃ (r1q1, r2q2)r

m−1
1 rm−1

2 dr1dr2,
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Fig. 14 Domain of integration
of r in Rq1,q2 (A,B)

and the field of integration of qi is S
m−1 is an (m− 1)-dimensional unit sphere.

By integrating the radial variables r1, r2 firstly as the equation above, PGf (dA, dB) is
reformulated as an integration of Rq1,q2(A,B) in different pairs of directions. For ∀i = 1,2,
we have d2

A(riqi )= r2
i q�i Aqi = r2

i ρA
qi

, and thus the squared distance d2
A(riqi ) equals to the

weighted scale on qi with weight r2
i . Similarly, d2

B(riqi ) = r2
i ρB

qi
. It is straightforward to

show that

dA(r1q1) > dA(r2q2) ⇔ r1

r2
>

√
ρA

q2

ρA
q1

, dB(r1q1) > dB(r2q2) ⇔ r1

r2
>

√
ρB

q2

ρB
q1

.

Therefore, denoting r= [r1 r2]�, the geometry preserving indicator is

ΨA,B(r1q1, r2q2)=
{

1, if r ∈ SI ∪ SII;
0, otherwise,

where

SI =
{

r

∣∣∣∣
r1

r2
> max

{√
ρA

q2

ρA
q1

,

√
ρB

q2

ρB
q1

}}
, SII =

{
r

∣∣∣∣
r1

r2
< min

{√
ρA

q2

ρA
q1

,

√
ρB

q2

ρB
q1

}}
.

Since q1,q2 are fixed here, f̃ is a function of r. Then Rq1,q2(A,B) can be reformulated
as

Rq1,q2(A,B)=
∫

SI∪SII

f̃ (r)rm−1
1 rm−1

2 dr. (21)

The domain of integration is illustrated as the shadow region in Fig. 14, which is deter-
mined by two boundaries corresponding to dA and dB respectively. If dB (or dA) is given, the
corresponding boundary is fixed, then considering that the integral function f̃ (r)rm−1

1 rm−1
2

is non-negative anywhere, Rq1,q2(A,B) monotonically decreases with |ωq1,q2(A,B)|, which
is the angle between the two boundaries determined by ρA

qi
and ρB

qi
as

ωq1,q2(A,B)= arctan

√
ρA

q2

ρA
q1

− arctan

√
ρB

q2

ρB
q1

.



Mach Learn (2013) 92:133–175 165

Furthermore, when dB (or dA) is given, ωq1,q2(A,B) uniquely determines the integral
domain SI and SII, and thus

∣∣ωq1,q2(A1,B)
∣∣ >

∣∣ωq1,q2(A2,B)
∣∣⇒Rq1,q2(A1,B)≤Rq1,q2(A2,B),

∣∣ωq1,q2(A1,B)
∣∣ <

∣∣ωq1,q2(A2,B)
∣∣⇒Rq1,q2(A1,B)≥Rq1,q2(A2,B),

∣∣ωq1,q2(A,B1)
∣∣ >

∣∣ωq1,q2(A,B2)
∣∣⇒Rq1,q2(A,B1)≤Rq1,q2(A,B2),

∣∣ωq1,q2(A,B1)
∣∣ <

∣∣ωq1,q2(A,B2)
∣∣⇒Rq1,q2(A,B1)≥Rq1,q2(A,B2),

which indicates that Rq1,q2(A,B) monotonically decreases with |ωq1,q2(A,B)| and the proof
completes. �

Remark Note that when dA and dB are both unknown and learned simultaneously, a smaller
angle |ωq1,q2(A,B)| does not guarantee a greater Rq1,q2(A,B) strictly, which also depends
on f . However, without precise information about f , a smaller |ωq1,q2(A,B)| usually ac-
companies with a greater Rq1,q2(A,B) in general.

A.2 Proof of Theorem 4

Although (11) and (12) in Theorem 4 can be unified as (10), the proofs of them are quite
different and we will present them separately.

First, (11) can be proved using some simple matrix calculations.

Proof of Inequality (11) Assuming the spectral decomposition of A − B is UΛU� and
w̃i =U�wi , for any unit vector wi , we have

w�i Awi −w�i Bwi =w�i (A−B)wi

=w�i UΛU�wi

= (
U�wi

)�
Λ

(
U�wi

)

= w̃�i Λw̃i

=
m∑

j=1

w̃2
ij λj .

For any group of orthonormal basis W , it is straightforward that W̃ = [w̃1 . . . w̃m] =
U�W is also orthonormal, and thus the element-wise squared matrix of W̃ is a double
stochastic matrix (Marshall et al. 2011) satisfying

∑m

i=1 w̃2
ij = 1, ∀j and

∑m

j=1 w̃2
ij = 1, ∀i.

Therefore, using Jensen’s inequality (Hardy et al. 1988) and by the convexity of
f (x)= x2, we obtain

∥∥ρA
W − ρB

W

∥∥2

2
=

m∑

i=1

(
w�i Awi −w�i Bwi

)2

=
m∑

i=1

(
m∑

j=1

w̃2
ij λj

)2
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≤
m∑

i=1

m∑

j=1

w̃2
ij λ

2
j

=
m∑

j=1

m∑

i=1

w̃2
ij λ

2
j

=
m∑

j=1

λ2
j

= ‖A−B‖2
F.

The equality holds if and only if W is composed of the eigenvectors of A − B , which
is straightforward by substituting W = [u1 . . . um] into the formula above. Thus ‖A−B‖2

F

provides a strict upper bound for ‖ρA
W − ρB

W‖2 and the proof completes. �

Then, we focus on the proof of (12), which is supported by the following lemma.

Lemma 5 For any trace preserving map Φ defined as Φ(A) = ∑n

i=1 ViAV �
i where∑n

i=1 V �
i Vi = Im (Lindblad 1975) and A,B are both SPD matrices, we have that

DvN(Φ(A),Φ(B))≤DvN(A,B).

Indeed, a very similar result as Lemma 5 has been intensively studied in quantum infor-
mation theory (Nielsen and Chuang 2010; Lindblad 1975), which reveals the relationship
between the von Neumann divergence (also referred as quantum relative entropy) of two
quantum densities (SPD matrices with trace 1) and the KL-divergence (also referred as rel-
ative entropy) of their measurements (vectors). It’s notable that there exist two differences
compared with (12):

1. The quantum density is represented as a SPD matrix with trace 1 while the trace of a
Mahalanobis matrix we studied could be any non-negative real number.

2. The von Neumann divergence in quantum information theory is defined as D̄vN(A,B)=
tr(A logA−A logB). Although it is equivalent to DvN(A,B) for quantum densities sat-
isfying tr(A)= tr(B)= 1, they are different for Mahalanobis matrices in general.

Due to these differences, the conclusion in Lindblad (1975) cannot be used directly.
Following a similar way of Lindblad (1975), we give the proof of Lemma 5 after a series

of necessary definitions and lemmas.

Lemma 6 (Logarithm of Kronecker product) Suppose Am×m and Bn×n are both symmetric
positive definite matrices, then the matrix logarithm of their Kronecker product (Horn and
Johnson 1991) A⊗B has the following decomposition.

log(A⊗B)= logA⊗ In + Im ⊗ logB. (22)
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Proof Assume that the spectral decomposition of A and B are A= V ΛV � and B =UΘU�

respectively, then

log(A⊗B)= log
((

V ΛV �)⊗ (
UΘU�))

= log
(
(V ⊗U)(Λ⊗Θ)(V ⊗U)�

)

= (V ⊗U) log
(
diag[λ1, . . . , λm] ⊗ diag[θ1, . . . , θn]

)(
V � ⊗U�)

= (V ⊗U) log
(
diag[λ1θ1, . . . , λ1θn, . . . , λmθ1, . . . , λmθn]

)(
V � ⊗U�)

= (V ⊗U)diag[logλ1 + log θ1, . . . , logλm + log θn]
(
V � ⊗U�)

= (V ⊗U)(logΛ⊗ In + Im ⊗ logΘ)
(
V � ⊗U�)

= (
V logΛV �)⊗ (

UInU
�)+ (

V ImV �)⊗ (
U logΘU�)

= logA⊗ In + Im ⊗ logB,

and this completes the proof. �

Lemma 7 (Additivity of von Neumann divergence) Suppose that A1,A2,B1,B2 are m×m

SPD matrices, then the following equation holds.

DvN(A1 ⊗A2,B1 ⊗B2)=DvN(A1,B1) · trA2 +DvN(A2,B2) · trA1

+ (trA1 − trB1)(trA2 − trB2).

Specifically, if A2 = B2 = P , the equation is simplified as

DvN(A1 ⊗ P,B1 ⊗ P )=DvN(A1,B1) · trP.

Proof Using (22), we have

DvN(A1 ⊗A2,B1 ⊗B2)

= tr
(
(A1 ⊗A2)

(
log(A1 ⊗A2)− log(B1 ⊗B2)

)−A1 ⊗A2 +B1 ⊗B2
)

= tr
(
(A1 ⊗A2)

(
(logA1 − logB1)⊗ Im + Im ⊗ (logA2 − logB2)

)

−A1 ⊗A2 +B1 ⊗B2

)

= tr
(
A1(logA1 − logB1)⊗A2 +A1 ⊗A2(logA2 − logB2)−A1 ⊗A2 +B1 ⊗B2

)

=DvN(A1,B1) · trA2 +DvN(A2,B2) · trA1

+ tr(A1 ⊗A2 −B1 ⊗A2 −A1 ⊗B2 +B1 ⊗B2)

=DvN(A1,B1) · trA2 +DvN(A2,B2) · trA1 + (trA1 − trB1)(trA2 − trB2).

If A2 = B2 = P , then

DvN(A1 ⊗ P,B1 ⊗ P )=DvN(A1,B1) · trP

is straightforward. �
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Lemma 8 (Unitary operation invariant property) The von Neumann divergence is invariant
under unitary operation.

To be specific, assume that U ∈ C
n×n is a unitary matrix satisfying UUH = UHU = In,

where UH is the conjugate transpose (also called associate matrix in quantum ) of U . Then,
the following formula holds for any symmetric positive definite matrices A,B ∈ Pos(m).

DvN
(
UAUH,UBUH

)=DvN(A,B).

Proof It is straightforward to verify that log(UAUH)=U logAUH and thus

DvN
(
UAUH,UBUH

)= tr
(
UAUH log

(
UAUH

)−UAUH log
(
UBUH

)

−UAUH +UBUH
)

= tr
(
UAUHU logAUH −UAUHU logBUH −UAUH +UBUH

)

= tr
(
U(A logA−A logB −A+B)UH

)

= tr
(
(A logA−A logB −A+B)

(
UHU

))

= tr(A logA−A logB −A+B)

=DvN(A,B).

Then the invariant property of von Neumann divergence under unitary operation is proved. �

Definition 5 (Partial trace, Example 2.1 of Watrous (2008))16 Assume that X = C
m and

Y= C
n are complex spaces, then A ∈ L(X)= C

m×m and B ∈ L(Y)= C
n×n define a linear

transformation in X and Y respectively. The partial trace on X is an operator from L(X⊗
Y)=C

mn×mn to L(Y)=C
n×n that satisfies

(tr⊗ IY)(A⊗B)= tr(A)B

for all A ∈ L(X) and B ∈ L(Y). It is more commonly denoted TrX and may alternately
expressed as follows.

Assuming that {ui}mi=1 is any orthonormal basis of X, then

TrX(A)=
∑

i

(
uH

i ⊗ IY

)
A

(
uH

i ⊗ IY

)

for all A ∈ L(X⊗Y).

Lemma 9 (Monotonicity of von Neumann divergence) Let X,Y are two complex Euclidean
spaces. For any choice of SPD matrices A,B ∈ Pos(X⊗Y), we have

DvN

(
TrY(A)

∥∥TrY(B)
)≤DvN(A,B).

Proof Define the completely depolarizing operation Ω(A)= 1
m

tr(A)IX. Then by Lecture 6
& 9 of Watrous (2008), Ω and I⊗Ω are both mixed unitary, which means that there exists a

16The original definition is in the language of quantum information and we translate it into the language of
matrix theory for convenience.
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collection U1, . . . ,UN ∈U(X) of unitary matrices on X and a probability vector p1, . . . , pN

such that

(IX ⊗Ω)(A)=
N∑

j=1

pjUjAUH
j .

In another aspect, IX ⊗Ω(A)= TrY(A)⊗ IY

n
where n= dim(Y).

Therefore, we have

DvN

(
TrY(A),TrY(B)

)=DvN

(
TrY(A)⊗ IY

n
,TrY(B)⊗ IY

n

)/
tr

(
IY

n

)

=DvN

(
IX ⊗Ω(A), IX ⊗Ω(B)

)

=DvN

(
N∑

j=1

pjUjAUH
j ,

N∑

j=1

pjUjBUH
j

)

≤
N∑

j=1

pjDvN

(
UjAUH

j ,UjBUH
j

)

=
N∑

j=1

pjDvN(A,B)

=DvN(A,B),

where the first equality comes from Lemma 7, the inequality is due to the joint convexity of
von Neumann divergence (Theorem 1), and the following equality comes from Lemma 8.
Then we obtain the conclusion. �

Now we are ready to prove Lemma 5.

Proof of Lemma 5 Assume that {ri , i = 1, . . . , n} is an orthonormal basis of R
n and s ∈ R

n

is an arbitrary unit vector. Define Q=∑n

i=1 Vi ⊗ ris�, then we have

Q�Q=
∑

ij

V �
i Vj ⊗ sr�i rj s� =

(∑

i

V �
i Vi

)
⊗ ss� = (

Im ⊗ ss�
)�(

Im ⊗ ss�
)
,

and thus there is an orthogonal matrix U ∈ (Rm ⊗R
n)× (Rm ⊗R

n) such that Q=U(Im ⊗
ss�).

Consequently,

U
(
A⊗ ss�

)
U� =U

(
Im ⊗ ss�

)
(A⊗ In)

(
Im ⊗ ss�

)
U� =Q(A⊗ In)Q

�

=
∑

ij

ViAV �
j ⊗ ris�Insr�j =

∑

ij

ViAV �
j ⊗ rir�j ,

and then from tr(rir�j )= δij , we have

TrY

(
U

(
A⊗ ss�

)
U�)=

∑

i

ViAV �
i =Φ(A).
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Thus, the KL-divergence can be calculated as

DvN

(
Φ(A),Φ(B)

)=DvN

(
TrY

(
U

(
A⊗ ss�

)
U�)

,TrY

(
U

(
B ⊗ ss�

)
U�))

≤DvN

(
U

(
A⊗ ss�

)
U�,U

(
B ⊗ ss�

)
U�)

=DvN

(
A⊗ ss�,B ⊗ ss�

)

=DvN(A,B) · tr(ss�
)

=DvN(A,B)

and this completes the proof. �

Then, we are ready to prove (12) using the above results.

Proof of Inequality (12) Define the projectors Wi =wiw�i , then we have

∑

i

W�
i Wi =

∑

i

wiw�i =WW� = Im

and thus Φ(A)=∑m

i=1 WiAW�
i is a trace preserving map.

Then it is straightforward to verify that

DKL

(
ρA

W ,ρB
W

)=
∑

i

DKL

(
w�i Awi ,w�i Bwi

)

=
∑

i,j

(
w�i wj

)2
DKL

(
w�i Awi ,w�j Bwj

)

=DvN

(∑

i

wi

(
w�i Awi

)
w�i ,

∑

j

wj

(
w�j Bwj

)
w�j

)

=DvN

(∑

i

WiAW�
i ,

∑

i

WiBW�
i

)

≤DvN(A,B),

where the third equality is from (9) and the last inequality results from Lemma 5, and this
completes the proof. �

Combining the proofs of (11) and (12), Theorem 4 is proved.

A.3 Proofs of Proposition 1 and Proposition 2

We will first prove Proposition 1 after a prerequisite lemma.

Lemma 10 Supposing that f : X→ R, g : X→ (0,+∞) are functions on X, X ⊂ X is a
subset of X, and a, b ∈R are two real numbers, we have

a <
f (x)

g(x)
< b, ∀x ∈ X ⇒ a <

∫
X f (x)dσ(x)

∫
X g(x)dσ(x)

< b.
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Proof Since g(x) > 0, it is straightforward that

ag(x) < f (x) < bg(x), ∀x ∈ X

⇒
∫

X
ag(x)dσ(x) <

∫

X
f (x)dσ(x) <

∫

X
bg(x)dσ(x).

Then from

∫

X
ag(x)dσ(x)= a

∫

X
g(x)dσ(x) > 0,

∫

X
bg(x)dσ(x)= b

∫

X
g(x)dσ(x) > 0,

we obtain

a <

∫
X f (x)dσ(x)

∫
X g(x)dσ(x)

< b,

which completes the proof. �

Proof of Proposition 1 The integration element of E (A,B) with respect to ρA
q is

(∫

Sm−1

∣∣ωq,q2(A,B)
∣∣dΩ(q2)

)
dΩ(q)+

(∫

Sm−1

∣∣ωq1,q(A,B)
∣∣dΩ(q1)

)
dΩ(q)

=
(∫

Sm−1

∣∣ωq,q2(A,B)
∣∣dΩ(q2)+

∫

Sm−1

∣∣−ωq,q1(A,B)
∣∣dΩ(q1)

)
dΩ(q)

=
(

2
∫

Sm−1

∣∣ωq,q2(A,B)
∣∣dΩ(q2)

)
dΩ(q).

Thus, the derivative of E (A,B) with respect to ρA
w1

is

∂E (A,B)

∂ρA
w1

∣∣∣∣
A=B

= ∂

∂ρA
w1

(
2
∫

Sm−1

∣∣ωw1,q2(A,B)
∣∣dΩ(q2)

)∣∣∣∣
A=B

·dΩ(w1)

= 2
∫

Sm−1

∂

∂ρA
w1

∣∣∣∣arctan

√
ρA

q2

ρA
w1

− arctan

√
ρB

q2

ρB
w1

∣∣∣∣dΩ(q2)

∣∣∣∣
A=B

·dΩ(w1)

=
∫

Sm−1

√
ρA

q2

ρA
w1
+ ρA

q2

· 1
√

ρA
w1

dΩ(q2)

∣∣∣∣
A=B

· dΩ(w1)

=
∫

Sm−1

√
ρB

q2

ρB
w1
+ ρB

q2

· 1
√

ρB
w1

dΩ(q2) · dΩ(w1)

�
∫

Sm−1
τ
(
ρB

w1
, ρB

q2

)
dΩ(q2) · dΩ(w1).
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Since

τ(ρB
w1

, ρB
q2

)

τ (ρB
w2

, ρB
q2

)
=

√
ρB

q2

ρB
w1
+ρB

q2
· 1

2
√

ρB
w1

√
ρB

q2

ρB
w2
+ρB

q2
· 1

2
√

ρB
w2

=
(ρB

w2
+ ρB

q2
)
√

ρB
w2

(ρB
w1
+ ρB

q2
)
√

ρB
w1

and ρB
q ≥ 0, ∀q, we have

(
ρB

w2

ρB
w1

)0.5

<
τ(ρB

w1
, ρB

q2
)

τ (ρB
w2

, ρB
q2

)
≤

(
ρB

w2

ρB
w1

)1.5

, if ρB
w1

< ρB
w2
;

(
ρB

w2

ρB
w1

)1.5

≤ τ(ρB
w1

, ρB
q2

)

τ (ρB
w2

, ρB
q2

)
<

(
ρB

w2

ρB
w1

)0.5

, if ρB
w1

> ρB
w2

.

Since the integration is symmetric for all directions, the solid angle elements are all equal
and thus dΩ(w1)= dΩ(w2). Using Lemma 10, we can obtain that

(
ρB

w2

ρB
w1

)0.5

<

∫
Sm−1 τ(ρB

w1
, ρB

q2
)dΩ(q2)∫

Sm−1 τ(ρB
w2

, ρB
q2

)dΩ(q2)
=

∂E(A,B)

∂ρA
w1
|A=B

∂E(A,B)

∂ρA
w2
|A=B

<

(
ρB

w2

ρB
w1

)1.5

, if ρB
w1

< ρB
w2
;

(
ρB

w2

ρB
w1

)1.5

<

∫
Sm−1 τ(ρB

w1
, ρB

q2
)dΩ(q2)∫

Sm−1 τ(ρB
w2

, ρB
q2

)dΩ(q2)
=

∂E(A,B)

∂ρA
w1
|A=B

∂E(A,B)

∂ρA
w2
|A=B

<

(
ρB

w2

ρB
w1

)0.5

, if ρB
w1

> ρB
w2

.

Then due to the continuity of exponential function, the inequalities can be reformulated as

∃0.5 < α < 1.5, s.t.

∂E(A,B)

∂ρA
w1
|A=B

∂E(A,B)

∂ρA
w2
|A=B

=
(

ρB
w2

ρB
w1

)α

,

and thus

E (A1,B)

E (A2,B)
≈

E (B,B)+ ∂E(A,B)

∂ρA
w1
|A=B ·ρ

E (B,B)+ ∂E(A,B)

∂ρA
w2
|A=B ·ρ

=
(

ρB
w2

ρB
w1

)α

,

where 0.5 < α < 1.5, and this completes the proof. �

Then, we study the Bregman divergence of scales as the discrepancy and prove Proposi-
tion 2.

Proof of Proposition 2 The difference of scales in any direction ρ = ρA
wi
−ρB

wi
brings about

the discrepancy Dϕ(A,B). Since A1 and A2 differ from B by ρ
A1
w1 −ρB

w1
= ρ

A2
w2 −ρB

w2
=ρ,

the ratio of dissimilarities has the following relationship (we also have dΩ(w1)= dΩ(w2)

due to the symmetry of the solid angle elements).
For DEu(A,B), it is straightforward to obtain that

DEu(A1,B)

DEu(A2,B)
= (ρ

A1
w1 − ρB

w1
)2 · dΩ(w1)

(ρ
A2
w2 − ρB

w2
)2 · dΩ(w2)

=
(

ρ

ρ

)2

= 1.
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For DKL(A,B), the result is not straightforwardly available. Since ρ is assumed to be
relatively small, we can estimate it using l’Hospital’s rule (Chatterjee 2005) as

DKL(A1,B)

DKL(A2,B)
≈ lim

ρ→0

DKL(ρB
w1
+ρ,ρB

w1
) · dΩ(w1)

DKL(ρB
w2
+ρ,ρB

w2
) · dΩ(w2)

= lim
ρ→0

(DKL(ρB
w1
+ρ,ρB

w1
))′

(DKL(ρB
w2
+ρ,ρB

w2
))′
= lim

ρ→0

log(ρB
w1
+ρ)− logρB

w1

log(ρB
w2
+ρ)− logρB

w2

= lim
ρ→0

(log(ρB
w1
+ρ)− logρB

w1
)′

(log(ρB
w2
+ρ)− logρB

w2
)′
= lim

ρ→0

1/(ρB
w1
+ρ)

1/(ρB
w2
+ρ)

= ρB
w2

ρB
w1

,

where f ′ � df

dρ
denotes the derivative of f with respect to ρ. �

A.4 The procedure to estimate PG using randomly generated samples

Due to the complexity of its original definition of PG, we resort to the frequency of relative
distance consistency as an estimation of PG. In this section, we take the example in Fig. 3
to show the procedure to calculate the estimation of PG using randomly generated samples:

1. Generate 50 sample {xi}50
i=1 following a Gaussian distribution, which are shown in each

figure.
2. For each metric M = B,A1,A2, calculate the distance of each pair of points
{dM(xi ,xj )}50

i,j=1,i<j . Then we obtain C2
50 = 1225 distances in total and list them as

{d(k)
M }1225

k=1 . Note that for any M , d
(k)
M with the same k corresponds to the same pair of

points.
3. To estimate PG(dA1 , dB), for any pair of distances (corresponding two pairs of points)

d
(k)
M , d

(l)
M , compare their relative distance measured by A1 and B respectively, i.e., to

compare which is greater between d
(k)
A1

and d
(l)
A1

, then between d
(k)
B and d

(l)
B . Then count

the occurrences that A1 and B give the same judgement, i.e., d
(k)
A1

> d
(l)
A1
∧ d

(k)
B > d

(l)
B or

d
(k)
A1

< d
(l)
A1
∧ d

(k)
B < d

(l)
B or d

(k)
A1
= d

(l)
A1
∧ d

(k)
B = d

(l)
B . Denoting this count as N(A1,B), we

obtain N(A1,B)= 1,485,043 and analogously, N(A2,B)= 1,404,431.
4. Since there are totally 1,2252 possible pairs of distances, the frequencies of the event

“geometry preserved” are PGf (A1,B)≈ N(A1,B)/1,2252 = 0.990 and PGf (A1,B)≈
N(A2,B)/1,2252 = 0.936.

It is notable that although the samples are generated following a Gaussian distribution,
it does not imply the f in PGf (A1,B) is Gaussian. Indeed, in the procedure above, the
two pairs of the points are not independent and each pair is sampled following a uniform
distribution, which makes f more complex.
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