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Abstract Many healthcare facilities enforce security on their electronic health records
(EHRs) through a corrective mechanism: some staff nominally have almost unrestricted
access to the records, but there is a strict ex post facto audit process for inappropriate ac-
cesses, i.e., accesses that violate the facility’s security and privacy policies. This process is
inefficient, as each suspicious access has to be reviewed by a security expert, and is purely
retrospective, as it occurs after damage may have been incurred. This motivates automated
approaches based on machine learning using historical data. Previous attempts at such a
system have successfully applied supervised learning models to this end, such as SVMs and
logistic regression. While providing benefits over manual auditing, these approaches ignore
the identity of the users and patients involved in a record access. Therefore, they cannot
exploit the fact that a patient whose record was previously involved in a violation has an
increased risk of being involved in a future violation. Motivated by this, in this paper, we
propose a collaborative filtering inspired approach to predicting inappropriate accesses. Our
solution integrates both explicit and latent features for staff and patients, the latter acting as
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a personalized “fingerprint” based on historical access patterns. The proposed method, when
applied to real EHR access data from two tertiary hospitals and a file-access dataset from
Amazon, shows not only significantly improved performance compared to existing methods,
but also provides insights as to what indicates an inappropriate access.

Keywords Access violation - Collaborative filtering - Electronic health records - Privacy
breach detection

1 Problem of interest

In healthcare, the proliferation of computerized databases, inter-networking of systems, and
search and indexing technology for electronic records have opened up several new possibil-
ities and brought several advantages. To name a few, these include improved efficiency of
record keeping, easier detection and prevention of fraud, waste, and abuse, and an increase in
the overall quality of provided healthcare. However, the use of technology has also expanded
the chances of inappropriate, unauthorized, or illegal access to (and use of) personal infor-
mation (Office of Technology Assessment, United States Congress 1986). In the healthcare
domain, recent breaches include the inappropriate viewing of the health records of celebri-
ties (Ornstein 2008), a government official (Porter 2010), and a mother who gave birth to
octuplets (Kaushik and Ramamurthy 2011). In 2011, 139 privacy breaches were reported,
with each case affecting over 500 patients according to the notification mandated by the US
Department of Health and Human Services (HHS) (Guardian 2010). The responsible institu-
tions were fined and their reputations suffered serious damage. The completeness, relevance
and sensitiveness of Electronic Health Records (EHR) make the healthcare privacy chal-
lenge even more important. A recent survey indicates that 71 % of physicians are concerned
about health information exchange’s effect on privacy (Wright et al. 2010) because security
and privacy breaches can significantly undermine the patient’s trust, imposing negatively on
the quality of care.

Healthcare institutions, including the one participating in this study, have worked hard
to keep their patients’ records secure and private. Examples of adopted privacy protection
methods include encrypted devices, strong passwords, two-factor authentication, employee
training on privacy, annual signing of confidentiality agreements, and self-audit tools for
employees to see who has viewed their records (Boxwala et al. 2011). Despite these safe-
guards, a continuing challenge is to be able to correctly classify whether a requested EHR
access is in inappropriate or not, so that the former type can be blocked in advance. One
approach to this is granting limited accesses to patient records for the purpose of treatment,
payment, healthcare operation and research. However, it is difficult to impose a static prede-
fined access control policy on employees in this setting since the hospital work environment
has dynamic and unpredictable care patterns, and flexible workflows where providers are
assembled unexpectedly (such as in the emergency room). The continuing trend towards a
mobile workforce and team-based care (including teaching, and ever-changing job titles and
roles) further adds to this complexity (Boxwala et al. 2011).

These challenges motivate the use of automated systems to at least partially allevi-
ate the burden of determining inappropriate accesses. One can aim to train a machine
learning model on historical access data, and use it to classify the appropriateness of fu-
ture accesses. Prior work in this direction has used supervised learning techniques on
certain features of the staff members and patients involved (e.g. Boxwala et al. 2011;
Kim et al. 2011; see Sect. 3.3 for more discussion). These papers have demonstrated the
potential of using machine learning models to address privacy issues in EHRs.
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In this paper, we look to extend these prior machine learning approaches to exploit an
additional, important source of information: the identity of the user and patient involved
in the access. This lets us capture the fact that, for example, a user who has performed
a violation in the past is more likely to commit a violation in the future. To this end, we
propose a collaborative filtering inspired approach to create a more fine-grained model for
detecting inappropriate accesses. Our model integrates the traditional features for users and
patients with latent features that can be thought of as a “fingerprint” based on their historical
access behavior. We show how such a model can be adapted to meet the characteristics of this
problem; specifically, we show how to pool together data for reliable parameter estimation,
and how to create interaction-specific predictions. Our proposed method, when applied to
real EHR access data from tertiary hospitals and a file-access dataset from Amazon, shows
significantly improved performance compared to existing methods, and provides insights as
to what indicates an inappropriate access.

Formally, this paper focuses on detecting privacy breaches resulting from inappropri-
ate accesses of EHRs. We call this the access violation problem. As input, we are given a
labelled training set 7 = {(a®”, y)}Y_,, where a) comprises features that summarize an
access to a patient’s EHR by a hospital employee or its affiliated member (who we shall call
a user) that is logged in to a healthcare system, y® € {0, 1} is a label denoting whether the
access was a violation of hospital policy or not, and N is the number of labelled instances.
Generally, the features in ) can be broken down as follows:

(i) identity features, namely, the user’s identifier u € {1, ..., m}, as well as the patient’s
identifier p € {1, ..., n}, where m and n indicate the total number of users and patients
in the system, respectively,

(ii) user-specific features x, € R% corresponding to the user performing the access (e.g. is
a physician? has an administrative job role?),

(iii) patient-specific features x, € R% corresponding to the patient whose record is being
accessed (e.g. had a clinic visit within a week? is a VIP patient?), and

(iv) relational features x, € R% specific to the access (e.g. do the user and patient share the
same last name?).

Our task is: given a new access a’ = (u', p’, x;, x,,, x;), can we predict whether or not it is a
violation?

2 Data preparation

In Sect. 1, we described the data arising in access violation problems in abstract terms. In
practice, there are several important characteristics of the data that impact performance and
model design. First, there are relatively few labelled training examples. Collecting labelled
data is a daunting task for security officers, because they provide a lengthy, in-depth anal-
ysis of each case and are therefore generally unable to look at more than a few hundred
cases per review period. Second, access violations are generally rare, as most employees
self-moderate. Thus, amongst the labelled examples, one would expect the classes to be
highly imbalanced, with a small fraction of examples being labelled as violations. Third, the
data likely suffers from sample-selection bias. Indeed, we found that security officers tend
to provide labels for conspicuously improper accesses, which may be unrepresentative of
future accesses. (We discuss another manifestation of this bias in Sect. 4.2.)

Our experiments are based on two real-world datasets. The first is data collected for a
prior study of machine learning techniques for privacy breach detection (Kim et al. 2011).
We call this dataset “Hospital”. The raw data comprised 34.1 million EHR accesses from
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the operational databases of two tertiary hospitals in Boston, MA, USA over six months in
the year 2009. From this large pool, security experts provided 1504 accesses a positive or
negative label, denoting a violation or safe access respectively. A further 4958 accesses were
annotated with features, but not labelled; these comprise unlabelled examples that one may
hope to use for learning. In total, there are 313 users and 319 patients in the labelled set, with
a positive to negative label ratio of about 1 : 7. We have 9 event-side features, 7 user-side
features, 12 patient-side features and 9 relational features. The full list of feature names and
their detailed descriptions can be found in Boxwala et al. (2011). Given the sensitive nature
of the data, we are unfortunately unable to release it for public use.

The second dataset is the recently released Amazon Access data,! which involves the
task of predicting whether users are allowed to access a file or not. We call this dataset
“Amazon”. While the semantic meaning of the data is not exactly the same to the EHR
access scenario that is the focus of this paper, there are enough similarities in the goal to
justify using the same model for this scenario. We include results on this dataset since it is
publicly available, and thus serves as a potential benchmark for future research. The dataset
comprises 1027 347 labelled accesses of 79 906 users on 11 615 files. The accesses are either
labelled as positive, denoting access is allowed, or negative, denoting access is denied or
revoked. Each user also has 11 categorical features denoting the manager that he reports to,
his current role in the company, and so on.

3 Machine learning technique
We now discuss the motivation and mechanics of our machine learning model.
3.1 A collaborative filtering model

We analyze the access violation problem in terms of dyadic prediction (Hofmann et al.
1999), where the goal is to predict a label for the interaction of a pair of entities. This frame-
work captures scenarios such as recommending friends in a social network (Yang et al.
2011), predicting student performance on test scores (Thai-Nghe et al. 2011), and click-
through rate prediction in computational advertising (Menon et al. 2011). A well-studied
instance of dyadic prediction is the task of predicting users’ ratings for items based on their
past preferences. Collaborative filtering is a popular strategy for this problem, where one
attempts to tease out the implicit characteristics of users and items based solely on these his-
torical preferences, and use these to predict preferences for every (user, item) pair. Arguably
the most powerful collaborative filtering approach is the latent feature model (Koren et al.
2009), where the predicted label for the pair (i, j) is

5(G ) 0) = flaf B +vi +8; + 1)

for some appropriate link function f(-). The terms here include a global bias w, user-
and item-specific biases y; € R,8; € R, as well as an interaction term o’ B i, where
a e R&*™ B e RF*" for some number k € Z+ of latent features.

Observe that our training set 7 may be encoded as an m x n table’ Y, where m is the
number of users, n the number of patients, and each cell (i, j) collects all outcomes of the

1 https://sites.google.com/site/amazonaccessdatacompetition/.

21f each user accessed each patient record at most once, this table could be represented as a matrix.
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user i accessing the patient j’s record:
Yij={(a.y):(a,y) €T Au@) =i A pa) = j}.

This is similar to an item recommendation problem: we are trying to measure the affinity
a particular (user, patient) pair has for violation. The “rating” that a user gives a patient is
a measure of the appropriateness of the corresponding interaction. (Unlike classical item
recommendation, here, each cell can comprise multiple entries, because a user can access
the same patient’s record multiple times, in different contexts.) With this interpretation, we
may look to apply techniques from collaborative filtering to the access violation problem. In
particular, a latent feature approach models the suspiciousness of the access a as

$a;0) = f(w'gp@) +al By +vu+8, + ).

We can interpret o, and §, as comprising certain latent features of the user and patient
respectively. We additionally allow for a term w” ¢)(a) that leverages information present in
any explicit features ¢ (a) for the access.

This model has several desirable characteristics. First, it captures strictly more informa-
tion than a supervised learning method, by virtue of augmenting explicit features with latent
features that are learned from data. Second, it may be trained efficiently on large datasets
using stochastic gradient descent (Koren et al. 2009). Third, stochastic gradient training al-
lows for incremental updates to the learned model, rather than full retraining. Fourth, such
models have been shown to work well in traditional collaborative filtering applications, so
one may hope that they perform similarly well in this domain.

3.2 Extending the basic collaborative filtering model

We now discuss some domain-specific extensions to the collaborative filtering model. (We
defer the mathematical details to the Supplementary Material.)

One basic issue with access violation data is the scarcity of labels, since each label must
be determined by security experts. Consequently, most rows and columns in the (user, pa-
tient) table will have only a few labels. How do we reliably estimate latent features from
such data? To meet this challenge, we use the intuition that while at the user- and patient-
level accesses are sparse, they are denser if we pool together users and patients into clusters
or bins. We may then estimate coarse latent features at this cluster level, and use this as a
prior for the more personalized user- and patient- latent features. Intuitively, all characteris-
tics being equal, we would expect the access patterns of two cardiologists to be similar, and
so given an estimate for a general cardiologist’s latent vector, we can push every individual
cardiologist’s vector towards this. An appealing consequence of this pooling process is that
it gives a principled way of handling the cold start problem, namely, new users or patients
for whom we do not already have any labelled accesses. One certainly expects there to be a
constant flow of new patients to any healthcare facility, making this a pertinent problem for
this domain. Our approach effectively lets such cold-start entities inherit the characteristics
of all other (labelled) entities in the same cluster.

Another issue is that the latent feature model above keeps a context-independent score
of user u accessing patient p, via the term « B,,. This ignores the contextual information
present in the relational feature x,; this is only taken into account by the weights on the
interaction features in the w” ¢ (a) term. While sensible, one may hope to directly estimate
context-dependent latent features. For example, we could use a separate set of latent vectors
depending on whether the relation involves family members, or not: a user may be scrupu-
lous in general, but unreliable when it comes to people he is related to. We can thus modify
the model to estimate a separate set of latent features for each possible interaction context.
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3.3 Comparison to existing work

Recently, much work has been done on automated detection of inappropriate access to health
records, and the related problem of determining if a user conducts anomalous accesses. In
Chen and Malin (2011), the problem of detecting anomalous users was approached by in-
ferring a set of social structures, on top of which anomaly detection was applied. In Zhang
et al. (2011), classifier-based role prediction was performed to assign a limited access to a
user. Association rule mining on an inferred social network of EHR users based on access
patterns was used in Malin et al. (2011). Another framework was developed in Fabbri and
LeFevre (2011) to automatically extract a reason for each EHR access, which may be prac-
tically useful. Unfortunately, these studies did not use labelled EHR access in a real hospital
setting, and therefore did not report performance metrics of real access violation detection
(e.g., 0-1 accuracy or area under the ROC curve). In contrast, we use labelled samples from
real EHR accesses, based on data collected for the study (Boxwala et al. 2011). In the latter
study, acting security officers in the participating institutions provided labels, and this was
expanded by requesting more labels on selected samples using active learning. The initial
study performed classification using logistic regression, and this was later extended to use
clustering and rule-based detection (Boxwala et al. 2011). Considerable efforts were spent
on designing predictive features.

The key difference to Boxwala et al. (2011) and Kim et al. (2011) is that we move from
supervised learning to collaborative filtering. A pure supervised learning approach has two
limitations. First, its efficacy relies on the underlying features being predictive of whether or
not the access is likely to be a violation. But specification of such explicit features is difficult,
and might not be comprehensive. Second, it ignores the identity of the user and patient
for a single access, which may be sub-optimal. Suppose that there is a particular patient
whose record has been illegally accessed in the past. Then, it is reasonable to elevate the
suspicion of any future access of this patient’s record being a violation, because for example
it may be the case that this patient has some “interesting” condition (e.g., the aforementioned
mother who gave birth to octuplets). One way to overcome this limitation is to augment the
feature representation ¢ (a) to include information about the access history of the user # and
patient p. However, this strategy will always end up playing “catch up” to find a suitable
representation of prior accesses. The collaborative filtering approach aims to automatically
uncover these complex relationships.

4 Experimental design
We now discuss the design of our experiments, and some dataset processing details.
4.1 Methods compared and evaluation scheme

We compared the basic collaborative filtering model using logistic loss (“CF”)* with three
supervised learning methods, namely linear regression, logistic regression, and SVM with
a linear kernel.* For the supervised learning methods, we experimented with both us-
ing the raw feature set, as well as augmenting it with features derived from past history

3We observed qualitatively similar results for the square loss.

4We did not experiment with nonlinear versions of these methods. Adding nonlinearity would likely improve
performance, but would still be limited by the fact that no identity information is used when learning. Thus,
as argued in Sect. 3.3, there is a fundamental limitation to supervised learning as compared to collaborative
filtering.
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(“+History™), such as the number of prior violations the user/patient was involved in and
the fraction of accesses that were violations,. For the collaborative filtering model, we used
the extensions described in this paper, where appropriate progressively adding explicit fea-
tures (“+Feats”), pooling together latent features (“+Pooling”), and having relational fea-
ture components (“+Rel”). Our final model used all components in conjunction.

We evaluated performance of various methods using nested 5-fold cross-validation,
where each training fold was split into 2 further folds for hyperparameter selection. Our
performance metrics are the root mean squared error (RMSE) of the model predictions to
the access label, the area under the ROC (AUROC) (Fawcett 2006) and precision-recall
(AUPRC) curves (Davis and Goadrich 2006) (where the curves plot the false positive vs
true positive rate and precision vs recall respectively), and the geometric mean of the sensi-
tivity and specificity of the classifier (Kubat and Matwin 1997) with a default threshold of
0.5 (G-Mean). The latter three metrics are generally employed when classes are imbalanced,
and/or when there is an implicit, but unknown, cost-sensitive nature to the incorrect predic-
tions. The RMSE measures the fidelity of model predictions as probability estimates, which
is useful if we were to take downstream actions based on the confidence score outputted by
the classifier (for example, selecting the accesses most confident of being (non-)violations,
and sending them to a security officer for a time-consuming review.).

4.2 Processing of the datasets

The Hospital data has a quirk that forced us to process it before applying collaborative
filtering methods: namely, for each user, either all of her accesses are violations, or none
of them are. The reason for this is the data was collected for the study of Boxwala et al.
(2011), where user and patient identifiers were not factored into the learning algorithm; as
security officers were not directed otherwise, they found it natural to identify suspicious
users, and collect a random sample of their accesses, rather than directly collect a random
sample of suspicious accesses. As a result of this issue, a collaborative filtering model will
simply memorize this “trust-worthiness” of each user as part of the bias term, and appear
to be perfectly predictive of violations. This issue forced us to remove the user and patient
identifiers when training our collaborative filtering models. However, we retained the cluster
or bin for each user and patient, as described in the previous section. Thus, while we no
longer know the raw identities of users and patients, we may still operate on the user cluster
by patient cluster matrix.

We clarify some points regarding the above processing. First, it has no influence on the
supervised learning baselines as studied in Boxwala et al. (2011) and Kim et al. (2011), as it
only modifies information about the user and patient identifiers, which these methods do not
exploit. Second, the processing only hampers collaborative filtering methods, by allowing
us to use strictly less information than we would like in a real world usage of such a system.
As we shall see, even this handicapped version of collaborative filtering performs favorably
compared to existing baselines. Third, it only applies to the Hospital dataset; as there is
no similar issue in the Amazon dataset, we use it as-is, and apply all previously described
variants of our method.

5 Empirical results

We now present results that aim to determine whether our collaborative filtering model al-
lows us to catch more privacy breaches than existing methods.
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Table 1 Cross-validation performance with standard deviations, Hospital dataset

Model RMSE AUROC AUPRC G-Mean

Linear reg. 0.2139 £0.0217 0.9642 + 0.0227 0.8838 £ 0.0492 0.8767 £ 0.0388
Logistic reg. 0.2049 £ 0.0248 0.9688 +0.0175 0.8935 £ 0.0459 0.8876 £ 0.0401
SVM 0.2875 £ 0.0155 0.9658 +0.0231 0.8938 £ 0.0463 0.8834 £ 0.0382
Linear reg. + History 0.2121 £0.0216 0.9651 +0.0213 0.8871 £0.0491 0.8757 £0.0397
Logistic reg. + History 0.1957 £0.0252 0.9800 £ 0.0105 0.9101 £0.0443 0.8919 £0.0374
SVM + History 0.2382 £0.0311 0.9779 £0.0109 0.9045 £ 0.0432 0.8885 £ 0.0402
CF 0.1634 £+ 0.0269 0.9900 + 0.0055 0.9368 £ 0.0457 0.9251 £0.0314
CF + Feats 0.1398 £ 0.0307 0.9924 + 0.0067 0.9687 £ 0.0248 0.9456 £+ 0.0309
CF + Rel 0.1510 £ 0.0305 0.9921 £ 0.0051 0.9578 £0.0264 0.9427 £0.0319
CF + Feats + Rel 0.1380 £0.0310 0.9916 £0.0118 0.9714 £0.0275 0.9402 £+ 0.0329

5.1 Results on Hospital data

Table 1 summarizes the results on the Hospital dataset. We draw the following conclusions
from our results:

— Linear and logistic regression are reasonably strong baselines, and perform favorably on
all performance metrics.

— On all metrics, the basic collaborative filtering model (that only uses user and patient
cluster identifiers) performs at least as well as the explicit feature baselines of linear and
logistic regression. This indicates that there is strong signal present in the user and patient
cluster identifiers, and that they are largely as informative as even interaction-specific
features.

— Taking into account historical accesses in the supervised learning models improves their
performance. However, the CF model significantly outperforms this extended feature rep-
resentation. This says both that taking into account identities and past history can give
an important benefit over the information contained in the features alone, and that the
influence this information has on the label is potentially complex.

— With respect to all metrics, combining latent and explicit features at least maintains, and at
best improves the overall performance of either individual model. This indicates that there
is potentially complementary information in the (cluster-level) user and patient identifiers
over just the explicit features.

To get a clearer sense of the distinction to logistic regression, we plot in Fig. 1(a) the his-
tograms of scores produced by both models. The clear differences are that the collaborative
filtering model predicts more examples to be highly likely of violation, and that it is more
conservative about predicting an example to not be a violation. In Fig. 1(b), we plot the pre-
dicted scores of logistic regression and our collaborative filtering model on all 1504 exam-
ples. For each example, we determine which of the two methods makes a correct prediction
(after thresholding the scores at 0.5), and colour the points in the scatterplot appropriately.
We see that there are several cases where logistic regression is incorrectly overconfident
(i-e., makes a prediction close to 0 or 1), while the collaborative filtering model is more
conservative on the correct side on the threshold. (Note that thresholding to give a binary
score is a simplification of the actual process followed based on a classifiers’ predictions,
which will likely exploit the confidence values in some domain-specific manner. It is here
that better RMSE’s, indicating better probability modeling, become important.)
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Fig. 1 Comparison of models on Hospital dataset

The results for the Hospital dataset suggest improvements of between 2 %—4 % in the
ranking metrics. Given the relatively high scores of the baselines, however, it is prudent to
attempt to quantify the practical significance of the improvements. Figures 1(c) and 1(d)
study the precision-recall and ROC curves of logistic regression versus our collaborative fil-
tering model. We see that the latter achieves perfect precision with a recall nearly twice that
of logistic regression. This increased detection rate is important, given the cost associated
with these violations. The ROC curve shows that the collaborative filtering model almost
perfectly separates violations from non-violations, and in particular manages to reduce the
number of false positives over logistic regression for a range of thresholds. At almost perfect
positive recall, the collaborative filtering model cuts down the false positive rate by over a
factor of four. We further observed that the collaborative filtering curves strictly dominate
those of logistic regression, indicating that for every choice of threshold, we have a better
false and true positive rate.

5.2 Results on Amazon data
Table 2 summarizes the results on the Amazon dataset. (As the dataset does not include

(user, file) features, it is not possible to evaluate the efficacy of learning relation-specific
features here.) We make the following observations:
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Table 2 Cross-validation performance with standard deviations, Amazon dataset

Model RMSE AUROC AUPRC G-Mean
Linear reg. 0.2724 £ 0.0307 0.6198 £0.0231 0.9559 + 0.0027 0.0920 £ 0.0339
Logistic reg. 0.2290 £ 0.0010 0.7655 £0.0021 0.9784 + 0.0004 0.0677 £ 0.0500
SVM 0.3295 £ 0.0002 0.7712 £0.0029 0.9787 £ 0.0006 0.0277 £0.0143
CF 0.2213 £ 0.0008 0.9102 £ 0.0009 0.9931 £ 0.0001 0.4622 + 0.0046
CF + Feats 0.2172 £ 0.0009 0.9133 £0.0013 0.9934 £ 0.0001 0.4715 £ 0.0095
CF + Pooling 0.2177 £0.0010 0.9102 £ 0.0007 0.9931 £ 0.0001 0.4629 £ 0.0051
CF + Pooling + Feats 0.2084 + 0.0009 0.9189 £ 0.0009 0.9938 £+ 0.0001 0.5024 +£ 0.0090
Fig. 2 Reliability diagram on 1 " . . . .
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— Explicit features do not seem very helpful on this dataset. This is likely a consequence of
the fact that they are very sparse in instance space, that is, each feature is only active for
a small fraction of examples. (Indeed, the median fraction of examples where a feature is
onis ~0.02 %.)

— Collaborative filtering offers a significant improvement over supervised learning methods
in this dataset. The area under the ROC curve, for example, increases by over 15 %. This
is in contrast to the Hospital dataset, where the improvements were much more modest.

— Our latent-feature pooling method improves performance slightly, but reliably. We note
that the final model that employs pooling and explicit features sees significant improves
in both the RMSE and G-Mean metrics, though the rankings stay essentially the same.
The improvement in RMSE suggests that the quality of the probability estimates found
by the model are superior to the supervised learning methods.

The large differences between our method and the supervised learning baselines in the
ranking metrics lead one to expect similar dominance in the underlying curves. Indeed,
this is the case, but due to space constraints, we defer these plots to the Supplementary
Material. To analyze the results on a different dimension, Fig. 2 plots a reliability diagram
(Murphy and Winkler 1977) for the two models. The purpose of this diagram is to evaluate
the fidelity of the probability estimates returned by a model. The x-axis comprises classifier
scores, and for a given score, the y-axis comprises the fraction of positives amongst all
examples that are predicted to have that score. (For clarity, such a diagram is generally
produced by binning the classifier scores.) A model for which the curve is a diagonal is
said to be calibrated (DeGroot and Fienberg 1983). The curve shows that the collaborative
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filtering model generally produces a tighter fit to the diagonal, indicating it provides better
probability estimates. Logistic regression appears to especially suffer for predictions that
are close to 1: we see that there is a sudden dip below the diagonal after the 0.5 threshold,
which corroborates our explanation for the non-monotonicity of the precision-recall curve.

6 Expert commentary and potential infusion

We comment on the practical viability of the model proposed in this paper, and discuss
challenges that it (and any other machine learning model) must overcome to truly provide
an automated solution to the access violation problem.

6.1 Potential real world impact

Towards the end of the study in Boxwala et al. (2011), the participating hospital system
conducted investigations based on the learning model’s predictions, and imposed sanctions
on offending users when needed (Kim et al. 2011). In fact, in one case a user faced termina-
tion of employment. Other offenders were given warnings and were re-educated about the
institution policies. The institution also conducted an employee education campaign, rein-
forcing the “Minimum Necessary” access policy. The campaign enlightened staff who were
not aware of certain aspects of hospital policy, for example that family member accesses are
forbidden.

The above makes clear that machine learning systems can have a high impact in this do-
main. Given that our model was designed to extend the successful supervised learning mod-
els, and that it showed good empirical performance, it suggests that it may facilitate tangible
real-world value. As a further benefit, the proposed machine learning system is devised to
detect rare events in large-scale hospital data. So, the same method could potentially be ap-
plied to other rare event detection problems in healthcare, such as detecting post-operative
complications, adverse drug events, medical insurance fraud, et cetera (Boxwala et al. 2011;
Kim et al. 2011). However, as we now discuss, simply performing better than existing mod-
els is not sufficient to constitute a practically significant advance in the domain.

6.2 Why accuracy is not enough: gaining insights from the model

From a machine learning perspective, our proposed algorithm is novel for this domain, and
our experimental results showed that it can be significantly more accurate in discriminating
between appropriate and inappropriate accesses. However, from the domain experts’ per-
spective, these improvements were not seen as especially appealing. The machine learning
model is largely treated as a black box, and so modifying this box to produce better results
was of course appreciated, but was not as exciting as going from manual to automated audit-
ing. However, what did appeal was the ability to gain new qualitative insights about the data.
As our collaborative filtering model infers latent features for users and patients, unlike su-
pervised learning models, we can hope to gain different insights compared to the supervised
learning models.

To attempt to gain insights from the model, we added a visualization layer summarizing
model-generated prediction results to enable the security officer’s decision support in an in-
tuitive manner. We constructed a user-patient interaction map that reveals which subgroups
of users and patients have a high risk of being involved in an inappropriate access. Figure 3
displays the user-based patterns in columns and patient-based patterns in rows. The color
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Fig. 3 Heatmap for user-patient interaction. Each cell represents a prediction score for inappropriate access
ranging from O (green) to 1 (red) (Color figure online)

of each cell represents the model’s predicted score of an access involving the appropriate
groups as being a violation (1) or a non-violation (0). The heat map, as a byproduct of col-
laborative filtering model, provides explainability and actionable findings, which can serve
as a visual tool for evaluating employee integrity and measuring inappropriateness risk of
the patients. For example, an access by user cluster ‘U31’, a bulky user who accesses more
than 200 EHRs per day, is likely to be inappropriate if the patient being viewed has been de-
ceased more than a year, so termed long-deceased. While the accesses from the user cluster
‘U110’ in the last row are mostly appropriate as these users have clinical jobs, an exception
is made when a patient is VIP and has been hospitalized recently. Another simple lesson
from the heatmap is that patients who have been deceased more than a year (first column)
are highly likely to be victims of inappropriate EHR access.

As further analysis of the model, Fig. 4 visualizes the similarities between various user
and patient groups in the learned latent space. For this visualization, we only keep the edges
between groups that have weights in the 90th percentile; all other edges are removed, as
are the resulting isolated nodes. The figure reveals some interesting structure about the data,
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for example that VIPs who have recently visited the hospital have different access patterns
depending on whether they were admitted one or two weeks ago (P12 to P15). Another
observation is that users with clinical jobs who perform an access during a clinical hour
have a different pattern of access to those who do it outside of a clinical hour (U11 to U12).
These visualization tools promoted interaction and communication between ML researchers
and security officers.

6.3 The human “bottleneck”

At the outset, we pointed out that the ideal end-system would be fully automated, and obviate
the need for manual human effort. While previous works and our model take a step in this
direction, they are far from a fully automated access violation system. The reason is that
they involve collecting labelled examples from a security officer. For the study in Boxwala
et al. (2011), the officers who provided labels had to go through the time-consuming process
of multiple phone calls, emails, interviewing the suspect’s supervisor, examining records in
multiple disparate systems, et cetera. For this reason, the fraction of labeled instances in the
Hospital dataset is relatively low (less than 0.01 %).

It is difficult in general to overcome the labelling “bottleneck”, but there are at least two
ways that machine learning models can attempt to mitigate this. First, the model can be
used in an active learning framework, so that its predictions are used to inform which set of
examples are sent to the security officers for review and labelling. Second, the models can
try to exploit the vast amount of unlabelled data that is present. In preliminary experiments
with the latter, however, we found that it was difficult to gain a significant improvement in
performance.

7 Lessons for ML community

We believe our study has the following take-home messages for the ML community at large.
First, pressing problems in healthcare may be modelled using techniques developed in the
ML community for apparently disparate problems. Current systems for these problems tend
to involve human classification, or relatively elementary ML models. Thus, there is scope for
high impact by carefully adapting mature ML techniques to this domain. Second, close col-
laboration with end-users is required to ensure that the data collected matches what makes
most sense for the model. In our Hospital data, we faced the issue of all labels associated
with a particular user either being appropriate or inappropriate. This arose because the data
was collected at a time when user and patient identifiers were not used as part of the mod-
elling strategy: therefore, significant care is needed at the modelling stage to ensure that
the effort expended in collecting data is not wasted if the model is changed slightly. Third,
improving predictive performance, even significantly, is not always the biggest priority for
the end-user. Our collaborators in the hospital system saw the value of ML as the decision
support guiding tool, directing the security officers toward the cases with the most potential
for being inappropriate, then using human resources in a smarter way to spend their limited
time to investigate where the risk is highest. Fourth, there is need to design techniques that
can effectively learn from a minimal number of labelled examples, as these are difficult to
collect.

Overall, we believe there is scope to use ideas from social network analysis and collab-
orative filtering to improve detection of inappropriate accesses, and that our model is one
step in this direction.
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