Mach Learn (2013) 92:65-89
DOI 10.1007/s10994-013-5371-6

Beam search algorithms for multilabel learning

Abhishek Kumar - Shankar Vembu -
Aditya Krishna Menon - Charles Elkan

Received: 18 November 2012 / Accepted: 25 April 2013 / Published online: 22 May 2013
© The Author(s) 2013

Abstract Multilabel learning is a machine learning task that is important for applications,
but challenging. A recent method for multilabel learning called probabilistic classifier chains
(PCCs) has several appealing properties. However, PCCs suffer from the computational is-
sue that inference (i.e., predicting the label of an example) requires time exponential in the
number of tags. Also, PCC accuracy is sensitive to the ordering of the tags while training.
In this paper, we show how to use the classical technique of beam search to solve both these
problems. Specifically, we show how to apply beam search to make inference tractable, and
how to integrate beam search with training to determine a suitable tag ordering. Experimen-
tal results on a range of datasets show that the proposed improvements yield a state-of-the-art
method for multilabel learning.

Keywords Multilabel classification - Probabilistic models - Beam search - Structured
prediction

Editors: Tijl De Bie and Peter Flach.

Abhishek Kumar and Shankar Vembu contributed equally to this work. Shankar Vembu carried out parts
of this research while working at UCSD.

A. Kumar - A.K. Menon - C. Elkan
Department of Computer Science and Engineering, University of California, San Diego, USA

A. Kumar
e-mail: abhishek @ucsd.edu

A.K. Menon
e-mail: akmenon@ucsd.edu

C. Elkan
e-mail: elkan@ucsd.edu

S. Vembu (B<)
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
e-mail: shankar.vembu @utoronto.ca

@ Springer

mailto:abhishek@ucsd.edu
mailto:akmenon@ucsd.edu
mailto:elkan@ucsd.edu
mailto:shankar.vembu@utoronto.ca

66 Mach Learn (2013) 92:65-89

1 Introduction

In the classical supervised learning task of binary classification, the goal is to learn a model
that, given an input x € X, returns a single binary prediction y € {0, 1}. This value y is
considered to be a label of the example x, denoting whether it possesses some characteristic,
or not. For example, x may represent an image by its pixel values, and y may denote whether
or not the image contains a face. Multilabel learning is an extension of binary classification
where the goal is to return multiple binary predictions, or equivalently a vector y € {0, 1}X.
The label y now measures multiple characteristics of the example x, each of which we call
a tag. For example, x may represent an image as before, and y could denote whether K
specific people’s faces appear in the image.

The recently proposed probabilistic classifier chain (Dembczyniski et al. 2010; Read et al.
2011) (PCC) method is an attractive solution for multilabel classification for several reasons.
First, it is based on a reduction of multilabel to binary classification, which allows us to
leverage existing research on designing scalable and powerful binary classifiers. Second, it
is a principled probabilistic model, and there is a theoretical understanding of how it may
be used to produce Bayes optimal predictions for a variety of loss functions (Dembczyriski
et al. 2010). Third, it is computationally inexpensive to train unlike, for example, structured
prediction methods (Finley and Joachims 2008), which involve inference during training.
Fourth, it is trained on the original label space without any prior transformations (Breiman
and Friedman 1997; Weston et al. 2002; Hsu et al. 2009; Bi and Kwok 2011), which is
important in certain settings and applications.

Despite the above positive characteristics, the current formulation of PCCs suffers from
at least a couple of drawbacks. First, on the computational side, they are only applicable to
multilabel data sets with a few number of tags. This is because to use a PCC at test time for
an example with K possible tags, we need to evaluate all 2X possible labelings, and pick
the highest scoring one. This becomes quickly infeasible as K increases. Second, on the
performance side, their accuracy depends on a pre-specified ordering of the tags. Different
orderings result in solutions of different accuracy, and so a natural question is whether one
can determine the ordering that yields the best performance. As with the previous issue, the
current understanding of PCCs requires either picking a random ordering, or trying all K!
possibilities.

In this paper, we propose to address these shortcomings with PCCs using beam search,
a classical heuristic search algorithm. In particular, we propose to use beam search to per-
form inference with PCCs at test time, changing the runtime from O (2%) to O(bK), where
b is a tunable beam width. As we shall demonstrate, in practice a beam size b < 2X achieves
good performance. We also present an algorithm that integrates the search for the best or-
dering of tags with the learning algorithm. To avoid the burden of training a classifier for
each ordering, we use kernel target alignment (Cristianini et al. 2001) to score the viability
of a given ordering. Finally, we propose a richer feature representation for learning indi-
vidual tag models than what is used in existing PCC approaches (Dembczyniski et al. 2010;
Read et al. 2011). Experimental results on a range of multilabel data sets show that the new
scheme is able to improve on PCC, and to extend its applicability to data sets with a large
number of tags.

This paper is organized as follows. First, in Sect. 2, we review the problem of multilabel
learning and the PCC model. In Sect. 3, we analyze PCC in detail, pointing out its rela-
tionship to existing models, and highlighting some of the challenges in using them. Next,
in Sect. 4, we show how one may use beam search to speed up test time inference of the
method. In Sect. 5, we show how beam search may be integrated during the learning phase

@ Springer

Mach Learn (2013) 92:65-89 67

to determine the tag ordering. In Sect. 6, we discuss several issues related to the focus of
this paper, and comment on possible extensions of our work. Finally, we present a range of
experimental results in Sect. 7.

This paper extends our earlier conference publication (Kumar et al. 2012). We have in-
cluded a new section analyzing PCCs in relation to other methods (Sect. 3) and a signifi-
cantly expanded discussion (Sect. 6). We have extended our experimental results (Sect. 7) by
(1) comparing our beam search method for inference with the approximate inference method
of Dembczyriski et al. (2012), (ii) comparing PCCs trained with our beam search method for
learning the tag ordering with ensemble PCCs (Dembczyniski et al. 2010), and (iii) providing
a rigorous analysis of experimental results using statistical hypothesis tests.

2 Multilabel learning and probabilistic classifier chains

Let X C RY be the input space and I = {0, 1}¥ be the label output space defined over a fixed
set of K tags. Given a set of m training samples 7 = {(x, y@)} | where (x@, y©) €
X x Y, the goal of a multilabel classification algorithm is to learn a mapping f : X —).
We will use the notation y,ﬁ') to denote the kth tag of the ith example.

The naive solution to the multilabel learning problem is to decompose it into K in-
dependent binary classification problems, one for each tag y,. This method is known
as binary relevance. This method is optimal in theory for certain loss functions, such
as the Hamming and the ranking loss (Dembczynski et al. 2010). However, in practi-
cal situations where training data is limited, and for loss functions that take the consis-
tency of the entire tag sequence into account, it is intuitively necessary to exploit cor-
relations between tags to make better predictions. This intuition has motivated numerous
multilabel learning algorithms (see Tsoumakas and Katakis 2007; Tsoumakas et al. 2010;
Sorower 2010 for surveys).

Recently, Read et al. (2011) proposed a simple decomposition method called the classi-
fier chain (CC) that appears similar to binary relevance, but is able to exploit tag correlations.
As with binary relevance, the idea is to train K separate models, one for each tag. The dif-
ference is that the model for tag k uses as input features not only the data point x but also
the (k — 1) tags, yi1, y2, ..., Yk—1, previously modeled. We thus attempt to use any relevant
information in the previous tags to improve the model.

The focus in this paper is the PCC method (Dembczyniski et al. 2010), which generalizes
the CC approach through a probabilistic framework. A probabilistic classifier chain (Dem-
bezyrski et al. 2010) estimates the conditional distribution p(y | x) using the chain rule of
probabilities:

K
PG 1) = pGaay | O [[POt | X ¥y - Vo)
k=2

where 7 (-) is some fixed permutation/ordering of tags. Thus, learning a multilabel classifier
is reduced to learning K independent probabilistic binary classifiers. These independent
base classifiers may be, for example, logistic regression models with a specialized feature
representation:

POy | X0 Yty -+ Yath-1y: 0) o< exp((O ey, Pt (x, 1))

for k =2 to k = K. In Dembczyriski et al. (2010), the choice ¢y (x,y) =x D (y1, ..., Yk—1)
was used, where a @ b is the concatenation of the vectors a and b, so that 6, € R?t*~1_ This

@ Springer

68 Mach Learn (2013) 92:65-89

means we need to learn RX+K(K-D/2 parameters in total, as opposed to R?X parameters
with binary relevance. Suppose we write 6; = [wy; vi], where wy € R? and v; € R¥~!. Then,
it may be verified that the joint probability model with a logistic regression base learner is

exp(yTWx +yTVy)
[T, (1 + exp(Wx + Vy)y)

p(ylx;0)= (1)

where W =[w; ... wg]and V =[v; ... vkg]. The matrix V is lower-triangular, since we
first model y, (1), then y(2), and so forth.

3 Analysis of probabilistic classifier chains

Having reviewed the basic idea of PCCs in the previous section, we now study them in more
detail. We begin by comparing the model to other probabilistic approaches to multilabel
learning. We then analyze some of the advantages of the framework, as well as some of the
challenges it poses. Overcoming the latter will form the basis for the rest of the paper.

When analyzing any multilabel learning model, perhaps the first question is how it differs
from the binary relevance (BR) baseline. We contrast this model to the one used by PCCs,
and then discuss maximum entropy Markov models, conditional random fields and nonlinear
base classifiers.

3.1 Connection to binary relevance

In BR, for each tag k, we learn an independent model for p(y; | x). If we use a logistic
regression model for each of these probabilities, we have

Pk | x;0) occexp({wg, x)).

We can put these individual tag models together to form the label model

exp(y” Wx)
p(ylx;0)=—%
[Tiei (14 exp (Wx)i)
where, as before, W = [w; ... wg]. Contrasting this to the PCC model of Eq. (1), the

difference is the tag interaction term y7 Vy. Intuitively, the presence of this term in the PCC
model allows it to capture relationships between the various tags.

Another perspective on the difference between the two models can be gained by looking
at how PCCs model each p(y; | x). Consider the case of two tags, K = 2, with the use of
logistic regression for each per-tag model. Suppose we pick the identity permutation for the
ordering 7 (-). Let o () = 1/(1 + exp(—1t)) be the sigmoid function. Then p(y; =1]|x) =
o ({wy, x)) and

P=11x)=pmIy=0,x)p(y1=0]x)+p(nly=Lx)p(1=1]x)
=0 ((w2,x)) (1 — o (w1, x))) + o ((wa, x) + v2)o ((w, x))

where w;, w, are weight vectors and v, is the bias term arising from taking into account
the value of y; when modeling p(y, | y1, x). The model for the first tag is thus identical
to BR. However, the model for p(y, | x) is distinct. First, it is no longer a simple logistic

@ Springer

Mach Learn (2013) 92:65-89 69

Fig. 1 Graphical models for MEMM (left) and PCC (right). Variables in white nodes are not generated by
the models

regression model. Second, it shares parameters with the model for the first tag. Intuitively,
PCCs allow for sharing of parameters between tags, which in turn allows us to leverage any
shared structure between the tags.

The above analysis generalizes to more tags, in which case the conditional p(y; | x) in-
volves the product of k sigmoids. This is reminiscent of a neural network model for each tag
in BR. However, the key difference is that in PCCs, there is sharing of parameters amongst
all tag models. Further, the complexity of the tag models increases as we go further along
the chain, as opposed to using identical models for each tag in BR.

3.2 Connections to MEMMSs and CRFs

The PCC model is a higher-order extension of the maximum entropy Markov Model
(MEMM) (McCallum et al. 2000), used in structured prediction. An MEMM is a Bayesian
network that uses log-linear models to model the conditional probability of a reaching a
state given an observation and the previous state. However, PCCs are more powerful and
expressive than MEMMs because the probability distributions in the chain are conditioned
on all the previous tags and not only the preceding tag. The graphical models for PCC and
MEMM are shown in Fig. 1. The inference problem in MEMM is tractable using dynamic
programming, but in PCC it is not tractable due to the presence of higher-order dependen-
cies among tags. This is precisely the reason for resorting to heuristic inference methods
such as beam search.

Conditional random fields (CRFs) (Lafferty et al. 2001) are graphical models that have
been successful in many applications. Linear-chain CRFs were first explored for multil-
abel learning by Ghamrawi and McCallum (2005). Their relationship to PCCs was explored
by Dembczynski et al. (2011b). Although CRFs and the base classifiers in PCCs are log-
linear models, they are conceptually quite different. It is more computationally expensive to
train CRFs, because they have a global partition function Z (6, x) = Zzey exp({0, ¢(x,2))),
whereas for PCCs we can train a sequence of separate models. Another difference is that,
unlike PCCs, linear-chain CRFs cannot capture dependencies among tags of order three or
higher.

It is also interesting to consider the consequences of using nonlinear base classifiers in a
PCC. Employing a nonlinear classifier such as kernel logistic regression does not change the
structure of the graphical model of a PCC, but rather the nature of the individual conditional
probability tables. As an example, a joint polynomial kernel defined on input features and
tags expands the feature set, but does not modify the dependency structure of the tags. Using
a nonparametric model as a base classifier can result in improved conditional probability
estimates (Menon et al. 2012), but at the cost of increased time complexity for training the
base classifier.

@ Springer

70 Mach Learn (2013) 92:65-89

3.3 Advantages and challenges of PCCs

Having contrasted PCCs to existing multilabel learning models at a mathematical level, we
now step back and consider whether the model has any particular strengths and/or weak-
nesses. Indeed, the PCC approach has a number of attractive properties as a multilabel clas-
sification method:

(1) It is based on a reduction from multilabel to binary classification, which allows us to
leverage existing research on designing scalable and powerful binary classifiers. Com-
pared to the original classifier chain (CC) method (Read et al. 2011), which also uses
decomposition, the key difference in this regard is that the decomposition is probabilis-
tically motivated. Also, unlike CCs, PCCs do not use the model’s predictions of the
past tags during test time inference.

(i1) Itis a principled probabilistic model with a theoretical understanding of how it may be
used to produce Bayes optimal predictions for a variety of loss functions (Dembczynski
et al. 2010). This is in contrast to several multilabel learning methods, where the sta-
tistical consistency of the algorithm is unclear. Further, the probabilistic underpinning
gives a clear idea on how to modify the algorithm. For example, as we shall see later,
the probabilistic setup allows one to design inference methods that are more accurate
than the greedy inference described in Read et al. (2011).

(iii)) Being a decomposition method, it is computationally inexpensive to train, requiring
only marginally more effort than the binary relevance baseline. This is unlike, for ex-
ample, structured prediction methods (Finley and Joachims 2008) which involve infer-
ence during training.

(iv) Itis trained on the original label space without any prior transformations (Breiman and
Friedman 1997; Weston et al. 2002; Hsu et al. 2009; Bi and Kwok 2011). This is con-
ceptually appealing and makes modifications much simpler. As an example, suppose
we want to address the issue of class imbalance at the tag level. One way to do this is
to appropriately modify the inputs to the models for each p(yx | x, yi1, ..., Yx—1) by ap-
plying cost-sensitive weighting (Elkan 2001). By contrast, in transformation methods,
since we lose the relationship to the original label space, it is not clear how modifica-
tions in the transformed space affect those in the original space.

Despite these attractive properties, it turns out that there are at least two challenges with
using PCCs in practice. These are related to two crucial issues whose discussion we have
deferred thus far: how to train them, and how to apply them at test time. At training time,
one may maximize the log-likelihood of the given training set, which decomposes into K
distinct optimizations for each tag:

L(O0;7() = Zlogp(y(i) | x@;0)
i=1
K

= Z[Ing(y,(,i()l) | x2:6) +) log p(yge |x(i)vy:(ri<)1)’--”yz(ri()k—l);@)}' @
i=1 k=2

The above equation hides a subtle issue: in theory the chain rule applies regardless of the
ordering of the tags, but in practice the ordering can make a big difference. The reason is
that the model for each individual tag p(yx) | X, Y1), - - -» Yr(k—1)) may be misspecified,
in which case some orderings will be better modeled than others. Therefore, we can expect
different solutions based on the choice of 7 (). This prompts the natural question of what the

@ Springer

Mach Learn (2013) 92:65-89 71

best ordering m (-) is, in the sense of resulting in the highest possible value of £(6). It may
seem that one should order the tags in order of some notion of difficulty, but this may not be
optimal: for example, a tag that is difficult to model may make subsequent tags considerably
easier to model. Thus, a principled algorithmic solution is necessary.

At test time, the problem becomes one of estimating, for a given feature vector x, the
most likely set of tags under the learned parameters 6:

y =argmax p(y | x; 0).
yel0,1}K

This inference is unfortunately computationally intractable. Dembczynski et al. (2010) pro-
pose to simply perform brute-force enumeration of all possible labels.

To summarize, we see that there are two main issues with using PCCs in practice. On
the computational side, the method proposed for test time inference by Dembczyriski et al.
(2010) requires that we enumerate all 2% possible candidate labelings, and evaluate them.
Indeed, existing applications of PCCs have been restricted to data sets with relatively few
number of tags. A general purpose multilabel method should of course handle a large num-
ber of tags. On the accuracy side, the choice of ordering the tags while training can make
a difference in generalization performance. One might hope to do significantly better than
just a random ordering. While Dembczyinski et al. (2010) proposed taking several random
orderings to create an ensemble of PCCs, we would like a more principled procedure, one
that searches more intelligently.

There are previous schemes that address the above problems for PCCs. An inference
algorithm was proposed by Dembczynski et al. (2011b, 2012) which makes assumptions on
the joint probability distribution of labels to guarantee polynomial-time convergence of the
algorithm. However, it does not address the problem of learning tag orderings. Our algorithm
based on beam search is generic in the sense that it is possible to accommodate a variety of
scoring functions into the search algorithm, thereby allowing us to solve both the inference
problem and the problem of learning tag orderings. Zaragoza et al. (2011) proposed an
algorithm to learn an undirected network of dependencies between the tags. Since this task
is intractable in general, they approximate the structure learning problem using the Chow-
Liu algorithm to learn a tree dependency structure between tags. However, this tree structure
is unlikely to represent many real-world scenarios and it is an empirical question whether
such an approximation is good or not.

4 Label inference using beam search

Recall that the inference problem in PCC is y = argmax .y, p(y | x; 6), i.e., we wish to find
the highest scoring label vector. Assuming the probability model is correctly specified, the
resulting solution will give the Bayes optimal prediction for subset 0/1 loss (Dembczynski
etal. 2010). This inference task is equivalent to finding the optimal path in a rooted, complete
binary tree of height K, where each internal vertex at level k denotes a possible partial label
vector of length k, so that the leaf vertices represent all possible 2K label vectors (see Fig. 2).
Thus, the inference problem is one of finding the optimal path from the root to one of the
leaves in this binary tree, where the score of a vertex v at level k with a corresponding partial
label y® is equal to the partial probability

k

se@; 0) = p(” 1x:0) [p (O 12, 91", ¥i7156), 3)
j=2

@ Springer

72 Mach Learn (2013) 92:65-89

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

Fig. 2 Binary tree used in beam search for inference with K = 3 tags

Algorithm 1 Inference in PCC using beam search

Input: Query point x, learned model parameters 6, beam width b
Output: Estimate § = argmax, p(y | x; 6)

1: BO ={(1,0)} {initialize beam}

2: for j=1...K do

3 BU) = 0

4: for (parentTags, parentScores) € BV~ do

5: for z €{0, 1} do

6 if p(y; =z | x, parentTags; 6) > min{v : (-, v) € B} then
7 BY) « BYW U (parentTags U {z}, p(y; = z | x, parentTags; 6))
8 BY) « Top-b(BY)

9 end if

10: end for

11: end for

12: end for

13: 9 = argmax,{v: (-, v) € B®)} {highest score}
14: return §: (3, 0) € B

which can be computed recursively. The inference algorithm in the original classifier chain
(Read et al. 2011) greedily searches for the optimal path by deciding at each level of the tree
whether to traverse in the left or the right direction. However, this may not result in finding
the optimal label vector (Dembczynski et al. 2010).

We propose an inference algorithm using beam search (Russell and Norvig 2003), which
is a heuristic search technique. A* (Hart et al. 1968) and similar search algorithms could
also be used as more sophisticated alternatives to beam search. The basic idea is to keep b
candidate solutions at each level of the tree, where b is a user-defined parameter known as
the beam width, which represent the best partial solutions seen thus far. We then explore the
tree in a breadth-first fashion using these solutions.

The inference procedure for PCCs is described in Algorithm 1. At each level of the tree,
we maintain a list of best-scoring candidate vertices of size at most b, where b is the beam

@ Springer

Mach Learn (2013) 92:65-89 73

width. We traverse down the tree by considering the children of only those vertices that are
in this list, sort them in increasing order of their partial probabilities (3), and prune all the
vertices that are not in the top-b list.

The greedy inference algorithm used in classifier chain (Read et al. 2011) is recovered
as a special case with beam width b = 1. Performing inference by exhaustively enumerating
all possible labels is equivalent to doing beam search with b = co. Thus, by tuning b, we
can control the trade-off between computation time and accuracy of the method. The hope
is that for real-world multilabel data sets, we can use a relatively small value of b and get
performance that is significantly better than the greedy approach, and commensurate with
exhaustive enumeration. This is a question that we will answer empirically in Sect. 7.

5 Learning to order tags

Training a PCC involves picking a particular ordering m(-) of the tags, based on which we
apply the chain rule decomposition. The tag ordering problem is to find the best 7 (-) in the
sense of yielding the maximum log-likelihood £(6; 7 (-)) in Eq. (2). If each individual tag
model is misspecified, this quantity varies based on the choice of the permutation (). Even
if the model is correctly specified, the optimal solution may vary due to finite sample effects.
For example, suppose that a tag y; is rare; then, on any finite sample, we may misestimate
p(Or = 1] x), even if in the infinite sample case we will discover the correct probability.

Intuitively, one may expect the optimal ordering to progressively involve picking the
easiest tag to model given the previously picked tags. But it may alternatively be the case
that given a difficult tag, subsequent tags are easy to model. A basic question then is to how
to determine a suitable tag ordering without resorting to heuristics, or performing exhaustive
enumeration over all K! possible orderings.

We propose to use beam search to solve the problem of determining a suitable tag order-
ing. We do so by casting it as a search problem over a tree. Instead of a complete binary
tree as used in the inference algorithm, for the ordering problem we have a tree of height K,
where every vertex at level t has (K — ¢) children, as shown in Fig. 3. Given such a tree, our
goal is again to find the optimal path from the root to one of the leaf vertices.

Our procedure to learn tag orderings for PCCs is described in Algorithm 2. Similar to the
beam search algorithm used for inference, we use a beam of fixed width b, maintain a list of
best-scoring candidate vertices of size at most b and prune all the vertices that are not in the

Fig. 3 Example of ordering tree
for K = 3 tags

(1,2,3) (1,32 (2,1,3) (231 (312 (321

@ Springer

74 Mach Learn (2013) 92:65-89

Algorithm 2 Learning to order tags in PCC using beam search

Input: Training set 7 = {(x®, y)}" |, beam width b
Output: Model parameters 6

1: BO ={(1,0)} {initialize beam}
2: for j=1...K do
33 BY={

4: for (parentTags, parentScores) € BY~D do

5: fori e {1,..., K}\parentTags do

6: K < k(& (x, YiparentTags)s @ (X', YparentTags))
7 e=1y" 5™

8: if KTA(KC, £) > min{v : (-, v) € BY)} then
9: BY « BY U (parentTags U {i}, KTA(K, £))
10: BY « Top-b(BY)
11: end if
12: end for
13: end for
14: end for

15: § = argmax,{v: (-, v) € B} {highest score}
16: Return § learned by training a PCC using the ordering specified by 7 : (7, 9) € B®

top-b list. We now need to determine the scoring function used to prune the vertices. One
possible scoring function is the validation error of classifier, i.e., for every candidate vertex
in the tree, we train a (partial) PCC. More specifically, the score of a vertex v at level ¢ is

5i(0:0) =Y 108 pGimy) | X Yay()s -+ Yaytu—1)3 0)
(x.nev

where 6 are the parameters of the (partial) PCC that is being evaluated on a validation set of
examples V, and the partial tag ordering specified by m, (-) is the directed path from the root
to the vertex v. However, this results in training a (partial) PCC at every vertex of the tree
which can be prohibitively expensive.

As a computationally cheaper alternative, we propose to instead use kernel target align-
ment (KTA) (Cristianini et al. 2001) as a measure to score vertices. We want to measure to
what extent similar training examples agree on a single given binary tag. Let y € {0, 1}"" be
a vector containing the value of this tag for each of the m training examples. The matrix yy "
is a kernel matrix based on this tag. Let K be the kernel matrix based on the feature vector
representing each of the m examples. Let (A, B)r =} ,; A;; Bi; denote the Frobenius inner
product between two matrices A and B. The kernel target alignment between the matrices
K and yy" is

(K, yy")r
VI Ky ey T, yy) r

The KTA score is often more efficient to compute than training a (partial) PCC. (Indeed,
this is true in the empirical study reported in Sect. 7.) Note that there are also hidden costs
with training a classifier, such as performing cross-validation to determine regularization
and other hyperparameters. Intuitively, the KTA score can be considered as a proxy for

KTA(K, y) =

@ Springer

Mach Learn (2013) 92:65-89 75

the accuracy of a classifier trained on the same input features and outputs and therefore
it is reasonable to expect the KTA scores to correlate positively with the accuracies of a
classifier.

The KTA score of a vertex v at level ¢ is computed by constructing a kernel matrix whose
entries are

k(o Cey yrya—19)s (5, Y, i-1p))

where (-, -) is the kernel function, ¢ (x, z) = x ® z, i.e., the Kronecker product of x and z,
for cross-product features and ¢ (x, z) = x @ z for concatenated features, and y. ;-1 =
(Vrp(1ys - - - » Ympi—1y)- For linear kernels, the kernel matrix factorizes into the product of the
kernel matrix defined on the input features and the kernel matrix defined on the output
labels. Note that earlier, the log-likelihood scoring function led to a naturally additive ob-
jective function. While the same can be done with KTA, it is an empirical question whether
this will be appropriate or not. Observe in particular that an alternative is to use the prod-
uct of KTA scores, which treats the KTA as a surrogate for the raw probability score it-
self.

6 Discussion

This section explores several issues related to the focus of this paper, and comments on
possible extensions of the algorithms above.

6.1 Is subset 0/1 loss reasonable?

The inference problem in PCC is to compute § = argmax .y, p(y | x; 6). This prediction
is optimal if the goal is to minimize the subset 0/1 loss of the model (Dembczynski et al.
2010). However, when minimizing a different loss function, such as Hamming loss, then a
different inference problem needs to be solved, and the beam search strategy is not appli-
cable. A natural question, then, is whether subset 0/1 loss is a reasonable loss function to
optimize in practice.

A disadvantage of subset 0/1 loss is that it is very strict: even if we make a single mistake
on one of the individual tags, we do not get “partial credit.” However, this loss may be prefer-
able to alternatives in some cases. Specifically, suppose that the marginal distributions for
each tag are highly unbalanced, i.e., p(yx)(1 — p(yx)) = 0 foreach k € {1, ..., K}. Further,
suppose that the joint distribution p(yy, ..., yx) is not concentrated around any particular
value. Then, we may achieve a small per-tag metric like Hamming loss by predicting the
majority tag value argmax, 1, p(yx = v) for each k, independent of the example x. This
is intuitively dissatisfying, because the predictions are constant across examples, and so do
not help to discriminate between them. (This is related to the fact that in unbalanced bi-
nary classification problems, the 0/1 loss for a majority class prediction is small.) However,
such a prediction will incur a high subset 0/1 loss. Such settings are common in practical
applications of multilabel learning, and in particular on many benchmark data sets (Luaces
et al. 2012). Therefore, inference for subset 0/1 loss is indeed useful in some cases, and
important.

@ Springer

76 Mach Learn (2013) 92:65-89

6.2 Modeling non-chain dependencies with PCCs

Recall that if we write the PCC model as

exp(yTWx +yTVy)
T, (1 + exp(Wx + Vy))

p(ylx;0)=

_ 15[exp(y" (Wx + Vy)i)
o L exp(Wax + V)

we impose the constraint that V' is lower triangular. In fact, this constraint is essential for
the model in Eq. (1) to be a valid probability distribution. If we drop the assumption, then
we have to consider the model

1 15[exp(y” (Wx + Vy)o)
Z(0,x) 1 +exp(Wx + Vy))

p(y|x;0)=
k=1

where the normalizer is

26— Y 15[exp(y " (Wx + Vy)0)
’ 1 +exp(Wx +Vy)e)'
y'e{0,1}K k=1

When V is lower triangular, each term in the summation is independent, and so Z(6, x) =
1. When V does not have this structure, however, computing this normalizer efficiently is
difficult. Further, it is unclear if the resulting model is log-concave, since PCC is not based
on the log-linear framework. Thus, one can think of the ordering problem as a sacrifice one
has to make to get around the general intractability of normalizing the probability model
p(y [x).

The idea of not using a lower triangular V' is related, but not identical, to the idea of
modeling each tag conditional on other tags, as used in the structured output-associative
regression (SOAR) method (Bo and Sminchisescu 2009), in which

p(ve=11x, y70;6) ocexp((wi, x) + (e, y)

where y(=® represents all tags but y;, and ¥ € RX~!. The reason it is not identical to the
PCC approach is that these equations do not uniquely determine the label distribution. In the
two-tag case, for example, knowing just p(y; | y2, x) and p(y; | y1, x) will only tell us the
value of the ratio p(y; | x)/p(y2 | x), but not the individual terms, and so it is not possible to
compute the joint distribution. Thus, SOAR does not have a clear probabilistic interpretation
in terms of maximizing the likelihood of a well-defined model of the label sequence.

6.3 Predicting accurate probabilities

PCCs rely on predicting accurate probabilities for each classifier in the chain. But most
multilabel data sets are unbalanced, i.e., every label has very few positive instances. Us-
ing (linear) logistic regression or similar will give biased probability estimates (King and
Zeng 2001). At a minimum, better results can be obtained by post-processing the scores by
isotonic regression, which is a nonparametric technique to find a monotone fit to a set of
target values. In a learning context, the method was used by Zadrozny and Elkan (2002)

@ Springer

Mach Learn (2013) 92:65-89 77

to learn meaningful probabilities from the scores of an input classifier. This can be taken a
step further by post-processing the scores produced by optimizing the area under the ROC
curve directly (Menon et al. 2012). The main advantage of such an approach is that it will
automatically handle the class imbalance issue, while also producing accurate probabilities.

6.4 Scalability issues in using cross-product features

Learning linear models with cross-product features may pose scalability issues for high-
dimensional data sets with large number of tags. In such cases, we can efficiently compute
the tensor-product kernel matrix which is the element-wise product of the kernel matrices on
input features and the output labels. If the number of training instances is not high, then we
can use kernel logistic regression as the base classifier in PCCs. Otherwise, we can compute
a low-dimensional representation of the feature space given the tensor-product kernel matrix
using, for example, kernel principal components analysis (Scholkopf et al. 1998; Ham et al.
2004), and use the extracted features to train a linear classifier. An alternative approximation
is to extract features from (a subset of) the rows of the kernel matrix (Scholkopf et al. 1999;
Williams and Seeger 2000; Drineas and Mahoney 2005; Balcan et al. 2006, 2008) and train
a linear logistic regression on these features.

6.5 Alternatives to beam search

An alternative to beam search for learning the tag ordering and for inference is to use
sampling methods (Dembczyniski et al. 2011a, 2012; Read et al. 2012). It is possible to
design a Markov chain Monte Carlo (MCMC) method using the Metropolis-Hastings al-
gorithm (Metropolis et al. 1953; Hastings 1970) for inference and for learning the tag or-
dering. However, analyzing the mixing time of these chains is an interesting direction for
future work. For combinatorial spaces such as the vertices of a hypercube and the space
of all permutations, we can use tools from MCMC theory (Jerrum and Sinclair 1996;
Randall 2003) to design sampling algorithms with a rigorous analysis of their mixing
times. Furthermore, it may be possible to design exact sampling algorithms with run-
time guarantees using techniques like coupling from the past (Propp and Wilson 1996;
Huber 1998).

7 Experiments

We report experiments on the data sets listed in Table 1. We selected all the benchmark
multilabel data sets from Tsoumakas et al. (2011) that have fewer than 100 tags and fewer

Table 1 Details of benchmark multilabel data sets (Tsoumakas et al. 2011)

Data set # training inst. (m) # test inst. # features (d) # tags (K)
Emotions 391 202 72 6
Scene 1211 1196 294 6
Yeast 1500 917 103 14
Genbase 463 199 1186 27
Medical 333 645 1449 45
Enron 1123 579 1001 53

@ Springer

78 Mach Learn (2013) 92:65-89

than 10 K training instances. These limits allow all models to be trained easily using batch
optimization methods with both concatenated and cross-product features. Note that on the
majority of these data sets, inference by exhaustive enumeration is either computationally
expensive or intractable. All data sets have a pre-defined test set, and our reported results
are on this set. We compare the following algorithms:

(a) Binary relevance (BR): This is the baseline algorithm where we train separate indepen-
dent logistic regressors for each tag.

(b) Kernel dependency estimation (KDE): This is the algorithm proposed by Weston et al.
(2002). Here, a (linear) transformation using principal components analysis is applied
to the original label matrix in order to decorrelate the tags. Then, independent regressors
are trained in the transformed label space.

(c) Probabilistic classifier chain (PCC): We use the original formulation as described in
Dembczynski et al. (2010) but with beam search as inference and the original ordering
of tags found in the data sets.

(d) PCC with logistic regression using beam search for both learning the tag ordering and
inference. To learn the tag ordering, we use kernel target alignment as the scoring func-
tion in beam search. Note that, in this setting, the output of beam search for learning is
the tag ordering which is then used at a later stage to train a PCC.

We evaluate the performance of algorithms using the following loss functions, where y and
¥ are the target and the predicted labels respectively:

(i) Subset 0/1 loss:
Lop (v,) = [y #73]

(ii)) Hamming loss:

K
6, 9) = Z[[y,- #7%] and

i=1

(iii) Ranking loss:

o= ¥ (1<51+305=51)
G)yi>yj

As mentioned above, BR is theoretically optimal for Hamming and ranking losses, and it
has been noted previously that it is a strong baseline for other loss functions also (Read et al.
2011; Dembczynski et al. 2010). This is especially true if the BR classifier for each tag is
regularized. Some previous studies, such as Dembczyriski et al. (2010), use an unregularized
base classifier, for which BR may be misleadingly suboptimal. In all our experiments, we
use regularized linear models and tune the regularization parameter using cross-validation.

We use the Friedman test (Friedman 1937, 1940) with Bonferroni-Dunn post-hoc anal-
ysis (Dunn 1961) to evaluate the statistical significance of results from multiple algorithms
and data sets (DemSar 2006). The following subsections provide experimental results and
analysis for a number of related questions.

7.1 What is the effect of beam width, used for inference and for learning tag orderings, on
the performance of PCCs?

We choose three out of the six data sets for this experiment, namely, Emotions, Scene and
Yeast, where it is computationally feasible to do inference by exhaustive enumeration of

@ Springer

Mach Learn (2013) 92:65-89 79

—»— PCC
-—&—- Binary Relevance
—— = PCC with b = x
Emotions Dataset Scene Dataset Yeast Dataset
2 08l oo0000000000000]| 055
2 05 GO OO0 OO0 G00 0.85[4000600600000
% 0751 0.45 0.8
2]
o 0.4
;3 0.7 " 0.35 0.75 xﬁ«x—x-&—x—x—x—x—x—x—x—x—x
0'250 5 10 15 0110 5 10 15 0 5 10 15
2 GO OOOOO OO0 000 0.204
8 .
- 0.24 %x—x%wx—x—wx—x—x
£ HH AN HHHHHN 0.105 0.202
£
E 0.23
z $O0OC0000L00000 02
0.1 GOOOOO0O0O0C0000
0.22 0.198
0 5 10 15 0 5 10 15 0 5 10 15
15 8
o« 0.6 R IR
7.5
E HHEHHFEAHHEHHHEN)x;(_’)‘*—)ﬁf)é—x—xka—xka—x—x
o 14 0.55 .
E
g 0.5 65
T 1.3 P GO GO0 G000 000
OO0V 00O00 0.45} 9000 S0GO OO0 COO
6
0 5 10 15 0 5 10 15 0 5 10 15
Beam width for inference Beam width for inference Beam width for inference

Fig. 4 Effect of beam width used in inference on the performance of PCCs

all possible labels, which allows us to study the effect of beam width on inference and
learning the tag ordering. We compare the performance of (i) binary relevance (BR) and
(ii) probabilistic classifier chain (PCC) with the original tag ordering in the data sets and
using beam search for inference for several values of beam width b.

Figure 4 shows the performance of the algorithms measured in terms of subset 0/1 loss,
Hamming loss and ranking loss with varying beam width. From the figure, we see that the
test set performance of PCC converges rapidly with b < 15 to the performance obtained
with exhaustive enumeration, especially for the subset 0/1 loss. We also observe that with
b =15, a significant fraction of the true labels in the test set are among the candidate labels
found by beam search, even if the single best label found by beam search is not exactly
correct. Figure 5 shows the maximum of the cosine similarities between all the labels in the
beam and the true label averaged across all the examples in the test set for varying beam
width. It is clear that at b = 15, a significant fraction of the true labels appear in the beam.

Figure 4 shows that for Hamming and ranking losses, the loss at certain values of beam
width is lower than the loss obtained by exhaustive enumeration, which is surprising at first
glance since exhaustive enumeration should ideally provide a lower bound for the test set
loss. However, in beam search, labels are scored according to the conditional probability
p(y | x) which may not necessarily correspond to the optimal result. Indeed, one of the
points made by Dembczynski et al. (2010) was that taking argmax oy, p(y | x) gives the
optimal result for subset 0/1 loss, but for Hamming and ranking losses the optimal result is
for tag k, i.e., argmax, .o , Pk = b | x).

We also analyze the effect of increasing the beam width used in beam search to determine
the tag ordering on the classifier performance. Figure 6 shows the performance of PCCs with

@ Springer

80 Mach Learn (2013) 92:65-89

T T T T
Scene —+—
Emotions -
Yeast %

o
©
T

Cosine similarity
o
(2]
T

I
~
T
1

0.2} i

OIIIIIIIIIIII 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Beam width

Fig. 5 Maximum of the cosine similarities between all the labels in the beam and the true label averaged
across all the examples in the test set for varying beam width

—— PCC
Binary Relevance
Emotions Dataset Scene Dataset Yeast Dataset
9 08f os85f 0857 — — —
- 0.75 0
& 0.45 0.8
% 0.7 0.4
B V) MR o s e MHHHHIK 0.75
D 065 0.35
0 5 10 15 [5 10 15 0 5 10 15
w 0.115
5 023 0.21 | R e X
=4 0.11
c ——
£ 022 0.205
0.105
G 0.
S 021 02t
0.2n 0.1
16 5 10 15 5 10 15 80 5 10 15
» 0.65
B B
o
.% 0.55 7
& 0.5 65t
045 ————— —————— 6
g, 6050 5 10 15 25000 5 10 15 86000 5 10 15
=
T
i‘,‘ 600 2450 8550
g 2400 8500
2 5% 2350 8450
o
o
2 590 2300 8400
0 5 10 15 0 5 10 15 0 5 10 15
Beam width for ordering tags Beam width for ordering tags Beam width for ordering tags

Fig. 6 Effect of beam width used to learn the tag ordering on the performance of PCCs

@ Springer

Mach Learn (2013) 92:65-89 81

varying beam width on the three data sets Emotions, Scene and Yeast. The test time inference
is done by exhaustive enumeration of all possible labels. There is no clear pattern with
varying beam width for subset 0/1, Hamming and ranking losses. However, negative log-
likelihood, in general, is non-increasing with increasing beam width, especially for larger
widths. This confirms that beam search using KTA as the scoring function is successful at
finding orderings that lead to improvements in negative log-likelihood; as the amount of
search done by beam search increases, better orderings are found.

7.2 How does beam search for inference compare to the approximate inference method
of Dembczynski et al. (2012)?

The results are shown in Table 2, using a beam width of 15 in beam search inference. The
inference method of Dembczynski et al. (2012) with € = 0 and € = 0.5 corresponds to
exact inference and approximate inference with greedy search respectively. The beam search
for inference performs better than the approximate inference method for both € = 0.5 and
€ = 0.25 on the subset 0/1 loss. For Hamming and ranking losses, it performs slightly
worse than the approximate inference method with € = 0.25. In all the cases, exact inference
(e = 0) outperforms both the beam search inference and the approximate inference method
with € > 0 as expected.

We conducted a Friedman test with Bonferroni-Dunn post-hoc analysis to evaluate the
statistical significance of the results. The critical values for four classifiers at 5 % and 10 %
significance levels are 2.394 and 2.128 respectively, and the corresponding critical differ-
ences are 1.784 and 1.586 respectively (Demsar 2006). For subset 0/1 loss, the difference in

Table 2 Test set performance of PCCs with beam search inference and approximate inference method of
Dembczynski et al. (2012) measured in terms of subset 0/1 loss (fop), Hamming loss (middle) and ranking
loss (bottom) on the benchmark data sets. The last column in each table shows the ranking of algorithms
averaged across all the data sets, with lower ranks being better

Emotions Scene Yeast Genbase Medical Enron Avg. rank
PCC/b=15 0.6832 0.3863 0.7634 0.0201 0.4 0.8497 2.17
PCC/e =0.5 0.7327 0.4064 0.7884 0.0201 0.4078 0.8636 3.5
PCC/e =0.25 0.698 0.3821 0.7666 0.0201 0.4 0.8532 25
PCC/e =0 0.6832 0.3821 0.7612 0.0201 0.4 0.848 1.58

Emotions Scene Yeast Genbase Medical Enron Avg. rank
PCC/b=15 0.2261 0.1113 0.2092 0.001 0.012 0.0462 2.42
PCC/e =0.5 0.2294 0.1165 0.2123 0.001 0.012 0.0464 3.33
PCC/e =0.25 0.2285 0.1099 0.2081 0.001 0.012 0.0464 2.41
PCC/e =0 0.2252 0.1099 0.208 0.0009 0.012 0.0462 1.83

Emotions Scene Yeast Genbase Medical Enron Avg. rank
PCC/b=15 1.3218 0.5978 7.5071 0.1859 1.7752 13.0846 2.33
PCC/e =0.5 1.3564 0.6275 7.5343 0.1935 1.7395 13.0259 3.33
PCC/e =0.25 1.3465 0.6033 7.3991 0.1935 1.738 13.0242 2.25
PCC/e =0 1.3614 0.6024 7.3272 0.1935 1.738 13.0207 2.08

@ Springer

82 Mach Learn (2013) 92:65-89

average ranks between PCC/b = 15 and PCC/e = 0.5 (greedy search) is 3.75—2.17 = 1.58,
which is slightly less than 1.586 as needed for statistical significance at 10 % level. For Ham-
ming and ranking losses, the differences in average ranks are not statistically significant. We
conclude that the experimental results are not sufficient to make any statistically significant
statements regarding the performance of the inference methods.

7.3 Does learning to order tags improve the performance of PCCs when compared to
PCCs trained using a random or predefined ordering?

The results are shown in Table 3. We use the notation PCC/QO/Z to denote variants of PCC
where O € {or, 1, 5, 15} is used to denote the tag ordering determined by beam search with
b =1, 5 or 15 and the original tag ordering in the data sets (or), and Z € {1, 5, 15} is used to
denote the beam width (b = 1,5 or 15) used in inference. All variants of PCC outperform
binary relevance for the subset 0/1 loss. Note that PCC/or/1 is the variant of PCC which
uses the original tag ordering in the data sets and greedy search for inference, i.e., beam
search with b = 1. All variants of PCC that use beam search for inference and/or beam
search to determine the tag ordering outperform, or are on par with, PCC/or/1. This result
demonstrates the advantages of using beam search for PCCs.

On a majority of the data sets, variants of PCC that use beam search to determine the tag
ordering using KTA as the scoring function give the best results. For Hamming and ranking
losses, binary relevance is a strong baseline and outperforms PCCs on average, especially
for ranking loss, confirming the results reported by Dembczyiiski et al. (2010). Nevertheless,
PCCs using beam search to determine the tag ordering perform, on average, better than PCCs
that use the original tag ordering.

We conducted a Friedman test with Bonferroni-Dunn post-hoc analysis. The critical val-
ues for nine classifiers at the 5 % significance level is 2.724, and the corresponding critical
difference is 4.307 (Demsar 2006). For subset 0/1 loss, the differences in average ranks
between the pairs (BR, PCC/1/5), (BR, PCC/5/5) and (BR, PCC/5/15) are statistically
significant. However, the differences in average ranks between the pairs (BR, PCC/or/1),
(BR, PCC/or/5) and (BR, PCC/or/15) are not statistically significant. We conclude that
using beam search for both inference and learning leads to statistically significant better
performance by PCC. For Hamming loss, the differences are not statistically significant.
For ranking loss, the performance of BR is statistically better than PCC/or/1, but not the
other variants of PCC. Using beam search for inference and learning improves the per-
formance of PCCs, and thereby makes differences between BR and PCC not statistically
significant.

The beam search inference method is designed to minimize subset 0/1 loss, and not
other loss functions such as Hamming and ranking loss. However, using beam search to
learn the tag ordering leads to superior models for the conditional probability distribution
p(y | x) when compared to those estimated by PCCs trained with a random tag ordering.
To minimize loss functions such as Hamming and ranking loss, we can perform exhaustive
inference, perhaps using sampling methods to make the computation tractable. Therefore,
using beam search for learning the tag ordering has the potential to improve the performance
of PCCs for not only subset 0/1 loss but also other loss functions. To support this argument,
we compare the negative log-likelihood of PCCs trained with the ordering determined by
beam search (PCC/15/15) and the original ordering (PCC/or/15). The results are shown
in Table 4. Five out of six data sets show an improvement in negative log-likelihood for the
PCC:s trained using the beam search ordering.

@ Springer

Mach Learn (2013) 92:65-89 83

Table 3 Test set performance of binary relevance (BR), kernel dependency estimation (KDE) and proba-
bilistic classifier chain (PCC) measured in terms of subset 0/1 loss (fop), Hamming loss (middle) and ranking
loss (bottom) on the benchmark data sets. The last column in each table shows the ranking of algorithms
averaged across all the data sets, with lower ranks being better

Emotions Scene Yeast Genbase Medical Enron Avg. rank
BR 0.7921 0.5309 0.8462 0.0201 0.417 0.8774 7.83
KDE 0.7822 0.6204 0.8397 0.0201 0.431 0.9016 8
PCC/or/1 0.7475 0.4022 0.7895 0.0201 0.4093 0.867 6.25
PCC/or/5 0.6832 0.3863 0.7634 0.0201 0.4 0.8497 4.08
PCC/or/15 0.6832 0.3863 0.7634 0.0201 0.4 0.8497 4.08
PCC/1/1 0.7228 0.4022 0.807 0.0201 0.4124 0.8566 6.25
PCC/1/5 0.6634 0.3813 0.7612 0.0201 0.4031 0.8411 2.83
PCC/5/5 0.6634 0.3855 0.7601 0.0201 0.4031 0.8411 2.83
PCC/15/15 0.6634 0.3813 0.7601 0.0201 0.4031 0.8428 2.83

Emotions Scene Yeast Genbase Medical Enron Avg. rank
BR 0.2261 0.1086 0.1989 0.001 0.0122 0.0463 5.17
KDE 0.2236 0.1204 0.1984 0.0008 0.0127 0.0465 5.58
PCC/or/1 0.2368 0.1145 0.2131 0.001 0.0122 0.0465 7.67
PCC/or/5 0.2261 0.1113 0.2092 0.001 0.012 0.0462 5.17
PCC/or/15 0.2261 0.1113 0.2092 0.001 0.012 0.0462 5.17
PCC/1/1 0.2228 0.1104 0.2204 0.001 0.0122 0.0461 5.5
PCC/1/5 0.2112 0.1086 0.2113 0.001 0.012 0.0461 3.58
PCC/5/5 0.2129 0.1095 0.2106 0.001 0.012 0.0461 3.83
PCC/15/15 0.2129 0.1056 0.2106 0.001 0.012 0.0461 3.33

Emotions Scene Yeast Genbase Medical Enron Avg. rank
BR 1.2822 0.4548 6.4209 0.1709 1.6271 12.9378 1.33
KDE 1.4307 0.5084 6.4384 0.0452 1.3659 14.7219 4.17
PCC/or/1 1.3911 0.612 7.7121 0.1859 1.7798 13.0743 7.5
PCC/or/5 1.3218 0.5978 7.5071 0.1859 1.7752 13.0846 5.42
PCC/or/15 1.3218 0.5978 7.5071 0.1859 1.7752 13.0846 5.42
PCC/1/1 1.3317 0.5397 7.5474 0.1884 1.7395 13.0708 5.42
PCC/1/5 1.3564 0.5485 7.6619 0.1884 1.7333 13.0656 6.08
PCC/5/5 1.3366 0.5293 7.6314 0.1884 1.7333 13.0639 4.92
PCC/15/15 1.3366 0.5 7.6336 0.1884 1.7333 13.0639 475

We conclude this subsection with an experiment where we train PCCs with orderings
determined by sorting the tags based on (i) KTA and (ii) cross-validation error on the train-
ing set. The results are shown in Tables 5 and 6. When compared to the results in Table 3,
we see that PCCs trained with orderings determined by beam search outperform, in the
majority of cases, those trained with the heuristic of ordering tags by cross-validation er-
TOr.

@ Springer

84 Mach Learn (2013) 92:65-89

Table 4 Comparison of negative log-likelihood of PCCs trained with the tag ordering determined by beam
search (PCC/15/15) and the original tag ordering from the data sets (PCC/or/15)

Emotions Scene Yeast Genbase Medical Enron
PCC/or/5 602.88 2261.51 8720.82 40.81 1222.36 4122.26
PCC/15/15 574.19 2104.53 8224.96 40.81 1219.47 4101.87

Table 5 Test set performance of

PCCs trained with orderings 0/1 loss Hamming loss Ranking loss

determined by sorting the tags

based on KTA on the training set ~ Emotions 0.6683 0.2178 1.3811
Scene 0.3923 0.1078 0.5410
Yeast 0.7612 0.2113 7.6641
Genbase 0.0201 0.0010 0.1884
Medical 0.4031 0.0120 1.7333
Enron 0.8497 0.0462 13.0656

Table 6 Test set performance of - 3

PCCs trained with orderings 0/1 loss Hamming loss Ranking loss

determined by sorting the tags

based on cross-validation errors Emotions 0.6584 0.2153 1.3713

on the training set Scene 03963 0.1095 0.5401
Yeast 0.7601 0.2113 8.0927
Genbase 0.0201 0.0010 0.1834
Medical 0.3969 0.0120 1.7349
Enron 0.8463 0.0464 13.5147

7.4 Does learning to order tags with beam search improve the performance of PCCs when
compared to PCCs trained with an ensemble of random orderings?

We trained ensemble PCCs (EPCC) (Dembczynski et al. 2010) using a set of 15 random
orderings and compared their performance with PCCs trained using the ordering estimated
by the beam search method with b = 15 (PCC/15/15). The results are shown in Table 7.
Inference in all PCCs was done using beam search with b = 15. We also include results from
an ensemble consisting of binary relevance (BR) and PCC/15/15. PCC/15/15 performed
better than BR and the ensemble methods for subset 0/1 loss. Since BR does not perform
well on this loss function, the combination BR +PCC/15/15 results in no improvement.
For subset 0/1 loss, we conclude that PCCs trained using beam search for learning the tag
ordering perform best.

For Hamming loss, there is no major difference in performance on the large data sets
Enron, Medical and Genbase. On two of the other three data sets, either PCC/15/15 or
BR + PCC/15/15 performs better than EPCC. We therefore conclude that for Hamming
loss, there is no significant gain from using an ensemble method with random orderings
(EPCCQ). For ranking loss, BR +PCC/15/15 performs better than EPCC on four out of six
data sets, and either plain BR or BR 4+ PCC/15/15 performs better than EPCC on five out of
six data sets. Therefore, for ranking loss also, there is no significant gain from using EPCC.

These findings contradict those in Dembczynski et al. (2010), where EPCC was found to
perform better than competing methods. We believe that using regularized logistic regres-

@ Springer

Mach Learn (2013) 92:65-89 85

Table 7 Test set performance of BR and PCCs trained with the ordering determined by beam search and
an ensemble of random orderings measured in terms of subset 0/1 loss (fop), Hamming loss (middle) and
ranking loss (bottom) on the benchmark data sets. The last row in each table shows the ranking of algorithms
averaged across all the data sets, with lower ranks being better

BR PCC/15/15 EPCC BR +PCC/15/15
Emotions 0.7921 0.6634 0.7079 0.7722
Scene 0.5309 0.3813 0.4164 0.5133
Yeast 0.8462 0.7601 0.7677 0.8375
Genbase 0.0201 0.0201 0.0201 0.0201
Medical 0.417 0.4031 0.4016 0.417
Enron 0.8774 0.8428 0.8531 0.8721
Avg. rank 3.67 1.42 1.92 3
BR PCC/15/15 EPCC BR+PCC/15/15
Emotions 0.2261 0.2129 0.2136 0.2219
Scene 0.1086 0.1056 0.1037 0.1061
Yeast 0.1989 0.2106 0.2049 0.1981
Genbase 0.001 0.001 0.0009 0.0009
Medical 0.0122 0.012 0.012 0.012
Enron 0.0463 0.0461 0.0461 0.047
Avg. rank 3.42 2.33 1.83 242
BR PCC/15/15 EPCC BR +PCC/15/15
Emotions 1.2822 1.3366 1.2772 1.2425
Scene 0.4548 0.5 0.4732 0.4632
Yeast 6.4209 7.6336 6.7056 6.4285
Genbase 0.1709 0.1884 0.1909 0.1708
Medical 1.6271 1.7333 1.7194 1.8
Enron 12.9378 13.0639 12.8912 13.6787
Avg. rank 1.67 35 2.5 2.33

sion as the base classifier boosts the performance of binary relevance as well as of PCCs,
minimizing the potential gain from ensembles.

We conducted a Friedman test with Bonferroni-Dunn post-hoc analysis. The critical val-
ues for four classifiers at 5 % and 10 % significance levels are 2.394 and 2.128 respectively,
and the corresponding critical differences are 1.784 and 1.586 respectively (DemsSar 2006).
The differences in performance above between PCC/15/15 and both ensemble methods,
EPCC and BR + PCC/15/15, are not statistically significant.

7.5 How does the choice of feature representation affect the performance of PCCs?

We compare the performance of PCCs trained with concatenated features (Table 3) and
cross-product features (Table 8). The relative performance of different algorithms is similar

@ Springer

86 Mach Learn (2013) 92:65-89

Table 8 Test set performance of binary relevance (BR), kernel dependency estimation (KDE) and proba-
bilistic classifier chain (PCC) trained with cross-product features measured in terms of subset 0/1 loss (top),
Hamming loss (middle) and ranking loss (bottom) on the benchmark data sets. The last column in each table
shows the ranking of algorithms averaged across all the data sets, with lower ranks being better

Emotions Scene Yeast Genbase Medical Enron Avg. rank
BR 0.7921 0.5309 0.8462 0.0201 0.417 0.8774 7.83
KDE 0.7822 0.6204 0.8397 0.0201 0.431 0.9016 8
PCC/or/1 0.7426 0.3487 0.7699 0.0201 0.3891 0.8273 6
PCC/or/5 0.6832 0.3395 0.7416 0.0201 0.3643 0.8169 3.67
PCC/or/15 0.6832 0.3395 0.7416 0.0201 0.3643 0.8169 3.67
PCC/1/1 0.6832 0.3829 0.7666 0.0201 0.3798 0.8394 6
PCC/1/5 0.6733 0.362 0.7579 0.0201 0.3597 0.8048 3.25
PCC/5/5 0.6733 0.3495 0.759 0.0201 0.3597 0.81 35
PCC/15/15 0.6634 0.3478 0.7601 0.0201 0.3597 0.81 3.08

Emotions Scene Yeast Genbase Medical Enron Avg. rank
BR 0.2261 0.1086 0.1989 0.001 0.0122 0.0463 3.67
KDE 0.2236 0.1204 0.1984 0.0008 0.0127 0.0465 35
PCC/or/1 0.245 0.1033 0.2035 0.001 0.0148 0.0488 5.67
PCC/or/5 0.236 0.1005 0.2033 0.001 0.0132 0.0506 4.83
PCC/or/15 0.236 0.1005 0.2035 0.001 0.0132 0.0508 5.58
PCC/1/1 0.2351 0.1189 0.2154 0.001 0.0122 0.0507 6.42
PCC/1/5 0.2302 0.1105 0.2106 0.001 0.0114 0.0516 5.83
PCC/5/5 0.2302 0.1044 0.2094 0.001 0.0114 0.0507 4.58
PCC/15/15 0.2211 0.1058 0.2098 0.001 0.0114 0.0517 4.92

Emotions Scene Yeast Genbase Medical Enron Avg. rank
BR 1.2822 0.4548 6.4209 0.1709 1.6271 12.9378 1.33
KDE 1.4307 0.5084 6.4384 0.0452 1.3659 14.7219 2.33
PCC/or/1 1.4158 0.5844 7.5267 0.191 3.6922 16.1105 5.83
PCC/or/5 1.4109 0.5936 7.3021 0.191 3.7186 16.8929 6.33
PCC/or/15 1.4109 0.5936 7.301 0.191 3.7202 16.9326 6.67
PCC/1/1 1.5347 0.6112 7.6194 0.1834 2.9093 16.4447 6.25
PCC/1/5 1.4851 0.592 7.5463 0.1834 3.0783 16.9197 6.5
PCC/5/5 1.4851 0.561 7.4297 0.1884 3.0682 16.8765 5.42
PCC/15/15 1.297 0.5284 7.4526 0.1884 3.0682 16.6123 433

for both feature representations. For subset 0/1 loss, we find improvements in performance
when using cross-product features, ¢ (x, y) = x ® y. However, for Hamming and ranking
losses, cross-product features appear to degrade the performance of classifiers when com-
pared to features formed by concatenating labels, ¢ (x, y) = x @ y. The improvement in
performance for subset 0/1 loss may be due to an improved estimate of the conditional
probability distribution p(y | x) resulting from the cross-product feature representation, and
to the fact that beam search inference is tailored for subset 0/1 loss.

@ Springer

Mach Learn (2013) 92:65-89 87

We conducted a Friedman test with Bonferroni-Dunn post-hoc analysis to evaluate the
statistical significance of results in Table 8. The critical values for nine classifiers at 5 % and
10 % significance levels are 2.724 and 2.498 respectively, and the corresponding critical
differences are 4.307 and 3.95 respectively (Demsar 2006). For subset 0/1 loss, the differ-
ences in average rank for the pairs (BR, PCC/1/5), (BR, PCC/5/5) and (BR, PCC/5/15)
are statistically significant, similar to the findings with concatenated features. Furthermore,
both PCCs with the original tag ordering perform statistically significantly better than BR
at the 10 % significance level. Recall that the differences in average rank for the pairs (BR,
PCC/or/1), (BR, PCC/or/5) and (BR, PCC/or/15) are not statistically significant with
concatenated features. For Hamming and ranking losses, the findings are similar to those
with concatenated features.

8 Conclusions

Empirical results clearly demonstrate the benefit of using beam search for test time infer-
ence, and for learning a good ordering of tags. We believe that these are important extensions
to probabilistic classifier chains. We summarize the main conclusions from our experiments
below.

(1) We did not find statistically significant differences between beam search inference and
exact inference or the approximate inference method of Dembczynski et al. (2012).
Nevertheless, when compared to exact inference, our beam search inference is compu-
tationally tractable.

(i1) Experiments show that using beam search for both inference and learning leads to
statistically significant improvements in the performance of PCCs when compared to
binary relevance for subset 0/1 loss. However, for Hamming and ranking losses the
differences in performance are not statistically significant.

(iii) We did not find statistically significant improvements from using ensemble methods.
We believe this is due to using fine-tuned regularized logistic regression as the base
classifier, and to using the beam search method for inference and learning the tag or-
dering in PCCs.

(iv) Experiments with cross-product features resulted in statistically significant improve-
ments in the performance of PCCs when compared to binary relevance for subset 0/1
loss, even when the PCCs were trained with the original tag ordering but used beam
search for inference. By contrast, PCCs trained with concatenated features and the orig-
inal tag ordering did not achieve statistically significant gains, thereby providing evi-
dence for the benefit of using cross-product features in PCCs, at least when optimizing
the subset 0/1 loss.

References

Balcan, M. F,, Blum, A., & Vempala, S. (2006). Kernels as features: on kernels, margins, and low-dimensional
mappings. Machine Learning, 65(1), 79-94.

Balcan, M. F,, Blum, A., & Srebro, N. (2008). A theory of learning with similarity functions. Machine Learn-
ing, 72(1-2), 89-112.

Bi, W, & Kwok, J. T. (2011). Multilabel classification on tree- and DAG-structured hierarchies. In Proceed-
ings of the twenty-eighth international conference on machine learning.

Bo, L., & Sminchisescu, C. (2009). Structured output-associative regression. In Proceedings of the IEEE
computer society conference on computer vision and pattern recognition.

@ Springer

88 Mach Learn (2013) 92:65-89

Breiman, L., & Friedman, J. H. (1997). Predicting multivariate responses in multiple linear regression. Jour-
nal of the Royal Statistical Society. Series B. Statistical Methodology, 59, 3-54.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandola, J. S. (2001). On kernel-target alignment. In Ad-
vances in neural information processing systems (Vol. 14).

Dembczynski, K., Cheng, W., & Hiillermeier, E. (2010). Bayes optimal multilabel classification via prob-
abilistic classifier chains. In Proceedings of the twenty-seventh international conference on machine
learning.

Dembczynski, K., Waegeman, W., Cheng, W., & Hiillermeier, E. (2011a). An exact algorithm for F-measure
maximization. In Advances in neural information processing systems (Vol. 24).

Dembczynski, K., Waegeman, W., & Hiillermeier, E. (2011b). Joint mode estimation in multi-label classifica-
tion by chaining. In Proceedings of the workshop on collective learning and inference on structured data
at the European conference on machine learning and principles and practice of knowledge discovery in
databases.

Dembczynski, K., Waegeman, W., & Hiillermeier, E. (2012). An analysis of chaining in multi-label classifi-
cation. In Proceedings of the twentieth European conference on artificial intelligence.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1-30.

Drineas, P., & Mahoney, M. W. (2005). On the Nystr6m method for approximating a gram matrix for im-
proved kernel-based learning. Journal of Machine Learning Research, 6, 2153-2175.

Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association, 56,
52-64.

Elkan, C. (2001). The foundations of cost-sensitive learning. In Proceedings of the seventeenth international
Jjoint conference on artificial intelligence.

Finley, T., & Joachims, T. (2008). Training structural SVMs when exact inference is intractable. In Proceed-
ings of the twenty-fifth international conference on machine learning.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. Journal of the American Statistical Association, 32, 675-701.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. The
Annals of Mathematical Statistics, 11, 86-92.

Ghamrawi, N., & McCallum, A. (2005). Collective multi-label classification. In Proceedings of the ACM
fourteenth conference on information and knowledge management.

Ham, J., Lee, D. D., Mika, S., & Scholkopf, B. (2004). A kernel view of the dimensionality reduction of
manifolds. In Proceedings of the twenty-first international conference on machine learning.

Hart, P, Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107.

Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika,
57(1), 97-109.

Hsu, D., Kakade, S., Langford, J., & Zhang, T. (2009). Multi-label prediction via compressed sensing. In
Advances in neural information processing systems (Vol. 22).

Huber, M. (1998). Exact sampling and approximate counting techniques. In Proceedings of the thirtieth
annual ACM symposium on the theory of computing.

Jerrum, M., & Sinclair, A. (1996). The Markov chain Monte Carlo method: An approach to approximate
counting and integration. In Approximation algorithms for NP-hard problems (pp. 482-520). Boston:
PWS-Kent.

King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9(2), 137-163.

Kumar, A., Vembu, S., Menon, A. K., & Elkan, C. (2012). Learning and inference in probabilistic classifier
chains with beam search. In Proceedings of the European conference on machine learning and princi-
ples and practice of knowledge discovery in databases.

Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields: probabilistic models
for segmenting and labeling sequence data. In Proceedings of the eighteenth international conference
on machine learning.

Luaces, O., Diez, J., Barranquero, J., del Coz, J., & Bahamonde, A. (2012). Binary relevance efficacy for
multilabel classification. Progress in Artificial Intelligence, 1, 303-313.

McCallum, A., Freitag, D., & Pereira, F. C. N. (2000). Maximum entropy Markov models for information
extraction and segmentation. In Proceedings of the seventeenth international conference on machine
learning.

Menon, A. K., Jiang, X., Vembu, S., Elkan, C., & Ohno-Machado, L. (2012). Predicting accurate probabilities
with a ranking loss. In Proceedings of the twenty-ninth international conference on machine learning.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Equation of state calculation
by fast computing machines. Journal of Chemical Physics, 21, 1087-1092.

@ Springer

Mach Learn (2013) 92:65-89 89

Propp, J. G., & Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statis-
tical mechanics. Random Structures & Algorithms, 9(1-2), 223-252.

Randall, D. (2003). Mixing. In Proceedings of the fourty-fourth annual IEEE symposium on foundations of
computer science.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification.
Machine Learning, 85(3), 333-359.

Read, J., Martino, L., & Luengo, D. (2012). Efficient Monte Carlo optimization for multi-dimensional clas-
sifier chains. arXiv:1211.2190.

Russell, S., & Norvig, P. (2003). Artificial intelligence: a modern approach (2nd ed.). Englewood Cliffs:
Prentice-Hall.

Scholkopf, B., Smola, A. J., & Miiller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10(5), 1299-1319.

Scholkopf, B., Mika, S., Burges, C. J. C., Knirsch, P., Miiller, K. R., Ritsch, G., & Smola, A. J. (1999). Input
space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5),
1000-1017.

Sorower, M. S. (2010). A literature survey on algorithms for multi-label learning. Tech. rep., Oregon State
University, Corvallis, OR, USA.

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: an overview. International Journal of Data
Warehousing and Mining, 3(3), 1-13.

Tsoumakas, G., Katakis, I., & Vlahavas, I. P. (2010). Mining multi-label data. In Data mining and knowledge
discovery handbook (pp. 667-685). Berlin: Springer.

Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., & Vlahavas, I. (2011). Mulan: a Java library for multi-
label learning. Journal of Machine Learning Research, 12, 2411-2414.

Weston, J., Chapelle, O., Elisseeff, A., Scholkopf, B., & Vapnik, V. (2002). Kernel dependency estimation. In
Advances in neural information processing systems (Vol. 15).

Williams, C. K. I, & Seeger, M. (2000). Using the Nystrom method to speed up kernel machines. In Advances
in neural information processing systems (Vol. 13).

Zadrozny, B., & Elkan, C. (2002). Transforming classifier scores into accurate multiclass probability esti-
mates. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery
and data mining.

Zaragoza, J., Sucar, L., & Morales, E. (2011). Bayesian chain classifiers for multidimensional classification.
In Proceedings of the twenty-second international joint conference on artificial intelligence.

@ Springer

http://arxiv.org/abs/arXiv:1211.2190

	Beam search algorithms for multilabel learning
	Abstract
	Introduction
	Multilabel learning and probabilistic classifier chains
	Analysis of probabilistic classifier chains
	Connection to binary relevance
	Connections to MEMMs and CRFs
	Advantages and challenges of PCCs

	Label inference using beam search
	Learning to order tags
	Discussion
	Is subset 0/1 loss reasonable?
	Modeling non-chain dependencies with PCCs
	Predicting accurate probabilities
	Scalability issues in using cross-product features
	Alternatives to beam search

	Experiments
	What is the effect of beam width, used for inference and for learning tag orderings, on the performance of PCCs?
	How does beam search for inference compare to the approximate inference method of Dembczynski et al. (2012)?
	Does learning to order tags improve the performance of PCCs when compared to PCCs trained using a random or predefined ordering?
	Does learning to order tags with beam search improve the performance of PCCs when compared to PCCs trained with an ensemble of random orderings?
	How does the choice of feature representation affect the performance of PCCs?

	Conclusions
	References

