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Abstract We consider the problems of learning the optimal action-value function and the
optimal policy in discounted-reward Markov decision processes (MDPs). We prove new
PAC bounds on the sample-complexity of two well-known model-based reinforcement
learning (RL) algorithms in the presence of a generative model of the MDP: value iter-
ation and policy iteration. The first result indicates that for an MDP with N state-action
pairs and the discount factor γ ∈ [0,1) only O(N log(N/δ)/((1 − γ )3ε2)) state-transition
samples are required to find an ε-optimal estimation of the action-value function with
the probability (w.p.) 1 − δ. Further, we prove that, for small values of ε, an order of
O(N log(N/δ)/((1 − γ )3ε2)) samples is required to find an ε-optimal policy w.p. 1 − δ.
We also prove a matching lower bound of Θ(N log(N/δ)/((1−γ )3ε2)) on the sample com-
plexity of estimating the optimal action-value function with ε accuracy. To the best of our
knowledge, this is the first minimax result on the sample complexity of RL: the upper bounds
match the lower bound in terms of N , ε, δ and 1/(1 − γ ) up to a constant factor. Also, both
our lower bound and upper bound improve on the state-of-the-art in terms of their depen-
dence on 1/(1 − γ ).
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1 Introduction

An important problem in the field of reinforcement learning (RL) is to estimate the op-
timal policy (or the optimal value function) from the observed rewards and the transition
samples (Szepesvári 2010; Sutton and Barto 1998). To address this problem one may use
model-free or model-based approaches. In model-based RL, we first learn a model of the
MDP using a batch of state-transition samples and then use this model to estimate the
optimal policy or the optimal action-value function using the Bellman recursion, whereas
model-free methods directly aim at estimating the optimal value function without resorting
to learning an explicit model of the dynamical system. The fact that the model-based RL
methods decouple the model-estimation problem from the value (policy) iteration problem
may be useful in problems with a limited budget of sampling. This is because the model-
based RL algorithms, after learning the model, can perform many Bellman recursion steps
without any need to make new transition samples, whilst the model-free RL algorithms usu-
ally need to generate fresh samples at each step of value (policy) iteration process.

The focus of this article is on model-based RL algorithms for finite state-action problems,
when we have access to a generative model of the MDP, that is, a sampling device which
can generate next-state samples for all state-action pairs of the MDP. Especially, we derive
tight sample-complexity upper bounds for two well-known model-based RL algorithms, the
model-based value iteration and the model-based policy iteration (Wiering and van Otterlo
2012). It has been shown (Kearns and Singh 1999; Kakade 2004, Chap. 9.1) that an action-
value based variant of model-based value iteration algorithm, Q-value iteration (QVI), finds
an ε-optimal estimate of the action-value function with high probability (w.h.p.) using only
˜O(N/((1 − γ )4ε2)) samples, where N and γ denote the size of state-action space and the
discount factor, respectively.1 One can also prove, using the result of Singh and Yee (1994),
that QVI w.h.p. finds an ε-optimal policy using an order of ˜O(N/((1 − γ )6ε2)) samples.
An upper-bound of a same order can be proven for model-based PI. These results match
the best upper-bound currently known (Azar et al. 2011b) for the sample complexity of RL.
However, there exist gaps with polynomial dependency on 1/(1 − γ ) between these upper
bounds and the state-of-the-art lower bound, which is of order ˜Ω(N/((1 − γ )2ε2)) (Azar
et al. 2011a; Even-Dar et al. 2006).2 It has not been clear, so far, whether the upper bounds
or the lower bound can be improved or both.

In this paper, we prove new bounds on the performance of QVI as well as model-based
policy iteration (PI). These bounds indicate that for both algorithms with the probability
(w.p.) 1−δ an order of O(N log(N/δ)/((1−γ )3ε2)) samples suffice to achieve an ε-optimal
estimate of action-value function as well as to find an ε-optimal policy. The new upper bound
improves on the previous result of QVI and PI by an order of 1/(1 − γ ). We also present
a new minimax lower bound of Θ(N log(N/δ)/((1 − γ )3ε2)), which also improves on the
best existing lower bound of RL by an order of 1/(1 − γ ). The new results, which close
the above-mentioned gap between the lower bound and the upper bound, guarantee that no
learning method, given the generative model of the MDP, can be significantly more efficient
than QVI and PI in terms of the sample complexity of estimating the optimal action-value
function or the optimal policy.

The main idea to improve the upper bound of the above-mentioned RL algorithms is to
express the performance loss Q∗ −Qk , where Qk is the estimate of the action-value function

1The notation g = ˜O(f ) implies that there are constants c1 and c2 such that g ≤ c1f logc2 (f ).
2The notation g = ˜Ω(f ) implies that there are constants c1 and c2 such that g ≥ c1f logc2 (f ).
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after k iteration of QVI or PI, in terms of Σπ∗
, the variance of the sum of discounted rewards

under the optimal policy π∗, as opposed to the maximum Vmax = Rmax/(1 − γ ) as was
used before. For this we make use of the Bernstein’s concentration inequality (Cesa-Bianchi
and Lugosi 2006, Appendix, p. 361), which is expressed in terms of the variance of the
random variables. We also rely on the fact that the variance of the sum of discounted rewards,
like the expected value of the sum (value function), satisfies a Bellman-like equation, in
which the variance of the value function plays the role of the instant reward in the standard
Bellman equation (Munos and Moore 1999; Sobel 1982). These results allow us to prove
a high-probability bound of order ˜O(

√

Σπ∗
/(n(1 − γ ))) on the performance loss of both

algorithms, where n is the number of samples per state-action. This leads to a tight PAC
upper-bound of ˜O(N/(ε2(1 − γ )3)) on the sample complexity of these methods.

In the case of lower bound, we introduce a new class of “hard” MDPs, which adds some
structure to the bandit-like class of MDP used previously by Azar et al. (2011a), Even-
Dar et al. (2006): in the new model, there exist states with high probability of transition to
themselves. This adds to the difficulty of estimating the value function, since even a small
model estimation error may cause a large error in the estimate of the optimal value function,
especially when the discount factor γ is close to 1.

We must emphasize that, in this work, we only consider the problem of estimating the
optimal policy when a generative model of the MDP is available. This allows us to make
an accurate estimate of the state-transition distribution for all state-action pairs and then
estimate the optimal control policy based on this empirical model. This is in contrast to
the online RL setup (Szita and Szepesvári 2010; Strehl et al. 2009; Jaksch et al. 2010;
Bartlett and Tewari 2009) in which the choice of exploration policy has an influence on
the behavior of the learning algorithm and vise-versa. For that reason, we do not provide a
detailed comparison of our results with those of online RL.

This paper extends on the results of Azar et al. (2012) by including a new sample com-
plexity bound for finding an ε-optimal policy, whereas Azar et al. (2012) only prove bounds
on the sample complexity of estimating the optimal action-value function. Also Azar et al.
(2012) only consider the QVI algorithm. In this paper we prove bounds for PI as well as
QVI.

The rest of the paper is organized as follows. After introducing the notations used in
the paper in Sect. 2, we describe QVI and PI algorithms in Sect. 2.1. We then state our
main theoretical results, which are in the form of PAC sample complexity bounds in Sect. 3.
Section 4 contains the detailed proofs of the results of Sect. 3, that is, sample complexity
bound of QVI and a matching lower bound for RL. Finally, we conclude the paper and
propose some directions for the future work in Sect. 5.

2 Background

In this section, we review some standard concepts and definitions from the theory of Markov
decision processes (MDPs). We then present two model-based RL algorithms, which make
use of generative model for sampling: the model-based Q-value iteration and the model-
based policy iteration (Wiering and van Otterlo 2012; Kearns and Singh 1999).

We consider the standard reinforcement learning (RL) framework (Bertsekas and Tsitsik-
lis 1996; Sutton and Barto 1998), where an RL agent interacts with a stochastic environment
and this interaction is modeled as a discrete-time discounted MDP. A discounted MDP is
a quintuple (X , A, P , R, γ ), where X and A are the set of states and actions, P is the
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state transition distribution, R is the reward function, and γ ∈ [0,1) is a discount factor.3

We denote by P (·|x, a) and r(x, a) the probability distribution over the next state and the
immediate reward of taking action a at state x, respectively.

To keep the representation succinct, in the sequel, we use the notation Z for the joint
state-action space X × A. We also make use of the shorthand notations z and β for the
state-action pair (x, a) and 1/(1 − γ ), respectively.

Assumption 1 (MDP regularity) We assume Z and, subsequently, X and A are finite sets
with cardinalities N , |X | and |A|, respectively. We also assume that the immediate reward
r(x, a) is taken from the interval [0,1].4

A mapping π : X → A is called a stationary and deterministic Markovian policy, or
just a policy in short. Following a policy π in an MDP means that at each time step t the
control action At ∈ A is given by At = π(Xt), where Xt ∈ X . The value and the action-
value functions of a policy π , denoted respectively by V π : X → R and Qπ : Z → R, are
defined as the expected sum of discounted rewards that are encountered when the policy
π is executed. Given an MDP, the goal is to find a policy that attains the best possible
values, V ∗(x) � supπ V π(x), ∀x ∈ X . The function V ∗ is called the optimal value function.
Similarly the optimal action-value function is defined as Q∗(x, a) = supπ Qπ(x, a). We
say that a policy π∗ is optimal if it attains the optimal V ∗(x) for all x ∈ X . The policy π

defines the state transition kernel Pπ as Pπ(y|x) � P (y|x,π(x)) for all x ∈ X . The right-
linear operators P π ·, P · and Pπ · are also defined as (P πQ)(z) �

∑

y∈X P (y|z)Q(y,π(y)),

(PV )(z) �
∑

y∈X P (y|z)V (y) for all z ∈ Z and (PπV )(x) �
∑

y∈X y ∈ XPπ(y|x)V (y) for
all x ∈ X , respectively. For any policy π , we also define the operator (P π)k· as

(

P π
)k

Q(z) � P π · · ·P π

︸ ︷︷ ︸

k

Q(z),

for all k ≥ 1 and z ∈ Z . Based on this definition we then define the operator (I − γP π)−1·
as (I − γP π)−1Q(z) �

∑

i≥0 (γP π)iQ(z) for all z ∈ Z .
The optimal action-value function Q∗ is the unique fixed-point of the Bellman optimality

operator defined as

(T Q)(z) � r(z) + γ
(

P π∗
Q

)

(z), ∀z ∈ Z.

Also, for the policy π , the action-value function Qπ is the unique fixed-point of the Bell-
man operator T π which is defined as (T πQ)(z) � r(z)+γ (P πQ)(z) for all z ∈ Z . One can
also define the Bellman optimality operator and the Bellman operator on the value function
as (T V )(x) � r(x,π∗(x))+ γ (Pπ∗V )(x) and (T πV )(x) � r(x,π(x))+ γ (PπV )(x) for all
x ∈ X , respectively.

It is important to note that T and T π are γ -contractions, that is, for any pair of value
functions V and V ′ and any policy π , we have ‖T V − T V ′‖ ≤ γ ‖V − V ′‖ and ‖T πV −
T πV ′‖ ≤ γ ‖V −V ′‖ (Bertsekas 2007, Chap. 1). ‖ ·‖ shall denote the supremum (
∞) norm,

3For simplicity, here we assume that the reward r(x, a) is a deterministic function of state-action pairs (x, a).
Nevertheless, It is straightforward to extend our results to the case of stochastic rewards under some mild
assumption, e.g., boundedness of the absolute value of the rewards.
4Our results also hold if the rewards are taken from some interval [rmin, rmax] instead of [0,1], in which case

the bounds scale with the factor (rmax − rmin)2.
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defined as ‖g‖ � maxy∈Y |g(y)|, where Y is a finite set and g : Y → R is a real-valued
function. We also define the 
1-norm on the function g as ‖g‖1 = ∑

y∈Y |g(y)|.
For ease of exposition, in the sequel, we remove the dependence on z and x, e.g., writing

Q for Q(z) and V for V (x), when there is no possible confusion.

2.1 Algorithms

We begin by describing the model-estimation procedure, which is used by both PI and QVI
to make an empirical estimate of the state-transition distributions.

The model estimator makes n transition samples for each state-action pair z ∈ Z , for
which it makes n calls to the generative model (the total number of calls to the genera-
tive model is T = nN ). It then builds an empirical model of the transition probabilities
as ̂P (y|z) � m(y, z)/n, where m(y, z) denotes the number of times that the state y ∈ X
has been reached from the state-action pair z ∈ Z (see Algorithm 3). Based on the empir-
ical model ̂P the operator ̂T is defined on the action-value function Q, for all z ∈ Z , by
̂T Q(z) = r(z) + γ (̂PV )(z), with V (x) = maxa∈A(Q(x, a)) for all x ∈ X . Also, the em-
pirical operator ̂T π is defined on the action-value function Q, for every policy π and all
z ∈ Z , by ̂T πQ(z) = r(z)+γ ̂P πQ(z). Likewise, one can also define the empirical Bellman
operator ̂T and ̂T π for the value function V . The fixed points of the operator ̂T in Z and X
domains are denoted by ̂Q∗ and ̂V ∗, respectively. Also, the fixed points of the operator ̂T π

in Z and X domains are denoted by ̂Qπ and ̂V π , respectively. The empirical optimal policy
π̂∗ is the policy which attains ̂V ∗ under the model ̂P .

Having the empirical model ̂P estimated, QVI and PI rely on standard value iteration
and policy iteration schemes to estimate the optimal action-value function: QVI iterates
some action-value function Qj , with the initial value of Q0, through the empirical Bell-
man optimality operator ̂T until Qj admits some convergence criteria. PI, in contrast, relies
on iterating some policy πj with the initial value π0: At each iteration j > 0, the algorithm
solves the dynamic programming problem for a fixed policy πj using the empirical model ̂P .
The next policy πj+1 is then determined as the greedy policy w.r.t. the action-value func-
tion ̂Qπj , that is, πj+1(x) = arg maxa∈A ̂Qπj (x, a) for all x ∈ X . Note that Qk , as defined by
PI and QVI are different, but nevertheless we use a same notation for both action-functions
since we will show in the next section that they enjoy the same performance guarantees. The
pseudo codes of both algorithms are provided in Algorithms 1 and 2.

Algorithm 1 Model-based Q-value Iteration (QVI)
Require: reward function r , discount factor γ , initial action-value function Q0, samples per

state-action n, number of iterations k

̂P =ESTIMATEMODEL(n) � Estimate the model (defined in Algorithm 3)
for j := 0,1, . . . , k − 1 do

for each x ∈ X do
πj (x) = arg maxa∈A Qj (x, a) � greedy policy w.r.t. the latest estimation of Q∗
for each a ∈ A do

̂T Qj (x, a) = r(x, a) + γ (̂Pπj Qj )(x, a) � empirical Bellman operator
Qj+1(x, a) = ̂T Qj (x, a) � Iterate the action-value function Qj

end for
end for

end for
return Qk
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Algorithm 2 Model-based Policy Iteration (PI)
Require: reward function r , discount factor γ , initial policy π0, samples per state-action n,

number of iterations k

̂P =ESTIMATEMODEL(n) � Estimate the model (defined in Algorithm 3)
Q0=SOLVEDP(̂P ,π0)
for j := 0,1, . . . , k − 1 do

for each x ∈ X do
πj (x) = arg maxa∈A Qj (x, a) � greedy policy w.r.t. the latest estimation of Q∗

end for
̂Qπj =SOLVEDP(̂P ,πj ) � Find the fixed point of the Bellman operator for the policy πj

Qj+1 = ̂Qπj � Iterate the action-value function Qj

end for
return Qk

function SOLVEDP(P,π )
Q = (I − γPπ )−1r

return Q

end function

Algorithm 3 Function: ESTIMATEMODEL

Require: The generative model (simulator) of P

function ESTIMATEMODEL(n) � Estimating the transition model using n samples
∀(y, z) ∈ X × Z : m(y, z) = 0 � initialization
for each z ∈ Z do

for i := 1,2, . . . , n do
y ∼ P(·|z) � Generate a state-transition sample
m(y, z) := m(y, z) + 1 � Count the transition samples

end for
∀y ∈ X : ̂P(y|z) = m(y,z)

n � Normalize by n

end for
return ̂P � Return the empirical model

end function

3 Main results

Our main results are in the form of PAC (probably approximately correct) sample complex-
ity bounds on the total number of samples required to attain a near-optimal estimate of the
action-value function:

Theorem 1 (PAC-bound on Q∗ − Qk) Let Assumption 1 hold. Then, there exist some con-
stants c, c0, d and d0 such that for all ε ∈ (0,1) and δ ∈ (0,1), a total sampling budget
of

T =
⌈

cβ3N

ε2
log

c0N

δ

⌉

,
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suffices for the uniform approximation error ‖Q∗ − Qk‖ ≤ ε, w.p. at least 1 − δ, after k =

d log(d0β/ε)/ log(1/γ )� iteration of QVI or PI algorithm.5

We also prove a similar bound on the sample-complexity of finding a near-optimal policy
for small values of ε:

Theorem 2 (PAC-bound on Q∗ − Qπk ) Let Assumption 1 hold. Define πk as the greedy
policy w.r.t. Qk at iteration k of PI or QVI. Then, there exist some constants c′, c′

0, c′
1, d ′ and

d ′
0 such that for all ε ∈ (0, c′

1

√
β/(γ |X )|) and δ ∈ (0,1), a total sampling budget of

T =
⌈

c′β3N

ε2
log

c′
0N

δ

⌉

,

suffices for the uniform approximation error ‖Q∗ − Qπk‖ ≤ ε, w.p. at least 1 − δ, after
k = d ′
log(d ′

0β/ε)/ log(1/γ )� iteration of QVI or PI algorithm.

The following result provides a tight lower bound on the number of transitions T for
every RL algorithm to find a near optimal solution w.p. 1 − δ, under the assumption that the
algorithm is (ε, δ)-correct:

Definition 1 ((ε, δ)-correct algorithm) Let QA : Z → R be the output of some RL Algo-
rithm A. We say that A is (ε, δ)-correct on the class of MDPs M = {M1,M2, . . . ,Mm} if
‖Q∗ − QA‖ ≤ ε with probability at least 1 − δ for all M ∈ M.

Theorem 3 (Lower bound on the sample complexity of RL) Let Assumption 1 hold. There
exist some constants ε0, δ0, c1, c2, and a class of MDPs M, such that for all ε ∈ (0, ε0),
δ ∈ (0, δ0), and every (ε, δ)-correct RL Algorithm A on the class of MDPs M the total
number of state-transition samples (sampling budget) needs to be at least

T =
⌈

β3N

c1ε2
log

N

c2δ

⌉

.

We note that the result of Theorem 3 is rather general and algorithm independent: this
result provides a tight lower-bound for every RL algorithm regardless of whether it makes
use of the generative or it is an online approach.

4 Analysis

In this section, we first provide the full proof of the finite-time PAC bound of QVI and PI,
reported in Theorems 1 and 2, in Sect. 4.1. We then prove Theorem 3, a new RL lower
bound, in Sect. 4.2.

5For every real number u, 
u� is defined as the smallest integer number not less than u.



332 Mach Learn (2013) 91:325–349

4.1 Proofs of Theorems 1 and 2—the upper bounds

We begin by introducing some new notation required for the analysis. For any policy π ,
we define �π(z) � E[|∑ t≥0γ

t r(Zt ) − Qπ(z)|2|Z0 = z] as the variance of the sum of dis-
counted rewards for the sequence of state-action pairs {Z0,Z1, . . . } starting from z ∈ Z
under the policy π . We also make use of the following definition of the variance of a
function: for any real-valued function f : Y → R, where Y is a finite set, we define
Vy∼ρ(f (y)) � Ey∼ρ |f (y) − Ey∼ρ(f (y))|2 as the variance of f under the probability distri-
bution ρ, where ρ is a probability distribution on Y . shall denote σV π and σV ∗ as the dis-
counted variance of the value function V π and V ∗ defined as σV π (z) � γ 2

Vy∼P(·|z)[V π(y)]
and σV ∗(z) � γ 2

Vy∼P(·|z)[V ∗(y)], for all z ∈ Z , respectively. For each of these variances
we define the corresponding empirical variance σ̂V π (z) � γ 2

Vy∼̂P(·|z)[V π(y)] and σ̂V ∗(z) �
γ 2

Vy∼̂P(·|z)[V ∗(y)], respectively, for all z ∈ Z under the model ̂P . We also notice that for
any policy π and for all z ∈ Z , σV π can be written as

σV π (z) = γ 2P
[∣

∣V π − PV π
∣

∣

2]
(z) = γ 2P π

[∣

∣Qπ − P πQπ
∣

∣

2]
(z).

In this subsection, we focus on proving high probability bounds on ‖Q∗ − Qk‖ and
‖Q∗ − Qπk‖ for both QVI and PI. These high probability bounds imply the sample com-
plexity bounds of Theorems 1 and 2. One can easily show that Qk , for both QVI and PI,
is very close to ̂Q∗ up to an order of O(γ k). Therefore, to prove a bound on ‖Q∗ − Qk‖,
we only need to bound ‖Q∗ − ̂Q∗‖ in high probability. One can prove a crude bound of
˜O(β2/

√
n) on ‖Q∗ − ̂Q∗‖ by first proving that ‖Q∗ − ̂Q∗‖ ≤ β‖(P − ̂P )V ∗‖ and then

using the Hoeffding’s tail inequality (Cesa-Bianchi and Lugosi 2006, Appendix, p. 359)
to bound the random variable ‖(P − ̂P)V ∗‖ in high probability. Here, we follow a dif-
ferent and more subtle approach to bound ‖Q∗ − ̂Q∗‖, which leads to our desired re-
sult of ˜O(β1.5/

√
n): (i) We prove in Lemma 3 component-wise upper and lower bounds

on the error Q∗ − ̂Q∗, which are expressed in terms of (I − γ ̂P π∗
)−1[P − ̂P ]V ∗ and

(I − γ ̂P π̂∗
)−1[P − ̂P ]V ∗, respectively. (ii) We make use of Bernstein’s inequality to bound

[P − ̂P ]V ∗ in terms of the squared root of the variance of V ∗ in high probability. (iii) We
prove the key result of this subsection (Lemma 7), which shows that the variance of the
sum of discounted rewards satisfies a Bellman-like recursion, in which the instant reward
r(z) is replaced by σQπ (z). Based on this result we prove an upper-bound of order O(β1.5)

on (I − γP π)−1√σQπ for every policy π , which combined with the previous steps leads
to an upper bound of ˜O(β1.5/

√
n) on ‖Q∗ − ̂Q∗‖. A similar approach leads to a bound of

˜O(β1.5/
√

n) on ‖Q∗ − Qπk‖ under the assumption that there exist constants c1 > 0 and
c2 > 0 such that n > c1γ

2β2|X | log(c2N/δ).
We begin by Lemma 1, which bounds ‖Qk − ̂Q∗‖, for both QVI and PI.6

Lemma 1 Let Assumption 1 hold and Q0(z) be in the interval [0, β] for all z ∈ Z . Then,
for both QVI and PI, we have

∥

∥Qk − ̂Q∗∥
∥ ≤ γ kβ.

6There exist similar results in the literature regarding the convergence rate of the iterates of the Bellman
recursion to its fixed point (see, e.g., Puterman 1994, Chap. 6). However, those results are often expressed in
terms of the state-value function, whereas here we consider the action-value function.
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Proof We begin by proving the result for QVI. For all k ≥ 0, we have
∥

∥Qk − ̂Q∗∥
∥ = ∥

∥̂T Qk−1 − ̂T ̂Q∗∥
∥ ≤ γ

∥

∥Qk−1 − ̂Q∗∥
∥.

Thus by an immediate recursion
∥

∥Qk − ̂Q∗∥
∥ ≤ γ k

∥

∥Q0 − ̂Q∗∥
∥ ≤ γ kβ.

In the case of PI, we notice that Qk = ̂Qπk−1 ≥ ̂Qπk−2 = Qk−1, which implies that

0 ≤ ̂Q∗ − Qk = γ ̂P π̂∗
̂Q∗ − γ ̂P πk−1 ̂Qπk−1 ≤ γ

(

̂P π̂∗
̂Q∗ − ̂P πk−1 ̂Qπk−2

)

= γ
(

̂P π̂∗
̂Q∗ − ̂P πk−1Qk−1

) ≤ γ ̂P π̂∗(
̂Q∗ − Qk−1

)

, (1)

where in the last line we rely on the fact that πk−1 is the greedy policy w.r.t. Qk−1, which im-
plies the component-wise inequality ̂P πk−1Qk−1 ≥ ̂P π̂∗

Qk−1. The result follows from Eq. 1
by taking the 
∞-norm on both sides of the inequality and then recursively expanding the
resulting bound. �

One can easily prove the following lemma, which bounds the difference between ̂Q∗
and ̂Qπk , based on the result of Lemma 1 and the main result of Singh and Yee (1994).
Lemma 2 is required for the proof of Theorem 2.

Lemma 2 Let Assumption 1 hold and πk be the greedy policy induced by the kth iterate of
QVI and PI. Also, let Q0(z) takes value in the interval [0, β] for all z ∈ Z . Then we have

∥

∥̂Qπk − ̂Q∗∥
∥ ≤ 2γ k+1β2, and

∥

∥̂V πk − ̂V ∗∥
∥ ≤ 2γ k+1β2.

Proof Based on the main theorem of Singh and Yee (1994) we have, for both QVI and PI:
∥

∥̂V πk − ̂V ∗∥
∥ ≤ ∥

∥̂Qπk − ̂Q∗∥
∥ ≤ 2γβ

∥

∥Qk − ̂Q∗∥
∥

≤ 2γ k+1β2,

where in the last line we make use of the result of Lemma 1. �

We notice that the tight bound on ‖̂Qπk − ̂Q∗‖ for PI is of order γ k+1β since ̂Qπk = Qk+1.
However, for ease of exposition we make use of the bound of Corollary 2 for both QVI and
PI.

The following component-wise results bound Q∗ − ̂Q∗ from above and below:

Lemma 3 (Component-wise bounds on Q∗ − ̂Q∗)

Q∗ − ̂Q∗ ≤ γ
(

I − γ ̂P π∗)−1[P − ̂P ]V ∗, (2)

Q∗ − ̂Q∗ ≥ γ
(

I − γ ̂P π̂∗)−1[P − ̂P ]V ∗. (3)

Proof We have that ̂Q∗ ≥ ̂Qπ∗
. Thus

Q∗ − ̂Q∗ ≤ Q∗ − ̂Qπ∗ = (

I − γP π∗)−1
r − (

I − γ ̂P π∗)−1
r

= (

I − γ ̂P π∗)−1[(
I − γ ̂P π∗) − (

I − γP π∗)](
I − γP π∗)−1

r

= γ
(

I − γ ̂P π∗)−1[
P π∗ − ̂P π∗]

Q∗ = γ
(

I − γ ̂P π∗)−1[P − ̂P ]V ∗.
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In the case of Eq. 3 we have

Q∗ − ̂Q∗ = (

I − γP π∗)−1
r − (

I − γ ̂P π̂∗)−1
r

= (

I − γ ̂P π̂∗)−1[(
I − γ ̂P π̂∗) − (

I − γP π∗)](
I − γP π∗)−1

r

= γ
(

I − γ ̂P π̂∗)−1[
P π∗ − ̂P π̂∗]

Q∗

≥ γ
(

I − γ ̂P π̂∗)−1[
P π∗ − ̂P π∗]

Q∗ = γ
(

I − γ ̂P π̂∗)−1[P − ̂P ]V ∗,

where in the last line we take the following steps:

−(

I − γ ̂P π̂∗)−1
̂P π̂∗

Q∗ = −
∑

i≥0

(

γ ̂P π̂∗)i
̂P π̂∗

Q∗

≥ −
∑

i≥0

(

γ ̂P π̂∗)i
̂P π∗

Q∗ = −(

I − γ ̂P π̂∗)−1
̂PV ∗.

The inequality −̂P π̂∗
Q∗ ≥ −̂P π∗

Q∗ holds since π∗ is the greedy policy w.r.t. Q∗. �

We now concentrate on bounding the right hand sides (RHS) of Eqs. 2 and 3 in high
probability, for that we need the following technical lemmas (Lemmas 4 and 5).

Lemma 4 Let Assumption 1 hold. Then, for any 0 < δ < 1 w.p. at least 1 − δ

∥

∥V ∗ − ̂V π∗∥
∥ ≤ cv, and

∥

∥V ∗ − ̂V ∗∥
∥ ≤ cv,

where cv � γβ2
√

2 log(2N/δ)/n.

Proof We begin by proving bound on ‖V ∗ − ̂V π∗‖:
∥

∥V ∗ − ̂V π∗∥
∥ = ∥

∥T π∗
V ∗ − ̂T π∗

̂V π∗∥
∥ ≤ ∥

∥T π∗
V ∗ − ̂T π∗

V ∗∥
∥ + ∥

∥̂T π∗
V ∗ − ̂T π∗

̂V π∗∥
∥

≤ γ
∥

∥Pπ∗V ∗ − ̂Pπ∗V ∗∥
∥ + γ

∥

∥V ∗ − ̂V π∗∥
∥.

By solving this inequality w.r.t. ‖V ∗ − ̂V π∗‖ we deduce
∥

∥V ∗ − ̂V π∗∥
∥ ≤ γβ

∥

∥(Pπ∗ − ̂Pπ∗)V ∗∥
∥ ≤ γβ

∥

∥(P − ̂P)V ∗∥
∥. (4)

Now we focus on bounding ‖V ∗ − ̂V ∗‖:
∥

∥V ∗ − ̂V ∗∥
∥ ≤ ∥

∥Q∗ − ̂Q∗∥
∥ = ∥

∥T Q∗ − ̂T ̂Q∗∥
∥

≤ ∥

∥T Q∗ − ̂T π∗
Q∗∥

∥ + ∥

∥̂T π∗
Q∗ − ̂T ̂Q∗∥

∥

= γ
∥

∥P π∗
Q∗ − ̂P π∗

Q∗∥
∥ + γ

∥

∥̂P π∗
Q∗ − ̂P π̂∗

̂Q∗∥
∥

= γ
∥

∥(P − ̂P)V ∗∥
∥ + γ

∥

∥̂P
(

V ∗ − ̂V ∗)∥
∥

≤ γ
∥

∥(P − ̂P )V ∗∥
∥ + γ

∥

∥V ∗ − ̂V ∗∥
∥. (5)

By solving this inequality w.r.t. ‖V ∗ − ̂V ∗‖ we deduce
∥

∥V ∗ − ̂V ∗∥
∥ ≤ γβ

∥

∥(P − ̂P )V ∗∥
∥. (6)
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We then make use of Hoeffding’s inequality (Cesa-Bianchi and Lugosi 2006, Ap-
pendix A, p. 359) to bound |(P − ̂P )V ∗(z)| for all z ∈ Z in high probability:

P
(∣

∣

(

(P − ̂P)V ∗)(z)
∣

∣ ≥ ε
) ≤ 2 exp

(−nε2

2β2

)

.

By applying the union bound we deduce

P
(∥

∥(P − ̂P )V ∗∥
∥ ≥ ε

) ≤ 2|Z| exp

(−nε2

2β2

)

. (7)

We then define the probability of failure δ as

δ � 2N exp

(−nε2

2β2

)

. (8)

By plugging Eq. 8 into Eq. 7 we deduce

P
[∥

∥(P − ̂P )V ∗∥
∥ < β

√

2 log(2N/δ)/n
] ≥ 1 − δ. (9)

The results then follow by plugging Eq. 9 into Eqs. 6 and 5. �

We now state Lemma 5 which relates σV ∗ to σ̂
̂Qπ∗ and σ̂

̂Q∗ . Later, we make use of this
result in the proof of Lemma 6.

Lemma 5 Let Assumption 1 hold and 0 < δ < 1. Then, w.p. at least 1 − δ:

√
σV ∗ ≤ √

σ̂
̂V π∗ + bv1, (10)

√
σV ∗ ≤ √

σ̂
̂V ∗ + bv1, (11)

where bv is defined as

bv �
(

18γ 4β4 log 3N
δ

n

)1/4

+
√

4γ 2β4 log 6N
δ

n
,

and 1 is a function which assigns 1 to all z ∈ Z .

Proof Here, we only prove Eq. 10. One can prove Eq. 11 following similar lines:

σV ∗(z) = σV ∗(z) − γ 2
VY∼̂P(·|z)

(

V ∗(Y )
) + γ 2

VY∼̂P(·|z)
(

V ∗(Y )
)

≤ γ 2
(

(P − ̂P )V ∗2)
(z) − γ 2

[(

PV ∗)2
(z) − (

̂PV ∗)2
(z)

]

+
[

γ

√

VY∼̂P(·|z)
(

V ∗(Y ) − ̂V π∗
(Y )

) +
√

γ 2VY∼̂P(·|z)
(

̂V π∗(Y )
)

]2
,

where in the last line we rely on a triangle inequality argument. It is not difficult to show
that VY∼̂P(·|z)(V ∗(Y ) − ̂V π∗

(Y )) ≤ ‖V ∗ − ̂V π∗‖2, which implies that

σV ∗(z) ≤ γ 2[P − ̂P ]V ∗2
(z) − γ 2

[

(P − ̂P )V ∗][(P + ̂P)V ∗](z)

+ (

γ
∥

∥V ∗ − ̂V π∗∥
∥ + √

σ̂
̂V π∗ (z)

)2
.
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The following inequality then holds w.p. at least 1 − δ:

σV ∗(z) ≤
[

√

σ̂
̂V π∗ (z) +

√

4γ 2β4 log 6N
δ

n

]2

+ 3γ 2β2

√

2 log 3
δ

n
, (12)

in which we make use of Hoeffding’s inequality as well as Lemma 4 and a union bound to
prove the bound on σV ∗ in high probability. The result follows from Eq. 12 by taking the
square root on both sides of the inequality as well as applying union bound on all state-action
pairs. �

The following result proves a bound on γ (P − ̂P )V ∗, for which we make use of the Bern-
stein’s inequality (Cesa-Bianchi and Lugosi 2006, Appendix, p. 361) as well as Lemma 5.

Lemma 6 Let Assumption 1 hold and 0 < δ < 1. Define cpv � 2 log(2N/δ) and bpv as

bpv �
(

5(γβ)4/3 log 6N
δ

n

)3/4

+ 3β2 log 12N
δ

n
.

Then w.p. at least 1 − δ we have

γ (P − ̂P )V ∗ ≤
√

cpvσ̂̂V π∗

n
+ bpv1, (13)

γ (P − ̂P )V ∗ ≥ −
√

cpvσ̂̂V ∗

n
− bpv1. (14)

Proof For all z ∈ Z and all 0 < δ < 1, Bernstein’s inequality implies that w.p. at least 1 − δ:

(P − ̂P )V ∗(z) ≤
√

2σV ∗(z) log 1
δ

γ 2n
+ 2β log 1

δ

3n
,

(P − ̂P )V ∗(z) ≥ −
√

2σV ∗(z) log 1
δ

γ 2n
− 2β log 1

δ

3n
.

We deduce (using a union bound)

γ (P − ̂P)V ∗ ≤
√

c′
pv

σV ∗

n
+ b′

pv1, (15)

γ (P − ̂P)V ∗ ≥ −
√

c′
pv

σV ∗

n
− b′

pv1, (16)

where c′
pv � 2 log(N/δ) and b′

pv � 2γβ log(N/δ)/3n. Plugging Eqs. 10 and 11 into Eqs. 15
and 16, respectively, and then taking a union bound conclude the proof. �

We now state the key lemma of this section, which shows that for any policy π the
variance �π satisfies the following Bellman-like recursion. We note that this result is similar
to those of Munos and Moore (1999), Sobel (1982) in the sense that, like those previous
results, it shows that the variance �π satisfies a Bellman-like equation. The difference is
that, here, we consider the total of variance of the sum of rewards for every state-action
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pair, whereas Munos and Moore (1999), Sobel (1982) express their results in terms of the
variance of the sum of rewards of every state. Later, we use Lemma 7, in Lemma 8, to bound
(I − γP π)−1σV π .

Lemma 7 �π satisfies the Bellman equation

�π = σV π + γ 2P π�π. (17)

Proof For all z ∈ Z we have

�π(z) = E

[∣

∣

∣

∣

∑

t≥0

γ t r(Zt ) − Qπ(z)

∣

∣

∣

∣

2]

= EZ1∼Pπ (·|z)E
[∣

∣

∣

∣

∑

t≥1

γ t r(Zt ) − γQπ(Z1) − (

Qπ(z) − r(z) − γQπ(Z1)
)

∣

∣

∣

∣

2]

= γ 2
EZ1∼Pπ (·|z)E

[∣

∣

∣

∣

∑

t≥1

γ t−1r(Zt ) − Qπ(Z1)

∣

∣

∣

∣

2]

− 2EZ1∼Pπ (·|z)
[

(

Qπ(z) − r(z) − γQπ(Z1)
)

E

(

∑

t≥1

γ t r(Zt ) − γQπ(Z1)
∣

∣Z1

)]

+ EZ1∼Pπ (·|z)
(∣

∣Qπ(z) − r(z) − γQπ(Z1)
∣

∣

2)

= γ 2
EZ1∼Pπ (·|z)E

[∣

∣

∣

∣

∑

t≥1

γ t−1r(Zt ) − Qπ(Z1)

∣

∣

∣

∣

2]

+ γ 2
VY1∼P(·|z)

(

Qπ
(

Y1,π(Y1)
))

= γ 2
[

P π�π
]

(z) + σV π (z),

in which we rely on E(
∑

t≥1 γ t r(Zt ) − γQπ(Z1)|Z1) = 0. �

Based on Lemma 7, one can prove the following result on the discounted variance.

Lemma 8

∥

∥

(

I − γ 2P π
)−1

σV π

∥

∥ = ∥

∥�π
∥

∥ ≤ β2, (18)
∥

∥

(

I − γP π
)−1√

σV π

∥

∥ ≤ 2 log(2)
∥

∥

√

β�π
∥

∥ ≤ 2 log(2)β1.5. (19)

Proof The first inequality follows from Lemma 7 by solving Eq. 17 in terms of �π and
taking the sup-norm over both sides of the resulting equation. In the case of Eq. 19 we have

∥

∥

(

I − γP π
)−1√

σV π

∥

∥ =
∥

∥

∥

∥

∑

k≥0

(

γP π
)k√

σV π

∥

∥

∥

∥

=
∥

∥

∥

∥

∥

∑

l≥0

(

γP π
)t l

t−1
∑

j=0

(

γP π
)j√

σV π

∥

∥

∥

∥

∥
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≤
∑

l≥0

(

γ t
)l

∥

∥

∥

∥

∥

t−1
∑

j=0

(

γP π
)j√

σV π

∥

∥

∥

∥

∥

= 1

1 − γ t

∥

∥

∥

∥

∥

t−1
∑

j=0

(

γP π
)j√

σV π

∥

∥

∥

∥

∥

, (20)

in which we write k = t l + j with t any positive integer.7 We now prove a bound on
‖∑

t−1
j=0(γP π)j√σV π ‖ by making use of Jensen’s inequality, Cauchy-Schwarz inequality

and Eq. 18:

∥

∥

∥

∥

∥

t−1
∑

j=0

(

γP π
)j√

σV π

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

t−1
∑

j=0

γ j

√

(

P π
)j

σV π

∥

∥

∥

∥

∥

≤ √
t

∥

∥

∥

∥

∥

√

√

√

√

t−1
∑

j=0

(

γ 2P π
)j

σV π

∥

∥

∥

∥

∥

≤ √
t
∥

∥

√

(

I − γ 2P π
)−1

σV π

∥

∥ = ∥

∥

√
t�π

∥

∥. (21)

The result then follows by plugging Eq. 21 into Eq. 20 and optimizing the bound in terms
of t to achieve the best dependency on β . �

Now, we make use of Lemmas 8 and 6 to bound ‖Q∗ − ̂Q∗‖ in high probability.

Lemma 9 Let Assumption 1 hold. Then, for any 0 < δ < 1:

∥

∥Q∗ − ̂Q∗∥
∥ ≤ ε′,

w.p. at least 1 − δ, where ε′ is defined as

ε′ �

√

4β3 log 4N
δ

n
+

(

5(γβ2)4/3 log 12N
δ

n

)3/4

+ 3β3 log 24N
δ

n
. (22)

Proof By incorporating the result of Lemmas 6 and 8 into Lemma 3 and taking in to account
that (I − γ ̂P π∗

)−11 = β1, we deduce8

Q∗ − ̂Q∗ ≤ b1,

Q∗ − ̂Q∗ ≥ −b1,
(23)

w.p. at least 1 − δ. The scalar b is given by

b �

√

4β3 log 2N
δ

n
+

(

5(γβ2)4/3 log 6N
δ

n

)3/4

+ 3β3 log 12N
δ

n
. (24)

The result then follows by combining these two bounds using a union bound and taking
the 
∞ norm. �

7For any real-valued function f ,
√

f is defined as a component wise squared-root operator on f .
8Note that, for any policy π , Lemma 8 implies the component-wise inequality (I − γPπ )−1√

σV π ≤
2 log(2)β1.51.
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Proof of Theorem 1 We define the total error ε � ε′ + γ kβ , which bounds ‖Q∗ − Qk‖ ≤
‖Q∗ − ̂Q∗‖ + ‖̂Q∗ − Qk‖ in high probability (ε′ is defined in Lemma 9). The results then
follows by solving this bound w.r.t. n and k and then quantifying the total number of samples
by T = Nn. �

We now draw our attention to the proof of Theorem 2, for which we need the following
component-wise bound on Q∗ − Qπk .

Lemma 10 Let Assumption 1 hold. Then w.p. at least 1 − δ

Q∗ − Qπk ≤ ̂Qπk − Qπk + (

b + 2γ kβ2
)

1,

where b is defined by Eq. 24.

Proof We make use of Lemmas 2 and 9 to prove the result:

Q∗ − Qπk = Q∗ − ̂Q∗ + ̂Q∗ − ̂Qπk + ̂Qπk − Qπk

≤ b1 + ̂Q∗ − ̂Qπk + ̂Qπk − Qπk by Eq. 23

≤ (

b + 2γ kβ2
)

1 + ̂Qπk − Qπk by Lemma 2. �

Lemma 10 states that w.h.p. Q∗ − Qπk is close to ̂Qπk − Qπk for large values of k and n.
Therefore, to prove the result of Theorem 2 we only need to bound ̂Qπk − Qπk in high
probability, for which we make use of the following lemma:

Lemma 11 (Component-wise upper bound on ̂Qπk − Qπk )

̂Qπk − Qπk ≤ γ
(

I − γ ̂P πk
)−1

(P − ̂P)V ∗ + γβ
∥

∥(P − ̂P )
(

V ∗ − V πk
)∥

∥1. (25)

Proof We prove this result using a similar argument as in the proof of Lemma 3:

̂Qπk − Qπk = (

I − γ ̂P πk
)−1

r − (

I − γP πk
)−1

r = γ
(

I − γ ̂P πk
)−1(

P πk − ̂P πk
)

Qπk

= γ
(

I − γ ̂P πk
)−1

(P − ̂P)V πk

= γ
(

I − γ ̂P πk
)−1

(P − ̂P)V ∗ + γ
(

I − γ ̂P πk
)−1

(P − ̂P)
(

V πk − V ∗)

≤ γ
(

I − γ ̂P πk
)−1

(P − ̂P )V ∗ + γ
∥

∥(P − ̂P )
(

V πk − V ∗)∥
∥

(

I − γ ̂P πk
)−1

1

= γ
(

I − γ ̂P πk
)−1

(P − ̂P)V ∗ + γβ
∥

∥(P − ̂P )
(

V ∗ − V πk
)∥

∥1,

where in the last line, we rely on the following:

(

I − γ ̂P πk
)−1

1 =
[

I +
∑

i>0

(

γ ̂P πk
)i

]

1 =
(

1 +
∑

i>0

γ i

)

1 = β1.
�

Now we bound the terms in the RHS of Eq. 25 in high probability. We begin by bounding
γ (I − γ ̂P πk )−1(P − ̂P)V ∗:
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Lemma 12 Let Assumption 1 hold. Then, w.p. at least 1 − δ we have

γ
(

I − γ ̂P πk
)−1

(P − ̂P)V ∗ ≤
(

√

4β3 log 2N
δ

n
+

(

5(γβ2)4/3 log 6N
δ

n

)3/4
)

1

+
(

3β3 log 12N
δ

n
+

√

8γ 2k+2β6 log 2N
δ

n

)

1.

Proof From Lemma 6, w.p. at least 1 − δ, we have

γ (P − ̂P)V ∗ ≤
√

2 log 2N
δ

σ̂
̂V ∗

n
+ bpv1

≤
√

2 log 2N
δ

(
√

σ̂
̂V πk + γ ‖̂Qπk − ̂Q∗‖)2

n
+ bpv1

≤
√

2 log 2N
δ

σ̂
̂V πk

n
+

(

bpv +
√

8γ 2k+2β4 log 2N
δ

n

)

1, (26)

where in the last line we rely on Lemma 2. The result then follows by combining Eq. 26
with the result of Lemma 8. �

We now prove bound on ‖(P − ̂P )(V ∗ − ̂V πk )‖ in high probability, for which we require
the following technical result:

Lemma 13 (Weissman et al. 2003) Let ρ be a probability distribution on the finite set
X . Let {X1,X2, · · · ,Xn} be a set of i.i.d. samples distributed according to ρ and ρ̂ be
the empirical estimation of ρ using this set of samples. Define πρ � maxX⊆X min(Pρ(X),

1 − Pρ(X)), where Pρ(X) is the probability of X under the distribution ρ and ϕ(p) �
1/(1 − 2p) log((1 − p)/p) for all p ∈ [0,1/2) with the convention ϕ(1/2) = 2, then w.p. at
least 1 − δ we have

‖ρ − ρ̂‖1 ≤
√

2 log 2|X |−2
δ

nϕ(πρ)
≤

√

2|X | log 2
δ

n
.

Lemma 14 Let Assumption 1 hold. Then, w.p. at least 1 − δ we have

γ
∥

∥(P − ̂P )
(

V ∗ − V πk
)∥

∥ ≤
√

2γ 2|X | log 2N
δ

n

∥

∥Q∗ − Qπk
∥

∥.

Proof From the Hölder’s inequality for all z ∈ Z we have

γ
∣

∣(P − ̂P )
(

V ∗ − V πk
)

(z)
∣

∣ ≤ γ
∥

∥P (·|z) − ̂P (·|z)∥∥
1

∥

∥V ∗ − V πk
∥

∥

≤ γ
∥

∥P (·|z) − ̂P (·|z)∥∥
1

∥

∥Q∗ − Qπk
∥

∥.
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This combined with Lemma 13 implies that

γ
∣

∣(P − ̂P )
(

V ∗ − V πk
)

(z)
∣

∣ ≤
√

2γ 2|X | log 2
δ

n

∥

∥Q∗ − Qπk
∥

∥.

The result then follows by taking union bound on all z ∈ Z . �

We now make use of the results of Lemma 14 and Lemma 12 to bound ‖Q∗ − Qπk‖ in
high probability:

Lemma 15 Let Assumption 1 hold. Assume that

n ≥ 8γ 2β2|X | log
4N

δ
. (27)

Then, w.p. at least 1 − δ we have

∥

∥Q∗ − Qπk
∥

∥ ≤ 2

[

ε′ + 2γ kβ2 +
√

4β3 log 4N
δ

n
+

(

5(γβ2)4/3 log 12N
δ

n

)3/4

+ 4β3 log 24N
δ

n
+

√

8γ 2k+2β6 log 4N
δ

n

]

,

where ε′ is defined by Eq. 22.

Proof By incorporating the result of Lemmas 14 and 12 into Lemma 11 we deduce

̂Qπk − Qπk ≤
√

2β2γ 2|X | log 2N
δ

n

∥

∥Q∗ − Qπk
∥

∥1

+
(

√

4β3 log 2N
δ

n
+

(

5(γβ2)4/3 log 6N
δ

n

)3/4
)

1

+
(

3β3 log 12N
δ

n
+

√

8γ 2k+2β6 log 2N
δ

n

)

1, (28)

w.p. 1 − δ. Equation 28 combined with the result of Lemma 10 and a union bound implies
that

Q∗ − Qπk ≤ (

ε′ + 2γ kβ2
)

1 +
√

2β2γ 2|X | log 4N
δ

n

∥

∥Q∗ − Qπk
∥

∥1

+
(

√

4β3 log 2N
δ

n
+

(

5(γβ2)4/3 log 12N
δ

n

)3/4
)

1

+
(

3γβ3 log 24N
δ

n
+

√

8γ 2k+2β6 log 4N
δ

n

)

1.
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By taking the 
∞-norm and solving the resulting bound in terms of ‖Q∗ − Qπk‖ we
deduce

∥

∥Q∗ − Qπk
∥

∥ ≤ 1

1 −
√

2β2γ 2|X | log 4N
δ

n

[

ε′ + 2γ kβ2

+
√

4β3 log 4N
δ

n
+

(

5(γβ2)4/3 log 12N
δ

n

)3/4

+ 3β3 log 24N
δ

n
+

√

8γ 2k+2β6 log 4N
δ

n

]

.

The choice of n > 8β2γ 2|X | log 4N
δ

completes the proof. �

Proof of Theorem 2 The result follows by solving the bound of Lemma 15 w.r.t. n and k, in

that we also need to assume that ε ≤ c
√

β

γ |X | for some c > 0 in order to reconcile the bound

of Theorem 2 with Eq. 27. �

4.2 Proof of Theorem 3—the lower bound

In this section, we provide the proof of Theorem 3. In our analysis, we rely on the likelihood-
ratio method, which has been previously used to prove a lower bound for multi-armed ban-
dits (Mannor and Tsitsiklis 2004), and extend this approach to RL and MDPs.

We begin by defining a class of MDPs for which the proposed lower bound will be
obtained (see Fig. 1). We define the class of MDPs M as the set of all MDPs with the
state-action space of cardinality N = 3KL, where K and L are positive integers. Also,
we assume that for all M ∈ M, the state space X consists of three smaller subsets S ,
Y1 and Y2. The set S includes K states, each of those states corresponds with the set of
actions A = {a1, a2, . . . , aL}, whereas the states in Y 1 and Y 2 are single-action states. By
taking the action a ∈ A from every state x ∈ S , we move to the next state y(z) ∈ Y 1 with
the probability 1, where z = (x, a). The transition probability from Y 1 is characterized by
the transition probability pM from every y(z) ∈ Y 1 to itself and with the probability 1 − pM

to the corresponding y(z) ∈ Y 2. We notice that every state y ∈ Y 2 is only connected to one
state in Y 1 and S , that is, there is no overlapping path in the MDP. Further, for all M ∈ M,
Y 2 consists of only absorbing states, that is, for all y ∈ Y 2, P (y|y) = 1. The instant reward

Fig. 1 The class of MDPs considered in the proof of Theorem 3. Nodes represent states and arrows show
transitions between the states (see the text for details)
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r is set to 1 for every state in Y 1 and 0 elsewhere. For this class of MDPs, the optimal
action-value function Q∗

M can be solved in closed form from the Bellman equation. For all
M ∈ M

Q∗
M(z) � γV ∗(y(z)

) = γ

1 − γpM

, ∀z ∈ S × A.

Now, let us consider two MDPs M0 and M1 in M with the transition probabilities

pM =
{

p M = M0,

p + α M = M1,

where α and p are some positive numbers such that 0 < p < p +α ≤ 1. The exact values of
p and α be quantified later in this section. We denote the set {M0,M1} ⊂ M with M

∗.
In the rest of this section, we concentrate on proving the lower bound on ‖Q∗

M − QA
T ‖

for all M ∈ M
∗, where QA

T is the output of Algorithm A after observing T state-transition
samples. It turns out that a lower-bound on the sample complexity of M

∗ also bounds the
sample complexity of M from below. In the sequel, we make use of the notation Em ad Pm

for the expectation and the probability under the model Mm : m ∈ {0,1}, respectively.
We follow the following steps in the proof: (i) we prove a lower bound on the sample-

complexity of learning the action-value function for every state-action pair z ∈ S × A on the
class of MDP M

∗; (ii) we then make use of the fact that the estimates of Q∗(z) for different
z ∈ S × A are independent of each other to combine the bounds for all z ∈ S × A and prove
the tight result of Theorem 3.

We begin our analysis of the lower bound by proving a lower-bound on the probability
of failure of any RL algorithm to achieve an ε-close estimate of the optimal action-value
function for every state-action pair z ∈ S × A. In order to prove this result (Lemma 17) we
need to introduce some new notation: We define QA

t (z) as the output of Algorithm A using
t > 0 transition samples from the state y(z) ∈ Y 1 for all z ∈ S × A. We also define the event
E1(z) � {|Q∗

M0
(z) − QA

t (z)| ≤ ε} for all z ∈ S × A. We then define k � r1 + r2 + · · · + rt

as the sum of rewards of making t transitions from y(z) ∈ Y 1. We also introduce the event
E2(z), for all z ∈ S × A as

E2(z) �
{

pt − k ≤
√

2p(1 − p)t log
c′

2

2θ

}

,

where we have defined θ � exp(−c′
2α

2t/(p(1 − p))). Further, we define E (z) � E1(z) ∩
E2(z).

We also make use of the following technical lemma, which bounds the probability of the
event E2(z) from below:

Lemma 16 For all p > 1
2 and every z ∈ S × A, we have

P0

(

E2(z)
)

> 1 − 2θ

c′
2

.
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Proof We make use of the Chernoff-Hoeffding bound for Bernoulli’s (Hagerup and Rüb

1990) to prove the result: For p > 1
2 , define ε =

√

2p(1 − p)t log
c′

2
2θ

, we then have

P0

(

E2(z)
)

> − exp

(

−KL(p + ε||p)

t

)

≥ 1 − exp

(

− ε2

2tp(1 − p)

)

= 1 − exp

(

−2tp(1 − p) log
c′

2
2θ

2tp(1 − p)

)

= 1 − exp

(

− log
c′

2

2θ

)

= 1 − 2θ

c′
2

, ∀z ∈ S × A,

where KL(p||q) � p log(p/q)+ (1−p) log((1−p)/(1−q)) denotes the Kullback-Leibler
divergence between p and q . �

We now state the key result of this section:

Lemma 17 For every RL Algorithm A and every z ∈ S × A, there exists an MDP Mm ∈ M
∗

and constants c′
1 > 0 and c′

2 > 0 such that

Pm

(∣

∣Q∗
Mm

(z) − QA
t (z)

∣

∣

)

> ε) >
θ

c′
2

, (29)

by the choice of α = 2(1 − γp)2ε/(γ 2).

Proof To prove this result we make use of a contradiction argument, that is, we assume that
there exists an algorithm A for which

Pm

((∣

∣Q∗
Mm

(z) − QA
t (z)

∣

∣

)

> ε
) ≤ θ

c′
2

, (30)

for all Mm ∈ M
∗ and show that this assumption leads to a contradiction.

By the assumption that Pm(|Q∗
Mm

(z) − QA
t (z)|) > ε) ≤ θ/c′

2 for all Mm ∈ M
∗, we have

P0(E1(z)) ≥ 1−θ/c′
2 ≥ 1−1/c′

2. This combined with Lemma 16 and by the choice of c′
2 = 6

implies that, for all z ∈ S × A, P0(E (z)) > 1/2. Based on this result we now prove a bound
from below on P1(E1(z)).

We define W as the history of all the outcomes of trying z for t times and the likelihood
function Lm(w) for all Mm ∈ M

∗ as

Lm(w) � Pm(W = w),

for every possible history w and Mm ∈ M
∗. This function can be used to define a random

variable Lm(W), where W is the sample path of the random process (the sequence of ob-
served transitions). The likelihood ratio of the event W between two MDPs M1 and M0 can
then be written as
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L1(W)

L0(W)
= (p + α)k(1 − p − α)t−k

pk(1 − p)t−k
=

(

1 + α

p

)k(

1 − α

1 − p

)t−k

=
(

1 + α

p

)k(

1 − α

1 − p

)k
1−p
p

(

1 − α

1 − p

)t− k
p

.

Now, by making use of log(1 − u) ≥ −u − u2 for 0 ≤ u ≤ 1/2, and exp(−u) ≥ 1 − u for
0 ≤ u ≤ 1, we have

(

1 − α

1 − p

)(1−p)/p

≥ exp

(

1 − p

p

(

− α

1 − p
−

(

α

1 − p

)2))

≥
(

1 − α

p

)(

1 − α2

p(1 − p)

)

,

for α ≤ (1 − p)/2. Thus

L1(W)

L0(W)
≥

(

1 − α2

p2

)k(

1 − α2

p(1 − p)

)k(

1 − α

1 − p

)t− k
p

≥
(

1 − α2

p2

)t(

1 − α2

p(1 − p)

)t(

1 − α

1 − p

)t− k
p

,

since k ≤ t .
Using log(1 − u) ≥ −2u for 0 ≤ u ≤ 1/2, we have for α2 ≤ p(1 − p),

(

1 − α2

2p(1 − p)

)t

≥ exp

(

−2t
α2

p(1 − p)

)

≥ (

2θ/c′
2

)2/c′
1 ,

and for α2 ≤ p2/2, we have

(

1 − α2

p2

)t

≥ exp

(

−t
2α2

p2

)

≥ (

2θ/c′
2

)2(1−p)/(pc′
1)
,

on E2. Further, we have t − k/p ≤
√

2 1−p

p
t log(c2/(2θ)), thus for α ≤ (1 − p)/2:

(

1 − α

1 − p

)t− k
p

≥
(

1 − α

1 − p

)

√

2 1−p
p t log(c′

2/2θ)

≥ exp

(

−
√

2α2

p(1 − p)
t log

(

c′
2/(2θ)

)

)

≥ exp
(−

√

2/c′
1 log

(

c′
2/θ

)) = (

2θ/c′
2

)

√
2/c′

1 .

We then deduce that

L1(W)

L2(W)
≥ (

2θ/c′
2

)2/c′
1+2(1−p)/(pc′

1)+
√

2/c′
1 ≥ 2θ/c′

2,
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for the choice of c′
1 = 8. Thus

L1(W)

L0(W)
1E ≥ 2θ/c′

21E ,

where 1E is the indicator function of the event E (z). Then by a change of measure we deduce

P1
(

E1(z)
) ≥ P1

(

E (z)
) = E1[1E ] = E0

(

L1(W)

L0(W)
1E

)

≥ E0
[

2θ/c′
21E

] = 2θ/c′
2P0

(

E (z)
)

> θ/c′
2, (31)

where we make use of the fact that P0(E (z)) > 1
2 .

By the choice of α = 2(1 − γp)2ε/(γ 2), we have α ≤ (1 − p)/2 ≤ p(1 − p) ≤ p/
√

2,
whenever ε ≤ 1−p

4γ 2(1−γp)2 . For this choice of α, we have that Q∗
M1

(z)−Q∗
M0

(z) = γ

1−γ (p+α)
−

γ

1−γp
> 2ε, thus Q∗

M0
(z)+ ε < Q∗

M1
(z)− ε. In words, the random event {|Q∗

M0
(z)−Q(z)| ≤

ε} does not overlap with the event {|Q∗
M1

(z) − Q(z)| ≤ ε}.
Now let us return to the assumption of Eq. 30, which states that for all Mm ∈ M

∗,
Pm(|Q∗

Mm
(z) − QA

t (z)| ≤ ε) ≥ 1 − θ/c′
2 under Algorithm A. Based on Eq. 31, we have

P1(|Q∗
M0

(z) − QA
t (z)| ≤ ε) > θ/c′

2. This combined with the fact that {|Q∗
M0

(z) − QA
t (z)|}

and {|Q∗
M1

(z)−QA
t (z)|} do not overlap implies that P1(|Q∗

M1
(z)−QA

t (z)| ≤ ε) ≤ 1 − θ/c′
2,

which violates the assumption of Eq. 30. Therefore, the lower bound of Eq. 29 shall hold. �

Based on the result of Lemma 17 and by the choice of p = 4γ−1
3γ

and c1 = 8100, we have
that for every ε ∈ (0,3] and for all 0.4 = γ0 ≤ γ < 1 there exists an MDP Mm ∈ M

∗ such
that

Pm

(∣

∣Q∗
Mm

(z) − QA
t (z)

∣

∣ > ε
)

>
1

c′
2

exp

(−c1tε
2

6β3

)

.

This result implies that for any state-action pair z ∈ S × A:

Pm

(∣

∣Q∗
Mm

(z) − QA
t (z)

∣

∣ > ε
)

> δ, (32)

on M0 or M1, whenever the number of transition samples t is less than ξ(ε, δ) � 6β3

c1ε2 log 1
c′

2δ
.

Based on this result, we prove a lower bound on the number of samples T for which
‖Q∗

Mm
− QA

T ‖ > ε on either M0 or M1:

Lemma 18 For any δ′ ∈ (0,1/2) and any Algorithm A using a total number of transition
samples less than T = N

6 ξ(ε, 12δ′
N

), there exists an MDP Mm ∈ M
∗ such that

Pm

(∥

∥Q∗
Mm

− QA
T

∥

∥ > ε
)

> δ′. (33)

Proof First, we note that if the total number of observed transitions is less than
(KL/2)ξ(ε, δ) = (N/6)ξ(ε, δ), then there exists at least KL/2 = N/6 state-action pairs
that are sampled at most ξ(ε, δ) times. Indeed, if this was not the case, then the total number
of transitions would be strictly larger than N/6ξ(ε, δ), which implies a contradiction). Now
let us denote those states as z(1), . . . , z(N/6).

In order to prove that Eq. 33 holds for every RL algorithm, it is sufficient to prove it for
the class of algorithms that return an estimate QA

Tz
(z), where Tz is the number of samples
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collected from z, for each state-action z based on the transition samples observed from z

only.9 This is due to the fact that the samples from z and z′ are independent. Therefore, the
samples collected from z′ do not bring more information about Q∗

M(z) than the information
brought by the samples collected from z. Thus, by defining Q(z) � {|Q∗

M(z)−QA
Tz

(z)| > ε}
for all M ∈ M

∗we have that for such algorithms, the events Q(z) and Q(z′) are conditionally
independent given Tz and Tz′ . Thus, there exists an MDP Mm ∈ M

∗ such that

Pm

({

Q(z(i))
c
}

1≤i≤N/6
∩ {

Tz(i) ≤ ξ(ε, δ)
}

1≤i≤N/6

)

=
ξ(ε,δ)
∑

t1=0

· · ·
ξ(ε,δ)
∑

tN/6=0

Pm

({Tz(i) = ti}1≤i≤N/6
)

Pm

({

Q(z(i))
c
}

1≤i≤N/6
|{Tz(i) = ti}1≤i≤N/6

)

=
ξ(ε,δ)
∑

t1=0

· · ·
ξ(ε,δ)
∑

tN/6=0

Pm

({Tz(i) = ti}1≤i≤N/6
)

∏

1≤i≤N/6

Pm

(

Q(z(i))
c|Tz(i) = ti

)

≤
ξ(ε,δ)
∑

t1=0

· · ·
ξ(ε,δ)
∑

tN/6=0

Pm

({Tz(i) = ti}1≤i≤N/6
)

(1 − δ)N/6,

from Eq. 32, thus

Pm

({

Q(z(i))
c
}

1≤i≤N/6

∣

∣

{

Tz(i) ≤ ξ(ε, δ)
}

1≤i≤N/6

) ≤ (1 − δ)N/6.

We finally deduce that if the total number of transition samples is less than N
6 ξ(ε, δ), then

Pm

(∥

∥Q∗
Mm

− QA
T

∥

∥ > ε
) ≥ Pm

(

⋃

z∈S×A

Q(z)

)

≥ 1 − Pm

({

Q(z(i))
c
}

1≤i≤N/6

∣

∣

{

Tz(i) ≤ ξ(ε, δ)
}

1≤i≤N/6

)

≥ 1 − (1 − δ)N/6 ≥ δN

12
,

whenever δN
6 ≤ 1. Setting δ′ = δN

12 , we obtain the desired result. �

Lemma 18 implies that if the total number of samples T is less than β3N/

(c1ε
2) log(N/(c2δ)) then, with the choice of c1 = 8100 and c2 = 72, the probability of

‖Q∗
M − QA

T ‖ ≤ ε is at maximum 1 − δ on either M0 or M1. This is equivalent to the ar-
gument that for every RL algorithm A to be (ε, δ)-correct on the set M

∗, and subsequently
on the class of MDPs M, the total number of transitions T needs to satisfy the inequality
T ≥ β3N/(c1ε

2) log(N/(c2δ)), which concludes the proof of Theorem 3.

5 Conclusion and future works

In this paper, we have presented the first minimax bound on the sample complexity of es-
timating the optimal action-value function in discounted reward MDPs. We have proven

9We let Tz to be random.
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that both model-based Q-value iteration (QVI) and model-based policy iteration (PI), in the
presence of the generative model of the MDP, are optimal in the sense that the dependency
of their performances on 1/ε, N , δ and 1/(1 − γ ) matches the lower bound of RL. Also,
our results have significantly improved on the state-of-the-art in terms of dependency on
1/(1 − γ ).

Overall, we conclude that both QVI and PI are efficient RL algorithms in terms of the
number of samples required to attain a near optimal solution as the upper bounds on the
performance loss of both algorithms completely match the lower bound of RL up to a mul-
tiplicative factor.

In the proof of Theorem 2, we rely on the restrictive assumption that ε ≤ c
√

β/(γ |X |)
for some c > 0. This assumption restricts the applicability of Theorem 2 in problems with
very large number of states. We are not sure whether the above assumption is essential for
the result of Theorem 2 or it can be avoided by using a better proof technique. Improving
this result, such that the above assumption is not required anymore, can be a subject for
future work.

Another direction for future work would be to improve on the state-of-the-art in PAC-
MDP, based on the results of this paper. Most PAC-MDP algorithms rely on an extended
variant of model-based Q-value iteration to estimate the action-value function. However,
those results bound the estimation error in terms of Vmax rather than the total variance of
discounted reward, which leads to a non-tight sample complexity bound. One can improve
on those results, in terms of dependency on 1/(1 − γ ), using the improved analysis of this
paper, which makes use of the sharp result of Bernstein’s inequality to bound the estimation
error in terms of the variance of sum of discounted rewards. It must be pointed out that,
almost contemporaneously to our work, Lattimore and Hutter (2012a) have independently
proven a similar upper-bound of order ˜O(N/(ε2(1 − γ )3)) for γ -UCRL algorithm (which
is a discounted version of the UCRL algorithm) under the assumption that only two states
are accessible from every state-action pair.10 Their work also includes a similar lower bound
of ˜�(N/(ε2(1 − γ )3)) for any RL algorithm which matches, up to a logarithmic factor, the
result of Theorem 3. The difference is that Lattimore and Hutter (2012a) consider the online
setting, whereas, in this paper, we assume that a generative model of the MDP is available.
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