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Abstract Class-level models capture relational statistics over object attributes and their con-
necting links, answering questions such as “what is the percentage of friendship pairs where
both friends are women?” Class-level relationships are important in themselves, and they
support applications like policy making, strategic planning, and query optimization. We
represent class statistics using Parametrized Bayes Nets (PBNs), a first-order logic exten-
sion of Bayes nets. Queries about classes require a new semantics for PBNs, as the standard
grounding semantics is only appropriate for answering queries about specific ground facts.
We propose a novel random selection semantics for PBNs, which does not make reference
to a ground model, and supports class-level queries. The parameters for this semantics can
be learned using the recent pseudo-likelihood measure (Schulte in SIAM SDM, pp. 462–
473, 2011) as the objective function. This objective function is maximized by taking the
empirical frequencies in the relational data as the parameter settings. We render the com-
putation of these empirical frequencies tractable in the presence of negated relations by the
inverse Möbius transform. Evaluation of our method on four benchmark datasets shows that
maximum pseudo-likelihood provides fast and accurate estimates at different sample sizes.

Keywords Statistical-relational learning · Bayes Nets · Structured data ·
Pseudo-likelihood · Möbius transform

1 Introduction

Many applications store data in relational form. Relational data introduces the machine
learning problem of class-level frequency estimation: building a model that can answer sta-
tistical queries about classes of individuals in the database (Getoor et al. 2001). Examples
of such queries include:
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– What fraction of birds fly?—referring to the class of birds.
– What fraction of the grades awarded to highly intelligent students are As?—referring to

the class of (student, course-grade) pairs.
– In a social network, what is the percentage of friendship pairs where both are women?—

referring to the class of friendship links.

As the examples illustrate, class-level probabilities concern the frequency, proportion,
or rate of generic events and conditions, rather than the attributes and links of individual
entities. Estimates of class-level frequency have several applications:

Statistical first-order patterns AI research into combining first-order logic and probabil-
ity investigated in depth the representation of statistical patterns in relational structures
(Halpern 1990; Bacchus 1990). Often such patterns can be expressed as generic statements
about the average member of a class, such as “intelligent students tend to take difficult
courses”.

Policy making and strategic planning An administrator may explore the program char-
acteristics that attract high-ranking students in general, rather than predict the rank of a
specific student in a specific program. Maier et al. (2010) describe several applications of
causal-relational knowledge for decision making.

Query optimization A statistical model predicts a probability for given table join condi-
tions that can be used to estimate the cardinality of a database query result (Getoor et al.
2001). Cardinality estimation is used to minimize the size of intermediate join tables (Bab-
cock and Chaudhuri 2005).

In this paper, we apply Bayes nets to the problem of class-level frequency estimation. We
define the semantics, describe a learning algorithm, and evaluate the method’s effectiveness.

Semantics We build a Bayes net model for relational statistics, using the Parametrized
Bayes nets (PBNs) of Poole (2003). The nodes in a PBN are constructed with functors
and first-order variables (e.g., gender(X) may be a node). The original PBN semantics is
a grounding or template semantics, where the first-order Bayes net is instantiated with all
possible groundings to obtain a directed graph whose nodes are functors with constants
(e.g., gender(sam)). The ground graph can be used to answer instance-level queries about
individuals, such as “if user sam has 3 friends, female rozita, males ali and victor, what is
the probability that sam is a woman”? However, as Getoor pointed out (Getoor 2001), the
ground graph is not appropriate for answering class-level queries, which are about generic
rates and percentages, not about any particular individuals.

We support class-level queries via a class-level semantics for Parametrized Bayes nets,
based on Halpern’s classic random selection semantics for probabilistic first-order logic
(Halpern 1990; Bacchus 1990). Halpern’s semantics views statements with first-order vari-
ables as expressing statistical information about classes of individuals. For instance, the
claim “60 % is the percentage of friendship pairs where both friends are women” could be
expressed by the formula

P
(
gender(X) = Woman,gender(Y ) = Woman|Friend(X,Y ) = T

) = 60 %.

Learning A standard Bayes net parameter learning method is maximum likelihood estima-
tion, but this method is difficult to apply for Bayes nets that represent relational data because
the cyclic data dependencies in relations violate the requirements of a traditional likelihood
measure. We circumvent these limitations by using a relational pseudo-likelihood measure
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for Bayes nets (Schulte 2011) that is well defined even in the presence of cyclic depen-
dencies. In addition to this robustness, the relational pseudo-likelihood matches the random
selection semantics because it is also based on the concept of random instantiations. The
estimator that maximizes the parameters of this pseudo-likelihood function (MPLE) has a
closed-form solution: the parameters are the empirical frequencies, as with classical i.i.d.
maximum likelihood estimation. However, computing these empirical frequencies is non-
trivial for negated relationships because enumerating the complement of a relationship table
is computationally infeasible. We show that the MPLE can be made tractable for negated
relationship using the Möbius transform (Kennes and Smets 1990).

Evaluation We evaluate MPLE on four benchmark real-world datasets. On complete-
population samples MPLE achieves near perfect accuracy in parameter estimates, and ex-
cellent performance on Bayes net queries. The accuracy of MPLE parameter values is high
even on medium-size samples.

Paper organization We begin with relational Bayes net models and the random selection
semantics for Bayes nets (Sects. 2 and 3). Section 4 describes parameter learning and Sect. 5
presents the inverse Möbius transform for computing relational statistics. Simulation results
are presented in Sect. 6, showing the run time cost of estimating parameters, together with
evaluations of their accuracy. We provide deeper background on the connections between
random selection semantics and probability logic in Sect. 7 and summarize related work in
Sect. 8.

2 Bayes Nets for relational data

Poole introduced the Parametrized Bayes net (PBN) formalism that combines Bayes nets
with logical syntax for expressing relational concepts (Poole 2003). We adopt the PBN for-
malism, following Poole’s presentation.

2.1 Relational concepts

We introduce here a minimum of logical terminology. In Sect. 7 we present a more com-
plete probabilistic logic. A population is a set of individuals. Individuals are denoted by
lower case expressions (e.g., bob). A population variable is capitalized. An instantiation
of a population variable X selects a member x of the associated population. An instan-
tiation corresponds to the logical concept of grounding. A functor represents a mapping
f : P1, . . . , Pa → Vf where f is the name of the functor, and Vf is the output type or range
of the functor. In this paper we consider only functors with a finite range, disjoint from
all populations. If Vf = {T,F}, the functor f is a (Boolean) predicate; other functors are
called attributes. A predicate with more than one argument is called a relationship. We use
lowercase for attribute functors and uppercase for predicates.

A relational structure specifies the value of a functor for any tuple of appropriate in-
dividuals (Chiang and Poole 2012). A relational structure can be visualized as a complex
heterogeneous network (Russell and Norvig 2010, Chap. 8.2.1): individuals are nodes, at-
tributes of individuals are node labels, relationships correspond to (hyper)edges, and at-
tributes of relationships are edge labels. In relational databases, a relational structure is rep-
resented as a set of tables that list individuals and their attributes; see Fig. 1(a). The set of
individual pairs or tuples that are linked by a relationship is usually much smaller than the
set that are not so linked, so database tables list only the existing relationships.
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Fig. 1 (a) A relational structure represented as tables. By convention, a pair not listed in the Friend table
are not friends. The Friend relation is symmetric: Friend(X,Y ) = Friend(Y,X). Only part of the rows are
shown. (b) A Bayes net structure for this database. Friend(X,Y ) is a relationship node, while the other three
are attribute nodes. (c) The conditional probabilities for the Bayes net structure based upon the entries in the
entire database

2.2 Bayes Nets

A Bayes Net (BN) is a directed acyclic graph (DAG) whose nodes comprise a set of ran-
dom variables and conditional probability parameters. For each assignment of values to
the nodes, the joint probability is specified by the product of the conditional probabilities,
P (child|parent_values).

A Parametrized random variable is of the form f (X1, . . . ,Xa), where the populations
associated with the variables are of the appropriate type for the functor. A Parametrized
Bayes Net (PBN) is a Bayes net whose nodes are parametrized random variables (Poole
2003). In the remainder of this paper we follow (Schulte and Khosravi 2012) and use the
terms functor random variable and functor Bayes Net instead (FBN), for the following
reasons. (1) The name “Parametrized” denotes a semantics that views the Bayes net as a
template for a ground graph structure. Our random selection semantics does not refer to a
ground model. (2) The usual statistical meaning of “parametrized” is that values have been
assigned to the model parameters. We do not assume that such values have been assigned;
learning them is a key topic of this paper.

In our view, a Functor Bayes net is a type of Bayes net whose nodes are complex objects
with an internal syntax derived from the relational structure. Where the distinction between
BNs in general and FBNs is not important, we simply refer to FBNs as Bayes nets and to
functor random variables as functor nodes or nodes. Figure 1(b) shows an illustrative FBN.
The next section presents a novel semantics of Functor Bayes nets as representing relational
statistics.

3 Random selection semantics for Bayes Nets

We provide a semantics that views a functor Bayes net as a representation of a joint prob-
ability distribution over its nodes (Russell and Norvig 2010, Sect. 14.2). The semantics is
for nodes that refer to population variables, rather than for ground nodes that refer to indi-
viduals as in Poole’s original paper (Poole 2003). Such a nonground node can be given a
probabilistic interpretation in terms of random selections.
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Fig. 2 Viewing population variables as random selections from the associated population, the nodes rep-
resent functions of random variables, hence are themselves random variables. Probabilities are computed
assuming the relations in Fig. 1(a) are complete (the database only describes Bob and Anna)

Consider first a node with a single population variable, e.g., gender(X). We view X as
a random variable that selects a member x from its population according to a uniform pop-
ulation distribution P (X = x). The functor gender then represents a function of a random
variable, and hence is itself a random variable. Figure 2 illustrates this interpretation.

In the case of a functor with several population variables f (X1, . . . ,Xa), we view each
population variable as representing an independent selection from its associated popula-
tion (thus variables for the same population represent i.i.d. selections). This defines a dis-
tribution over a-tuples of individuals from the appropriate population. Again, any func-
tor f (X1, . . . ,Xa) then defines a function of a random variable, and hence is itself a
random variable. Figure 2 illustrates the random selection interpretation for the functor
Friend(X,Y ). As the random selection semantics is a key concept in this paper, we discuss
two interpretations.

Random individuals Under random selection semantics, probability formulas can be in-
terpreted as describing the properties of random individuals. For example, the formula
P (gender(X) = M) = 50 % can be interpreted as “the probability is 50 % that a randomly
selected person is a man”. A related interpretation that is often helpful is in terms of typical
individuals (Halpern 1990); for instance, we may read the formula P (Flies(B) = T) = 90 %
as “the probability that a typical bird flies is 90 %”.

Class-level probabilities Random selection formulas can also be read as describing the
distribution of properties in classes of individuals. Thus we can read P (gender(X) = M) =
50 % as “the percentage of persons that are men is 50 %”. Similarly, we may read the
formula P (Flies(B) = T) = 90 % as “the percentage of birds that fly is 90 %”. We therefore
refer to probabilities defined by random selection as class-level probabilities.

Random selection semantics for Bayes Nets Random selection semantics can be applied
to view Bayes nets as representing class-level probabilities, without reference to a ground
model. Via the standard product formula, a Bayes net B entails a probability value PB for
each joint assignment of values to its node. These are probability assignments that refer to
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population variables rather than individuals. For example, the Bayes net structure of Fig. 1(b)
entails joint probabilities of the form

PB

(
g(Y ) = v1,F (X,Y ) = v2, g(X) = v3,CDr(X) = v4

)
,

where we have used the obvious abbreviations for functors, and each vi is a constant from
the appropriate range. For example, the conditional probabilities given in Fig. 1(c) entail the
joint probability

PB

(
g(X) = W,g(Y ) = W,F(X,Y ) = T ,CDr(X) = T

) = 0.028. (1)

The random selection semantics for the nodes provides an interpretation of these joint
probabilities. For example, the joint probability (1) can be read as “if we randomly select
two persons X and Y , the chance is 2.8 % that they are both women, they are friends, and
the first woman drinks coffee”.

Since the random selection semantics is not defined in terms of a ground model, it can
be applied even in the presence of cyclic dependencies in the data. For instance, grounding
the Bayes net of Fig. 1 shows a cyclic dependency between the genders of different users.
The random selection semantics still applies, as shown in our examples, since it concerns
class-level dependencies. The BN of Fig. 1 illustrates that the dependency structure among
class-level random variables can be acyclic even when the dependency structure among
ground instances is not.

In logic, the term “semantics” is used in a different sense than in the context of statis-
tical models, to refer to truth conditions for logical sentences (Russell and Norvig 2010,
Chap. 7.4.2). In Sect. 7, we show that the random selection semantics for Bayes nets that
we have presented is in agreement with Halpern’s truth-conditional type 1 semantics for
probabilistic logic. We next turn to learning and describe a method for learning Bayes net
parameters that represent class-level probabilities.

4 Parameter learning for class-level probabilities

In a nonrelational learning setting, it is common to view a data table as representing infor-
mation about individuals in a finite subset drawn from a large, possibly infinite population.
In relational learning, we view a database D as representing a finite substructure of a large,
possibly infinite relational structure. We make the standard assumption that the database
is complete (Domingos and Lowd 2009; Khot et al. 2011): For each individual (node) ob-
served, the database lists its attributes, and for each pair of observed individuals (nodes), the
database specifies which links hold between them. Note that completeness is a statement
about the information about individuals in the database. A complete database may contain
only a subset of the individuals in the population about which we wish to make inferences.

A fundamental question for statistical model selection is how to measure the fit of the
model. That is, we must specify a likelihood function PB(D) for a given database. The
random selection semantics can be used to define a tractable pseudo-likelihood (Schulte
2011): The pseudo log-likelihood is the expected log-probability assigned by the Bayes net
to the links and attributes for a random instantiation of the population variables. This is
defined by the following procedure.

1. Randomly select a grounding for all population variables that occur in the Bayes net. The
result is a ground graph with as many nodes as the original.
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Table 1 An example computation of the pseudo-likelihood for the database and the Bayes net of Fig. 1(b).
Columns for functors include the grounded value and its conditional probability. The dotted row indicates
entries for combinations including the other instances of Person. The pseudo log-likelihood is the mean of
the lnp column

X Y g(Y ) F (X,Y ) g(X) cd(X) Joint p lnp

anna anna W(0.5) F (0.9) W(0.5) T (0.8) 0.180 −1.71

anna bob M(0.5) T (0.1) W(0.3) T (0.8) 0.012 −4.42

bob anna W(0.5) T (0.1) M(0.3) F (0.4) 0.006 −5.12

bob bob M(0.5) F (0.9) M(0.5) F (0.4) 0.090 −2.41

. . . . . . . . . . . . . . . . . . . . . . . .

2. Look up the value assigned to each ground node in the database. Compute the log-
likelihood of this joint assignment using the usual product formula; this defines a log-
likelihood for this random instantiation.

3. The expected value of this log-likelihood—the mean over all instantiations—is the
pseudo log-likelihood of the database given the Bayes net.

Table 1 shows an example computation of the pseudo likelihood. The pseudo likelihood
matches the random selection semantics that we have proposed for class-level Bayes nets.
It has several attractive theoretical properties (Schulte 2011). (1) Because it does not make
reference to a single ground model, the measure is well defined even in the presence of
cyclic dependencies in the data. For instance, grounding the Bayes net of Fig. 1 shows a
cyclic dependency between the genders of different users. Nonetheless a pseudo-likelihood
value can be computed as in Table 1. The pseudo-likelihood can be used to effectively learn
cyclic or recursive dependencies (Schulte and Khosravi 2012). (2) It is closely related to
relational pseudo-likelihood measures proposed for other graphical models (e.g., Markov
random fields). (3) It is invariant under equivalence transformations of the logical predicates
(database normalization). (4) For a fixed database D and Bayes net structure, the param-
eter values that maximize the pseudo-likelihood are the conditional empirical frequencies
observed in the database (Schulte 2011, Proposition 3.1). We refer to these frequencies as
the database probabilities. This result is exactly analogous to maximum likelihood estima-
tion for i.i.d. data, where the empirical frequencies in an i.i.d. sample maximize the model
likelihood.

The database probability distribution PD of a node assignment is the number of instan-
tiations of the population variables in the functor nodes that satisfy the assignment in the
database, divided by the number of all possible instantiations. The formal definition is (Chi-
ang and Poole 2012):

– Let f1 = v1, . . . , fn = vn be an assignment of appropriate values to n nodes.
– Let X1, . . . ,X� be the population variables that appear in the nodes, with associated pop-

ulation sizes |P1|, . . . , |P�|.
– Let #D(f1 = v1, . . . , fn = vn) be the number of instantiations or groundings of the popu-

lation variables that satisfy the assigned values in D.
– Then the database probability of the value assignment is given by

PD(f1 = v1, . . . , fn = vn) = #D(f1 = v1, . . . , fn = vn)

|P1| × · · · × |P�| .
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Fig. 3 (a) A Bayes net with two relationship nodes. (b) An illustrative trace of the inverse Möbius transform
(see text)

Example Following Fig. 1(b), where the complete person population is {anna,bob}, we
have

PD
(
gender(X) = M

) = 1/2

and

PD
(
Friend(X,Y ) = T,gender(X) = M,gender(Y ) = W

) = 1/4.

In the next section we consider how to compute database probabilities.

5 Computing relational statistics

In this section we describe algorithms for computing probability estimates for the pa-
rameters PD(child_value,parent_values) in a functor Bayes net. The parameters can be
estimated independently for each child node. We refer to a joint specification of values
(child_value,parent_values) as a family state. Consider a child node specifying a rela-
tionship R1 whose parents comprise relationship nodes R2, . . . ,Rm, and attribute nodes
f1, . . . , fj . The algorithms below can be applied in the same way in the case where the
child node is an attribute node. The number of family states r is the cardinality of the Carte-
sian product of the ranges for every node in the family. The Bayes net parameters are r

conditional probabilities of the form (we separate relationships from attributes by a semi-
colon)

P (R1 = b1|R2 = b2, . . . ,Rm = bm;f1 = v1, . . . , fj = vj ), (2)

where the bi values are Boolean and each vi is from the domain of fi . Figure 3(a) provides
an example with R1 = Follows(X,Y ), R2 = Friend(X,Y ), and f1 = gender(X). In this ex-
ample, all nodes are binary, so the CP-table requires the specification of r = 2 × 2 × 2 = 8
values.1

1Although only 4 of these values are independent, we take the number of parameters to be r = 8 for simplicity
of exposition of the inverse Möbius transform in the next section.
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Conditional probabilities can be easily estimated from the sufficient statistics, which are
the database probabilities for a family state:

PD(R1 = b1,R2 = b2, . . . ,Rm = bm;f1 = v1, . . . , fj = vj ). (3)

For the rest of this section, we focus on computing these joint probabilities. So long as
a database probability involves only positive relationships, the computation is straightfor-
ward. For example, in PD(gender(X) = M,Friend(X,Y ) = T), the value #D(gender(X) =
M,Friend(X,Y ) = T), the count of friendship pairs (x, y) where x is male and the Friend
relationship is true, can be computed by regular table joins or optimized virtual joins (Yin
et al. 2004).

Computing joint probabilities for a family containing one or more negative relationships
is harder. A naive approach would explicitly construct new data tables that enumerate tuples
of objects that are not related. However, the number of unrelated tuples is too large to make
this scalable (think about the number of user pairs who are not friends on Facebook). In
their work on learning Probabilistic Relational Models with existence uncertainty, Getoor
et al. provided a “1-minus trick” for the special case of estimating a conditional probability
with only a single negated relationship (Getoor et al. 2007, Sect. 5.8.4.2). They did not treat
parameter learning with multiple negated relationships.

5.1 Statistics with multiple negated relationships: the fast Möbius transform

The general case of multiple negative relationships can be efficiently computed using the
fast inverse Möbius transform (IMT), or Möbius transform for short. We compute the joint
probabilities (3) for r family states by first computing the r Möbius parameters of the joint
distribution, then using the inverse Möbius transform to transform the Möbius parameters
into the desired joint probabilities. Figure 4 provides an overview of the computation steps.
Because the Möbius parameters involve probabilities for events with positive relationships
only, they can be estimated directly from the data. We next define the Möbius parameters,
then explain the IMT.

Let B = B1, . . . ,Bm be a set of binary random variables with possible values 0 or 1, and
P be the joint distribution that specifies 2m probabilities, one for each possible assignment
of values to the m binary variables. For any subset B ⊆ B of the variables, let P (B = 1)

denote the probability that the variables in B are assigned the value 1, leaving the value of
the other variables unspecified. The Möbius parameters of the distribution P are the values
P (B = 1) for all subsets B ⊆ B (Drton and Richardson 2008, Sect. 3). There are 2m Möbius
parameters for m binary variables, with 0 ≤ P (B = 1) ≤ P (B = 1) ≤ P (∅ = 1) = 1.

For a family state, if we fix the values v1, . . . , vj of the attribute atoms, the sufficient
statistics correspond to a joint distribution over m Boolean relationship random variables:

P (R1 = ·,R2 = ·, . . . ,Rm = ·;f1 = v1, . . . , fj = vj ).

We refer to the Möbius parameters of this joint distribution as the Möbius parameters for
the attribute values v1, . . . , vj .

Example For the Bayes net of Fig. 3(a), fix the attribute condition gender(X) = W . The
four Möbius parameters for this attribute condition are

P
(
gender(X) = W

)
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Fig. 4 Computation of joint probabilities in a relational database. (1) Estimate Möbius parameters using
standard table join operations. (2) Transform the Möbius parameters into joint probabilities. (3) Compute
conditional probabilities from joint probabilities. Only the first step involves data access

P
(
Friend(X,Y ) = T;gender(X) = W

)

P
(
Follows(X,Y ) = T;gender(X) = W

)

P
(
Friend(X,Y ) = T,Follows(X,Y ) = T;gender(X) = W

)
.

5.2 The inverse Möbius transform

It is clear that the Möbius parameters can be computed from the joint probabilities by
marginalization. For example, for two binary random variables, we have P (B1 = 1) =
P (B1 = 1,B2 = 1) + P (B1 = 1,B2 = 0). Conversely, the Möbius inversion lemma en-
tails that the joint probabilities can be computed from the Möbius parameters.2 The Inverse
Möbius Transform is an optimal algorithm for carrying out this computation, using the local

2There are several other ways to parametrize binary joint distributions, such as canonical parametrizations
(Koller and Friedman 2009, Sect. 4.4.2.1). See also Buchman et al. (2012).
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Algorithm 1 The inverse Möbius transform for parameter estimation in a Parametrized
Bayes Net

Input: database D; a set of nodes divided into attribute nodes f1, . . . , fj and relationship
nodes R1, . . . ,Rm.
Output: joint probability table specifying the data frequencies for each joint assignment
to the input nodes.

1: for all attribute value assignments f1 := v1, . . . , fj := vj do
2: initialize the table: set all relationship nodes to either T or ∗; find joint frequencies

with data queries.
3: for i = 1 to m do
4: Change all occurrences of Ri = ∗ to Ri = F.
5: Update the joint frequencies using (4).
6: end for
7: end for

update operation

P (R = F,R) = P (R) − P (R = T,R) (4)

where R is a conjunction of relationship specifications, possibly with both positive and
negative relationships. The equation holds for any fixed set of attribute conditions f1 =
v1, . . . , fj = vj . Equation (4) generalizes the 1-minus trick: the joint probabilities on the
right hand side each involve exactly one less false relationship than the joint probability on
the left.

As illustrated in Fig. 4, our implementation of the transform uses two data structures.
Middle table: a joint probability table with r rows and k + 2 columns. The first k = j + m

columns are for the parent nodes, column k +1 is for the child node, and column k +2 is the
joint probability for the row. The r rows enumerate all possible combinations of the child
and parent node value. Thus the joint probability table is just like a conditional probability
table, but with joint probabilities instead of conditional ones. Top table: the Möbius table
is just like the joint probability table, but with entries T and * instead of T and F for the
Boolean relationship values. The value * represents “unspecified”. The entries in the Möbius
table do not involve negated relationships—all relationship nodes have the value T or ∗.

The IMT initializes the Möbius parameter values with frequency estimates from the data
(top table). It then goes through the relationship nodes R1, . . . ,Rm in order, at stage i re-
placing all occurrences of Ri = ∗ with Ri = F, and applying the local update equation to
obtain the probability value for the modified row. At termination, all ∗ values have been
replaced by F and the table specifies all joint frequencies (middle table). In the final step,
with complexity linear in r , we compute conditional probabilities (bottom table).

This algorithm is repeated for all possible assignments of values to attribute node, for
every child node. Algorithm 1 gives pseudo code and Fig. 3 presents an example of the
transform step.

5.3 Complexity analysis

Kennes and Smets (1990) analyze the complexity of the IMT. We summarize the main
points. Recall that m is the number of binary relationship nodes in a single node family.

1. The IMT only accesses existing links, never nonexisting links.
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2. The inner loop of Algorithm 1 (lines 3–6) performs O(m2m−1) updates (Kennes and
Smets 1990). This is optimal (Kennes and Smets 1990, Corollary 1).

3. If the joint probability table for a family contains r rows, the algorithm performs
O(m × r) updates in total.

In practice, the number m is small, often 4 or less.3 We may therefore treat the number
of updates as proportional to the number r of Bayes net parameters.Our simulations confirm
that the cost of the IMT updates is dominated by the data access cost for finding the Möbius
parameter frequencies.

6 Evaluation

We evaluated the learning times (Sect. 6.2) and quality of inference (Sect. 6.3) of our ap-
proach to class-level semantics, as well as comparing the inference accuracy of our methods
to Markov Logic Networks. Another set of simulations evaluates the accuracy of parameter
estimates (conditional probabilities). All experiments were done on a QUAD CPU Q6700
with a 2.66 GHz CPU and 8 GB of RAM. The datasets and code are available on the Web
(Khosravi et al. 2012).

6.1 Datasets

We used four benchmark real-world databases, with the modifications described by Schulte
and Khosravi (2012). See that article for details.

Mondial database A geography database, featuring one self-relationship, Borders, that
indicates which countries border each other. The data are organized in 4 tables (2 entity
tables, 2 relationship tables, and 10 descriptive attributes).

Hepatitis database A modified version of the PKDD’02 Discovery Challenge database.
The data are organized in 7 tables (4 entity tables, 3 relationship tables, and 16 descriptive
attributes).

Financial A dataset from the PKDD 1999 cup. The data are organized in 4 tables (2 entity
tables, 2 relationship tables, and 13 descriptive attributes).

MovieLens A dataset from the UC Irvine machine learning repository. The data are orga-
nized in 3 tables (2 entity tables, 1 relationship table, and 7 descriptive attributes).

To obtain a Bayes net structure for each dataset, we applied the learn-and-join algorithm
(Schulte and Khosravi 2012) to each database with the implementation provided by the
authors. This is the state-of-the-art structure learning algorithm for FBNs; for an objective
function, it uses the pseudo-likelihood described in Sect. 4.

6.2 Learning times

Table 2 shows the run times for computing parameter values. The Complement method
uses SQL queries that explicitly construct tables for the complement of relationships (tables
representing tuples of unrelated entities), while the IMT method uses the inverse Möbius
transform to compute the conditional probabilities. The IMT is faster by factors of 15–237.

3For general m, the problem of computing a sufficient statistic in a relational structure—a joint probability
of the form (3)—is #P-complete (Domingos and Richardson 2007, Proposition 12.4).
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Table 2 Learning times (sec) for
algorithms that construct explicit
complement tables or use the
inverse Möbius transform

Database Parameters #tuples Complement IMT Ratio

Mondial 1618 814 157 7 22

Hepatitis 1987 12,447 18,246 77 237

Financial 10926 17,912 228,114 14,821 15

MovieLens 326 82,623 2,070 50 41

6.3 Inference

The evaluation of parameter learning for Bayes nets is based on query accuracy of the re-
sulting nets (Allen et al. 2008) because answering probabilistic queries is the basic inference
task for Bayes nets. Correct parameter values will support correct query results, so long as
the given Bayes net structure matches the true distribution (i.e., is an I-map). We evaluate
our algorithm by formulating random queries and comparing the results returned by our
algorithm to the ground truth, the actual database frequencies.

We randomly generate queries for each dataset according to the following procedure.
First, randomly choose a target node V 100 times, and go through each possible value a of
V such that P (V = a) is the probability to be predicted. For each value a, choose randomly
the number k of conditioning variables, ranging from 1 to 3. Make a random selection of k

variables V1, . . . , Vk and corresponding values a1, . . . , ak . The query to be answered is then
P (V = a|V1 = a1, . . . , Vk = ak).

As done by Getoor et al. (2001), we evaluate queries after learning parameter values on
the entire database. Thus the Bayes net is viewed as a statistical summary of the data rather
than as generalizing from a sample. Inference is carried out using the Approximate Updater
of Tetrad (2008). Figure 5(left) shows the query performance for each database. A point
(x, y) on a curve indicates a query such that the true probability value in the database is x

and the probability value estimated by the model is y. The Bayes net inference is close to
the ideal identity line, with an average difference of less than 1 % (inset numbers).

Comparison with Markov logic networks To benchmark our results, we compare the aver-
age error of FBN inferences with frequency estimates from Markov Logic Network (MLN)s.
MLNs are a good comparison point because (1) they are currently one of the most active
areas of SRL research; (2) the Alchemy system provides an open-source, state-of-the-art
implementation for learning and inference (Kok et al. 2009); (3) they do not require the
specification of further components (e.g., a combining rule or aggregation function); and
(4) their undirected model can accommodate cyclic dependencies.

Like most statistical-relational models, MLNs were designed for instance-level probabil-
ities rather than class-level queries. We therefore need an extra step to convert instance-level
probabilities into class-level probabilities. To derive class-level probability estimates from
instance-level inference, the following method due to Halpern (1990, fn. 3) can be used: In-
troduce a new individual constant for each first-order variable in the relational model (e.g.,
random-student, random-course, and random-prof). Applying instance probability inference
to these new individuals provides a query answer that can be interpreted as a class-level
probability. To illustrate, if the only thing we know about Tweety is that Tweety is a bird,
then the probability that Tweety flies should be the frequency of fliers in the bird population
(Schulte 2012). That is, the class-level probability P (Flies(B) = T) can be obtained from
the instance-level marginal probability P (Flies(tweety) = T) where tweety is a new constant
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Fig. 5 Left: Query performance (Sect. 6.3): Estimated versus true probability, with average error and stan-
dard deviation. Number of queries/average inference time per query: Mondial, 506/0.08 sec; MovieLens,
546/0.05 sec; Hepatitis, 489/0.1 sec; Financial, 140/0.02 sec. Right: Error (Sect. 6.4): Absolute difference in
estimated conditional probability parameters, averaged over 10 random subdatabases and all BN parameters.
Whiskers indicate the 95th percentile. The 70 % and 90 % subsamples of the Financial database had so little
variance that the whiskers are not visible
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Table 3 Class-level query
performance of Bayes nets versus
two algorithms for learning
Markov Logic Networks, as
indicated by average absolute
error between the predicted
frequency and the true database
frequencies. NT denotes
non-termination within the
system resources

Dataset Average error

BN MLN(LSM) MLN(LHL)

Mondial 0.9 % 8.6 % 10.5 %

Hepatitis 0.8 % 11.2 % 13.2 %

Financial 0.9 % 9.1 % NT

Movielens 0.6 % 14.2 % NT

not featured in the data used for learning. In the experiments below, we apply MLN infer-
ence to new constants as described to obtain class-level probability estimates. We compare
these learning algorithms (Kok and Domingos 2010):

BN Bayes net parametrized with maximum pseudo likelihood estimates.
LHL A structure learning algorithm that produces a parametrized MLN, with Alchemy’s

MC-SAT for inference.
LSM Another structure learning algorithm that produces a parametrized MLN, with

Alchemy’s MC-SAT for inference. In experiments by Kok and Domingos, LSM outper-
formed previous MLN learners.

As shown in Table 3, the Bayes net models provide an order of magnitude more accurate
class-level estimates than the MLN models.

6.4 Conditional probabilities

In the previous inference results, the correct query answers are defined by the entire popu-
lation, represented by the benchmark database, and the model is also trained on the entire
database. To study parameter estimation at different sample sizes, we trained the model on
N% of the data for varying N while continuing to define the correct value in terms of the
entire population. Conceptually, we treated each benchmark database as specifying an entire
population, and considered the problem of estimating the complete-population frequencies
from partial-population data. The N% parameter is uniform across tables and databases.
We employed standard subgraph subsampling (Frank 1977; Khosravi et al. 2010), which
selects entities from each entity table uniformly at random and restricts the relationship tu-
ples in each subdatabase to those that involve only the selected entities. Subgraph sampling
provides complete link data and matches the random selection semantics. It is applicable
when the observations include positive and negative link information (e.g., not listing two
countries as neighbors implies that they are not neighbors). The subgraph method satisfies
an ergodic law of large numbers: as the subsample size increases, the subsample relational
frequencies approach the population relational frequencies.

The right side of Fig. 5 plots the difference between the true conditional probabilities and
the MPLE estimates. With increasing sample size, MPLE estimates approach the true value
in all cases. Even for the smaller sample sizes, the median error is close to 0, confirming that
most estimates are very close to correct. As the box plots show, the 3rd quartile of estimation
error is bound within 10 % on Mondial, the worst case, and within less than 5 % on the other
datasets.
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7 Probability logic

First-order logic was extended to incorporate statements about probabilities in Halpern
and Bacchus’s classic AI papers (Halpern 1990; Bacchus 1990). Formalizing probabil-
ity within logic provides a formal semantics for probability assertions and allows prin-
ciples for probabilistic reasoning to be defined as logical axioms. This section provides
a brief outline of probability logic. We describe how the random selection concept has
been used to define a truth-conditional semantics for probability formulas (Halpern 1990;
Bacchus 1990). This semantics is equivalent to our class-level interpretation of functor ran-
dom variables.

7.1 Syntax

We adopt Chiang and Poole’s version of predicate logic for statistical-relational modelling
(Chiang and Poole 2012). We review only the concepts that are the focus of this paper.

Individuals are represented by constants, which are written in lower case (e.g., bob).
A type is associated with each individual, for instance bob is a person. The population
associated with type τ , a set of individuals, is denoted by P(τ ). We assume that the pop-
ulations are specified as part of the type description. A logical variable is capitalized and
associated with a type. For example, the logical variable Person is associated with the pop-
ulation person. We use the definition of functor given in Sect. 2.1; we assume that the lan-
guage contains functor symbols such as f,f ′, g. A literal is of the form f (σ1, . . . , σa) = v,
where v is in the range of the functor, and each σi is either a constant or a population vari-
able. The types of σ1, . . . , σa must match the argument types of f . If all the σ1, . . . , σa

are constants, then f (σ1, . . . , σa) = v is a ground literal. A ground literal is the basic unit
of information. Literals can be combined to generate formulas. In this paper we consider
only formulas that are conjunctions of literals, denoted by the Prolog-style comma notation
f (σ1, . . . , σa) = v, . . . , f ′(σ ′

1, . . . , σ
′
a′) = v′. The work of Halpern and Bacchus shows how

to extend the random selection semantics to the full syntax of first-order logic.
A probability literal is of the form

P (φ) = p

where each p is a term that denotes a real number in the interval [0,1] and φi is a conjunctive
formula as defined above. A probability formula is a conjunction of probability literals. We
refer to predicate logic extended with probability formulas as probability logic.

Let {X1, . . . ,Xk} be a set of logical variables of types τ1, . . . , τk . A grounding γ is a set
γ = {X1\x1, . . . ,Xk\xk} where each xi is a constant of the same type as Xi . A grounding γ

for a formula φ is a grounding for the variables that appear in the formula, denoted by φγ .

Examples Consider again the social network model of Fig. 1(a), with a single type,
τ = person, associated with two logical variables X and Y . A conjunction of nonground
literals is gender(X) = W , gender(Y ) = M , Friend(X,Y ) = T . Applying the ground-
ing {X\anna, Y\bob} produces the conjunction of ground literals gender(anna) = W ,
gender(bob) = M , Friend(anna,bob) = T .

An example of a nonground probability formula is

P
(
gender(X) = W,gender(Y ) = M,Friend(X,Y ) = T

) = 1/4,

while an example of a ground probability formula is

P
(
gender(anna) = W,gender(bob) = M,Friend(anna,bob) = T

) = 1/4.
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7.2 Semantics

Halpern defines different semantics for probability formulas depending on whether they con-
tain only nonground probability literals (type 1), only ground probability literals (type 2), or
both (type 3). Relational statistics are represented by nonground probability formulas, so we
give the formal definition for the type 1 semantics only. The type 2 semantics for probability
formulas with ground literals is well-known in the statistical-relational learning community
(Cussens 2007; Milch et al. 2007; Russell and Norvig 2010, Chap. 14.6.1). An example of
a mixed type 3 case is the connection between the class-level probabilities and individual
marginal probabilities that we utilized in the Markov Logic Network experiments reported in
Table 3. Schulte (2012) discusses the importance of type 3 semantics for statistical-relational
learning.

A relational structure S specifies (1) a population for each type, and (2) for each functor
f a set of tuples Sf = {〈x1, . . . , xa, v〉}, where the tuple 〈x1, . . . , xa〉 match the functor’s
argument types, and the value v is in the range of f . Each tuple 〈x1, . . . , xa〉 appears exactly
once in Sf .

A relational structure defines truth conditions for ground literals, conjunctive formulas,
and probability formulas as follows. If the structure S assigns the same value to a ground
atom as a literal l, the literal is true in S , written as S |= l. Thus

S |= f (x1, . . . , xa) = v iff 〈x1, . . . , xa, v〉 ∈ Sf .

A conjunction is true if all its conjuncts are true. All ground literals listed above are
true in the structure of Fig. 1(b). False literals include CoffeeDrinker(bob) = T and
Friend(anna,anna) = T .

A relational structure does not determine a truth value for a nonground literal such
as gender(X) = M , since a gender is not determined for a generic person X. We follow
database theory and view a nonground formula as a logical query (Ullman 1982). Intu-
itively, the formula specifies conditions on the population variables that appear in it, and
the result set lists all individuals that satisfy these conditions in a given relational structure.
Formally, we denote the formula result set for a structure S as RS (φ), defined by

RS (φ) ≡ {〈x1, . . . , xk〉 : S |= φ{X1\x1, . . . ,Xk\xk}
}
.

To define truth conditions for nonground probability formulas, a relational structure is
augmented with a distribution Pτ over each population P(τ ). There is no constraint on the
distribution. Halpern refers to such augmented structures as type 1 relational structures;
we continue to use the symbol S for type 1 structures. Given a type 1 structure, we may view
a logical variable as a random selection from its population. These random selections are
independent, so for a fixed set of population variables, the population distributions induce a
distribution over the groundings of the variables. The random selection semantics states that
the probability of a formula in a type 1 structure is the probability of the set of groundings
that satisfy the formula. In other words, it is the probability that the formula is satisfied by a
randomly selected grounding. The formal definitions are as follows:

1. PS (X1 = x1, . . . ,Xa = xa) =df Pτ1(x1) × · · · × Pτa (xa) where τi is the type of variable
Xi and constant xi .

2. S |= P (φ) = p if and only if p = ∑
〈x1,...,xa 〉∈RS (φ) PS (x1, . . . , xa).

Each joint probability specified by a functor Bayes net is a conjunction in probability
logic (like (1)). The net therefore specifies a set of nonground probability formulas. The
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logical meaning of these formulas according to the type 1 semantics is the same as the
meaning of class-level probabilities according to the random selection semantics of Sect. 3.
In the terminology of Bacchus, Grove, Koller, and Halpern, a set of nonground probability
formulas is a statistical knowledge base (Bacchus et al. 1992). In this view, a functor Bayes
net is a compact graphical representation of a statistical knowledge base, much as a small
set of axioms can provide a compact representation of a logical knowledge base.

8 Related work and discussion

Statistical relational models To our knowledge, the Statistical Relational Models (SRMs)
of Getoor (2001), are the only prior statistical models with a class-level probability seman-
tics. A direct empirical comparison is difficult as code has not been released, but SRMs have
compared favorably with benchmark methods for estimating the cardinality of a database
query result (Getoor et al. 2001) (Sect. 1).

SRMs differ from FBNs and other statistical-relational models in several respects.
(1) SRMs are derived from a tuple semantics (Getoor 2001, Definition 6.3), which is dif-
ferent from the random selection semantics we propose for FBNs. (2) SRMs are less ex-
pressive: The queries that can be formulated using the nodes in an SRM cannot express
general combinations of positive and negative relationships (Getoor 2001, Definition 6.6).
This restriction stems from the fact that the SRM semantics is based on randomly selecting
tuples from existing tables in the database. Complements of relationship tables are usually
not stored (e.g., there is no table that lists the set of user pairs who are not friends). The
expressive power of SRMs and FBNs becomes essentially equivalent if the SRM semantics
is extended to include drawing random tuples from complement tables, but this entails the
large increase in storage and processing described above.

Class-level vs. instance-level probabilities Most previous work on statistical-relational
learning has been concerned with instance-level probabilities for predicting the attributes
and relationships of individuals (Getoor and Taskar 2007a; Russell and Norvig 2010). Ex-
amples of instance-level queries include the following.

– Given that Tweety is a bird, what is the probability that Tweety flies?
– Given that Sam and Hilary are friends, and given the genders of all their other friends,

what is the probability that Sam and Hilary are both women?
– What is the probability that Jack is highly intelligent given his grades?

Probability logic represents such instance-level probabilities by formulas with ground
literals (e.g., P (Flies(tweety)) = p). In graphical models, instance level probabilities are
defined by a template semantics (Getoor and Taskar 2007a): the functors associated with
every node are grounded with every appropriate constant. Instance-level probabilities can
be computed by applying inference to the resulting graph.

A key difference between class- and instance-level queries is that instance-level queries
can involve an unbounded number of random variables. For instance, if m has 100 Facebook
friends x1, . . . , x100, an instance-level query to predict the gender of m given the genders of
her friends would involve 200 ground literals of the form

P
(
gender(m)|gender(x1),Friend(m,x1), . . . ,gender(x100),Friend(m, x100)

)
.



Mach Learn (2014) 94:105–125 123

In contrast, class-level queries are restricted to the set of random variables in the class-level
model, which is relatively small. For instance, the Bayes net of Fig. 1(b) contains four class-
level random variables. This allows a query like

P
(
gender(X)|gender(Y ),Friend(X,Y )

)
,

which predicts the gender of a single generic user, given the gender of a single generic
friend.

While we do not treat learning models for instance-level probabilities in this paper, we
note that the Bayes net structures that we use in this paper also perform well for instance-
level inference (Schulte and Khosravi 2012; Khosravi et al. 2010). The structures are learned
using the random selection pseudo likelihood as the main component of the objective func-
tion. These evaluations suggest the pseudo likelihood guides learning towards models that
perform well for both class-level and instance-level inferences.

Parfactors and lifted inference Lifted inference aims to speed up instance-level inferences
by computing parfactors, that is, counts of equivalent events, rather than repeating equiva-
lent computations (Poole 2003). For instance, the inference procedure would count the num-
ber of male friends that m has, rather than repeat the same computation for each male friend.
Based on the similarity with computing event counts in a database, Schulte and Khosravi re-
fer to learning with the pseudo-likelihood as lifted learning (Schulte and Khosravi 2012).
The counting algorithms in this paper can likely be applied to computing parfactors that
involve negated relations. The motivation for parfactors, however, is as a means to com-
pute instance-level predictions (e.g., predict the gender of m). In contrast, our motivation
is to learn class frequencies as an end in itself. Because parfactors are used with instance-
level inferences, they usually concern classes defined with reference to specific individuals,
whereas the statistics we model in this paper are at the class-level only.

The complete-data and closed-world assumptions In logic, the closed-world assumption
is that “atomic sentences not known to be true are in fact false” (Russell and Norvig 2010,
Chap. 8.2.8). While the closed-world assumption is used in logical reasoning rather than
learning, it is relevant for learning if we view it as an assumption about how the data are
generated. For instance, we have made the complete-data assumption that if a link between
two individuals is not listed in a database, it does not exist. This entails that if a student
registers in a course, this event is recorded in the university database, so the absence of a
record implies that the student has not registered. If this assumption is not warranted for a
particular data generating mechanism, the complete-data assumption fails, because for some
pairs of individuals, the data does not indicate whether a link between does not actually
exist or simply has not been recorded. One way to deal with missing link data is to use
imputation methods (Hoff 2007; Namata et al. 2011). Another approach is downsampling
existing links by adding random negative links (Khot et al. 2011; Yang et al. 2011). Many
methods for dealing with missing data employ complete-data learning as a subroutine (e.g.,
the Expectation Maximization algorithm; cf. (Domingos and Lowd 2009, Chap. 4.3)). Given
the speed and accuracy of pseudo-likelihood Bayes net learning in the complete-data case,
we expect that it will be useful for learning with missing data as well.

Another important point for this paper is that our methods can be used no matter how
link frequencies are estimated, whether from corrected or uncorrected observed link counts.
Specifically, given estimates for the Möbius parameters, the Möbius transform finds the
probabilities for negative link events that those parameters determine. This computation
assumes nothing but the laws of the probability calculus.
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9 Conclusion

Class-level probabilities represent relational statistics about the frequencies or rates of
generic events and patterns. Representing these probabilities has been a long-standing con-
cern of AI research. Class-level probabilities represent informative statistical dependencies
in a relational structure, supporting such applications as strategic planning and query opti-
mization. The class-level interpretation of Bayes nets is based on the classic random selec-
tion semantics for probability logic. Parameters are learned using the empirical frequencies,
which are the maxima of a pseudo-likelihood function. The inverse Möbius transform makes
the computation of database frequencies feasible even when the frequencies involve negated
links. In evaluation on four benchmark databases, the maximum pseudo-likelihood estimates
approach the true conditional probabilities as observations increase. The fit is good even
for medium data sizes. Overall, our simulations show that Bayes net models derived with
maximum pseudo-likelihood parameter estimates provide excellent estimates of class-level
probabilities.
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