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Abstract Clustering is often referred to as unsupervised learning which aims at uncovering
hidden structures from data. Unfortunately, though widely being used as one of the principal
tools to understand the data, most conventional clustering techniques are limited in achiev-
ing this goal since they only attempt to find a single clustering solution from the data. For
many real-world applications, especially those being described in high dimensional data, it
is common to see that the data can be grouped into different yet meaningful ways. This gives
rise to the recently emerging research area of mining alternative clusterings. In this paper,
we propose a framework named MACL that is capable of discovering multiple alternative
clusterings from a given dataset. MACL seeks alternative clusterings in sequence and a novel
solution is found by conditioning on all previously known clusterings. The framework takes
a mathematically appealing approach by combining the maximum likelihood framework and
mutual information. Consequently, its resultant clustering quality is achieved by the likeli-
hood maximization over the data whereas the dissimilarity is ensured by the minimization
over the information sharing amongst alternatives. We test the proposed algorithm on both
synthetic and real-world datasets and the experimental results demonstrate its potential in
discovering multiple alternative clusterings from data.
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1 Introduction

Cluster analysis has long been identified as one of the core tasks in data mining. Many
clustering techniques have been developed so far including k-means (Lloyd 1982; Arthur
and Vassilvitskii 2007), hierarchical agglomerative clustering (Day and Edelsbrunner 1984),
mixture densities (Dempster et al. 1977), spectral partitioning (Ng et al. 2001), and density-
based clustering (Ester et al. 1996; Ankerst et al. 1999). Although it is common to produce
only a single clustering from a given empirical data (that these algorithms have extensively
focused on), it is observed in many cases that the data can be clustered along many dif-
ferent yet reasonable ways. For example, while most conventional work on text clustering
widely attempts to classify documents according to the topics, it is conceivable that group-
ing them to writing styles is also valid and meaningful. Likewise, extensive research in
bio-information has largely been focused on categorizing data proteins according to their
structures, it is possible to see that grouping them by their functions is also useful. In both
these applications and many other ones, one may see that the natural structure behind high
dimensional data is not unique and there exist many different ways to interpret the data.
Therefore, to further understand the data and to achieve the ultimate goal of data explo-
ration of unsupervised clustering, there is a strong demand to devise novel techniques that
are able to generate multiple different yet high qualitative clusterings from the data.

In addressing this problem, several algorithms have been developed in the literature and
based on whether or not prior information is required during the clustering process, it is
possible to classify them into two different approaches: unsupervised (Jain et al. 2008;
Dang and Bailey 2010a; Niu et al. 2010) and semi-supervised (Gondek and Hofmann 2003;
Bae and Bailey 2006; Cui et al. 2007; Davidson and Qi 2008) strategies. In the former ap-
proach, two alternative clusterings are sought at the same time whereas in the latter one,
a novel alternative clustering is found by conditioning on a given solution. Although being
demonstrated to work well in some applications, it is unclear how to extend these algorithms
to find multiple alternative clusterings since their objective functions are only suitable to find
up to two alternative clusterings from the data. It is also worth mentioning that seeking alter-
native clustering can be considered related to ensemble clustering (Strehl and Ghosh 2002;
Topchy et al. 2005; Fern and Lin 2008). However, there is a significant difference in the
clustering objective of these two areas. While alternative clustering aims at finding different
clustering solutions from the data, the final objective of ensemble clustering remains search-
ing for a single clustering, where each cluster can be picked up from a clustering solution,
that is most consistent throughout the entire data (Cui et al. 2007).

We develop in this paper a framework to uncover multiple alternative clusterings from
an input data. The proposed algorithm, namely MACL (Multiple Alternative Clusterings),
takes an iterative procedure to search for alternative clusterings and at each iteration, a novel
clustering is uncovered by conditioning on all previously found clusterings. Though this
work can be considered as an extension from our previous one (Dang and Bailey 2010a),
a clear distinction in this work is that we address a more general problem by searching for
multiple possible alternative clusterings, not limited to two alternative clusterings as tackled
in Dang and Bailey (2010a) (and in most of the work aforementioned above). Moreover,
while (Dang and Bailey 2010a) addresses the problem in an unsupervised manner, the work
in this paper seeks alternative clusterings in sequence by conditioning on all previously
found clusterings. In other words, it is only able to ensure the alternative clustering’s novelty
if all previous clustering solutions were taken into account. For this reason, compared to
those developed in Dang and Bailey (2010a), Jain et al. (2008), MACL is considered to
be more closely related to the semi-supervised learning techniques and we thus provide
experimental comparisons against most of these algorithms in Sect. 5 of the paper.
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In summary, in this work we make the following contributions:

– We propose a framework for handling the problem of discovering multiple alternative
clusterings over data. Specifically, we develop an efficient EM-based algorithm that well
optimizes a dual-objective function of both clustering quality and dissimilarity.

– Unlike most of the algorithms that exploit the orthogonality between clustering solutions,
we exploit the mutual information, which is firmly rooted from information theory, to
minimize the uncorrelation amongst alternative clusterings. Such a measure directly ma-
nipulates over data distributions and further enables practical computation when being
combined with the maximum likelihood framework.

– We conduct experiments over both synthetic and real world benchmark datasets, com-
pare our proposed approach against most well-known algorithms in the literature. The
experimental results demonstrate the effectiveness of our approach in uncovering multi-
ple alternative clusterings.

The remaining of the paper is organized as follows. We review related work to our study
in Sect. 2 and provide the preliminaries along with the formal definition of our problem in
seeking multiple alternative clusterings from data in Sect. 3. We describe our framework to
address this problem in Sect. 4 by first constructing the clustering objective function, then
developing an algorithm relied on the expectation-maximization technique to optimize it.
The convergence property of the algorithm is also proved in this section. In Sect. 5, we
present the experimental results of our proposed solution on a number of synthetic and real-
life datasets and in Sect. 6, we conclude the paper.

2 Related work

The problem of discovering alternative clusterings is relatively young and recently it has
drawn much attention from both data mining and machine learning communities. As men-
tioned in the previous section, one can generally divide most of algorithms developed in
this area into two approaches: unsupervised (Jain et al. 2008; Dang and Bailey 2010a;
Niu et al. 2010) and semi-supervised (Gondek and Hofmann 2003; Bae and Bailey 2006;
Cui et al. 2007; Davidson and Qi 2008) strategies. The algorithms developed in Jain et al.
(2008), Niu et al. (2010) and Dang and Bailey (2010a) are unsupervised learning tech-
niques which attempt to seek two alternative clusterings at the same time and without
requiring any prior provided clustering. In these techniques, the objective function of a
partitioning method is adapted by incorporating a measure of the uncorrelation between
two disparate clusterings. Such a quantity in Jain et al. (2008) is the dot product between
pairwise mean vectors of two clustering solutions whereas in Dang and Bailey (2010a),
it is the information sharing between two solutions. For example, when minimizing the
cluster means’ inner products along with the objective function of k-means technique,
one can ensure that two solutions (represented by cluster-means) not only approach or-
thogonality but also have good quality (in terms of the k-means’ objective). The work
in Niu et al. (2010) takes a different approach by combining the uncorrelated subspace
learning into the process of spectral clustering. In quantifying for the independence be-
tween two subspaces, it uses the Hilbert-Schmidt Independence Criterion (HSIC) (Arthur
et al. 2005) and such a combination results in a nice objective function represented in
matrix trace forms. Consequently, an iterative approach can be employed to learn two
matrices of projections of which solutions based on spectral partitioning (Weiss 1999;
Ng et al. 2001) are generally supported.
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On the other hand, the approaches developed in Gondek and Hofmann (2003), Bae and
Bailey (2006), Cui et al. (2007), Davidson and Qi (2008) are semi-supervised as they re-
quire an existing clustering solution to be provided as prior information, and search for
another clustering that is uncorrelated (i.e., different) from that given one. While the CIB
technique developed in Gondek and Hofmann (2003) is an extension of the information
bottleneck method (Tishby et al. 1999; Slonim et al. 2006) in which the mutual informa-
tion between data features and the new clustering is maximized conditioning on the given
clustering, COALA proposed in Bae and Bailey (2006) generates a set of cannot-link con-
straints (Wagstaff and Cardie 2000; Wagstaff et al. 2001) based on the provided clustering
and it builds up an alternative clustering by conforming these constraints in the agglom-
erative clustering process. Two algorithms developed in Cui et al. (2007) take a different
approach by exploring the property of orthogonality. They first characterize the existing
clustering by either a set of centroids or data features, and then form a subspace orthogonal
to these representative vectors. An alternative clustering is then simply found by partitioning
the data projected on this new orthogonal subspace. It is noticed that though (Cui et al. 2007)
can discover for more than one alternative clustering, they only condition on a single previ-
ous clustering and thus may not ensure the novelty of the alternative clustering. The ADFT
algorithm developed in Davidson and Qi (2008) adopts an approach that employs a distance
metric (Xing et al. 2002) for clustering’s representatives rather than the clusters’ means.
Compared to the work (Cui et al. 2007), this approach is more advantageous as it can fur-
ther handle the case in which the data dimension can be smaller than the number of clusters
(e.g., spatial datasets). The work developed in Günnemann et al. (2012) proposes an interest-
ing approach which combines a model-based clustering paradigm and a subspace projection
to discover alternative clusterings and further allows the overlapping between alternative
clusterings. The study (de Bie 2011) proposes a quantity named self-information defined
over a cluster or set of clusters. It then seeks clusters/clusterings iteratively in which a sub-
sequent one is maximally interesting given the previously found patterns. The technique
developed in Dang and Bailey (2010b) takes a different approach stemmed from informa-
tion theory which aims to maximize the mutual information between data observations and
the cluster labels of the alternative clustering while at the same time to minimize such in-
formation between the alternative and the given clustering. A resemble clustering objective
is also adopted in Nguyen and Epps (2010) yet is optimized by using an iterative approach,
in contrast to the hierarchical technique adopted in Dang and Bailey (2010b). We provide
experimental comparison to most of these reviewed algorithms in Sect. 5.

3 Preliminaries and problem definition

In information theory, the entropy quantity plays a central role as a measure of uncertainty or
information. Let X be a continuous random variable and associated with X is the probability
density function p(x), then the entropy of X is mathematically defined as:

H(X) = −
∫

p(x) logp(x)dx (1)

This definition for a single variable can be extended for a pair of random variables and
in such case, we have a joint entropy between two continuous random variables defined as:

H(X,Y ) = −
∫∫

p(x, y) logp(x, y)dxdy (2)
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of which p(x, y) is the joint density function of two variables X and Y . When a variable
is known and the other is not, the remaining information (uncertainty) is measured by the
conditional entropy:

H(X|Y ) = −
∫∫

p(x, y) logp(x|y)dxdy (3)

A closely related concept with the entropy is the mutual information which is defined
as the relative entropy (also called Kullback-Leibler distance) between the joint distribution
p(x, y) and the product of two marginal distributions p(x)p(y):

I (X;Y ) =
∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (4)

Since I (X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), it can be said that the mutual in-
formation quantifies for the amount of information that one random variable contains about
another variable. When this measure is large, two random variables are closely correlated
and conversely when it is small, the two variables are highly uncorrelated. And it is not dif-
ficult to prove that X and Y are independent if and only if the mutual information between
them is equal to zero. These definitions and relationships are straightforwardly extended for
multiple random variables (Cover and Thomas 1991).

We apply the concepts above into our clustering problem by treating each clustering
solution as a random variable. With this setting, it is possible to formulate the problem of
uncovering multiple alternative clusterings as follows:

Problem definition We are given a set of N data points X = {x1, x2, . . . , xN } with each data
instance xn (1 ≤ n ≤ N ) is a vector in the D-dimensional space. The task is to seek for a set
of non-redundant alternative clusterings C = {C(1),C(2), . . .} from X such that the clustering
quality of each C(s) is high (e.g., fulfilled by an objective function), while at the same time,
each of them is pairwise uncorrelated to one another, i.e. I (C(r);C(s)) is minimized and as
close to zero as possible for all C(r),C(s) ∈ C and C(r) �= C(s).

4 Multiple alternative clusterings

4.1 Clustering objective function

In many practical machine learning and pattern recognition problems, the maximum likeli-
hood is widely used as a statistical technique to estimate the parameters of a density mixture
model. Under the framework of maximum likelihood, one aims to maximize the following
log-likelihood function:

L(Θ|X ) = logP (X |Θ) =
N∑

n=1

logp(xn|Θ) (5)

where the set of data instances xi is assumed to be independently drawn from the distribution
p(x|Θ) parameterized by Θ . The function L(Θ|X ) can also be thought of as the likelihood
of the parameters Θ given the data observation X . The goal of maximum likelihood is thus
to find the Θ that maximizes L(Θ|X ).
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The cluster analysis problem turns out to be a special case of estimating parameters for
a density mixture model. From this view, one may model a clustering solution as a mixture
density model of K probability distributions and associate each individual distribution (re-
ferred as component distribution) with a cluster. For most cases, all component distributions
have the same functional form and often the Gaussian probability density function is used.
The cluster analysis is therefore equivalent to the process of maximizing the parameters of
the density mixture model which has the form below:

Θ̂ = arg max
Θ

L(Θ|X ) = arg max
Θ

N∑
n=1

log
K∑

i=1

αip(xn|θi) (6)

in which α1, α2, . . . , αK are the prior or mixing probabilities, and

p(x|θi) = G(x − μi,Σi) = exp{− 1
2 (x − μi)

tΣ−1
i (x − μi)}

(2π)D/2|Σi |1/2
(7)

is the ith Gaussian function in the mixture model, which is completely identified by the
parameters θi = (μi,Σi). Together with αi ’s, these parameters need to be found (as being
explicitly presented in the next section).

Our clustering objective will be formulated under this framework of maximum likeli-
hood for a mixture model. Specifically, our clustering framework is iterative and we seek
for a novel alternative clustering (represented by a mixture model) at each time. Information
of all previously uncovered clusterings will be used as the background knowledge to derive
a novel alternative clustering and this process is repeated until the new clustering has high
sharing information with any of the reference clusterings.1 This signifies that most of the
high quality groupings from the data have been uncovered and all of them are independent
from each other. We therefore shall regularize the likelihood function by the mutual infor-
mation sharing between the novel clustering and each of the reference clusterings. This en-
sures that the resultant clustering is pairwise uncorrelated from any of the previously known
clusterings. The selection of mutual information accounting for the clustering dissimilarity
is advantageous in two folds. First, unlike most orthogonal projection/transformation tech-
niques (reviewed in the introduction section) which explicitly simplify clusterings by some
forms of representatives (e.g., clusters’ means (Cui et al. 2007), or distance metric (David-
son and Qi 2008)), mutual information naturally manipulates directly on the data distribution
and thus it does not loose important details in the data. Second, as also being defined as the
function over the probability density distributions, mutual information is completely com-
parable with the likelihood term by measuring the clusterings’ dissimilarity in the same unit
of clustering quality. We therefore naturally formulate our alternative clustering objective
function as follows:

Θ̂ = arg max
Θ

L̃(X |Θ)

= arg max
Θ

{
N∑

n=1

log
K∑

i=1

αip(xn|θi) − γ
∑

s

I
(
C;C(s)

)}
(8)

where C(s)’s are known (reference) clusterings and the novel C is parameterized by Θ . This
dual objective function ensures that the clustering quality of the alternative clustering C is

1In our experiment, we consider the sharing or mutual information of 0.5 as a high value.
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maximized (by the first term) while at the same time its similarity with respect to all previ-
ously found solutions is minimized (assured by the second term). The tradeoff between these
dual objectives is controlled by the regularization parameter γ . It is noted here that whether
our combination of mutual information and the maximum likelihood is reasonable—i.e. do
they measure comparable quantities? As shortly seen in the next section, our formulation
based on mutual information will be consistent with the objective of maximum likelihood
since both are defined based on the probability density functions over the observed data. In
other words, they quantify the same unit and thus make our combination between clustering
quality and clustering dissimilarity feasible to be optimized.

4.2 The EM based algorithm

Our objective of optimizing a set of parameters Θ characterized for the novel alternative
clustering C can be achieved by using the Expectation Maximization (EM) technique. Gen-
erally, EM interprets X as the incomplete data and it views the cluster label C as an addi-
tional but unknown variable. The complete-data likelihood is therefore maximized and the
EM involves two E- and M-steps. In the E-step, it computes a lower bound approximation to
the likelihood function and maximizes it with respect to the distribution of the unobserved
data. This leads to the finding of the distribution of C given the observed data X and the
current parameter estimates. In the M-step, the algorithm determines a new set of parameters
that maximizes this lower bound provided the distribution of the cluster label computed in
the E-step. This procedure is iterated until the algorithm converges (i.e., when the variation
of the log-likelihood is small enough).

We employ this technique to solve our clustering objective function proposed in Eq. (8)
and it is noticed that minimizing the mutual information between C and any of the reference
clusterings C(s)’s is equivalent to maximizing its conditional entropy with respect to each of
these solutions (cf. Sect. 3). Hence, the second term in our objective function can be replaced
by:

∑
s

H
(
C|C(s)

) = −
∑

s

∑
i,j

αjp(ci |cj ) log
p(ci, cj )

αj

(9)

where ci ’s denote for the set of clusters in our novel alternative clustering C and cj ’s denote
for clusters in each of the reference clusterings C(s)’s. In estimating the joint probability
p(ci, cj ), it is possibly assumed that ci and cj are conditionally independent given observed
data xn’s (i.e., p(ci, cj , xn) = p(xn)p(ci |xn)p(cj |xn) as widely used in graphical learning
models (Bishop 2006)). Therefore,

p(ci, cj ) =
N∑

n=1

p(ci |xn)p(cj |xn)p(xn)

=
N∑

n=1

p(ci)p(xn|ci)

p(xn)

p(cj )p(xn|cj )

p(xn)
p(xn)

= p(ci)p(cj )

N∑
n=1

p(xn|ci)p(xn|cj )

p(xn)
(10)
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in which we have used the Bayes’ theorem. Additionally, since p(x|ci),p(x|cj ) and p(xn)

are all non-negative, it is always true that
∑N

n=1
p(xn|ci )p(xn|cj )

p(xn)
≥

∑N
n=1 p(xn|ci )p(xn|cj )∑N

n=1 p(xn)
.2 We thus

approximate p(ci, cj ) by its lower bound, and by replacing the integrals for the summations
(due to continuous values of xn’s), we have:

p(ci, cj ) ≥ p(ci)p(cj )
∫

p(x|ci)p(x|cj )dx∫
p(x)dx

= p(ci)p(cj )G(μi − μj ,Σi + Σj) (11)

Our strategy of optimizing the lower bound of the objective is in line with the philoso-
phy of the standard EM technique, which also aims at optimizing the log-likelihood lower
bound (as shortly shown in Theorem 1 below). The corresponding regularized log-likelihood
function therefore can be written as:

Q
(
Θ|Θ(t)

) =
N∑

n=1

K∑
i=1

p(ci |xn;Θ) log
αi G(xn − μi,Σi)

p(ci |xn;Θ)

− γ
∑

s

∑
i,j

αjp(ci |cj ;Θ) logαi G(μj − μi,Σj + Σi) (12)

The expectation step in the EM technique can thus be separated into two terms. The first
one is the conditional probability of ci with respect to each observed data xn:

p
(
ci |xn;Θ(t)

) = αi G(xn − μi,Σi)∑
m αmG(xn − μm,Σm)

(13)

The second one is the conditional probability of ci with respect to each known cluster cj of
each reference clustering C(s):

p
(
ci |cj ;Θ(t)

) = αiαj G(μj − μi,Σj + Σi)∑
m αmαj G(μj − μm,Σj + Σm)

(14)

Notice that
∑

i p(ci |xn;Θ(t)) = 1, and
∑

i p(ci |cj ;Θ(t)) = 1 within each of solution C(s).
In the M-step, we maximize the lower bound with respect to the parameters of the mixture

model. This procedure involves more computation. First, we need to differentiate the lower
bound with respect to the prior probabilities subject to the constraints αi > 0 and

∑
i αi = 1.

This requirement can be handled by replacing αi as a function of unconstrained variables as
follows:

αi = exp(βi)∑
i′ exp(βi′)

(15)

which enforces both constraints automatically (Bishop 1995). Notice that:

∂αi

∂βi′
=

{
αi − α2

i if i ′ = i

−αi′αi otherwise
(16)

2Notice that a
b

+ c
d

≥ a+c
b+d

for all non-negative a, b, c, d .
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For each data instance xn in the first term and each cluster cj of each solution C(s) in the
second term in Eq. (12), we have from the chain rule that:

∂Q(Θ|Θ(t))xn

∂βi

=
∑

i′

∂Q(Θ|Θ(t))xn

∂αi′

∂αi′

∂βi

=
∑

i′

p(ci′ |xn)

αi′
(αi′δii′ − αi′αi)

∂Q(Θ|Θ(t))cj

∂βi

=
∑

i′

∂Q(Θ|Θ(t))cj

∂αi′

∂αi′

∂βi

=
∑

i′

αjp(ci′ |cj )

αi′
(αi′δii′ − αi′αi)

in which δii′ = 1 if and only if i ′ = i. With this in mind, the expansion of the first above
derivative directly leads to p(ci |xn) − αi

∑
i′ p(ci′ |xn) whereas of the second one leads to

αjp(ci |cj ) − αiαj

∑
i′ p(ci′ |cj ). Summing over all data instances xn’s and clusters cj ’s of

all reference solutions C(s), it straightforwardly follows that:

αi =
∑

n p(ci |xn) − γ
∑

s

∑
j αjp(ci |cj )∑

n

∑
i′ p(ci′ |xn) − γ

∑
s

∑
j,i′ αjp(ci′ |cj )

(17)

The expression for the new update of a mean vector can be found by taking the
derivative of Q(Θ|Θ(t)) with respect to μi . It notes that the term

∑N

n=1

∑K

i=1 p(ci |xn;Θ)

× logp(ci |xn;Θ) in deploying the logarithm in the first sum of Eq. (12) can be omitted due
the availability of p(ci |xn;Θ) computed in the E-step. Second, we only concern the terms
related to μi which exists in two logarithms log G(xn −μi,Σi) and log G(μj −μi,Σj +Σi).
Thus, the derivative of Q(Θ|Θ(t)) w.r.t. μi can be simplified as follows:3

∂

∂μi

[
N∑

n=1

K∑
i

p(ci |xn) log G(xn − μi,Σi)

− γ
∑

s

∑
i,j

αjp(ci |cj ) log G(μj − μi,Σj + Σi)

]

=
N∑

n=1

p(ci |xn)

(
−xn − μi

Σi

)
− γ

∑
s,j

αjp(ci |cj )

(
− μj − μi

Σj + Σi

)

Setting this derivative equal to 0, we obtain:

μi =
∑

n p(ci |xn)Σ
−1
i xn − γ

∑
s

∑
j αjp(ci |cj )(Σi + Σj)

−1μj∑
n p(ci |xn)Σ

−1
i − γ

∑
s

∑
j αjp(ci |cj )(Σi + Σj)−1

(18)

In calculating the new update of the covariance matrix Σi , we need to take the derivative
of Eq. (8) with respect to Σi . Nevertheless, it is observed that the derivative of Q(Θ|Θ(t))

3For clarity, we omit the term Θ in p(.|.).
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with respect to Σi cannot be solved directly due to the existence of the inverse matrix
(Σi + Σj)

−1 appearing in the Gaussian kernel. One solution is to use the Cauchy-Schwartz
inequality to find a new bound for the function. Particularly, since the Gaussian kernel is
always nonnegative, we can write (based on the Cauchy-Schwartz inequality):

log
(

G(μj − μi,Σi + Σj)
)

= 1

2
log

(∫
G(x − μi,Σi)G(x − μj ,Σj )dx

)2

≤ 1

2
log

∫ (
G(x − μi,Σi)

)2
dx

∫ (
G(x − μj ,Σj )

)2
dx

= 1

2
log G(0,2Σi)G(0,2Σj) (19)

It follows that the lower bound for the covariance matrix is given by:

Q
(
Θ|Θ(t)

)
Σi

=
N∑

n=1

∑
i

p(ci |xn) log N (xn − μi,Σi)

− γ

2

∑
i

∑
i,j

αjp(ci |cj ) log G(0,2Σi)G(0,2Σj) (20)

Taking the derivative of this equation respect to Σi and let it equal to 0, the new estimate
for the covariance matrix is followed:

∂

∂Σi

(
N∑

n=1

∑
i

p(ci |xn) log G(xn − μi,Σi)

− γ

2

∑
s

∑
i,j

αjp(ci |cj ) log G(0,2Σi)G(0,2Σj)

)

=
N∑

n=1

p(ci |xn)

( −1

2Σi

+ 1

2Σi

(xn − μi)(xn − μi)
T 1

Σi

)

− γ

2

∑
s

∑
j

αjp(ci |cj )

(
− 1

2Σi

)
= 0

or

Σi =
∑N

n=1 p(ci |xn)(xn − μi)(xn − μi)
T

∑N

n=1 p(ci |xn) − γ

2

∑
s

∑
j αjp(ci |cj )

(21)

Theorem 1 Let Θi+1 and Θi be the parameter estimates of two successive iterations, the
proposed algorithm always ensures that L̃(X |Θ(i+1)) ≥ L̃(X |Θ(i)) with its E- and M-steps
and thus is converged at certain point.

Proof We prove the convergence of the proposed algorithm under the framework of the
classical EM technique (McLachlan 1997).
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Fig. 1 An illustration based on interactions amongst positive and negative particles. Data points are repre-
sented as negative particles whereas cluster means are represented as positive ones

In the M-step, given the fixed observation data X and reference clusterings C(s), the
updates computed in Eqs. (17), (18) and (21) minimize the lower bound of the regu-
larized likelihood function with respect to the set of parameters. Thus, we always have
Q(Θ(i+1)|Θ(i)) ≥ Q(Θ(i)|Θ(i−1)). Furthermore, Q(Θ|Θ(t)) is derived by applying the
Jensen inequality solely on the first term (likelihood) of the objective function. This implies
that L̃(X |Θ(i+1)) is equal to or greater than Q(Θ(i+1)|Θ(i)).

On the other hand, given Θ(t) is fixed, updating the new distributions of p(ci |xn;Θ(t))

and p(ci |cj ;Θ(t)) (Eqs. (13) and (14) respectively) in the E-step makes Q(Θ(i)|Θ(i−1)) =
L̃(X|Θ(i)). Thus, in summary we have L̃(X |Θ(i+1)) ≥ Q(Θ(i+1)|Θ(i)) ≥ Q(Θ(i)|Θ(i−1)) =
L̃(X |Θ(i)) and thus L̃(X |Θ(i+1)) ≥ L̃(X |Θ(i)), which confirms the regularized likelihood
function is monotonically increased after each iteration.

It is therefore if L̃(X |Θ) has a local maximum, we are bound to reach that maximum at
some point. �

Interpretation In an attempt to interpret our computations, we borrow terms from physics
to explain the intuition behind the E- and M-steps above. As illustrated in Fig. 1, let us
assume that data instances xn’s are negative particles (black small points in the figure) and
there is a given reference clustering C(s) with its two cluster means cj ’s (i.e., K = 2) as
positive particles (red big points in the figure). The red dotted ellipses in Fig. 1(a) represents
this reference clustering C(s). Likewise, we may consider cluster means ci ’s in our seeking
alternative C as also positive particles (blue big points in the figure). It is noticed that while
the particles xn’s and cj ’s are fixed in the space, ci ’s are free to move according to the forces
imposed on them from both xn’s and cj ’s. However, since the polarities of xn’s and ci ’s are
oppositive, ci ’s are pulled close to xn’s with the corresponding magnitude/intensity of the
force computed in Eq. (13) of the E-step. In contrast, the polarities between ci ’s and cj ’s are
the same (i.e., positive), ci ’s will be pushed far apart from cj ’s with the pushing magnitude
given in Eq. (14). Consequently, the new position of ci ’s are identified by both kinds of
forces, yet with different directions (i.e., opposite signs) as shown in Eq. (18) of the M-step.
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The movements of ci ’s are stabilized once all these imposed forces on ci ’s are balanced (as
visualized in Fig. 1(b)) which is equivalent to the convergence status of the algorithm.

It is worth noting that, compared to a conventional EM technique, MACL has an extra
step in computing the conditional probability of ci w.r.t. cj and incorporates this quantity
into the calculations of three parameters in the M-step. For each epoch, the E-step com-
putes N × K conditional probabilities of each cluster w.r.t. each data instance and J × K

w.r.t. each known cluster (where J denotes the total number of all previous clusters). Sim-
ilarly, within each epoch, the M-step involves the computation over (N + J ) entries of
p(ci |xn)’s and p(ci |cj )’s which also amounts to (N + J ) × K for K clusters. However,
computing Σi , μi in the M-step and Gaussian distributions in the E-step can be cubically
proportional to the number of data dimensions (due to involving the matrix-vector mul-
tiplication and determinant computation). The overall computation of both steps is thus
O((N + J )KD3). Certainly, this evaluation is only within each epoch of the algorithm.
The overall computation of MACL, analogous to k-means or a classical EM technique,
is also dependent on the number of E and M iterations (until convergence) which can be
varied across different initial parameters, structures of data distributions as well as the ac-
curacy degree of a Gaussian mixture model assumption (Nathan Srebro and Roweis 2005;
Dasgupta and Schulman 2000).

5 Experiments

5.1 Experimental setup

We provide experimental results on both synthetic and real-world benchmark datasets. The
proposed MACL algorithm is compared against six alternative clustering algorithms: the
CIB method (Gondek and Hofmann 2003), COALA (Bae and Bailey 2006), two methods
from (Cui et al. 2007) denoted by Algo1 and Algo2, the ADFT algorithm (Davidson and Qi
2008), and the mSC technique recently developed in Niu et al. (2010).

We set the maximum number of iteration in MACL to 100 and consider it converged
when the difference in two consecutive likelihoods is smaller than 1e � 10−3. MACL’s out-
puts are post-processed by assigning each data instance to the cluster to which it has the
highest probability. For γ parameter, we varied its value from 0.1 to 0.2 and found that the
range between 0.12 and 0.18 often leads to good outcomes. We therefore report our results
when γ is set at 0.15 for most datasets examined, except Syn2 dataset (described below) at
0.13. An alternative clustering is considered novel if its mutual information with any previ-
ous clustering is no more than 0.5. We run the algorithm 5 times and choose the best result
which has the highest likelihood value.

For ADFT, we implement the gradient descent method integrated with the iterative pro-
jection technique (in learning the full family of the Mahalanobis distance matrix) (Xing
et al. 2002). We also use the EM technique as the core clustering technique for the ap-
proaches developed in Cui et al. (2007), Davidson and Qi (2008). Similar to MACL, we
run each algorithm 5 times and choose its best clustering solution. Also, for each run, we
initialize the prior probabilities of all clusters equally, same covariance matrices (equal to
the data covariance) yet randomly selected cluster means within the data space.

For the CIB method, we implement the iterative version (Gondek and Hofmann 2003)
and its output clustering is also post-processed by assigning data points to clusters with
highest probability. Following the suggestion by the authors (Niu et al. 2010), for the mSC
technique, we initialize the subspace views by grouping dependent features (measured by
the HSIC) into the same view. The kernel function is Gaussian and we use the spectral
clustering technique (Ng et al. 2001) for mSC’s core clustering algorithm.
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5.2 Clustering evaluation

We evaluate the clustering results based on both clustering dissimilarity and clustering qual-
ity measures. For measuring dissimilarity between two clusterings, we report the values of
two different measures. The first also most popular one is the normalized mutual informa-
tion (Law et al. 2004; Topchy et al. 2004; Gondek et al. 2005) defined by: NMI(C(r);C(s)) =
I (C(r);C(s))/(H (r)H (s)), where I (C(r);C(s)) = ∑

i

∑
j

nij

n
log(

n.nij

ni .nj
) and nij denotes the

number of shared data instances between two clusters ci ∈ C(r), cj ∈ C(s). In addition to
NMI which might favor techniques with information theory approaches, we use another
measure, the Jaccard index (JI), which is defined as: J(C(r);C(s)) = n11

n11+n01+n10
, where n11

is the number of pairs of data instances in the same cluster for both C(r) and C(s), n01 and
n10 are the number of samples’ pairs belonging to the same cluster in one solution, but not
in the other.

For measuring clustering quality we divide into two cases: if ground truth class labels are
known, the agreement between clustering results and the correct labels is calculated by the
F-measure: F = 2P ×R/(P +R), in which P and R are respectively the precision and recall.
If the true labels are not known, we use the Dunn Index, similar to (Bae and Bailey 2006;
Davidson and Qi 2008): DI(C) = mini �=j {δ(ci ,cj )}

max1≤k≤K {�(ck)} , where C is a clustering, δ : C ×C → R
+
0 is

the cluster-to-cluster distance and � : C → R
+
0 is the cluster diameter measure. In addition

to Dunn Index, we also use the vector quantization error VQE (Davidson and Qi 2008) to
evaluate clustering quality. These measures are widely used in alternative clustering (Bae
and Bailey 2006; Davidson and Qi 2008; Jain et al. 2008; Niu et al. 2010) and it is worth
to remind that for the NMI and JI measures, a smaller value is desirable, indicating higher
dissimilarity between clusterings, while for the F-measure and Dunn Index, a larger value
is desirable and for VQE, a smaller value is expected, indicating a better clustering quality.

5.3 Results on synthetic datasets

We generate two synthetic datasets in order to evaluate the performance of our proposed al-
gorithm against other alternative clustering techniques. For the first dataset Syn1, we extend
the popular one from Bae and Bailey (2006), Cui et al. (2007), Davidson and Qi (2008) into
three dimensions to include more clustering solutions. As such, Syn1 consists of 8 Gaussian
sub-classes, each having 200 data points located at each corner of a cube. The goal of us-
ing this dataset, when setting the number of clusters to 2, is to test whether our algorithm
is able to uncover three alternative clusterings that are pairwise orthogonal. For the second
synthetic dataset Syn2, we use a more complicated scenario of which 6 Gaussians are gener-
ated and located in a ring shape. Though it is not always true in practice, we assume that the
number of clusters within each alternative clustering is equal to 2 and thus there are three
different yet equally important clustering structures embedded in this dataset. It is noticed
that, unlike the Syn1 where alternative clusterings can be found by projecting the data onto
different subspaces (dimensions), clustering structures in Syn2 are not orthogonal and sim-
ply projecting data on any subspace does not reveal solutions. Moreover, we assume that no
feature selection/extraction is applied to Syn2 and it is directly provided to MACL and other
algorithms.

For these two synthetic datasets, we first run MACL without any reference clustering
(i.e., EM algorithm). Once the first clustering is found, it is incorporated into the objective
function as a reference clustering and we iterate MACL to find another alternative clustering.
This process is repeated until a newly generated clustering is found having the NMI value
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Fig. 2 Three alternative clusterings returned by MACL on Syn1 dataset

Table 1 Clustering performance of all algorithms on two synthetic datasets Syn1 and Syn2

Methods NMI JI F NMI JI F

Syn1 Syn2

COALA 0.00 0.33 1.00 0.12 0.40 0.84

CIB 0.15 0.39 0.89 0.14 0.42 0.83

ADFT 0.10 0.36 0.94 0.10 0.39 0.78

Algo1 0.12 0.37 0.92 0.15 0.41 0.76

Algo2 0.14 0.39 0.90 0.15 0.42 0.74

mSC 0.05 0.34 0.97 0.16 0.43 0.83

MACL 0.10 0.35 0.95 0.09 0.38 0.98

higher than 0.5 (thus, not considered dissimilar) with respect to any reference clustering. In
Fig. 2, we show all clustering solutions returned by MACL on Syn1 dataset. It is observed
that three orthogonal yet equally important clusterings have been successfully uncovered by
our algorithm. Its average results computed from these clusterings are reported in Table 1
(under Syn1). The F-measure is used for clustering quality evaluation as the ground truth
labels are known and it is averaged on the second and third alternative clusterings. We also
apply a similar computation to mSC and the algorithms developed in Cui et al. (2007) and
similarly, their results are averaged and reported in Table 1). However, as the remaining
techniques are only able to uncover a single alternative clustering, we thus run them with
a random reference clustering from Fig. 2. Their F-measure values reported in Table 1 are
computed based on their single alternative clustering. One may observe that these algorithms
also perform well with this Syn1 dataset. The performance of mSC technique is better than
MACL as Gaussian sub-classes presented in the eigenvector space are quite separated and
mSC’s results are only slightly affected by the k-means’s initialization applied on the eigen-
vector space. However amongst all algorithm, COALA achieves the highest results since its
core technique is based on agglomerative hierarchical clustering and thus is not sensitive to
initial parameters.

We show the clustering results returned by all algorithms on Syn2 dataset in Fig. 3
and their corresponding average clustering measures are reported in Table 1 (under Syn2).
Figure 3(a) shows three alternative clusterings returned by MACL. For COALA, CIB and
ADFT which are capable of producing only a single alternative clustering, we demonstrate
two solutions corresponding the first and second clusterings (first two graphs in Fig. 3(a))
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Fig. 3 Alternative clusterings returned by all algorithms on Syn2 dataset (see text for explanation)

provided as a reference clustering. We omit the case where the third clustering is given as a
pre-defined clustering since the results are similar (yet opposite) to the case where the first
clustering is provided. Their alternative clusterings are shown in Fig. 3(b–d). The alternative
clusterings of Algo1 is shown in Fig. 3(e) and those of mSC is shown in Fig. 3(f).

It is observed that while MACL can easily discover three uncorrelated clusterings by min-
imizing the pairwise information, all other algorithms perform limitedly with this dataset.
COALA seems to work well if the first alternative clustering is given but its clustering result
is poor if the second clustering is provided (Fig. 3(b)). Likewise, both alternative clusterings
returned by CIB are quite different from the true ones as seen in Fig. 3(c). Unlike MACL
where we directly minimize the mutual information between the alternative and all existing
clusterings, it is noted that CIB only conditions on the reference clustering in its process of
maximizing the information between the new clustering and the set of data features. This
might explain for its inferior performance.

Observed from Fig. 3(d) that the resultant clustering of ADFT is close to the true one
if the first clustering is provided. However, we also see that its alternative clustering on the
second case is not as expected. This is probably explained by the property of the stretcher
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matrix where its diagonal elements are actually the stretching factors along each dimension.
Thus, varying any of the elements (corresponding to dimensions) does not make the alter-
native clusterings easier to be discovered. It is also observed in Fig. 3(e) that, the resultant
clusterings returned by Algo1 are far from the true structures for both cases. This can be
justified by the step of data projection orthogonal to the set of provided clusters’ means that
has made the data being distorted and more overlapping in the orthogonal space. Moreover,
though reported to be able to uncover multiple alternative clusterings, Algo1 solely condi-
tions on the previous clustering to find a new clustering. For this low dimensional dataset,
we have found that it is unable to find the third alternative clustering as the third alterna-
tive is highly overlapping with the first provided one (thus not shown in the figure). Also,
we do not show the results returned by Algo2 since they are quite similar to that of Algo1.
However, it is worth to note that the second transformation performed by Algo2 is undefined
(since the PCA solution reduces the number of dimensions to obtain a new subspace). For
the results of mSC reported in Fig. 3(f), notice that mSC seeks 3 alternative clusterings con-
currently and as observed, except the first solution, the other two ones are less successful (in
term of clustering quality) though they are quite orthogonal to each other. These algorithms
might get more advantageous in high dimensional data, especially when clusterings exist in
subspaces (Parsons et al. 2004), but less advantageous in cases of low dimensions. Finally, it
is worth noting that for both Syn1 and Syn2 datasets, our algorithm is only able to uncover
up to 3 alternative clusterings. When γ is set to 15% and slightly higher values (to maintain
clustering quality), keeping searching for the fourth one results in a clustering having high
overlapping (i.e., large value of NMI) with one of the previously found solutions. Therefore,
in both datasets, our algorithm terminates with the number of alternative clusterings at 3,
which is intuitive to our observation from Figs. 2 and 3.

5.4 Results on pen digit dataset

We use the hand written pen digit dataset from Davidson and Qi (2008), which consists
of 1602 data samples and each single sample corresponds to a hand written digit from 0
to 9. A digit is written in a pen-based pressure sensitive tablet and 8 x, y positions of the
pen are recorded to form 16 attributes of the digit (the stylus pressure level values are ig-
nored). Certainly, the most prominent partitioning over this dataset is the one based on the
ten digits. Nonetheless, for the purpose of generating multiple alternative clusterings and for
explanation, analogous to the one adopted in Davidson and Qi (2008), our objective of using
this dataset is to observe how our algorithm can interpret the ways that the digits have been
written. It has been found that, by setting the cluster number to 2, our MACL algorithm is
able to uncover up to three alternative clusterings from this dataset. Also, we use the Dunn
Index and Vector Quantization Error to evaluate its clustering quality and compare against
other algorithms. Moreover, since many trials of MACL, ADFT, Algo1 and Algo2 often
return one similar clustering, we thus view it as a dominant clustering, denoted by C(1), and
provide it to other algorithms, except mSC, as the first reference clustering.

We report the clustering results on this dataset of all algorithms in Table 2 and in Fig. 4,
we demonstrate three alternative clusterings uncovered by our MACL algorithm. Each pic-
ture in the figure corresponds to a cluster’s centroid. It is observed that three resultant clus-
terings provide three different interpretations regarding how the digits have been written.
Notice that though it might not be really convincing when cluster’s means are used for visu-
alizing the writing styles since the most frequently occurring digits appeared in each cluster
may not be much in common. However, the visualization can somewhat show the difference
between data clusters as well as the contrast amongst clustering solutions. Also, it is noticed
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Table 2 Clustering performance of all algorithms on Pen Digit datasets. Other than MACL, most algorithms
find C(3) close to C(1) as indicated by the high values of NMI(C1, C3)

Method COALA CIB ADFT Algo1 Alog2 mSC MACL

DI(C1) 1.7 1.7 1.7 1.7 1.7 1.67 1.7

DI(C2) 1.66 1.67 1.6 1.58 1.57 1.60 1.62

DI(C3) 1.69 1.6 1.71 1.67 1.66 1.55 1.8

VQE(C1) 1924 1924 1924 1924 1924 1931 1924

VQE(C2) 1932 1919 1920 1918 1925 1923 1919

VQE(C3) 1923 1921 1926 1919 1927 1919 1915

JI(C1, C2) 0.62 0.4 0.42 0.38 0.36 0.36 0.37

JI(C1, C3) 0.91 0.78 0.91 0.83 0.86 0.44 0.41

JI(C2, C3) 0.36 0.42 0.45 0.37 0.39 0.49 0.44

NMI(C1, C2) 0.4 0.02 0.01 0.01 0.02 0.02 0.01

NMI(C1, C3) 0.84 0.7 0.83 0.74 0.74 0.34 0.03

NMI(C2, C3) 0.01 0.12 0.01 0.01 0.02 0.06 0.2

that x and y positions of all digits are recorded at fixed time intervals (i.e., sampling rates).
Therefore, different person may write differently for the same stroke of the same digit or
even strokes of the same digit might be written in various sequences. This might cause some
pen-digits with the same identity possibly being grouped into different clusters.

As seen from the first clustering C(1), the writing style of the digits seems to follow
clockwise trend with a slightly constant speed for digits grouped in the first cluster but
increasing writing speed for those grouped in the second cluster. For the second clustering
C(2), it is possible to observe from the first cluster that the digit writing style is in counter-
clockwise, as opposed to the first clustering, with a smooth speed for most of the strokes.
For clustering C(3), we further observe that two clusters’ centroids demonstrate two different
novel writing styles. While the digit writing manner in the first cluster starts with a stroke
from left to right, then with strokes going down to create a very far distance of two ends, the
writing style in the second cluster begins with a stroke from right to left, going down then
up again to create an almost closed-end circle. These two ways of grouping digit writing are
not only themselves contrasted to each other but are also clearly distinguished from those
discovered from the first two previous found clustering partitions C(1) and C(2).

For comparison against other techniques over this dataset, we observe the clustering per-
formance reported in Table 2. It is noticed that COALA and CIB are unable to uncover
multiple alternative clusterings. The results reported related to C(3) in Table 2 therefore
were computed by providing C(2) as the reference clustering for these algorithms. It is seen
that, for these algorithms, C(3) was found indeed very close to that of clustering C(1). It
is also observed that the similar results are with Algo1 and Algo2. As observed from Ta-
ble 2, the NMI and Jaccard Index between C(1) and C(3) of these algorithms are very large,
which demonstrate the highly overlapped clustering structure between C(3) and C(1). The
mSC seeks three uncorrelated subspaces along with clusterings simultaneously and its per-
formance is better than these algorithms in searching for clustering C(3). However, its Dunn
index over three resultant clusterings is still smaller than that of MACL while both the NMI
and Jaccard index is higher. By conditioning on both C(1) and C(2) in searching for a new
alternative clustering, our MACL algorithm has successfully discovered C(3). This alterna-
tive solution is not only highly independent from both C(1) and C(2) as indicated by the
low values of NMI and Jaccard Index, its clustering quality is also high confirmed by the
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Fig. 4 Three alternative clusterings returned by MACL on Pen Digit dataset

large value of Dunn Index as well as the small one of VQE. It is worth to mention that the
first two clustering solutions are also found and reported by the ADFT (Davidson and Qi
2008). However, our MACL technique can further uncover the third alternative which has
meaningful interpretation. Similar to the two synthetic datasets, the fourth alternative clus-
tering returned by MACL is often highly overlapped with the first clustering solution. The
algorithm is thus terminated with the number of alternative clusterings at 3.

5.5 Results on CMUFace dataset

The CMUFace data obtained from the UCI KDD repository (Asuncion and Newman 2007)
is an interesting dataset, since its data samples can be partitioned in several different ways
(e.g. by individual, by pose, etc.). The dataset consists of images of 20 people taken at vari-
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Fig. 5 MACL’s clustering results on the CMUFace dataset. First row’s images correspond to the cluster
means in the reference clustering. Second row’s images correspond to the cluster means found in MACL’s
alternative solution

ous features such as facial expressions (neutral, happy, sad, angry), head positions (left, right
or straight), and eye states (open or sunglasses). Each person has 32 images captured in ev-
ery combination of these features. Though it is possible to select all images for experiments,
we have found that clustering result might be affected by the chosen number of clusters.
For example if K = 3, an algorithm may derive different alternative clusterings. However
if setting K = 20, any algorithm can only be able to derive a single clustering solution that
is based on different people. This implies that meaningful clusterings are very much depen-
dent on how K is chosen. For this reason, we therefore randomly select 3 people along with
all their images to create the dataset in order to alleviate the effect of K selection on the
alternative clustering results. In addition, since it is known which image comes from which
person, this forms an existing partition over the set of images. We thus run MACL and other
algorithms (except mSC) with this reference clustering. As the dimension of this dataset is
960 which is substantially high compared to the number of data instances, we use the PCA
technique as a preprocessing step to reduce the number of dimensions, in which we retain
the number of first principal components that cover 90% of the original data variance.

Given the reference clustering based on person, MACL is able to find another different
clustering from this dataset. For visualization purpose, we show the mean vectors of the ref-
erence clustering in the first row and those of the alternative clustering returned by MACL in
the second row of Fig. 5. Graphically, it is possible to observe that the uncovered alternative
clustering returned by MACL provides another different, yet equally important clustering on
this set of image data. While pictures in the first row show that they represent for different
individuals, pictures in the second row clearly reveal that images have been partitioned ac-
cording to different poses. This obviously provides another meaningful interpretation about
the data. Despite being able to find multiple alternative clusterings, we found that the third
one returned by MACL was highly overlapped with either of two solutions above and thus
stopped running the algorithm. In order to compare against other techniques, we report in
Table 3 the clustering measures returned by MACL as well as by other algorithms. As ob-
served from this table, COALA and CIB perform slightly better than Algo1 and Algo2,
which attempt to find alternative clusterings in an orthogonal transformation space. How-
ever, their clustering results are still worse than those of MACL. The clustering dissimilarity
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Table 3 Clustering performance of all algorithms on the CMUFace dataset. Values in the last two rows are
reported for the alternative clusterings with a reference clustering provided by a conventional EM technique

Methods NMI JI F(pose) F(person)

COALA 0.27 0.32 0.71 0.87

CIB 0.28 0.34 0.69 0.86

ADFT 0.29 0.33 0.69 0.89

Algo1 0.31 0.34 0.68 0.87

Algo2 0.33 0.36 0.67 0.84

mSC 0.32 0.36 0.59 0.87

MACL 0.23 0.31 0.74 0.91

MACL(0.86/0.64) 0.27 0.34 0.72 0.81

MACL(0.82/N/A) 0.3 0.35 0.7 N/A

returned by MACL is slightly better than that of COALA when it is measured in term of
Jaccard Index, but clearly better in term of normalized mutual information. Its clustering ac-
curacy is also better than all of algorithms examined. We also test another strategy by which
the clustering labels based on poses are provided as the reference clustering. The cluster-
ing accuracy for the person based partitioning of all algorithms is summarized in the fourth
column of Table 3.

Since we know both ground truth clusterings (one is based on persons and the other is
based on poses) of this dataset, we test another scenario on the influence of the provided
knowledge. More specifically, we want to see how well MACL can uncover two inherent
clusterings when it is not provided by a proper ground truth clustering but the one that is
close to it found by a conventional EM technique. Across multiple runs, it was found that a
grouping close (in terms of F-measure) to the person-based clustering is often returned by
the classical EM. We thus use it as the reference clustering for MACL and see how close
it can uncover a clustering based on poses. In the last two rows of Table 3, we report the
results corresponding to two cases: one uses the reference having F-measure of 0.86 and the
other of 0.82 (first number in the bracket). One can observe that in two cases, the alternative
clustering returned by MACL is still close to the ground truth pose-based clustering as indi-
cated by the high F-measure values (under the F(pose) column) while also independent from
the person-based clustering as revealed by the small values of NMI and JI. These values are
slightly less successful compared to the case in which the proper person-based grouping is
provided (e.g., F-measure of 0.72 and 0.7 compared to 0.74).

We also test the circumstance when a clustering close to the pose-based clustering is
provided as prior knowledge. Amongst multiple runs, we found that there was only one
clustering whose F-measure w.r.t. the ground truth pose-based clustering is above 0.5 and
reaches 0.644 (precision of 0.84 and recall of 0.51). Using this grouping as the reference
knowledge, MACL has found an alternative clustering that has F-measure of 0.81 w.r.t. the
person-based clustering, which is somewhat much less successful compared to the ideal case
(conditioning on the ground truth pose-based clustering). These experiments also reveal an
interesting result that while it is hard to uncover a clustering based on poses by running a
conventional EM multiple times (F-measure only achieves 0.64), we still can find it with

4The second number in the bracket of the last two rows of Table 3. Values for the last row are not available
as only one clustering having F-measure above 0.5. was found.
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Table 4 Clustering performance of all algorithms on Vehicle and Vowel datasets

Methods NMI JI DI VQE NMI JI DI VQE

Vehicle Vowel

Algo1 0.27 0.31 1.15 6.21 0.47 0.39 1.66 4296

Algo2 0.27 0.32 1.09 6.12 0.49 0.41 1.62 4271

ADFT 0.29 0.33 1.3 6.03 0.48 0.46 1.63 4241

COALA 0.31 0.34 1.2 6.43 0.44 0.4 1.62 4331

CIB 0.32 0.39 1.16 6.61 0.47 0.38 1.59 4352

mSC 0.28 0.31 1.63 7.46 0.34 0.52 1.62 4283

MACL 0.25 0.27 1.34 5.82 0.37 0.31 1.7 4203

much higher clustering quality (F-measure of 0.72) by conditioning on the first prominent
person-based clustering.

5.6 Results on real world datasets

We further compare seven algorithms on two real-world datasets selected from the UCI
repository: the Vehicle Silhouette and the Vowel. Though it is not always practical, we make
an assumption that the existing clusterings are the ones defined by the class labelled at-
tributes of these datasets and limit the number of alternative clusterings to 3 (including the
ground truth clustering). Also, as we do not have ground truth for alternative clusterings,
the Dunn Index and VQE (averaged on the two novel alternative clusterings) are used for
clustering quality comparison amongst the seven clustering techniques. For COALA, CIB
and ADFT, the third alternative clustering is found by conditioning on the second alternative
clustering. Moreover, since mSC does not require pre-identified clusterings, we select two
out of its three alternative clusterings that are most uncorrelated (measured in NMI) from
the pre-defined class labels for comparison. We report the results of all techniques on these
datasets in Table 4.

It can be seen that MACL also performs well on these datasets. Its clustering results,
both in terms of quality and dissimilarity, are better than those of COALA, CIB and ADFT.
This is obvious since MACL conditions on all previously known clusterings to find a novel
clustering while these algorithms are only able to condition on a single clustering. It is also
seen that the VQE values of COALA and CIB are sightly higher than those of ADFT. This
might be explained by the core clustering techniques that these algorithms have been used.
While CIB optimizes an objective function purely based on mutual information and COALA
is a hierarchical clustering technique, ADFT is an EM-based technique and thus implicitly
minimizes the VQE measure. We also find that our MACL’s clustering performance is bet-
ter than that of Algo1, Algo2 and mSC, which all attempt to search alternative clusterings
indirectly via transformed spaces. The performance of mSC is better than MACL on the
Vowel dataset if measuring in the NMI. However, it is observed that its resultant clusterings
are quite imbalanced as revealed by the large values of Jaccard index. MACL’s clustering
quality, measured in term of Dunn Index and VQE, is slightly better than that of Algo1
in the Vowel dataset, but there is a large difference between two algorithms in the Vehicle
dataset. Our clustering algorithm also achieves better clustering dissimilarity compared to
Algo1 and 2 in both datasets.
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Fig. 6 Impact on MACL when varying the regularization parameter γ on the clustering performance. For an
ideal result, both NMI and VQE should be small

5.7 Impact of regularization parameter

As mentioned in Sect. 3, the parameter γ is used to regularize the trade-off between the
degree of the dissimilarity of a novel alternative clustering with respect to all previously
found clusterings and its clustering quality. We next report the behavior of MACL when this
parameter is varied.

In order to be consistent with the expectation maximization framework used in MACL,
we do not use the available class labels, instead, the conventional EM technique is run to
obtain the first clustering from a dataset. It is then supplied to MACL as a reference clus-
tering and we evaluate how the alternative clustering is different from the first one when γ

is changed. In Fig. 6, the relationship between the normalized mutual information, the VQE
measure, and the regularization parameter γ is shown for two real world datasets: Vehicle
and Vowel. The results are reported when γ is varied between 1 % and 20 % of each dataset’s
size. As we expected, when the regularization parameter is small, MACL usually converges
to an alternative clustering that is highly overlapped with the provided clustering. This is
indicated by the high value of the normalized mutual information between two solutions.
As we increase the value of γ , the normalized mutual information is decreased, implying
that the resultant alternative clustering is also more dissimilar from the provided one. How-
ever, its clustering quality, in term of VQE, is somewhat compromised and increased. This
inverse relationship between clustering quality and dissimilarity is intuitive and visualiz-
ing it can suggest ways to choose an appropriate value of γ . As observed from two graphs
in Fig. 6, both requirements of high qualitative and dissimilar clusterings can be achieved
when the value of γ is set around 15 %, since the value of VQE in this range is relatively
small, whereas that value of the NMI is also not high. It is noted that though there is no
proper value of γ working for all datasets, this experiment suggests a general way to find it
by tracking down both values of clustering quality (e.g., VQE) and clustering dissimilarity
(e.g., NMI) and choose one that best compromises between these two objectives. This strat-
egy should also be applied when more reference clusterings are involved in the objective
function. However, as done in the previous sections with the range between 10 % and 20 %,
we still found that setting γ to 15 % remains good in searching for the second alternative
clustering.
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6 Conclusion and discussion

In this paper, we have proposed a novel framework called MACL to discover multiple al-
ternative clusterings that are both of high quality and distinctively different from each other.
We address this important problem by combining two mathematically well founded areas
of maximum likelihood framework learning and mutual information. Consequently, a dual-
objective function is devised and we develop an expectation maximization technique to op-
timize it. The clustering quality of alternatives is thus achieved by the maximization over the
data likelihood whereas the dissimilarity amongst them is ensured by the minimization over
their mutual information. Interestingly, the computations in both E- and M-steps of the pro-
posed technique are all intuitive and they resemble the world of force interaction amongst
physical particles. We evaluated the performance of the proposed framework on both syn-
thetic and real-world datasets and compared against most well-known algorithms in the
literature. The experimental results demonstrated the appealing performance of MACL in
searching for multiple alternative clusterings and thus confirmed the potential approach of
combining maximum likelihood framework and mutual information.

Nevertheless, we observe that MACL also suffers from several drawbacks. First, being
based on the assumption of Gaussian mixture models, MACL’s solutions thus converge to
convex shaped clusters. For datasets where clustering structures do not strictly follow this as-
sumption (e.g. when clustering boundary boundaries are non-linear), its performance may be
compromised. Second, in the circumstance when there is no background information regard-
ing the number of clusters within each alternative clustering, MACL assumes the number to
the same across alternatives, which might not be practical in some real world applications.
Finally, although MACL is able to seek multiple alternative clusterings, it still may not en-
sure every possible alternative clustering is uncovered. In our work, we have opted to use
a comparison of the similarity (via the NMI measure) between the novel clustering and all
previous ones as a criterion to terminate the search process of the algorithm. However, a sig-
nificant difference in the likelihood could also be a good factor to stop searching for a novel
clustering if the number of clusters is the same across all alternative clusterings. In the gen-
eral case, nonetheless, the likelihood quantity can be biased if the number of clusters is not
the same for different clustering solutions. Therefore, seeking to optimise both the number
of clusters within each alternative and the total number of alternatives truly embedded in the
data is particularly challenging. We believe that these issues are worth further exploration as
part of future work.
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