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Abstract “What does it mean, to see? The plain man’s answer would be, to know what is
where by looking.” This famous quote by David Marr (Vision: A Computational Investiga-
tion into the Human Representation and Processing of Visual Information, Freeman, New
York, 1982) sums up the holy grail of vision: discovering what is present in the world, and
where it is, from unlabeled images. In this paper we tackle this challenging problem by
proposing a generative model of object formation and describe an efficient algorithm to au-
tomatically learn the parameters of the model from a collection of unlabeled images. Our
algorithm discovers the objects and their spatial extents by clustering together images con-
taining similar foregrounds. Our approach simultaneously solves for the image clusters, the
foreground appearance models and the spatial regions containing the objects by optimizing a
single likelihood function defined over the entire image collection. We describe two methods
for efficient foreground localization: the first method does not require any bottom-up image
segmentation and discovers the foreground region as a contiguous rectangular bounding
box. The second method expresses the foreground as a collection of super-pixels generated
through a bottom-up segmentation of the image. However, unlike previous methods, objects
are not assumed to be encapsulated by a single segment. Evaluation on standard benchmarks
and comparison with prior methods demonstrate that our approach achieves state-of-the-art
results on the problem of unsupervised foreground localization and clustering.
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1 Introduction

Object categorization requires recognizing the classes of objects appearing in an input photo.
Rather than performing classification of the entire image as a whole, object-class recognition
systems often operate by decomposing the photo into different regions corresponding to the
objects present in the scene. Treating object localization and recognition jointly allows such
methods to be more robust to clutter, variations in backgrounds, as well as presence of
multiple objects.

We can distinguish several methodologies for object recognition and localization on the
basis of the amount of human supervision needed during training. When the training images
are manually segmented into semantic regions, object localization can be formulated as the
task of densely matching regions of the input photo to the manually annotated segments
of similar images in the database (Liu et al. 2010). In order to achieve good results, these
methods require very large collections of annotated images so as to maximize the chance
of a close image match in the database. However, due to the cost of collecting pixel-labels,
such datasets are extremely time-consuming to generate and difficult to label accurately.

A second methodology involves the use of datasets where only the object of interest
is manually segmented in the training images. Typically, recognition and localization are
then achieved using a combination of bottom-up segmentation and top down classification
(Borenstein et al. 2004; Leibe and Schiele 2003; Tu et al. 2005; Yu and Shi 2003). But
these methods are computationally expensive to run and, again, the requirement for detailed
segmentation in the training set is far too onerous.

An efficient alternative is object detection (Chum and Zisserman 2007; Dalal and Triggs
2005), which involves sliding a subwindow classifier exhaustively over all rectangular re-
gions of the test image in order to robustly localize the box that is most likely to contain
the object. A branch and bound strategy has been recently proposed (Lampert et al. 2008) to
make this brute-force evaluation more efficient, by rapidly removing from consideration a
large portion of regions. These algorithms normally require the object to be delineated using
a bounding box in the training dataset, which is easier to generate compared to full segmen-
tation. However, even this form of labeling is expensive to acquire and effectively restricts
the size of the training set. Furthermore, the sizes and locations of the bounding boxes are
typically chosen arbitrarily by the labeler and are consequently unlikely to be optimal for
recognition.

When images have labels indicating the objects present in them but no locality infor-
mation for the objects, semi-supervised methods can be applied to learn automatically the
correspondences between image regions and the labels of the image. Most methods in this
genre use bottom-up segmentation as a preprocessing to produce candidate segments, and
then perform top down learning on the segments (Duygulu et al. 2002; Andrews et al. 2003;
Chen and Wang 2004). However the main weakness in such methods is relying on the ill-
defined task of bottom-up segmentation (based on low-level visual cues such as edges and
texture) to segment images such that objects or semantically-coherent regions are repre-
sented by a single segment. Thus, such approaches typically yield poor classification ac-
curacy. Recently, Nguyen et al. (2009) and Deselaers et al. (2010) have proposed weakly-
supervised object localization methods avoiding the need of bottom-up segmentation: the
idea of these methods is to simultaneously localize discriminative subwindows in the train-
ing images and to learn a classifier to recognize such regions. However, even such methods
require supervision in terms of class labels.

In this paper we contrast the traditional methodologies for object localization and recog-
nition outlined above, by presenting a fully-unsupervised method which completely elimi-
nates the need for time-consuming and suboptimal human labeling. The intuition behind our
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approach is that objects can be viewed as recurring foreground patterns appearing as coher-
ent image regions. Thus, we can formulate object discovery as the task of partitioning an un-
labeled collection of images into K subsets (clusters), such that all images within each sub-
set share a similar foreground. In order to obtain a method scalable to large collections and
many classes, we adopt a foreground mask-based representation of objects, which enables
fast localization given the object model. Specifically, we represent the object in an image
as a histogram of quantized local features occurring in the enclosing foreground mask. We
view each object instance as a random variable drawn from an unknown distribution com-
mon to all instances of that object class. This common distribution assumption constrains all
foreground histograms of an object class to represent subtle variations around a prototypi-
cal average histogram. Based on this assumption, our approach poses object discovery as a
maximum likelihood estimation problem, to be optimized over the entire collection of unla-
beled images. We present a method that maximizes this objective by simultaneously solving
for the histogram model parameters of the object classes, detecting the object instances of
each class in the unlabeled images, and performing a soft semantic clustering of images in
the dataset. In the next section we review prior methods for unsupervised object discovery
and discuss their relation to our approach.

2 Related work

Class-agnostic methods for object discovery (Alexe et al. 2010b; Itti and Koch 2001), at-
tempt to discover image regions that are likely to contain objects, irrespective of their cat-
egories. These methods operate on individual images by applying a single, general object
model capturing visual properties common to most classes. However, the notion of “ob-
jectness” is poorly-defined; furthermore, these techniques do not attempt to learn distinct
models of the different objects and thus cannot be used for recognition.

Our approach is more closely related to methods that discover objects from collections
of unlabeled images by identifying statistically reoccurring image fragments. Lee and Grau-
man (2009) have proposed an approach to automatically localize foreground features from
unlabeled images: by learning the ‘significance’ weights of semi-local features iteratively
through image grouping, their method determines for each image which features are most
relevant, given the image content in the remainder of the collection. While this work success-
fully demonstrates that a mutual reinforcement of object-level and feature-level similarity
improves unsupervised image clustering, there is no clear way of translating feature weights
into foreground localization and object extents. Furthermore, it performs clustering from
pairwise image matches and therefore the computational cost at each iteration is quadratic
in number of images. Finally, the algorithm alternates between image clustering and updat-
ing the foreground weights without a unifying formal objective and thus its convergence
properties are unclear.

Various semantic topic models (Fergus et al. 2005; Sudderth et al. 2005; Fritz and Schiele
2008; Kim and Torralba 2009; Deselaers et al. 2010) have been proposed for similar tasks
where the location of the object is treated as a latent variable to be estimated. However, most
of these methods are not fully unsupervised and often resort to an expensive sliding window
mechanism for object detection.

Our work is inspired by the approach of Russell et al. (2006), who propose a fully-
unsupervised algorithm for object discovery. Multiple segmentations are performed for each
image by varying the parameters of a segmentation method. The key assumption is that each
object instance is correctly segmented (as a single contiguous segment) at least once through
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multiple segmentation and therefore the correct segments corresponding to object classes oc-
cur more often than random background. This suggests that the features of correct segments
form object-specific coherent clusters discoverable using latent topic models from text anal-
ysis. Although the algorithm is shown to be able to discover many different objects, it still
suffers from its reliance on bottom-up segmentation to find a single segment encapsulating
the object. In practice this assumption is often violated as bottom-up segmentation is an in-
herently ill-posed task: it is necessary to know the category of the object in order to reliably
segment it from the scene. Also, we would like to point out that their method addresses a
different objective from ours, as their technique does not provide a way to cluster the images
or determine which regions in the images correspond to image foregrounds. Nevertheless,
in the experiments we propose adaptations of their method to our task in order to perform a
quantitative comparison between the approaches.

Differently from prior work, we propose a generative model of foreground formation that
enables simultaneous image clustering and foreground localization via maximum likelihood
estimation. Unlike Russell et al. (2006), our approach treats each image as a composition
of foreground and background where the foreground is explained by a single model shared
with images of the same object class and the background is image-specific and hence not
modeled. We treat the foreground mask as a parameter to be estimated as part of the like-
lihood optimization. We demonstrate that this leads to better localization and image clus-
tering. Apart from the proposed unified framework of maximum likelihood estimation for
foreground clustering and localization, the main contribution of this paper is to show that
our choice of foreground model enables the use of two efficient methods for detection of
object foregrounds in images. In the first method, the foreground is described by a rectan-
gular bounding box enclosing the object, and it is localized without the need for bottom-up
segmentation. The second method does rely on bottom-up segmentation. However, the seg-
ments generated are assumed to be nothing more than “super-pixels”. In particular, we do
not assume that the foreground is captured by a single segment. Hence, we overcome most of
the drawbacks of previous methods which rely on the unrealistic assumption that bottom-up
segmentation will produce a segment for each object in the image.

3 Generative model for unsupervised object discovery

We now describe our proposed generative model for unsupervised object discovery. We
assume we are given as input a collection of N unlabeled images z1, . . . , zN , with each
image containing one of K objects. Our objective is twofold: to separate the images into
K disjoint subsets (clusters) corresponding to the K object classes and to localize the ob-
ject within each image. We denote with xn the unknown foreground mask enclosing the
foreground object of image zn. We represent the foreground region xn of image zn by com-
puting the un-normalized histogram h(zn, xn) ∈ N

W of the visual words (i.e., quantized local
visual features) occurring inside xn: here W represents the number of unique words in the
visual codebook, which, as usual, is learned during an offline stage from training images.
We assume that the foreground histograms of images belonging to the k-th object class are
generated from a common model defined by parameters θF

k . Specifically, let ln ∈ {1, . . . ,K}
denote the unknown cluster label of image zn, which we assume to be drawn from a Multi-
nomial distribution with parameters π = {π1, . . . , πK}. Then, we model the foreground his-
togram h(zn, xn) as a random variable drawn from a Gaussian distribution with parameters
θF
ln

= {μln,Σln}, i.e., h(zn, xn) ∼ N (μln ,Σln). In Sects. 4.1, 4.2 we demonstrate that this
simple Gaussian assumption is the key to enable efficient foreground localization, which
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Fig. 1 Our generative model of
image formation: image zn is
obtained by first drawing its
object class (ln); then the
appearance of the object inside
the foreground location (xn) is
generated from a distribution
(θF

ln
) common to all objects

instances of that class. The
background model (θB

n ) is
assumed to change with every
image

is a fundamental requirement for scalability to large image collections. In order to reduce
the number of parameters to be estimated, we assume the covariance Σk of each cluster k

to be diagonal: Σk = diag(λk1, . . . , λkW )−1. Finally, each image is assumed to have its own
independent background model defined by parameters θB

n . For our objective of object dis-
covery, the background parameters can be left unresolved. The complete generative model
is summarize graphically in Fig. 1. We propose to maximize the likelihood of this model
by marginalizing over the cluster labels, which we treat as hidden variables. In other words,
our objective is to find parameters θ = {θF ,π} and foreground regions x = {x1, . . . , xn}
maximizing

p(z|x, θ)p(x) =
N∏

n=1

p(zn|xn, θ)p(xn) =
N∏

n=1

K∑

k=1

p(zn, ln = k|xn, θ)p(xn) (1)

where p(xn) is a prior penalizing unlikely configurations of the foreground mask.

4 Optimization

We can maximize the proposed penalized likelihood via an Expectation Maximization (EM)
algorithm alternating between estimating the distribution over the cluster labels ln and solv-
ing for the foreground models and locations. Next, we show how to perform each of these
steps and demonstrate that our modeling choices lead to efficient localization of the object
regions given the foreground parameters θ . The penalized complete log-likelihood of our
model is given by:

L = log
N∏

n=1

p(zn, ln|xn, θ)p(xn)

= log
N∏

n=1

p(zn|ln, xn, θ)p(ln|θ)p(xn)

=
N∑

n=1

logp(zn|xn, ln, θ) + logp(ln|θ) + logp(xn) (2)



266 Mach Learn (2014) 94:261–279

The E-step of the algorithm involves calculating the latent posterior distribution γnk ≡
p(ln = k|zn, xn, θ) given the current estimates for θ and x. It can be seen that this reduces to
an evaluation of the following equation:

γnk = πk N (h(zn, xn);μk,Σk)∑K

k′=1 πk′ N (h(zn, xn);μk′ ,Σk′)
(3)

The M-step requires maximizing the expected log-likelihood 〈L(θ)〉γ with respect to θ

and x. We begin by writing the expected log likelihood:

〈L〉γ =
N∑

n=1

K∑

k=1

γnk log N
(
h(zn, xn);μk,Σk

)

+
N∑

n=1

K∑

k=1

γnkπk +
N∑

n=1

logp(xn) + const. (4)

The update steps for parameters θ can be obtained by setting the respective derivatives to
zero. This leads to the following rules:

πk ← 1

N

N∑

n=1

γnk (5)

μk ← 1
∑N

n′=1 γnk

N∑

n′=1

γnkh(zn, xn) (6)

λ−1
kw ← 1

∑N

n′=1 γnk

N∑

n′=1

γnk

([
h(zn, xn)

]
w

− [μk]w
)2

(7)

where [a]w denotes the w-th entry of a vector a.
In the M-step we also need to update the estimate of the foreground mask xn by solving

the following optimization:

arg max
xn

〈L〉γ = arg max
xn

{
logp(xn) +

K∑

k=1

γnk log N
(
h(zn, xn);μk,Σk

)
}

= arg max
xn

{
logp(xn) −

K∑

k=1

γnk

W∑

w=1

λkw

([
h(zn, xn)

]
w

− [μk]w
)2

}
(8)

We now show that this objective can be rewritten in a form that leads to efficient
optimization. Let λk = [λk1, . . . , λkW ]T ∈ R

W , c = [γn1λ
T
1 , . . . , γnKλT

K ]T ∈ R
WK , μ̂ =

[μT
1 , . . . ,μT

K ]T ∈ R
WK . Finally let us denote with ĥ(zn, xn) the vector containing K copies

of h(zn, xn), i.e., ĥ(zn, xn) = [h(zn, xn)
T , . . . , h(zn, xn)

T ]T ∈ R
WK . Then, we can rewrite the

objective of (8) equivalently as follows:

arg max
xn

〈L〉γ = arg max
xn∈X

{
logp(xn) −

WK∑

j=1

cj

([
ĥ(zn, xn)

]
j
− [μ̂]j

)2

}
(9)

We next introduce methods to optimize this objective efficiently.
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4.1 Image foregrounds as rectangular bounding boxes

A popular way for circumscribing an object in an image is by using rectangular bounding
boxes. Traditionally for the object detection task, the bounding boxes are determined using
an expensive sliding window method (Chum and Zisserman 2007; Dalal and Triggs 2005).
However, recently Lampert et al. (2008) have introduced a branch and bound optimization
procedure to localize bounding boxes efficiently. In our first proposed approach to local-
ize foregrounds, we treat the foreground of each image as a contiguous rectangular region
which is represented by the variable xn ∈ X . Here X indicates the space of all rectangular
subwindows inside the image. The foreground content h(zn, xn) is then the histogram of all
features that occur within the rectangle.

Consider (9): note that the second term in this objective is a weighted Euclidean distance
between μ̂ and the histogram ĥ(zn, xn) computed from the visual words in subwindow xn.
For such term, we can define a quality lower bound function over sets of subwindows as
described by Lampert et al. (2008). Let xmin and xmax be the smallest and largest rectan-
gles in a candidate set of rectangles X ⊂ X . We observe that the value of each histogram
bin [ĥ(zn, xn)]j over the set of rectangles X can be bounded from below and from above
by the number of features with corresponding cluster index that fall into xmin and xmax , re-
spectively. We denote these bounds by [hn]j and [hn]j respectively. Each summand in the
second term of (9) can now be bounded from below as follows:

cj

([
ĥ(zn, xn)

]
j
− [μ̂]j

)2 ≥

⎧
⎪⎪⎨

⎪⎪⎩

cj

([hn]j − [μ̂]j
)2

if [μ̂]j < [hn]j
0 if [hn]j ≤ [μ̂]j ≤ [hn]j
cj

([hn]j − [μ̂]j
)2

if [μ̂]j > [hn]j
(10)

This provides us with an efficient way to compute a lower bound over the second term of
our objective. As for the first term of (9), in our implementation we model p(xn) as a simple
Gaussian over the relative area of the foreground subwindow, measured as fraction of the
image area. The mean of this Gaussian is set to 0.25 and the variance is set to 10−5 for all
datasets. Therefore, the bound over sets of subwindows can be trivially defined for logp(xn).
This implies that our complete objective can now be globally optimized over xn ∈ X using
the branch and bound method for efficient subwindow search described in Lampert et al.
(2008).

4.2 Image foregrounds as a set of super-pixels

Modeling foregrounds as rectangular regions is appropriate for contiguous box-shaped ob-
jects. For other types of objects, this model may result in the inclusion of random back-
ground clutter as part of the window. This is undesirable and is particularly troublesome
for highly contoured objects and object classes with large pose variance. To address this
concern, we propose a second method of representing foregrounds. Here, each image zn

undergoes bottom-up segmentation once at the start of the clustering procedure and is split
into a number of appearance-based segments {s1

n, s
2
n, . . . , s

M
n }. In our work we choose the

number of segments (M) to be large enough for the image to be deemed as over-segmented,
i.e., each object in the scene is typically split into multiple segments. We refer to these
segments as super-pixels. Thus, the goal of finding the foreground becomes equivalent to
finding which super-pixels may be part of the foreground. An important property of consid-
ering an image as a collection of super-pixels is that, unlike Russell et al. (2006), Duygulu
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et al. (2002) and several other approaches, this does not require that the entire foreground
object region be captured by a single bottom-up segment. Instead, we treat the foreground
as a set of super-pixels. Formally, the foreground mask xn from Fig. 1 is defined by a set of
scalar variables {x1

n, x
2
n, . . . , x

M
n }, where xi

n corresponds to segment si
n. We treat each xi

n as
a continuous variable such that xi

n ∈ [0,1], with the interpretation that higher values imply
that the super-pixel si

n is to be part of the foreground region and a value close to 0 im-
plies that si

n is assigned as part of the background. Formalizing this intuition, we define the
foreground image content as h(zn, xn) ≡ ∑

i x
i
nh(zn, s

i
n) where h(zn, s

i
n) is the histogram of

features occurring in a super-pixel si
n. As before, we denote with ĥ(zn, s

i
n) the concatenation

of K copies of h(zn, s
i
n). Under this model, we rewrite (9) as

arg max
xn

〈L〉γ = arg max
xn

{
logp

(∑

i

xi
nP

i
n

)
−

∑

f,g∈SN

(x
f
n − x

g
n )2

σ

−
KW∑

j=1

cj

([
M∑

i=1

xi
nĥ

(
zn, s

i
n

)
]

j

− [μ̂]j
)2}

(11)

subject to: xi
n ∈ [0,1]. (12)

The first two terms on the right side in (11) capture our choice of prior p(xn) from (9)
with σ being a scalar constant. In image zn, P i

n is the fraction of pixels belonging to seg-
ment si

n. For the first term, similar to the treatment of foreground as bounding boxes, we
model the normalized size of the foreground as a Gaussian random variable with mean and
standard deviations being the same as that for the bounding boxes. The second term pe-
nalizes configurations where neighboring segments have widely differing values and thus
forces foreground segments to be localized together. In this term, SN is the set of all pairs
of neighboring segments, where we define two segments s1 and s2 to be neighbors if there
is at least one pair of adjacent pixels (p1,p2) in the image such that p1 ∈ s1 and p2 ∈ s2.
Note that, since the segments do not change after the initial image segmentation, neither do
neighborhood relationship between segments. It can be seen that (11) is a simple convex
optimization objective when xi

n is allowed to be a real value and hence can be maximized
efficiently using quadratic programming.

5 Implementation details

5.1 Image representation

Our representation is based on histograms of quantized SIFT features (Lowe 2004). We ex-
perimented with both SIFT descriptors calculated densely over the entire image and also
those produced using an interest point detector. Similarly to what reported by Lee and Grau-
man (2009), we obtained better results using dense descriptors calculated at every pixel in
the image. Thus, here we present experiments based only on dense features. As per common
practice, we quantize the SIFT descriptors using a vocabulary of visual words generated by
running k-means on a set of SIFT descriptors obtained from the collection of input images.
Although we have obtained good results even by using directly this bag-of-word representa-
tion as input to our method, slightly better performance was achieved by learning a codebook
of LDA topics (Blei et al. 2003) over the quantized SIFT features via Gibbs Sampling (Grif-
fiths and Steyvers 2004). Therefore, each image is viewed as a document of visual words
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generated from a mixture of topics and the final histogram is produced by assigning each
quantized SIFT descriptor to its most likely topic.

5.2 Initialization

Our method requires initial estimates of the following parameters: mixture coefficients (πk),
histogram means (μk) and variances (Σk), as well as foreground masks for all images (xn).

First, we initialize the foreground masks. In order to do this, we employ a form of co-
segmentation (Rother et al. 2006) by matching pairs of images. Specifically, for a pair of
images (zi, zj ), we find the pair of subwindows (xij , xji) ∈ X × X that minimizes a reg-
ularized distance between histograms computed from these subwindows as defined by the
following objective:

∥∥h(zi, xij ) − h(zj , xji)
∥∥

1
− C

∥∥h(zi, xij ) + h(zj , xji)
∥∥

1
(13)

where ‖.‖1 denotes the L1-norm and C is a hyperparameter trading off the objectives of
finding similar histograms and choosing large subwindows (in our implementation C is set
to 0.05). It is easy to see that this objective can be minimized using a simple variant of the
branch and bound method described in Lampert et al. (2008).

In order to initialize the foreground subwindows for all images, we first sample a subset
of T images from the entire dataset. We refer to these T images as seeds. These seeds are
chosen through an iterative sampling procedure (described below) that aims at selecting at
least one seed image for each object class in the dataset so as to represent all categories.
The seed selection works as follows: starting from an empty seed set, at each iteration we
add to it a new seed image randomly selected from a candidate set C of images, which is
initially the entire dataset, i.e., C ≡ {z1, . . . , zN }. Then, we define the foreground xs of the
newly selected seed zs by performing pairwise matching (as described by (13)) between zs

and all the images in the dataset. This gives us N − 1 candidate foreground masks {xsi}i 
=s

for zs . From this set, we pick the 3rd largest window by area to be the initial mask xs of the
seed image. The intuition behind the choice of picking the 3rd largest window by area is that
close matches will result in larger windows and that the largest windows probably contain
background regions due to matching to near-duplicates. Before we pick the next seed image
randomly from the candidate set C , we eliminate from C the nearest �N

T
� images to zs , using

the L2-norm ‖h(zs, xs) − h(zi, xis)‖2. This helps in obtaining a good coverage of object
classes.

Finally, for any image zi that is not in the seed set, we select its initial foreground xi from
the candidate T subwindows xis by picking the one that yields the smallest matching score
among the T matches to the seed images. If the set of seeds includes at least one example
of each class, then the best match is likely to occur with a seed of the same class as zi and
the foreground of this match will enclose the correct object.

The above procedure has runtime complexity of O(T N). T is a design parameter which
determines how densely we sample the image collection for obtaining good initial windows.
The quality of the initial windows improves with increasing value of T . In our experiments,
we set T to be 3K . The same initial windows were used for both the foreground localization
methods described in this paper. We found experimentally that initializing our methods with
these foregrounds produces better results than when using the boxes obtained with Alexe
et al. (2010b).

For initializing the mixture parameters, we tried a variation of careful seeding (Arthur
and Vassilvitskii 2007), which we found to be robust against outliers.
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6 Experimental results

6.1 Algorithms

There are very few published quantitative evaluations on the task of unsupervised clustering
and foreground localization. In this paper, we benchmark the performance of our proposed
approach principally against the foreground focus (FF) method published in Lee and Grau-
man (2009), where results on our intended task are reported.

We do not compare directly to the methods described in Tuytelaars et al. (2010) as these
algorithms do not consider the problem of object localization and instead perform image
clustering merely based on global features calculated from the entire image. Instead we
include as baselines k-means and a Gaussian mixture model applied to whole images (k-
means-Whole, GMM-Whole) and to ground truth bounding boxes (k-means-GT, GMM-
GT). We also report results for k-means and GMM applied to bounding boxes computed
with the bottom-up method described in Alexe et al. (2010b) (k-means-Obj, GMM-Obj)
(for each image we use the bounding box having highest probability according to the “ob-
jectness” measure).

Finally, we include in our comparison our adaptation of the method described in Russell
et al. (2006) (Multi-Seg) for our task. As already discussed, this method was designed for a
different objective: it does not explicitly cluster the images or specify which segments are
foregrounds. We tried adapting this method to work on our task in two different ways:

1. We ran the code of Russell et al. (2006): for each image I , multiple segmentations were
computed and a topic model was fit to the segments. Cluster membership was determined
as the topic (TI ) of the segment (Sbest ) with the smallest KL divergence to its topic. Then,
to localize the foreground, we selected all segments having TI as the most probable topic
from the segmentation containing Sbest .

2. We trained the topic model of Russell et al. (2006) on the same super-pixels used as input
by our method; then we applied the procedure described in point 1 above for clustering
and localization.

We have included the results for option 1 in the plots of Figs. 2 and 3 as the results obtained
with option 2 are slightly worse. The only exception are the results on the Pascal dataset in
the right-bottom plot of Fig. 2 where we report the performance obtained by using option 2
since option 1 is so expensive that it cannot be run on this large database.

We refer to our two methods for joint foreground clustering and localization as Joint-
Subwindow for the version using bounding-boxes (Sect. 4.1) and Joint-Superpixels for the
version based on super-pixels (Sect. 4.2).

6.2 Datasets and features

In Lee and Grauman (2009), the authors have evaluated their method on the MSRC-v1
dataset and two subsets (a 4-class and a 10-class collection) of the Caltech101 dataset.
MSRC-v1 contains 7 classes with 30 images per class. The 4-class collection—Caltech4—
is a subset of the 10-class collection—Caltech10. Both these datasets include the first 50
images per class and the classes were manually selected by the authors of Lee and Grau-
man (2009) to be categories with high amount of clutter in the images. The 4-class dataset
consists of the Faces, Dalmatians, Hedgehogs and Okapi classes, and the 10-class collec-
tion contains Leopards, Car_Side, Cougar_face, Guitar, Sunflower and Wheelchair classes
in addition to the classes of Caltech-4. Here we report our findings using exactly the same
experimental setup and sets of images.
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We also report the results on a subset of the Pascal VOC 2007 dataset. For each of the
20 categories in this collection we selected the first 50 images that do not contain objects
of the other 19 categories, as determined by the ground truth annotations. We apply this
selection strategy in order to reduce the original multi-label classification problem to a stan-
dard single-label recognition task. Note that this does not imply that each image contains
only one object: as it can be seen from the examples in (8), each image typically contains
multiple distinct objects with the only constraint being that it can include only one of the 20
predefined categories of Pascal.

For all datasets, we set the number of foreground clusters, K , to be equal to the number
of classes. As traditionally done in unsupervised clustering, we view K as a hyperparame-
ter chosen by the user. The human cost of specifying this value is small and consequently
acceptable for most application scenarios. In spite of this, we also present an experiment
where we study the sensitivity of our method with respect to this parameter.

All of the results described here are based on a codebook of 50 LDA topics computed
from 500 SIFT words and in each experiments we use the same dictionary for all competing
methods. The only exception are the results in Table 1 where we study how the performance
of our method varies for different representations.

For the Joint-Superpixels method, we generate 20 bottom-up segments for every image
using an implementation of normalized cuts (Shi online). To optimize (9), we use the imple-
mentation of efficient subwindow search made publicly available by the authors of Nguyen
et al. (2009); to optimize (11), we use the ILOG cplex solver from IBM (online).

6.3 Quality of image clustering

We begin by evaluating the quality of clustering in terms of the F -measure metric with
respect to the ground truth class labels: F = ∑

i
Ni

N
maxj F ′(i, j), where Ni is the number of

images belonging to class i, F ′(i, j) = 2R(i,j)P (i,j)

R(i,j)+P(i,j)
, and P (i, j) and R(i, j) denote precision

and recall, respectively, measured for class i and cluster j . The F -measure is a good index
of cluster purity with high values indicating that each cluster contains objects predominantly
from one class.

Figure 2 summarizes the results obtained on all four datasets. We see that our two meth-
ods (Joint-Subwindow and Joint-Superpixels) greatly outperform the k-means and GMM
models applied to full images (k-means-Whole, GMM-Whole) on all the datasets. Further-
more, somewhat surprisingly, our approaches also do much better than k-means and GMM
applied to the foreground ground truth subwindows available for the Caltech subsets (k-
means-GT, GMM-GT). We speculate that this happens because the manual annotations are
subjective and unreliable. Particularly in classes with high degree of variance, the human-
selected boxes might work against the clustering attempt as the content expressed within the
foreground regions of images within the same class might not be similar. Also note that, un-
surprisingly, the results of k-means-Obj and GMM-Obj are poor since determining objects
from a single image is an ill-defined task.

Furthermore, we see that our two methods outperform Multi-Seg (Russell et al. 2006)
and also the results of FF reported in Lee and Grauman (2009), even though this algorithm
uses a more sophisticated image representation encoding relative location of features in
spatial neighborhoods. The difference in performance is especially noticeable on the most
challenging MSRC-v1 dataset, which contains objects at different scales and in different
positions within the image.

On the Pascal dataset all methods yield overall much lower clustering accuracy due to the
challenges posed by this image collection which includes classes exhibiting large variations
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Fig. 2 The quality of image clustering in terms of the F -measure metric for the four datasets. The compared
methods are k-means applied to whole images (k-means-Whole), ground truth subwindows (k-means-GT)
and object boxes computed using (Alexe et al. 2010b) (k-means-Obj). GMM is also applied with the same set-
tings: (GMM-Whole), (GMM-GT) and (GMM-Obj). The figure also includes results for Multi-Seg (Russell
et al. 2006), and FF (Lee and Grauman 2009). Our proposed algorithms of joint clustering and localization
are Joint-Subwindow (Sect. 4.1) and Joint-Superpixels (Sect. 4.2)

Table 1 F -measure obtained by
our Joint-Superpixels method
using different foreground
representations

Dataset SIFT-50 SIFT-500 LDA-50 over SIFT-500

Caltech-4 0.825 0.846 0.86

Caltech-10 0.65 0.5 0.72

MSRC-v1 0.719 0.68 0.90

in scale and appearance. However, on this difficult benchmark our approach provides clearly
superior performance over all the other methods considered in this comparison.

We have also evaluated the performance of our Joint-Superpixels method when repre-
senting the foreground region as a histogram of quantized SIFT features rather than LDA
topics. Table 1 shows the results for histograms defined over dictionaries of both 50 as well
as 500 centroids learned from SIFT vectors. We also include the accuracy of our default
system based on a dictionary of 50 LDA topics learned over 500 SIFT words. From these
results we see that our system achieves good clustering accuracy even when directly applied
to histograms of quantized SIFT. However, it is clear that the topic representation yields
improvements in performance particularly for the challenging MSRC-v1 dataset.

6.4 Foreground localization

We now proceed to evaluate our approach in terms of object localization accuracy. In Lee
and Grauman (2009), the authors determine the quality of the foreground localization by ex-
amining the normalized sum of the weights inside the ground truth foreground. While their
performance on this metric does indicate that the foreground features get higher weight
than background features, there is no clear way of determining the actual locality and
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Fig. 3 Average localization scores achieved by our methods over all images from each ground truth class in
the 4-class and the 10-class subsets of Caltech. We also show the localization scores achieved by Multi-Seg.
Please see text for more details

extent of the foregrounds in the images. Furthermore, with their metric, it is possible to
get a high score by having just a few highly weighted foreground features. Instead, it is
useful for many applications to determine the actual location and size of the foreground.
Our algorithms generate a natural solution to this requirement in the form of foreground
bounding boxes for Joint-Subwindow and foreground segments corresponding to super-
pixels with high foreground scores1 in the case of Joint-Superpixels. We measure the qual-
ity of the foreground localization by using a metric commonly used in object detection:
Jn = area(xn

⋂
xGT

n )/area(xn

⋃
xGT

n ) where xGT
n is the ground truth for the object in image

n. To evaluate the Joint-Subwindow method we use the bounding box ground truth provided
for the images in Caltech 101. For the methods based on super-pixels (Joint-Superpixels and
Multi-Seg) we use the full object contour ground truth provided.

Figure 3 shows the average localization scores per class achieved with our methods on
the 4-class and the 10-class subsets of Caltech101. It is clear that Joint-Superpixels local-
izes the foreground more accurately than Joint-Subwindow, even though there is not much
difference in terms of F -measure scores between our two methods. Conversely, the average
localization scores achieved by Russell et al. (2006) are clearly inferior to those computed by

1We deem a super-pixel si
n to be part of the foreground if xi

n > 0.3 at the end of the EM run.
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Fig. 4 Cluster purity and
localization scores for different
values of K (the number of
clusters) using the
Joint-Superpixels method on the
Caltech-10 dataset. As K

increases, precision increases but
the localization scores remain
similar. This suggests that the
method is fairly robust to the
choice of K

both our methods. While studying the scores, we want to emphasize that these are calculated
with respect to the manually annotated ground truth. As we have already seen in the case
of bounding boxes, they are somewhat arbitrary. In our methods, foreground detection is
optimized for image clustering. So it is reasonable to get foregrounds which are inconsistent
with the ground truth, but nevertheless play a role in improving image clustering.

The F -measure results in Fig. 2 show that our methods for joint clustering and local-
ization outperfom a two-step process of localization (using objectness boxes) followed by
clustering. We also examined whether the joint approach yields better localization than a
disjoint approach of clustering followed by common object detection within each cluster.
In order to test this hypothesis, we ran the implementation of the classcut technique (which
performs class specific segmentation using a set of images known to contain an object from
the class) made publicly available by the authors of Alexe et al. (2010a), on the k-means
clusters produced for the Caltech-10 dataset. We tried different parameterizations (with and
without objectness) for the classcut implementation and the best results were obtained by
running classcut on full images, as reported by the authors in their paper. The mean lo-
calization score obtained by running classcut was 0.44. In comparison, our method (Joint-
Superpixels) produced a mean localization score of 0.46 over the entire dataset. Thus our
method marginally outperforms the classcut method applied to k-means clusters in terms
of localization. However, it is important to note that applying localization after clustering
using a two-stage process does not improve the quality of clustering (we remind the reader
that on Caltech-10 the clustering F -measure of our approach is 0.72 versus a value of 0.52
for k-means). Furthermore, classcut is a very expensive method (it has a runtime of over 16
hours for the Caltech-10 dataset) and as a result, it may not be suitable as a component in an
iterative procedure over large datasets.

As mentioned earlier, we assume that K—the number of output clusters for the method—
is a hyperparameter set by the user. In Fig. 4, we study the effect of the choice of K on cluster
purity and foreground localization for the Joint-Superpixels method. The fmeasure metric is
unsuitable for evaluating performance of the model when the number of clusters is not equal
to the number of ground truth classes. If classj is the set of samples in the dataset belonging
to the j th ground truth class and clusterk is the set of elements in the kth output cluster of
the clustering procedure, then we use the metric of cluster purity which is computed as:

Purity = 1

N

K∑

k

max
j

|clusterk ∩ classj | (14)
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Fig. 5 The runtimes of our EM
algorithms on MSRC-v1
(N = 210), Caltech-10
(N = 489) and Pascal-20
(N = 968) datasets. The graph
shows that both our proposed
approaches for foreground
localization scale approximately
linearly with the number of
images and the runtimes are
largely independent of the
hyperparameter K (the number
of clusters)

Fig. 6 Examples of foreground prediction in images from the 10-class subset of Caltech101. The image on
the left of each pair shows the super-pixels obtained through bottom-up segmentation. The box in green is the
foreground extent predicted by our Joint-Subwindow method. The image on the right of each pair shows the
foreground discovered as a collection of super-pixels (selected if xi

n > 0.3) by our Joint-Superpixels method



276 Mach Learn (2014) 94:261–279

Fig. 7 Sample results for the MSRC-v1 dataset. The box in green is the foreground extent predicted by
Joint-Subwindow. The image on the right of each pair shows the foreground discovered as a collection of
super-pixels (selected if xi

n > 0.3) by Joint-Superpixels

As we increase K we find purity slowly increasing (as expected) but localization quality
remaining stationary. This shows that the model is not particularly sensitive to the exact
value of K used.

Figures 6, 7, 8 show some examples of foreground prediction for our method both in
terms of discovered subwindows and selected bottom-up segments. Please refer to supple-
mental data at VLG (2012) for additional visualizations.

6.5 Runtime analysis

Finally, we would like to comment on the computational costs of our approach. We found
that typically our EM algorithms converge in less than 10 iterations. At the heart of the
EM procedure are the two efficient foreground localization methods used to optimize (9)
and (11). The branch and bound method for subwindow discovery optimizing (9) is typi-
cally sublinear in the number of pixels (Lampert et al. 2008) while the quadratic program-
ming objective of (11) can be solved in polynomial time (in the number of segments). The
plot in Fig. 5 shows the runtime of the EM procedure for the datasets of MSRCv1 (210
images), Caltech-10 (489 images) and Pascal-20 (968 images). The runtimes are computed
using a single-core (3.2 GHz processor). From this plot, we can see that EM scales linearly
with the number of images and is fairly independent of model complexity (K). This is to



Mach Learn (2014) 94:261–279 277

Fig. 8 Sample results for the Pascal dataset. The box in green is the foreground extent predicted by Joint-
Subwindow discovery. The image on the right of each pair shows the foreground discovered as a collection
of super-pixels (selected if xi

n > 0.3) by Joint-Superpixels

be expected since the most time consuming operation within EM is the localization proce-
dure which operates over individual images and is dependent on K only in the creation of
concatenated histogram in (9). The plot suggests that the Joint-Subwindow is much more
expensive than Joint-Superpixels. However, there are two important details to keep in mind:
(1) the implementation of the branch and bound method may not be optimized; (2) there
is a fixed initial cost to segment the images which is not included in the graph. However,
despite this, we do believe that Joint-Superpixels method is more scalable as it quantizes
each image (irrespective of the size) to a fixed number of segments, thereby making the op-
timization less expensive. Both these approaches are significantly faster than sliding window
methods which typically have cost O(n4) for an n×n image. Multi-Seg (Russell et al. 2006)
is significantly more expensive than our approach while performing substantially worse at
the task. As a frame of reference, the implementation for Multi-Seg, made available by the
authors (Russell et al. 2006) takes 5500 seconds on the MSRC-v1 dataset and 17000 sec-
onds on Caltech-10. This is in addition to the time needed to segment the images in the
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dataset, which is an operation much more expensive than our super-pixel segmentation as
their method needs to run multiple segmentations.

The main computational cost of our algorithms is the initialization procedure for the fore-
grounds, which is a one-time cost not included in the graph. In this step we perform O(T N)

number of pairwise image co-localizations through branch and bound. By using small val-
ues of T (K < T � N ), the cost remains reasonable. In our experiments, we set T = 3K .
As a reference, on MSRC-v1 using a cluster of 40 cores the initialization takes 300 seconds.
It may be possible to reduce this cost further by downsampling the images for initialization.
It is also important to note that the other approaches considered in our comparison are even
more expensive. Lee and Grauman (2009) does not provide details of runtime nor a software
implementation that we can evaluate. However, each iteration in their method technique is
O(N3), while also operating on complex features that are very expensive to compute.

7 Conclusions

Unsupervised foreground discovery is an important but difficult means of extracting struc-
ture from unlabeled image datasets. In this work, we have developed a probabilistic method
to perform simultaneous image clustering and foreground localization in unlabeled collec-
tions. We have shown that harnessing the natural synergy between the two tasks leads to
improved performance at both the tasks. Our approach can efficiently localize object fore-
grounds without resorting to expensive sliding window mechanisms or relying on the un-
realistic expectation that brittle bottom-up segmentation will yield segments corresponding
to objects in the scene. We note that while our foreground appearance model is admittedly
simple, it is precisely this model simplicity that allows us to cast foreground clustering and
localization elegantly as a single joint optimization. We believe we are the first to propose
such a joint optimization for the two tasks. Furthermore, we empirically show that the ap-
proach outperforms methods that use more complex foreground models but that have to
resort to alternation between distinct objectives (e.g., Lee and Grauman 2009) or to a two-
step solution (e.g., Russell et al. 2006) to solve the problem. We believe there is high value in
simple models shown to perform well in practice. In the future we are interested in extending
this work to videos. Our probabilistic formulation also enables straightforward integration
of non-visual cues such as text or tags associated to the images, which may yield more se-
mantically meaningful clusters. The software implementing our algorithm is made available
at (VLG 2012).
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