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Abstract The learning of predictive models that guarantee monotonicity in the input vari-
ables has received increasing attention in machine learning in recent years. By trend, the
difficulty of ensuring monotonicity increases with the flexibility or, say, nonlinearity of
a model. In this paper, we advocate the so-called Choquet integral as a tool for learning
monotone nonlinear models. While being widely used as a flexible aggregation operator in
different fields, such as multiple criteria decision making, the Choquet integral is much less
known in machine learning so far. Apart from combining monotonicity and flexibility in
a mathematically sound and elegant manner, the Choquet integral has additional features
making it attractive from a machine learning point of view. Notably, it offers measures for
quantifying the importance of individual predictor variables and the interaction between
groups of variables. Analyzing the Choquet integral from a classification perspective, we
provide upper and lower bounds on its VC-dimension. Moreover, as a methodological con-
tribution, we propose a generalization of logistic regression. The basic idea of our approach,
referred to as choquistic regression, is to replace the linear function of predictor variables,
which is commonly used in logistic regression to model the log odds of the positive class,
by the Choquet integral. First experimental results are quite promising and suggest that the
combination of monotonicity and flexibility offered by the Choquet integral facilitates strong
performance in practical applications.
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1 Introduction

A proper specification of the type of dependency between a set of predictor (input) variables
X1, . . . ,Xm and the target (output) variable Y is an important prerequisite for successful
model induction. The specification of a corresponding hypothesis space imposes an induc-
tive bias that, amongst others, allows for the incorporation of background knowledge in the
learning process. An important type of background knowledge is monotonicity: Everything
else being equal, the increase (decrease) of a certain input variable Xi can only produce an
increase in the output variable Y (e.g., a real number in regression, a class in ordered clas-
sification, or the probability of the positive class in binary classification). Adherence to this
kind of background knowledge may not only be beneficial for model induction, but is often
even considered as a hard constraint. For example, no medical doctor will accept a model in
which the probability of cancer is not monotonically increasing in tobacco consumption.

The simplest type of dependency is a linear relationship:

Y =
m∑

i=1

αiXi + ε, (1)

where α1, . . . , αm are real coefficients and ε is an error term. Monotonicity can be guaranteed
quite easily for (1), since monotonicity in Xi is equivalent to the constraint αi ≥ 0. Another
important advantage of (1) is its comprehensibility. In particular, the direction and strength
of influence of each predictor Xi are directly reflected by the corresponding coefficient αi .

Perhaps the sole disadvantage of a linear model is its inflexibility and, coming along
with this, the supposed absence of any interaction between the variables: The effect of an
increase of Xi is always the same, namely ∂Y/∂Xi = αi , regardless of the values of all other
attributes. In many real applications, this assumption is not tenable. Instead, more complex,
nonlinear models are needed to properly capture the dependencies between the inputs Xi

and the output Y .
An increased flexibility, however, typically comes at the price of a loss in terms of the

two previous criteria: comprehensibility is hampered, and monotonicity is more difficult
to assure. In fact, as soon as an interaction between attributes is allowed, the influence of
an increase in Xi may depend on all other variables, too. As a simple example, consider
the extension of (1) by the addition of interaction terms, a model which is often used in
statistics:

Y =
m∑

i=1

αiXi +
∑

1≤i<j≤m

αijXiXj + ε. (2)

For this model, ∂Y/∂Xi is given by αi + ∑
j �=i αijXj and depends on the values of all other

attributes, which means that, depending on the context as specified by these values, the
monotonicity condition may change from one case to another. Consequently, it is difficult
to find simple global constraints on the coefficients that assure monotonicity. For example,
assuming that all attributes are non-negative, it is clear that αi ≥ 0 and αij ≥ 0 for all 1 ≤
i ≤ j ≤ m will imply monotonicity. While being sufficient, however, these constraints are
non-necessary conditions, and may therefore impose restrictions on the model space that are
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more far-ranging than desired; besides, negative interactions cannot be modeled in this way.
Quite similar problems occur for commonly used nonlinear methods in machine learning,
such as neural networks and kernel machines.

In this paper, we advocate the use of the (discrete) Choquet integral as a tool that is inter-
esting in this regard. As will be argued in more detail later on, the Choquet integral combines
the aforementioned properties in a quite convenient and mathematically elegant way: By its
very nature as an integral, it is a monotone operator, while at the same time allowing for
interactions between attributes. Moreover, it disposes of natural measures for quantifying
the importance of individual and the interaction within groups of features, which provide
important insights into the model and thereby support interpretability.

The rest of this paper, parts of which have already been presented in Fallah Tehrani et al.
(2011), Hüllermeier and Fallah Tehrani (2012b), is organized as follows. In the next section,
we give a brief overview of related work. In Sect. 3, we recall the basic definition of the
Choquet integral and some related notions. In Sect. 4, we analyze the flexibility of binary
classifiers based on the Choquet integral in terms of the notion of VC dimension. In Sect. 5,
we propose a generalization of logistic regression for binary classification, in which the
Choquet integral is used to model the log odds of the positive class. In Sect. 6, we elaborate
on complexity issues and propose a method for finding a suitable level of (non-)additivity
for the Choquet integral in a concrete learning task. Experimental results are presented in
Sect. 7, prior to concluding the paper with a few remarks in Sect. 8.

2 Related work

As already mentioned, the problem of monotone classification has received increasing at-
tention in the machine learning community in recent years,1 despite having been introduced
in the literature much earlier (Ben-David et al. 1989). Meanwhile, several machine learn-
ing algorithms have been modified so as to guarantee monotonicity in attributes, including
nearest neighbor classification (Duivesteijn and Feelders 2008), neural networks (Sill 1998),
decision tree learning (Ben-David 1995; Potharst and Feelders 2002), rule induction (Dem-
bczyński et al. 2009), as well as methods based on isotonic separation (Chandrasekaran et al.
2005) and piecewise linear models (Dembczyński et al. 2006).

Instead of modifying learning algorithms so as to guarantee monotone models, another
idea is to modify the training data. To this end, data pre-processing methods such as re-
labeling techniques have been developed. Such methods seek to repair inconsistencies in
the training data, so that (standard) classifiers learned on that data will tend to be monotone
(although, in general, they still do not guarantee this property) (Feelders 2010; Kotłowski
et al. 2008).

Although the Choquet integral has been widely applied as an aggregation operator in
multiple criteria decision making (Grabisch et al. 2000; Grabisch 1995a; Torra 2011), it
has been used much less in the field of machine learning so far. There are, however, a few
notable exceptions. First, the problem of extracting a Choquet integral (or, more precisely,
the non-additive measure on which it is defined) in a data-driven way has been addressed in
the literature (Beliakov 2008). Essentially, this is a parameter identification problem, which
is commonly formalized as a constraint optimization problem, for example using the sum
of squared errors as an objective function (Torra and Narukawa 2007; Grabisch 2003). To

1For example, a workshop on “Learning Monotone Models from Data” was organized at ECMLPKDD 2009
in Bled, Slovenia.
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this end, Mori and Murofushi (1989) proposed an approach based on the use of quadratic
forms, while an alternative heuristic, gradient-based method called HLMS (Heuristic Least
Mean Squares) was introduced in Grabisch (1995b). In Angilella et al. (2009), Beliakov and
James (2011), the Choquet integral is used in the context of ordinal classification. Besides,
the Choquet integral has been used as an aggregation operator in the context of ensemble
learning, i.e., for combining the predictions of different classifiers (Grabisch and Nicolas
1994).

3 The discrete Choquet integral

In this section, we give a brief introduction to the (discrete) Choquet integral, which, to the
best of our knowledge, is not widely known in the field of machine learning so far. Since the
Choquet integral can be seen as a generalization of the standard (Lebesque) integral to the
case of non-additive measures, we start with a reminder of this type of measure.

3.1 Non-additive measures

Let C = {c1, . . . , cm} be a finite set and μ : 2C → [0,1] a measure on this set. For each
A ⊆ C, we interpret μ(A) as the weight or, say, the importance of the set of elements A.
As an illustration, one may think of C as a set of criteria (binary features) relevant for a
job, like “speaking French” and “programming Java”, and of μ(A) as the evaluation of a
candidate satisfying criteria A (and not satisfying C \ A). The term “criterion” is indeed
often used in the decision making literature, where it suggests a monotone “the higher the
better” influence. In the context of machine learning, to which we shall turn later on, criteria
are playing the role of features (input attributes).

A standard assumption on a measure μ(·), which is, for example, at the core of probabil-
ity theory, is additivity: μ(A ∪ B) = μ(A) + μ(B) for all A,B ⊆ C such that A ∩ B = ∅.
Unfortunately, additive measures cannot model any kind of interaction between elements:
Extending a set of elements A by a set of elements B always increases the weight μ(A) by
the weight μ(B), regardless of A and B .

Suppose, for example, that the elements of two sets A and B are complementary in a
certain sense. For instance, A = {French,Spanish} and B = {Java} could be seen as
complementary, since both language skills and programming skills are important for the job.
Formally, this can be expressed in terms of a positive interaction: μ(A∪B) > μ(A)+μ(B).
In the extreme case, when language skills and programming skills are indeed essential,
μ(A ∪ B) can be high although μ(A) = μ(B) = 0 (suggesting that a candidate lacking
either language or programming skills is completely unacceptable). Likewise, elements can
interact in a negative way: If two sets A and B are partly redundant or competitive, then
μ(A ∪ B) < μ(A) + μ(B). For example, A = {C,C#} and B = {Java} might be seen as
redundant, since one programming language does in principle suffice.

The above considerations motivate the use of non-additive measures, also called capaci-
ties or fuzzy measures, which are simply normalized and monotone (Sugeno 1974):

μ(∅) = 0, μ(C) = 1, and

μ(A) ≤ μ(B) for all A ⊆ B ⊆ C.
(3)
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A useful representation of non-additive measures, that we shall explore later on for learn-
ing Choquet integrals, is in terms of the Möbius transform:

μ(B) =
∑

A⊆B

mμ(A) (4)

for all B ⊆ C, where the Möbius transform mμ of the measure μ is defined as follows:

mμ(A) =
∑

B⊆A

(−1)|A|−|B|μ(B). (5)

The value mμ(A) can be interpreted as the weight that is exclusively allocated to A, instead
of being indirectly connected with A through the interaction with other subsets.

A measure μ is said to be k-order additive, or simply k-additive, if k is the smallest
integer such that m(A) = 0 for all A ⊆ C with |A| > k. This property is interesting for
several reasons. First, as can be seen from (4), it means that a measure μ can formally
be specified by significantly fewer than 2m values, which are needed in the general case.
Second, k-additivity is also interesting from a semantic point of view: As will become clear
in the following, this property simply means that there are no interaction effects between
subsets A,B ⊆ C whose cardinality exceeds k.

3.2 Importance of criteria and interaction

An additive (i.e., k-additive with k = 1) measure μ can be written as follows:

μ(A) =
∑

ci∈A

wi,

with wi = μ({ci}) the weight of ci . Due to (3), these weights are non-negative and such that∑m

i=1 wi = 1. In this case, there is obviously no interaction between the criteria ci , i.e., the
influence of a ci on the value of μ is independent of the presence or absence of any other cj .
Besides, the weight wi is a natural quantification of the importance of ci .

Measuring the importance of a criterion ci becomes obviously more involved when μ is
non-additive. Besides, one may then also be interested in a measure of interaction between
the criteria, either pairwise or even of a higher order. In the literature, measures of that kind
have been proposed, both for the importance of single as well as the interaction between
several criteria.

Suppose to be given a fuzzy measure μ on C. In order to quantify the weight of a single
criterion ci , it is natural to look at the increase in importance due to adding ci to another
subset A ⊂ C, which comes down to comparing μ(A∪{ci}) and μ(A). While the difference
between these two values is always equal to wi in the additive case, it may depend on the
subset A in the non-additive case. The Shapley value, also called importance index of ci ,
therefore averages the difference μ(A ∪ {ci}) − μ(A) over all A ⊂ C:

ϕ(ci) =
∑

A⊆C\{ci }

1

m
(
m−1
|A|

)
(
μ

(
A ∪ {ci}

) − μ(A)
)
. (6)

The Shapley value of μ is the vector ϕ(μ) = (ϕ(c1), . . . , ϕ(cm)). One can show that 0 ≤
ϕ(ci) ≤ 1 and

∑m

i=1 ϕ(ci) = 1. Thus, ϕ(ci) is a measure of the relative importance of ci .
Obviously, ϕ(ci) = μ({ci}) if μ is additive.
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The interaction index between criteria ci and cj , as proposed by Murofushi and Soneda
(1993), is defined as follows:

Ii,j =
∑

A⊆C\{ci ,cj }

(μ(A ∪ {ci, cj }) − μ(A ∪ {ci}) − μ(A ∪ {cj }) + μ(A))

(m − 1)
(
m−2
|A|

) .

This index ranges between −1 and 1 and indicates a positive (negative) interaction between
criteria ci and cj if Ii,j > 0 (Ii,j < 0). The interaction index can also be expressed in terms
of the Möbius transform:

Ii,j =
∑

K⊆C\{ci ,cj }

1

|K| + 1
m

({ci, cj } ∪ K
)
.

Furthermore, as proposed by Grabisch (1997), the definition of interaction can be extended
to more than two criteria, i.e., to subsets T ⊆ C:

IT =
m−|T |∑

k=0

1

k + 1

∑

K⊆C\T ,|K|=k

m(T ∪ K).

3.3 The Choquet integral

So far, the criteria ci were simply considered as binary features, which are either present or
absent. Mathematically, μ(A) can thus also be seen as an integral of the indicator function
of A, namely the function fA given by fA(c) = 1 if c ∈ A and = 0 otherwise. Now, suppose
that f : C → R+ is any non-negative function that assigns a value to each criterion ci ; for
example, f (ci) might be the degree to which a candidate satisfies criterion ci . An important
question, then, is how to aggregate the evaluations of individual criteria, i.e., the values
f (ci), into an overall evaluation, in which the criteria are properly weighted according to
the measure μ. Mathematically, this overall evaluation can be considered as an integral
Cμ(f ) of the function f with respect to the measure μ.

Indeed, if μ is an additive measure, the standard integral just corresponds to the weighted
mean

Cμ(f ) =
m∑

i=1

wi · f (ci) =
m∑

i=1

μ
({ci}

) · f (ci), (7)

which is a natural aggregation operator in this case. A non-trivial question, however, is how
to generalize (7) in the case where μ is non-additive.

This question, namely how to define the integral of a function with respect to a non-
additive measure (not necessarily restricted to the discrete case), is answered in a satisfactory
way by the Choquet integral, which has first been proposed for additive measures by Vitali
(1925) and later on for non-additive measures by Choquet (1954). The point of departure
of the Choquet integral is an alternative representation of the “area” under the function f ,
which, in the additive case, is a natural interpretation of the integral. Roughly speaking,
this representation decomposes the area in a “horizontal” instead of a “vertical” manner,
thereby making it amenable to a straightforward extension to the non-additive case. More
specifically, note that the weighted mean can be expressed as follows:

m∑

i=1

f (ci) · μ({ci}
) =

m∑

i=1

(
f (c(i)) − f (c(i−1))

)(
μ

({c(i)}
) + · · · + μ

({c(m)}
))
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Fig. 1 Vertical (left) versus horizontal (right) integration. In the first case, the height of a single bar, f (ci ), is
multiplied with its “width” (the weight μ({ci})), and these products are added. In the second case, the height
of each horizontal section, f (c(i)) − f (c(i−1)), is multiplied with the corresponding “width” μ(A(i))

=
m∑

i=1

(
f (c(i)) − f (c(i−1))

) · μ(A(i)),

where (·) is a permutation of {1, . . . ,m} such that 0 ≤ f (c(1)) ≤ f (c(2)) ≤ · · · ≤ f (c(m))

(and f (c(0)) = 0 by definition), and A(i) = {c(i), . . . , c(m)}; see Fig. 1 as an illustration.
Now, the key difference between the left and right-hand side of the above expression is

that, whereas the measure μ is only evaluated on single elements ci on the left, it is eval-
uated on subsets of elements on the right. Thus, the right-hand side suggests an immediate
extension to the case of non-additive measures, namely the Choquet integral, which, in the
discrete case, is formally defined as follows:

Cμ(f ) =
m∑

i=1

(
f (c(i)) − f (c(i−1))

) · μ(A(i)).

In terms of the Möbius transform of μ, the Choquet integral can also be expressed as follows:

Cμ(f ) =
m∑

i=1

(
f (c(i)) − f (c(i−1))

) · μ(A(i))

=
m∑

i=1

f (c(i)) · (μ(A(i)) − μ(A(i+1))
)

=
m∑

i=1

f (c(i))
∑

R⊆T(i)

m(R)

=
∑

T ⊆C

m(T ) × min
i∈T

f (ci) (8)

where T(i) = {S ∪ {c(i)} | S ⊂ {c(i+1), . . . , c(m)}}.

4 The VC dimension of the Choquet integral

Advocating the Choquet integral as a novel tool for machine learning immediately begs
an interesting theoretical question, namely the question regarding the capacity of the corre-
sponding model class. In fact, since the Choquet integral in its general form (not restricted to
k-additive measures) has a rather large number of parameters, one may expect it to be quite
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flexible and, therefore, to have a high capacity. On the other hand, the parameters cannot be
chosen freely. Instead, they are highly constrained due to the properties of the underlying
fuzzy measure.

In any case, knowledge about the VC dimension of the Choquet integral (or, more specif-
ically, a binary classifier based on the Choquet integral as an underlying aggregation func-
tion) is not only of theoretical but also of practical relevance. In particular, it may help
finding the right level of flexibility for the data at hand. As mentioned earlier, because of its
highly nonlinear nature, one may expect the Choquet integral in its most general form comes
with a danger of overfitting the data. On the other hand, a restriction to k-additive measures
may provide a reasonable means for regularization. Both conjectures will be confirmed in
this section.

In what follows, we are going to analyze the capacity of the Choquet integral in terms of
the VC dimension (Vapnik 1998). To this end, we consider a setting in which the Choquet
integral is used to classify instances represented in the form of m-dimensional vectors x =
(x1, x2, . . . , xm) ∈ R

m+, where xi = f (ci) can be thought of as the evaluation of the criterion
ci . More specifically, we consider the model class H consisting of all threshold classifiers
of the form

x = (x1, x2, . . . , xm) �→ I
(

Cμ(x) > β
)
, (9)

where I maps truth degrees {false, true} to {0,1} as usual, μ is a fuzzy measure, Cμ(x) is
the Choquet integral of the (normalized) attribute values x1, x2, . . . , xm, and β ∈ [0,1] is a
threshold value (as will be seen below, (9) corresponds to the “decision making” part of the
choquistic regression model to be introduced in the next section; since this part is responsible
for the classification decision, results on the VC dimension of H directly apply to choquistic
regression, too). Note that the class H is parametrized by μ and β .

Theorem 1 For the model class H as defined above, VC(H) = Ω(2m/
√

m). That is, the VC
dimension of H grows asymptotically at least as fast as 2m/

√
m.

Proof In order to prove this claim, we construct a sufficiently large data set D and show that,
despite its size, it can be shattered by H. In this construction, we restrict ourselves to binary
attribute values, which means that xi ∈ {0,1} for all 1 ≤ i ≤ m. Consequently, each instance
x = (x1, . . . , xm) ∈ {0,1}m can be identified with a subset of indices Sx ⊆ X = {1,2, . . . ,m},
namely its indicator set Sx = {i | xi = 1}.

In combinatorics, an antichain of X = {1,2, . . . ,m} is a family of subsets A ⊂ 2X such
that, for all A,B ∈ A, neither A ⊆ B nor B ⊆ A. An interesting question related to the
notion of an antichain concerns its potential size, that is, the number of subsets in A. This
number is obviously restricted due to the above non-inclusion constraint on pairs of subsets.
An answer to this question is given by a well-known result of Sperner (1928), who showed
that this number is

(
m

�m/2�
)

. (10)

Moreover, Sperner has shown that the corresponding antichain A is given by the family of
all q-subsets of X with q = �m/2�, that is, all subsets A ⊂ X such that |A| = q .

Now, we define the data set D in terms of the collection of all instances x =
(x1, . . . , xm) ∈ {0,1}m whose indicator set Sx is a q-subset of X. Recall that, from a deci-
sion making perspective, each attribute can be interpreted as a criterion. Thus, each instance
in our data set satisfies exactly q of the m criteria, and there is not a single “dominance”
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relation in the sense that the set of criteria satisfied by one instance is a superset of those
satisfied by another instance. Intuitively, the instances in D are therefore maximally incom-
parable. This is precisely the property we are now going to exploit in order to show that D
can be shattered by H.

Recall that a set of instances D can be shattered by a model class H if, for each subset
P ⊆ D, there is a model H ∈ H such that H(x) = 1 for all x ∈ P and H(x) = 0 for all
x ∈ D \ P . Now, take any such subset P from our data set D as constructed above, and
recall that the Choquet integral in (9) can be written as

Cμ(x) =
∑

T ⊆C

m(T ) × fT (x), (11)

where fT (x) = 1 if T ⊆ Sx and fT (x) = 0 otherwise. We define the values m(T ), T ⊆ C,
of the Möbius transform as follows:

m(T ) =
{

|P|−1 if T = Sx for some x ∈ P,

0 otherwise.

Obviously, this definition of the Möbius transform is feasible and yields a proper fuzzy mea-
sure μ: The sum of masses is equal to 1, and since all masses are non-negative, monotonicity
is guaranteed right away. Moreover, from the construction of m and the fact that, for each
pair x �= x ′ ∈ D, neither Sx ⊆ Sx′ nor Sx′ ⊆ Sx , the Choquet integral is obviously given as
follows:

Cμ =
{|P|−1 if x ∈ P,

0 otherwise.

Thus with β = 1/(2|P|), the classifier (9) behaves exactly as required, that is, it classifies
all x ∈ P as positive and all x �∈ P as negative.

Noting that the special case where P = ∅ is handled correctly by the Möbius transform
m such that m(C) = 1 and m(T ) = 0 for all T � C (and any threshold β > 0), we can
conclude that the data set D can be shattered by H. Consequently, the VC dimension of H
is at least the size of D, whence (10) is a lower bound of VC(H).

For the asymptotic analysis, we make use of Sterling’s approximation of large factori-
als (and hence binomial coefficients). For the sequence (b1, b2, . . .) of the so-called central
binomial coefficients bn, it is known that

bn =
(

2n

n

)
= (2n)!

(n!)2
≥ 1

2

4n

√
π · n . (12)

Thus, the fact that VC(H) grows asymptotically at least as fast as 2m/
√

m immediately
follows by setting n = m/2 and ignoring constant terms. �

Remark 1 Recall the expression (8) of the Choquet integral in terms of its Möbius transform.
This expression shows that the Choquet integral corresponds to a linear function, albeit a
constrained one, in the feature space spanned by the set of features {fT | T ⊆ {1,2, . . . ,m}}
(already used in (11)), where each feature is a min-term

fT = fT (x) = fT (x1, . . . , xm) = min
i∈T

xi . (13)

The dimensionality of this feature space is 2m − 1. Thus, it follows immediately that
VC(H) ≤ 2m (the class of linear hyperplanes in R

n has VC-dimension n + 1). Together
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with the lower bound 2m/
√

m, which is not much smaller (despite the restriction to binary
attribute vectors), we thus dispose of a relatively tight approximation of VC(H).

Remark 2 Interestingly, the proof of Theorem 1 does not exploit the full non-additivity of the
Choquet integral. In fact, the measure we constructed there is �m/2�-additive, since m(T ) =
0 for all T ⊆ C with |T | > �m/2�. Consequently, the estimation of the VC-dimension still
applies to the restricted case of k-additive measures, provided k ≥ �m/2�. For smaller k, it
is not difficult to adapt the proof so as to show that

VC(H) ≥
(

m

k

)
. (14)

5 Choquistic regression

Consider the standard setting of binary classification, where the goal is to predict the value
of an output (response) variable y ∈ Y = {0,1} for a given instance

x = (x1, . . . , xm) ∈ X = X1 × X2 × · · · × Xm

represented in terms of a feature vector. More specifically, the goal is to learn a classifier
L : X → Y from a given set of (i.i.d.) training data

D = {(
x(i), y(i)

)}n

i=1
⊂ (X × Y)n

so as to minimize the risk

R(L) =
∫

X ×Y
	
(

L(x), y
)
dPXY (x, y),

where 	(·) is a loss function (e.g., the simple 0/1 loss given by 	(ŷ, y) = 0 if ŷ = y and = 1
if ŷ �= y).

Logistic regression is a well-established statistical method for (probabilistic) classifica-
tion (Hosmer and Lemeshow 2000). Its popularity is due to a number of appealing prop-
erties, including monotonicity and comprehensibility: Since the model is essentially linear
in the input attributes, the strength of influence of each predictor is directly reflected by the
corresponding regression coefficient. Moreover, the influence of each attribute is monotone
in the sense that an increase of the value of the attribute can either only increase or only de-
crease the probability of the positive class (depending on whether the associated regression
coefficient is positive or negative).

Formally, the probability of the positive class (and hence of the negative class) is modeled
as a generalized linear function of the input attributes, namely in terms of the logarithm of
the probability ratio:

log

(
P(y = 1 |x)

P(y = 0 |x)

)
= w0 + w�x, (15)

where w = (w1,w2, . . . ,wm) ∈ R
m is a vector of regression coefficients and w0 ∈ R a con-

stant bias (the intercept). A positive regression coefficient wi > 0 means that an increase of
the predictor variable xi will increase the probability of a positive response, while a negative
coefficient implies a decrease of this probability. Besides, the larger the absolute value |wi |
of the regression coefficient, the stronger the influence of xi .
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Fig. 2 Probability of a positive
decision, P(y = 1 |x), as a
function of the estimated degree
of utility, u = U(x), for a
threshold β = 0.7 and different
values of γ

Since P(y =0 | x)=1−P(y =1 | x), a simple calculation yields the posterior probability

πl
df= P(y = 1 |x) = (

1 + exp
(−w0 − w�x

))−1
. (16)

The logistic function z �→ (1 + exp(−z))−1, which has a sigmoidal shape, is a specific type
of link function.

Needless to say, the linearity of the above model is a strong restriction from a learning
point of view, and the possibility of interactions between predictor variables has of course
also been noticed in the statistical literature (Jaccard 2001). A standard way to handle such
interaction effects is to add interaction terms to the linear function of predictor variables, like
in (2). As explained earlier, however, the aforementioned advantages of logistic regression
will then be lost.

In the following, we therefore propose an extension of logistic regression that allows for
modeling nonlinear relationships between input and output variables while preserving the
advantages of comprehensibility and monotonicity. As mentioned earlier, the monotonicity
constraint is important if the direction of influence of an input attribute is known beforehand
and needs to be reflected by the model, an assumption that we shall make in the following.
As an aside, we note that one may also envision the case where an attribute is known to
have a monotone influence, although the direction of influence is unknown. The learning
problem then becomes slightly more difficult, since the learner has to figure out whether
the influence is positive (increasing) or negative (decreasing). We shall not consider this
problem any further, however, and instead assume the direction of influence to be given as
prior knowledge.

5.1 The Choquistic model

In order to model nonlinear dependencies between predictor variables and the response,
and to take interactions between predictors into account, we propose to extend the logistic
regression model by replacing the linear function x �→ w0 + w�x in (15) with the Choquet
integral. More specifically, we propose the following model

πc
df= P(y = 1 |x) = (

1 + exp
(−γ

(
Cμ(fx) − β

)))−1
, (17)

where Cμ(fx) is the Choquet integral (with respect to the measure μ) of the function

fx : {c1, . . . , cm} → [0,1] (18)

that maps each attribute ci to a normalized value xi = fx(ci) ∈ [0,1]; β,γ ∈ R are constants.
Recalling the idea of “evaluating” an instance x in terms of a set of criteria, the model

(17) can be seen as a two-step procedure: The first step consists of an assessment of x in
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terms of a (latent) utility degree

u = U(x) = Cμ(fx) ∈ [0,1].
Then, in a second step, a discrete choice (yes/no decision) is made on the basis of this utility.
Roughly speaking, this is done through a “probabilistic thresholding” at the utility thresh-
old β . If U(x) > β , then the decision tends to be positive, whereas if U(x) < β , it tends to
be negative. The precision of this decision is determined by the parameter γ (see Fig. 2):
For large γ , the decision function converges toward the step function u �→ I(u > β), jump-
ing from 0 to 1 at β . For small γ , this function is smooth, and there is a certain probability
to violate the threshold rule u �→ I(u > β). This might be due to the fact that, despite being
important for decision making, some properties of the instances to be classified are not cap-
tured by the utility function. In that case, the utility U(x), estimated on the basis of the given
attributes, is not a perfect predictor for the decision eventually made. Thus, the parameter γ

can also be seen as an indicator of the quality of the classification model.

5.2 Normalization

The normalization (18) is meant to turn each predictor variable into a criterion, i.e., a “the
higher the better” attribute, and to assure commensurability between the criteria (Modave
and Grabisch 1998). A simple transformation is given by the mapping

zi = xi − mi

Mi − mi

, (19)

where mi and Mi are lower and upper bounds for xi , which are either known or estimated
from the data; if the influence of xi is actually negative (i.e., wi < 0), then the mapping
zi = (Mi − xi)/(Mi − mi) is used instead.

The transformation (19) is problematic in the presence of outliers, in which case the
distribution of its image can become extremely skewed. As an alternative, which is less
sensitive in this regard and, moreover, produces a more uniform distribution of normalized
values, we therefore propose the mapping

zi = F−1(xi), (20)

where F is the cumulative distribution function x �→ P(Xi ≤ x). Of course, since this func-
tion is in general not known, it has to be replaced by an estimate F̂ ; to this end, we simply
adopt the empirical distribution of the training data (i.e., F̂ (x) is the relative frequency of
instances x = (x1, . . . , xm) in the training data for which xi ≤ x).

5.3 Logistic regression as a special case

In order to verify that our model (17) is a proper generalization of standard logistic regres-
sion, recall that the Choquet integral reduces to a weighted mean (7) in the special case
of an additive measure μ. Moreover, recall the transformation (19) and consider any linear
function x �→ g(x) = w0 + w�x with w = (w1, . . . ,wm). This function can also be written
in the form

g(x) = w0 +
m∑

i=1

(
wipi + |wi |(Mi − mi)zi

)

= w0 +
m∑

i=1

wipi +
m∑

i=1

|wi |(Mi − mi)zi
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= w′
0 +

(
m∑

i=1

ui

)−1 m∑

i=1

u′
izi

= γ

(
m∑

i=1

u′
izi − β

)
,

where pi = mi if wi ≥ 0 and pi = Mi if wi < 0, ui = |wi |(Mi − mi), γ = (
∑m

i=1 ui)
−1,

u′
i = ui/γ , w′

0 = w0 + ∑m

i=1 wipi , β = −w′
0/γ . By definition, the u′

i are non-negative and
sum up to 1, which means that

∑m

i=1 u′
izi is a weighted mean of the zi that can be represented

by a Choquet integral.

5.4 Parameter estimation

The model (17) has several degrees of freedom: The fuzzy measure μ (Möbius transform
m = mμ) determines the (latent) utility function, while the utility threshold β and the scaling
parameter γ determine the discrete choice model. The goal of learning is to identify these
degrees of freedom on the basis of the training data D. Like in the case of standard logistic
regression, it is possible to harness the maximum likelihood (ML) principle for this purpose.
The log-likelihood of the parameters can be written as

l(m, γ,β) = log P(D | m, β, γ )

= log

(
n∏

i=1

P
(
y(i) | x(i);m, β, γ

)
)

=
n∑

i=1

y(i) logπ(i)
c + (

1 − y(i)
)

log
(
1 − π(i)

c

)
. (21)

One easily verifies that (21) is convex with respect to m, γ , and β . In principle, maximiza-
tion of the log-likelihood can be accomplished by means of standard gradient-based op-
timization methods. However, since we have to assure that μ is a proper fuzzy measure
and, hence, that m guarantees the corresponding monotonicity and boundary conditions, we
actually need to solve a constrained optimization problem:

max
m,γ,β

{
−γ

n∑

i=1

(
1 − y(i)

)(
Cm

(
x(i)

) − β
)

−
n∑

i=1

log
(
1 + exp

(−γ
(

Cm

(
x(i)

) − β
))) − η

∑

T ⊆C

∣∣m(T )
∣∣
}

s.t. η,γ > 0, 0 ≤ β ≤ 1,
∑

T ⊆C

m(T ) = 1, and

∑

B⊆A\{ci }
m

(
B ∪ {ci}

) ≥ 0 ∀A ⊆ C, ∀ci ∈ C.

(22)

The last part of the objective function (22) is a standard L1-regularizer on the Möbius trans-
form, which is added as a means to prevent over-fitting; moreover, since many weights
are typically set to 0 under L1-regularization, it also serves as a feature selection mecha-
nism (Lee et al. 2006).
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A solution to the above problem can be produced by standard solvers. Concretely, we
used the fmincon function implemented in the optimization toolbox of Matlab. This
method is based on a sequential quadratic programming approach.

Recall that, once the model has been identified, the importance of each attribute and the
degree of interaction between groups of attributes can be derived from the Möbius trans-
form m; these are given, respectively, by the Shapley value and the interaction indexes as
introduced in Sect. 3.2.

6 Complexity reduction

Obviously, choquistic regression can be interpreted as fitting a (constrained) linear function
in the feature space spanned by the set of features fT defined by (13), with one feature for
each subset of criteria T ⊆ {1,2, . . . ,m}. Since the dimensionality of this feature space is
2m − 1, the method is clearly critical from a complexity point of view. It was already men-
tioned that an L1-regularization in (22) may shrink some coefficients to 0 and, therefore,
some of the features fT may disappear. Although this may help to simplify the choquis-
tic model, that is, the result produced by the learning algorithm, it does not simplify the
optimization problem itself.

Thus, one may wonder whether some of the features (13) could not even be eliminated
prior to solving the actual optimization problem. Specifically interesting in this regard is
a possible restriction of the choquistic model to k-additive measures, for a suitable value
of k < m. Since this means that significantly less parameters (namely 2k − 1) need to be
identified, the computational complexity might be reduced drastically. Besides, a restriction
to k-additive measures may also have advantages from a learning point of view, as it reduces
the capacity of the underlying model class (cf. Sect. 4) and thus may prevent from over-
fitting the data in cases where the full flexibility of the Choquet integral is actually not
needed. Of course, the key problem to be addressed concerns the question of how to choose
k in the most favorable way.

6.1 Exploiting equivalence of features for dimensionality reduction

In the following, we shall elaborate on the following question: Is it possible to find an upper
bound on the required level of complexity of the model, namely the level of additivity k,
prior to fitting the Choquet integral to the data? Or, more specifically, can we determine the
value k in such a way that fitting a k-additive measure is definitely enough, in the sense that
each labeling of the training data produced by the full Choquet integral (k = m) can also be
produced by a Choquet integral based on a k-additive measure?

In this regard, it is noticeable that, for a given instance x = (x1, . . . , xm), many of the
min-terms (13) will assume the same value (in fact, there are 2m − 1 such terms but only m

possible values). Consequently, in the expression

Cμ(x) =
∑

T ⊆C

m(T ) × fT (x) (23)

of the Choquet integral, many coefficients m(T ) can be grouped and, in principle, be re-
placed by a single one. The groups thus defined solely depend on the order of the values
x1, . . . , xm of the original attributes. The number of terms in (23) will thus reduce from
2m − 1 to at most m. However, since the order may change from instance to instance, differ-
ent groupings may be obtained for different instances.
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Now, imagine that a subset of features F = {fT1 , . . . , fTr } assumes the same value, not
only for a single instance, but for all instances in the training data. Then, this set can be said
to form an equivalence class. Thus, one of the features could in principle be selected as a
representative, absorbing all the weights of the others; more specifically, the weight of this
feature would be set to m(T1)+m(T2)+· · ·+m(Tr), while the weights of the other features
in F would be set to 0.

Note, however, that this “transfer of Möbius mass” will in general not be feasible, as it
may cause a violation of the monotonicity constraint on the fuzzy measure μ. As a side
remark, we also note that, from a learning point of view, the equivalence of features may
obviously cause problems with regard to the identifiability of coefficients; due to the mono-
tonicity constraints just mentioned, however, this is not necessarily the case.

More generally, for two features fA and fB (A,B ⊆ C), denote by v(A,B) ∈ [0,1] the
fraction of training examples on which they assume the same value. We say that fA covers
fB (and, vice versa, fB covers fA) if v(A,B) = 1. Moreover, for a feature fA, we denote by
C(fA) ⊆ 2C the set of features it covers. A straightforward way to find a sufficiently large k

then consists of finding the smallest k such that

⋃

T ⊆C, |T |≤k

C(fT ) = 2C. (24)

From the above construction, it follows that working with the corresponding k-additive mea-
sure, for k thus defined, is theoretically sound and guarantees that there is no loss in terms
of expressivity of the model on the training data. We summarize this finding in terms of the
following proposition.

Proposition 1 Consider a set of training instances x(1), . . . ,x(n) and let k∗ be the smallest
value in {1, . . . ,m} satisfying (24). Moreover, let μ be any measure on the set of criteria
{c1, . . . , cm}, and Cμ the Choquet integral with respect to this measure. Then, there exists a
k-additive measure μ∗ such that

Cμ∗
(
x(i)

) = Cμ

(
x(i)

)
(25)

for all i ∈ {1, . . . , n}.

We like to emphasize that k∗ is only an upper bound on the complexity needed to fit
the training data. Thus, it is not necessarily the optimal k from the point of view of model
induction (which might be figured out by the regularizer in (22)). In particular, note that the
computation of k∗ does not refer to the output values y(i). Instead, it should be considered
as a measure of the complexity of the training instances. As such, it is obviously connected
to the notion of VC dimension.

Since the exact reproducibility (25) may appear overly stringent or, stated differently, a
small loss may actually be acceptable, we finally propose a relaxation somewhat in line with
idea of probably approximately correct (PAC) learning (Valiant 1984). First, noting that the
Choquet integral may change by at most ε when combining features fA and fB such that
|fA −fB | < ε, one may think of relaxing the definition of equivalence as follows: fA and fB

are ε-equivalent (on a given training instance x) if |fA(x) − fB(x)| < ε. Second, we relax
the condition of coverage. Denoting by v(A,B) ∈ [0,1] the fraction of training examples
on which fA and fB are ε-equivalent, we say that fA ε-δ-covers fB if v(A,B) ≥ 1 − δ.
Roughly speaking, for a small ε and δ close to 0, this means that, with only a few exceptions,
the values of fA and fB are almost the same on the training data (we used ε = δ = 0.1 is our
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Table 1 Data sets and their properties

data set #instances #attributes source

Den Bosch (DBS) 120 8 Daniels and Kamp (1999)

CPU 209 6 UCI

Breast Cancer (BCC) 286 7 UCI

Auto MPG 392 7 UCI

Employee Selection (ESL) 488 4 WEKA

Mammographic (MMG) 961 5 UCI

Employee Rejection/Acceptance (ERA) 1000 4 WEKA

Lecturers Evaluation (LEV) 1000 4 WEKA

Car Evaluation (CEV) 1728 6 UCI

experiments below). In order to find a proper upper bound k∗, the principle (24) can be used
as before, just replacing coverage with ε-δ-coverage.

7 Experiments

In this section, we present the results of an experimental study that was conducted in order
to validate the practical performance of our choquistic regression (CR) method. The goal
of this study is twofold. First, we would like to show that CR is competitive in terms of
predictive accuracy. To this end, we compare it with several alternative methods on a number
of (monotone) benchmark data sets. Second, we would like to corroborate our claim that the
CR model provides interesting information about attribute importance and interaction. To
this end, we discuss some examples showing that the corresponding Shapley and interaction
values produced by CR are indeed meaningful and plausible.

7.1 Data sets

Although the topic is receiving increasing interest in the machine learning community,
benchmark data for monotone classification is by far not as abundant as for conventional
classification. In total, we managed to collect 9 data sets from different sources, notably the
UCI repository2 and the WEKA machine learning framework (Hall et al. 2009), for which
monotonicity in the input variables is a reasonable assumption; see Table 1 for a summary.
All the data sets can be downloaded from our website.3 Many of them have also been used
in previous studies on monotone learning. Some of them have a numerical or ordered cat-
egorical output, however, which was hence binarized. Moreover, all input attributes were
normalized using (20).

Den Bosch (DBS) This data set contains 8 attributes describing houses in the city of Den
Bosch: area, number of bedrooms, type of house, volume, storeys, type of garden, garage,
and price. The output is a binary variable indicating whether the price of the house is low or
high (depending on whether or not it exceeds a threshold).

2http://archive.ics.uci.edu/ml/.
3http://www.uni-marburg.de/fb12/kebi/.

http://archive.ics.uci.edu/ml/
http://www.uni-marburg.de/fb12/kebi/
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CPU This is a standard benchmark data set from the UCI repository. It contains eight
input attributes, two of which were removed since they are obviously of no predictive value
(vendor name, model name). The problem is to predict the (estimated) relative performance
of a CPU (binarized by thresholding at the median) based on its machine cycle time in
nanoseconds, minimum main memory in kilobytes, maximum main memory in kilobytes,
cache memory in kilobytes, minimum channels in units, maximum channels in units.

Breast Cancer (BCC) This data set was obtained from the University Medical Center,
Institute of Oncology, Ljubljana, Yugoslavia. There are 7 attributes, namely menopause gain,
tumor-size, inv-nodes, node-caps, deg-malig, breast cost, irradiat gain. The output is a binary
variable, namely no-recurrence-events and recurrence-events.

Auto MPG This data set was used in the 1983 American Statistical Association Exposi-
tion. The problem is to predict the city-cycle fuel consumption in miles per gallon (binarized
by thresholding at the median) based on the following attributes of a car: cylinders, dis-
placement, horsepower, weight, acceleration, model year, origin. We removed incomplete
instances.

Employee Selection (ESL) This data set contains profiles of applicants for certain industrial
jobs. The values of the four input attributes were determined by expert psychologists based
upon psychometric test results and interviews with the candidates. The output is an overall
score on an ordinal scale between 1 and 9, corresponding to the degree of suitability of
each candidate to this type of job. We binarized the output value by distinguishing between
suitable (score 6–9) and unsuitable (score 1–5) candidates.

Mammographic (MMG) This data set is about breast cancer screening by mammography.
The goal is to predict the severity (benign or malignant) of a mammographic mass lesion
from BI-RADS attributes (mass shape, mass margin, density) and the patient’s age.

Employee Rejection/Acceptance (ERA) This data set originates from an academic decision-
making experiment. The input attributes are features of a candidate such as past experience,
verbal skills, etc., and the output is the subjective judgment of a decision-maker, measured
on an ordinal scale from 1 to 9, to which degree he or she tends to accept the applicant for
the job. We binarized the output value by distinguishing between acceptance (score 5–9)
and rejection (score 1–4).

Lecturers Evaluation (LEV) This data set contains examples of anonymous lecturer eval-
uations, taken at the end of MBA courses. Students were asked to score their lecturers ac-
cording to four attributes such as oral skills and contribution to their professional/general
knowledge. The output was a total evaluation of each lecturer’s performance, measured on
an ordinal scale from 0 to 4. We binarized the output value by distinguishing between good
(score 3–4) and bad evaluation (score 0–2).

Car Evaluation (CEV) This data set contains 6 attributes describing a car, namely, buying
price, price of the maintenance, number of doors, capacity in terms of persons to carry,
the size of luggage boot, estimated safety of the car. The output is the overall evaluation
of the car: unacceptable, acceptable, good, very good. We binarized this evaluation into
unacceptable versus not unacceptable (acceptable, good or very good).
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7.2 Methods

Since choquistic regression (CR) can be seen as an extension of standard logistic regression
(LR), it is natural to compare these two methods. Essentially, this comparison should give
an idea of the usefulness of an increased flexibility. On the other side, one may also ask
for the usefulness of assuring monotonicity. Therefore, we additionally included two other
extensions of LR, which are flexible but not necessarily monotone, namely kernel logistic
regression (KLR) with polynomial and Gaussian kernels. The degree of the polynomial
kernel was set to 2, so that it models low-level interactions of the features. The Gaussian
kernel, on the other hand, is able to capture interactions of higher order. For each data set,
the width parameter of the Gaussian kernel was selected from {10−4,10−3,10−2,10−1,100}
in the most favorable way. Likewise, the regularization parameter η in choquistic regression
was selected from {10−3,10−2,10−1,100,101,102}.

Finally, we also included two methods that are both monotone and flexible, namely the
MORE algorithm for learning rule ensembles under monotonicity constraints (Dembczyński
et al. 2009) and the LMT algorithm for logistic model tree induction (Landwehr et al. 2003).
Following the idea of forward stagewise additive modeling (Tibshirani et al. 2001), the
MORE algorithm treats a single rule as a subsidiary base classifier in the ensemble. The
rules are added to the ensemble one by one. Each rule is fitted by concentrating on the ex-
amples that are most difficult to classify correctly by rules that have already been generated.
The LMT algorithm builds tree-structured models that contain logistic regression functions
at the leaves. It is based on a stagewise fitting process to construct the logistic regression
models that can select relevant attributes from the data. This process is used to build the lo-
gistic regression models at the leaves by incrementally refining those constructed at higher
levels in the tree structure.

7.3 Results

7.3.1 Performance in terms of predictive accuracy

As performance measures, we determined the standard misclassification rate (0/1 loss) as
well as the AUC. Estimates of both measures were obtained by randomly splitting the data
into two parts, one part for training and one part for testing. This procedure was repeated
100 times, and the results were averaged. In order to analyze the influence of the amount
of training data, we varied the proportion between training and test data from 20:80 over
50:50 to 80:20. In these experiments, we used a variant of CR in which the underlying fuzzy
measure is restricted to be k-additive, with k determined by means of an internal cross-
validation. Compared with other variants (cf. Sect. 7.3.2), this one performed best in terms
of accuracy.

A possible improvement of CR over its competitors, in terms of predictive accuracy, may
be due to two reasons: First, in comparison to standard LR, it is more flexible and has the
ability to capture nonlinear dependencies between input attributes. Second, in comparison
to non-monotone learners, it takes background knowledge about the dependency between
input and output variables into consideration.

An overview of the results of the experiments is given in Tables 2 and 3. Moreover, a
summary in terms of pairwise win statistics is provided in Tables 4 and 5. As can be seen,
CR compares quite favorably with the other approaches, especially with the non-monotone
KLR methods, both in terms of 0/1 loss and AUC. It also outperforms LR, at least for
sufficiently extensive training data; if the amount of training data is small, however, LR is
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Table 4 Win statistics (number of data sets on which the first method was better than the second one) for
20 %, 50 %, and 80 % training data for 0/1 loss case

CR LR KLR-ply KLR-rbf MORE LMT

CR – 8 | 9 | 9 7 | 6 | 8 8 | 8 | 7 8 | 6 | 7 8 | 7 | 8

LR 1 | 0 | 0 – 4 | 5 | 5 5 | 2 | 3 5 | 2 | 3 5 | 4 | 3

KLR-ply 2 | 3 | 1 5 | 4 | 4 – 3 | 4 | 4 5 | 4 | 3 3 | 4 | 3

KLR-rbf 1 | 1 | 2 4 | 7 | 6 6 | 5 | 5 – 7 | 4 | 3 6 | 5 | 4

MORE 1 | 3 | 2 4 | 7 | 6 4 | 5 | 6 2 | 5 | 6 – 4 | 4 | 4

LMT 1 | 2 | 1 4 | 5 | 6 6 | 5 | 6 3 | 4 | 5 5 | 5 | 5 –

Table 5 Win statistics (number of data sets on which the first method was better than the second one) for
20 %, 50 %, and 80 % training data for AUC case

CR LR KLR-ply KLR-rbf MORE LMT

CR – 6 | 7 | 9 7 | 4 | 7 5 | 5 | 4 7 | 7 | 9 5 | 6 | 7

LR 3 | 2 | 0 – 6 | 5 | 4 3 | 3 | 2 8 | 8 | 6 3 | 3 | 2

KLR-ply 2 | 5 | 2 3 | 4 | 5 – 2 | 3 | 4 5 | 8 | 8 2 | 4 | 3

KLR-rbf 4 | 4 | 5 6 | 6 | 7 7 | 6 | 5 – 8 | 7 | 9 5 | 5 | 5

MORE 2 | 2 | 0 1 | 1 | 3 4 | 1 | 1 1 | 2 | 0 – 0 | 0 | 1

LMT 4 | 3 | 2 6 | 6 | 7 7 | 5 | 6 4 | 4 | 4 9 | 9 | 8 –

even better, probably because CR will then tend to overfit the data. This is indeed a general
trend that can be observed both for performance in terms of average ranks and the number
of wins in pairwise comparison with another method: The more training data is available,
the better CR becomes, arguably because its flexibility is then becoming more and more
advantageous.

Needless to say, statistical significance is difficult to achieve due to the limited number of
data sets. In terms of pairwise comparison, for example, a standard sign test will not report
a significant difference (at the 10 % significance level) unless one of the method wins at
least 7 of the 9 data sets. For the 0/1 loss, this is indeed accomplished by CR in all cases
except two (comparison with KLR-ply and MORE on 50 % training data); see Table 4. For
AUC, CR is superior, too, but significance is reached less often; see Table 5.

We also applied the two-step procedure recommended by Demsar (2006), consisting of a
Friedman test and (provided this one rejects the null-hypothesis of overall equal performance
of all methods) the subsequent use of a Nemenyi test in order to compare methods in a
pairwise manner; both tests are based on average ranks. For both 0/1 loss and AUC, the
Friedman test finds significant differences among the six classifiers (at the 10 % significance
level) when all three different proportions of data are used for training. The critical distance
of ranks in the Nemenyi test is 2.28 for both measures. In Tables 2 and 3, the average ranks
for which this difference is exceeded are highlighted in bold font.

7.3.2 Variants of choquistic regression

In the above experiments, we used CR with a fuzzy measure of optimal order, namely a
k-additive measure with k determined through internal cross-validation. In addition, we also
learned with standard CR, i.e., CR using the full fuzzy measure with k = m (the number
of attributes). As can be seen in Table 6, adapting k does obviously pay off and leads to
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Table 6 Performance in terms the average 0/1 loss and AUC ± standard deviation for CR using the full
fuzzy measure compared with using a k-additive measure with cross-validated k. From top to bottom: 20 %,
50 %, and 80 % training data

data set 0/1 loss
full

0/1 loss
k-additive

AUC
full

AUC
k-additive

DBS .2329 ± .0518 .1713 ± .0424 .8981 ± .0135 .9290 ± .0322

CPU .1341 ± .0802 .0811 ± .0103 .9505 ± .0377 .9822 ± .0121

BCC .3342 ± .0252 .2775 ± .0335 .6112 ± .0678 .6400 ± .0641

MPG .0709 ± .0193 .0709 ± .0193 .9788 ± .0182 .9788 ± .0182

ESL .0730 ± .0168 .0682 ± .0129 .9667 ± .0085 .9670 ± .0074

MMG .1776 ± .0101 .1725 ± .0120 .8899 ± .0145 .8867 ± .0123

ERA .2981 ± .0158 .2889 ± .0273 .7579 ± .0103 .7669 ± .0334

LEV .1526 ± .0146 .1499 ± .0122 .8984 ± .0103 .8971 ± .0098

CEV .0448 ± .0089 .0488 ± .0089 .9825 ± .0080 .9825 ± .0080

DBS .2261 ± .0685 .1572 ± .0416 .8995 ± .0486 .9341 ± .0228

CPU .0702 ± .0912 .0464 ± .0281 .9834 ± .0256 .9920 ± .0073

BCC .3122 ± .0324 .2687 ± .0282 .6596 ± .0309 .6912 ± .0469

MPG .0577 ± .0251 .0577 ± .0251 .9818 ± .0075 .9818 ± .0075

ESL .0711 ± .0133 .0601 ± .0126 .9695 ± .0102 .9720 ± .0084

MMG .1671 ± .0139 .1667 ± .0144 .8940 ± .0110 .9003 ± .0132

ERA .2930 ± .0162 .2844 ± .0306 .7641 ± .0146 .7705 ± .0310

LEV .1421 ± .0142 .1372 ± .0125 .9088 ± .0132 .9098 ± .0103

CEV .0376 ± .0059 .0376 ± .0059 .9912 ± .0024 .9912 ± .0024

DBS .2192 ± .0466 .1416 ± .0681 .9052 ± .0210 .9427 ± .0443

CPU .0241 ± .0413 .0212 ± .0301 .9866 ± .0187 .9971 ± .0063

BCC .2853 ± .0592 .2496 ± .0485 .6945 ± .0455 .7349 ± .0692

MPG .0551 ± .0160 .0551 ± .0160 . 9855 ± .0108 .9855 ± .0108

ESL .0658 ± .0221 .0542 ± .0218 .9755 ± .0160 .9766 ± .0150

MMG .1628 ± .0187 .1584 ± .0251 .8966 ± .0162 .9135 ± .0233

ERA .2899 ± .0191 .2813 ± .0280 .7687 ± .0261 .7670 ± .0290

LEV .1370 ± .0162 .1314 ± .0176 .9140 ± .0124 .9122 ± .0202

CEV .0273 ± .0089 .0273 ± .0089 .9959 ± .0027 .9959 ± .0027

improved performance most of the time. For the “full” CR, which is the most flexible variant,
there is obviously a risk to overfit the training data and hence generalize worse.

Moreover, we also combined CR with the complexity reduction method proposed in
Sect. 6. In addition to the average performance, the results in Table 7 also show the typical
values of k as determined by this method (namely the most frequently chosen one). As can be
seen, the method is indeed effective in the sense that the order of the fuzzy measure is often
significantly reduced without compromising performance. On the other hand, in terms of
performance, this method is still not competitive with using an optimal (cross-validated) k.
This is not surprising, since the k determined by our complexity reduction method is only
an upper bound (and learned in an unsupervised instead of a supervised manner).
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Table 7 Performance in terms
the average 0/1 loss and AUC ±
standard deviation for CR using
complexity reduction
(ε = δ = 0.1). From top to
bottom: 20 %, 50 %, and 80 %
training data

data set k 0/1 loss AUC

DBS 4 .2286 ± .0549 .9235 ± .0489

CPU 4 .0998 ± .0347 .9664 ± .0227

BCC 3 .2888 ± .0578 .6193 ± .0406

MPG 4 .0719 ± .0108 .9787 ± .0067

ESL 3 .0737 ± .0103 .9663 ± .0049

MMG 3 .1761 ± .0107 .8857 ± .0174

ERA 4 .2981 ± .0158 .7579 ± .0103

LEV 4 .1526 ± .0146 .8984 ± .0103

CEV 6 .0448 ± .0089 .9825 ± .0080

DBS 4 .1944 ± .0631 .9338 ± .0368

CPU 4 .0361 ± .0432 .9902 ± .0139

BCC 3 .2838 ± .0448 .6232 ± .0374

MPG 4 .0570 ± .0080 .9812 ± .0044

ESL 3 .0727 ± .0148 .9740 ± .0077

MMG 3 .1667 ± .0130 .8976 ± .0087

ERA 4 .2930 ± .0162 .7641 ± .0146

LEV 4 .1421 ± .0142 .9088 ± .0132

CEV 6 .0376 ± .0059 .9912 ± .0024

DBS 4 .1939 ± .0615 .9381 ± .0471

CPU 4 .0244 ± .0531 .9962 ± .0090

BCC 3 .2755 ± .0404 .7142 ± .0507

MPG 4 .0597 ± .0126 .9832 ± .0057

ESL 3 .0603 ± .0236 .9769 ± .0146

MMG 3 .1620 ± .0250 .9001 ± .0202

ERA 4 .2899 ± .0191 .7687 ± .0261

LEV 4 .1370 ± .0162 .9140 ± .0124

CEV 6 .0273 ± .0089 .9959 ± .0027

Table 8 Average values of the scaling parameter γ in the choquistic regression model

DBS CPU BCC MPG ESL MMG ERA LEV CEV

36.69 691.81 15.30 23.87 45.12 19.05 8.07 15.13 69.23

7.3.3 Model interpretation

As mentioned earlier, one may expect a close connection between the scaling parameter γ

in the choquistic model and the prediction accuracy of the model. More specifically, the
better the model performs on a particular data set, the higher γ is expected to be. It is worth
mentioning that our experimental results are in perfect agreement with this expectation.
Indeed, comparing the ranking of the nine data sets in terms of accuracy and in terms of the
average values of γ (shown in Table 8), we obtain a (Kendall tau) correlation of more than
0.8 throughout.
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Fig. 3 Visualization of the
interaction index for the car
evaluation data (numerical values
are shown in terms of level of
gray, values on the diagonal are
set to 0). Groups of related
criteria are indicated by the black
lines

As one of its key features, the Choquet integral offers interesting information about the
importance of individual attributes as well as the interaction between them; this aspect was
highlighted in Sect. 3.2. In fact, in many practical applications, this type of information is at
least as important as the prediction accuracy of the model. A detailed analysis of this type
of information is difficult and beyond the scope of this paper. Instead, we just give a few
examples showing the plausibility of the results.

Regarding the Shapley index that measures the importance of individual attributes, the
(average) values on the Car MPG data are as follows: cylinders ≈ 0.13, displacement ≈ 0,
horsepower ≈ 0.25, weight ≈ 0.46, acceleration ≈ 0.03, model year ≈ 0.13, origin ≈ 0. In
terms of attribute importance, this conveys the following picture:

weight > horsepower > cylinders | model year > acceleration > displacement | origin

Recalling the meaning of the data set, these weights should reflect the influence on the fuel
consumption, and seen from this point of view, they appear to be fully plausible.

For the CPU data, the following Shapley values are obtained: machine cycle time in
nanoseconds ≈ 0.07, minimum main memory in kilobytes ≈ 0.24, maximum main memory
in kilobytes ≈ 0.30, cache memory in kilobytes ≈ 0.20, minimum channels in units ≈ 0.10,
maximum channels in units ≈ 0.09. Thus, the most important properties are those concern-
ing the memory (main and cache). The influence of the other properties (channels, cycle
time) is not as strong, although they are not completely unimportant either.

Apart from the importance of individual attributes, it is interesting to look at the inter-
action between different attributes. As an example, Fig. 3 provides a visualization of the
pairwise interaction between attributes for the car evaluation data, for which CR performs
significantly better than LR. Recall that, in this data set, the evaluation of a car (output
attribute) depends on a number of criteria, namely (a) buying price, (b) price of the main-
tenance, (c) number of doors, (d) capacity in terms of persons to carry, (e) size of lug-
gage boot, (f) safety of the car. These criteria form a natural hierarchy, according to which
the data was produced (Bohanec and Rajkovic 1990): (a) and (b) form a subgroup price,
whereas the other properties are of a technical nature and can be further decomposed into
comfort (c–e) and safety (f). Interestingly, the interaction in our model nicely agrees with
this hierarchy or, stated differently, allows for recovering this hierarchy from the pairwise
interactions between attributes: Interaction within each subgroup tends to be smaller (as
can be seen from the darker colors) than interaction between criteria from different sub-
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groups, suggesting a kind of redundancy in the former and complementarity in the latter
case.

8 Concluding remarks

In this paper, we have advocated the use of the discrete Choquet integral as an aggregation
operator in machine learning, especially in the context of learning monotone models. Apart
from combining monotonicity and flexibility in a mathematically sound and elegant manner,
the Choquet integral offers measures for quantifying the importance of individual predictor
variables and the interaction between groups of variables, thereby providing important in-
formation about the relationship between independent and dependent variables.

We have analyzed several properties of the Choquet integral that appear to be interesting
from a machine learning point of view, notably its capacity in terms of the VC-dimension.
Moreover, we have addressed the issue of complexity reduction or, more specifically, the
restriction of the Choquet integral to k-additive measures. In this regard, we have proposed
a method for finding a suitable value of k.

As a concrete machine learning application of the Choquet integral, we have proposed a
generalization of logistic regression, in which the Choquet integral is used for modeling the
log odds of the positive class. First experimental studies have shown that this method, called
choquistic regression, compares quite favorably with other methods. We like to mention
again, however, that an improvement in prediction accuracy should not be seen as the only
goal of monotone learning. Instead, the adherence to monotonicity constraints is often an
important prerequisite for the acceptance of a model by domain experts.

Compared to standard logistic regression, the benefits of choquistic regression are com-
ing at the expense of an increased computational complexity of the underlying learning
algorithm, which solves a maximum likelihood estimation problem. This is mainly caused
by the large number of parameters of the fuzzy measure on which the Choquet integral
is based, and the complicated dependency between these parameters. In Hüllermeier and
Fallah Tehrani (2012a), first steps aiming at a reduction of this complexity are made. Nev-
ertheless, speeding up choquistic regression and making it scalable toward data sets with
many attributes is an important topic of ongoing and future work.

Needless to say, the Choquet integral can be combined with machine learning methods
other than logistic regression. Moreover, its use is not restricted to (binary) classification. In
fact, we are quite convinced of its high potential in machine learning in general, and we are
looking forward to exploring this potential in greater detail.
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