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Abstract The goal in multi-label classification is to tag a data point with the subset of
relevant labels from a pre-specified set. Given a set of L labels, a data point can be tagged
with any of the 2L possible subsets. The main challenge therefore lies in optimising over
this exponentially large label space subject to label correlations.

Our objective, in this paper, is to design efficient algorithms for multi-label classification
when the labels are densely correlated. In particular, we are interested in the zero-shot learn-
ing scenario where the label correlations on the training set might be significantly different
from those on the test set.

We propose a max-margin formulation where we model prior label correlations but do
not incorporate pairwise label interaction terms in the prediction function. We show that
the problem complexity can be reduced from exponential to linear while modelling dense
pairwise prior label correlations. By incorporating relevant correlation priors we can handle
mismatches between the training and test set statistics. Our proposed formulation generalises
the effective 1-vs-All method and we provide a principled interpretation of the 1-vs-All
technique.

We develop efficient optimisation algorithms for our proposed formulation. We adapt the
Sequential Minimal Optimisation (SMO) algorithm to multi-label classification and show
that, with some book-keeping, we can reduce the training time from being super-quadratic
to almost linear in the number of labels. Furthermore, by effectively re-utilizing the kernel
cache and jointly optimising over all variables, we can be orders of magnitude faster than
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the competing state-of-the-art algorithms. We also design a specialised algorithm for linear
kernels based on dual co-ordinate ascent with shrinkage that lets us effortlessly train on a
million points with a hundred labels.

Keywords Multi-label classification · Zero-shot learning · Max-margin methods · SMO
optimization · 1-vs-all classification

1 Introduction

Our objective, in this paper, is to develop efficient algorithms for max-margin, multi-label
classification. Given a set of pre-specified labels and a data point, (binary) multi-label clas-
sification deals with the problem of predicting the subset of labels most relevant to the data
point. This is in contrast to multi-class classification where one has to predict just the sin-
gle, most probable label. For instance, rather than simply saying that Fig. 1 is an image
of a Babirusa we might prefer to describe it as containing a brown, hairless, herbivorous,
medium sized quadruped with tusks growing out of its snout.

There are many advantages in generating such a description and multi-label classification
has found applications in areas ranging from computer vision to natural language processing
to bio-informatics. We are specifically interested in the problem of image search on the web
and in personal photo collections. In such applications, it is very difficult to get training
data for every possible object out there in the world that someone might conceivably search
for. In fact, we might not have any training images whatsoever for many object categories
such as the obscure Babirusa. Nevertheless, we can not preclude the possibility of someone
searching for one of these objects. A similar problem is encountered when trying to search
videos on the basis of human body pose and motion and many other applications such as
neural activity decoding (Palatucci et al. 2009).

One way of recognising object instances from previously unseen test categories (the zero-
shot learning problem) is by leveraging knowledge about common attributes and shared
parts. For instance, given adequately labelled training data, one can learn classifiers for the
attributes occurring in the training object categories. These classifiers can then be used to
recognise the same attributes in object instances from the novel test categories. Recognition
can then proceed on the basis of these learnt attributes (Farhadi et al. 2009, 2010; Lampert
et al. 2009).

The learning problem can therefore be posed as multi-label classification where there is
a significant difference between attribute (label) correlations in the training categories and
the previously unseen test categories. What adds to the complexity of the problem is the fact
that these attributes are often densely correlated as they are shared across most categories.
This makes optimising over the exponentially large output space, given by the power set
of all labels, very difficult. The problem is acute not just during prediction but also during
training as the number of training images might grow to be quite large over time in some
applications.

Previously proposed solutions to the multi-label problem take one of two approaches—
neither of which can be applied straight forwardly in our scenario. In the first, labels are a
priori assumed not to be correlated so that a predictor can be trained for each label inde-
pendently. This reduces training and prediction complexity from exponential in the number
of labels to linear. Such methods can therefore scale efficiently to large problems but at the
cost of not being able to model label correlations. Furthermore, these methods typically tend
not to minimise a multi-label loss. In the second, label correlations are explicitly taken into
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Fig. 1 Having never seen a
Babirusa before we can still
describe it as a brown, hairless,
herbivorous, medium sized
quadruped with tusks growing
out of its snout

account by incorporating pairwise, or higher order, label interactions. However, exact in-
ference is mostly intractable for densely correlated labels and in situations where the label
correlation graph has loops. Most approaches therefore assume sparsely correlated labels
such as those arranged in a hierarchical tree structure.

In this paper, we follow a middle approach. We develop a max-margin multi-label classi-
fication formulation, referred to as M3L, where we do model prior label correlations but do
not incorporate pairwise, or higher order, label interaction terms in the prediction function.
This lets us generalise to the case where the training label correlations might differ signif-
icantly from the test label correlations. We can also efficiently handle densely correlated
labels. In particular, we show that under fairly general assumptions of linearity, the M3L
primal formulation can be reduced from having an exponential number of constraints to lin-
ear in the number of labels. Furthermore, if no prior information about label correlations is
provided, M3L reduces directly to the 1-vs-All method. This lets us provide a principled in-
terpretation of the 1-vs-All multi-label approach which has enjoyed the reputation of being
a popular, effective but nevertheless, heuristic technique.

Much of the focus of this paper is on optimising the M3L formulation. It turns out that
it is not good enough to just reduce the primal to have only a linear number of constraints.
A straight forward application of state-of-the-art decompositional optimisation methods,
such as Sequential Minimal Optimisation (SMO), would lead to an algorithm that is super-
quadratic in the number of labels. We therefore develop specialised optimisation algorithms
that can be orders of magnitude faster than competing methods. In particular, for kernelised
M3L, we show that by simple book keeping and delaying gradient updates, SMO can be
adapted to yield a linear time algorithm. Furthermore, due to efficient kernel caching and
jointly optimising all variables, we can sometimes be an order of magnitude faster than the
1-vs-All method. Thus our code, available from Hariharan et al. (2010a), should also be
very useful for learning independent 1-vs-All classifiers. For linear M3L, we adopt a dual
co-ordinate ascent strategy with shrinkage which lets us efficiently tackle large scale train-
ing data sets. In terms of prediction accuracy, we show that incorporating prior knowledge
about label correlations using the M3L formulation can substantially boost performance
over independent methods.

The rest of the paper is organised as follows. Related work is reviewed in Sect. 2. Sec-
tion 3 develops the M3L primal formulation and shows how to reduce the number of primal
constraints from exponential to linear. The 1-vs-All formulation is also shown to be a spe-
cial case of the M3L formulation. The M3L dual is developed in Sect. 4 and optimised in
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Sect. 5. We develop algorithms tuned to both the kernelised and the linear case. Experiments
are carried out in Sect. 7 and it is demonstrated that the M3L formulation can lead to signif-
icant gains in terms of both optimisation and prediction accuracy. An earlier version of the
paper appeared in Hariharan et al. (2010b).

2 Related Work

The multi-label problem has many facets including binary (Tsoumakas and Katakis 2007;
Ueda and Saito 2003), multi-class (Dekel and Shamir 2010) and ordinal (Cheng et al. 2010)
multi-label classification as well as semi-supervised learning, feature selection (Zhang and
Wang 2009b), active learning (Li et al. 2004), multi-instance learning (Zhang and Wang
2009a), etc. Our focus, in this paper, is on binary multi-label classification where most of
the previous work can be categorised into one of two approaches depending on whether
labels are assumed to be independent or not. We first review approaches that do assume
label independence. Most of these methods try and reduce the multi-label problem to a
more “canonical” one such as regression, ranking, multi-class or binary classification.

In regression methods (Hsu et al. 2009; Ji et al. 2008; Tsoumakas and Katakis 2007), the
label space is mapped onto a vector space (which might sometimes be a shared subspace
of the feature space) where regression techniques can be applied straightforwardly. The
primary advantage of such methods is that they can be extremely efficient if the mapped
label space has significantly lower dimensionality than the original label space (Hsu et al.
2009). The disadvantage of such approaches is that the choice of an appropriate mapping
might be unclear. As a result, minimising regression loss functions, such as square loss, in
this space might be very efficient but might not be strongly correlated with minimising the
desired multi-label loss. Furthermore, classification involves inverting the map which might
not be straightforward, result in multiple solutions and might involve heuristics.

A multi-label problem with L labels can be viewed as a classification problem with 2L

classes (McCallum 1999; Boutell et al. 2004) and standard multi-class techniques can be
brought to bear. Such an approach was shown to give the best empirical results in the survey
by Tsoumakas and Katakis (2007). However, such approaches have three major drawbacks.
First, since not all 2L label combinations can be present in the training data, many of the
classes will have no positive examples. Thus, predictors can not be learnt for these classes
implying that these label combinations can not be recognised at run time. Second, the 0/1
multi-class loss optimised by such methods forms a poor approximation to most multi-label
losses. For instance, the 0/1 loss would charge the same penalty for predicting all but one
of the labels correctly as it would for predicting all of the labels incorrectly. Finally, learn-
ing and predicting with such a large number of classifiers might be very computationally
expensive.

Binary classification can be leveraged by replicating the feature vector for each data point
L times. For copy number l, an extra dimension is added to the feature vector with value l

and the training label is +1 if label l is present in the label set of the original point and −1
otherwise. A binary classifier can be learnt from this expanded training set and a novel point
classified by first replicating it as described above and then applying the binary classifier L

times to determine which labels are selected. Due to the data replication, applying a binary
classifier naively would be computationally costly and would require that complex decision
boundaries be learnt. However, Schapire and Singer (2000) show that the problem can be
solved efficiently using Boosting. A somewhat related technique is 1-vs-All (Rifkin and
Khautau 2004) which independently learns a binary classifier for each label. As we’ll show
in Sect. 3, our formulation generalises 1-vs-All to handle prior label correlations.
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A ranking based solution was proposed in Elisseeff and Weston (2001). The objective
was to ensure that, for every data point, all the relevant labels were ranked higher than any
of the irrelevant ones. This approach has been influential but suffers from the drawback of
not being able to easily determine the number of labels to select in the ranking. The solution
proposed in Elisseeff and Weston (2001) was to find a threshold so that all labels scoring
above the threshold were selected. The threshold was determined using a regressor trained
subsequently on the ranker output on the training set. Many variations have been proposed,
such as using dummy labels to determine the threshold, but each has its own limitations
and no clear choice has emerged. Furthermore, posing the problem as ranking induces a
quadratic number of constraints per example which leads to a harder optimisation problem.
This is ameliorated in Crammer and Singer (2003) who reduced the space complexity to
linear and time complexity to sub-quadratic.

Most of the approaches mentioned above do not explicitly model label correlations—
McCallum (1999) has a generative model which can, in principle, handle correlations but
greedy heuristics are used to search over the exponential label space. In terms of discrim-
inative methods, most work has focused on hierarchical tree, or forest, structured labels.
Methods such as Cai and Hofmann (2007), Cesa-Bianchi et al. (2006) optimise a hierar-
chical loss over the tree structure but do not incorporate pairwise, or higher order, label
interaction terms. In both these methods, a label is predicted only if its parent has also been
predicted in the hierarchy. For instance, Cesa-Bianchi et al. (2006) train a classifier for each
node of the tree. The positive training data for the classifier is the set of data points marked
with the node label while the negative training points are selected from the sibling nodes.
Classification starts at the root and all the children classifiers are tested to determine which
path to take. This leads to a very efficient algorithm during both training and prediction as
each classifier is trained on only a subset of the data. Alternatively, Cai and Hofmann (2007)
classify at only the leaf nodes and use them as a proxy for the entire path starting from the
root. A hierarchical loss is defined and optimised using the ranking method of Elisseeff and
Weston (2001).

The M3N formulation of Taskar et al. (2003) was the first to suggest max-margin learn-
ing of label interactions. The original formulation starts off having an exponential number
of constraints. These can be reduced to quadratic if the label interactions formed a tree or
forest. Approximate algorithms are also developed for sparse, loopy graph structures. While
the M3N formulation dealt with the Hamming loss, a more suitable hierarchical loss was
introduced and efficiently optimised in Rousu et al. (2006) for the case of hierarchies. Note
that even though these methods take label correlations explicitly into account, they are un-
suitable for our purposes as they cannot handle densely correlated labels and learn training
set label correlations which are not useful at test time since the statistics might have changed
significantly.

Finally, Tsochantaridis et al. (2005) propose an iterative, cutting plane algorithm for
learning in general structured output spaces. The algorithm adds the worst violating con-
straint to the active set in each iteration and is proved to take a maximum number of itera-
tions independent of the size of the output space. While this algorithm can be used to learn
pairwise label interactions it too can’t handle a fully connected graph as the worst violating
constraint cannot be generally found in polynomial time. However, it can be used to learn
our proposed M3L formulation but is an order of magnitude slower than the specialised
optimisation algorithms we develop.

Zero shot learning deals with the problem of recognising instances from novel categories
that were not present during training. It is a nascent research problem and most approaches
tackle it by building an intermediate representation leveraging attributes, features or classi-
fier outputs which can be learnt from the available training data (Farhadi et al. 2009, 2010;
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Lampert et al. 2009; Palatucci et al. 2009). Novel instances are classified by first generating
their intermediate representation and then mapping it onto the novel category representation
(which can be generated using meta-data alone). The focus of research has mainly been on
what is a good intermediate level representation and how should the mapping be carried out.

A popular choice of the intermediate level representation have been parts and attributes—
whether they be semantic or discriminative. Since not all features are relevant to all at-
tributes, Farhadi et al. (2009) explore feature selection so as to better predict a novel in-
stance’s attributes. Probabilistic techniques for mapping the list of predicted attributes to a
novel category’s list of attributes (known a priori) are developed in Lampert et al. (2009)
while Palatucci et al. (2009) carry out a theoretical analysis and use the one nearest neigh-
bour rule. An alternative approach to zero-shot learning is not to name the novel object, or
explicitly recognise its attributes, but simply say that it is “like” an object seen during train-
ing (Wang et al. 2010). For instance, the Babirusa in Fig. 1 could be declared to be like a pig.
This is sufficient for some applications and works well if the training set has good category
level coverage.

3 M3L: the max-margin multi-label classification primal formulation

The objective in multi-label classification is to learn a function f which can be used to
assign a set of labels to a point x. We assume that N training data points have been provided
of the form (xi , yi ) ∈ R

D × {±1}L with yil being +1 if label l has been assigned to point i

and −1 otherwise. Note that such an encoding allows us to learn from both the presence and
absence of labels, since both can be informative when predicting test categories.

A principled way of formulating the problem would be to take the loss function Δ that
one truly cares about and minimise it over the training set subject to regularisation or prior
knowledge. Of course, since direct minimisation of most discrete loss functions is hard,
we might end up minimising an upper bound on the loss, such as the hinge. The learning
problem can then be formulated as the following primal

P1 = min
f

1

2
‖f ‖2 + C

N∑

i=1

ξi (1)

s.t. f (xi ,yi ) ≥ f (xi ,y) + Δ(yi ,y) − ξi ∀i,y ∈ {±1}L \ {yi} (2)

ξi ≥ 0 ∀i (3)

with a new point x being assigned labels according to y∗ = argmaxy f (x, y). The draw-
back of such a formulation is that there are N2L constraints which make direct optimisation
very slow. Furthermore, classification of novel points might require 2L function evaluations
(one for each possible value of y), which can be prohibitive at run time. In this Section, we
demonstrate that, under general assumptions of linearity, (P1) can be reformulated as the
minimisation of L densely correlated sub-problems each having only N constraints. At the
same time, prediction cost is reduced to a single function evaluation with complexity linear
in the number of labels. The ideas underlying this decomposition were also used in Evge-
niou et al. (2005) in a multi-task learning scenario. However, their objective is to combine
multiple tasks into a single learning problem, while we are interested in decomposing (3)
into multiple subproblems.

We start by making the standard assumption that

f (x, y) = wt
(
φ(x) ⊗ ψ(y)

)
(4)
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where φ and ψ are the feature and label space mappings respectively, ⊗ is the Kronecker
product and wt denotes w transpose. Note that, for zero shot learning, it is possible to theo-
retically show that , in the limit of infinite data, one does not need to model label correlations
when training and test distributions are the same (Palatucci et al. 2009). In practice, how-
ever, training sets are finite, often relatively small, and have label distributions that are sig-
nificantly different from the test set. Therefore to incorporate prior knowledge and correlate
classifiers efficiently, we assume that labels have at most linear, possibly dense, correlation
so that it is sufficient to choose ψ(y) = Py where P is an invertible matrix encoding all our
prior knowledge about the labels. If we assume f to be quadratic (or higher order) in y, as
is done in structured output prediction, then it would not be possible to reduce the number
of constraints from exponential to linear while still modelling dense, possibly negative, la-
bel correlations. Furthermore, learning label correlation on the training set by incorporating
quadratic terms in y might not be fruitful as the test categories will have very different cor-
relation statistics. Thus, by sacrificing some expressive power, we hope to build much more
efficient algorithms that can still give improved prediction accuracy in the zero-shot learning
scenario.

We make another standard assumption that the chosen loss function should decompose
over the individual labels (Taskar et al. 2003). Hence, we require that

Δ(yi , y) =
L∑

l=1

Δl(yi , yl) (5)

where yl ∈ {±1} corresponds to label l in the set of labels represented by y. For instance,
the popular Hamming loss, amongst others, satisfies this condition. We define the Hamming
loss ΔH (yi , y), between a ground truth label yi and a prediction y as

ΔH (yi , y) = yt
i (yi − y) (6)

which is a count of twice the total number of individual labels mispredicted in y. Note
that the Hamming loss can be decomposed over the labels as ΔH (yi , y) = ∑

l 1 − ylyil . Of
course, for Δ to represent a sensible loss we also require that Δ(yi , y) ≥ Δ(yi , yi ) = 0.

Under these assumptions, (P1) can be expressed as

P1 ≡ min
w

1

2
wt w + C

N∑

i=1

max
y∈{±1}L

[
Δ(yi , y) + wtφ(xi ) ⊗ P(y − yi )

]
(7)

where the constraints have been moved into the objective and ξi ≥ 0 eliminated by including
y = yi in the maximisation. To simplify notation, we express the vector w as a D ×L matrix
W so that

P1 ≡ min
W

1

2
Trace

(
WtW

) + C

N∑

i=1

max
y∈{±1}L

[
Δ(yi ,y) + (y − yi )

tPtWtφ(xi )
]

(8)

Substituting Z = WP, R = Pt P 	 0 and using the identity Trace(ABC) = Trace(CAB)

results in

P1 ≡ min
Z

1

2

L∑

l=1

L∑

k=1

R−1
lk zt

lzk
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+ C

N∑

i=1

max
y∈{±1}L

[
L∑

l=1

[
Δl(yi , yl) + (yl − yil)zt

lφ(xi )
]
]

(9)

where zl is the lth column of Z. Note that the terms inside the maximisation break up
independently over the L components of y. It is therefore possible to interchange the max-
imisation and summation to get

P1 ≡ min
Z

1

2

L∑

l=1

L∑

k=1

R−1
lk zt

lzk

+ C

N∑

i=1

L∑

l=1

[
max

yl∈{±1}
[
Δl(yi , yl) + (yl − yil)zt

lφ(xi )
]]

(10)

This leads to an equivalent primal formulation (P2) as the summation of L correlated prob-
lems, each having N constraints which is significantly easier to optimise.

P2 =
L∑

l=1

Sl (11)

Sl = min
Z,ξ

1

2
zt
l

L∑

k=1

R−1
lk zk + C

N∑

i=1

ξil (12)

s.t. 2yilzt
lφ(xi ) ≥ Δl(yi ,−yil) − ξil (13)

ξil ≥ Δl(yi , yil) (14)

Furthermore, a novel point x can be assigned the set of labels for which the entries of
sign(Ztφ(x)) are +1. This corresponds to a single evaluation of f taking time linear in
the number of labels.

The L classifiers in Z are not independent but correlated by R—a positive definite matrix
encoding our prior knowledge about label correlations. One might typically have thought of
learning R from training data. For instance, one could learn R directly or express R−1 as
a linear combination of predefined positive definite matrices with learnt coefficients. Such
formulations have been developed in the Multiple Kernel Learning literature and we could
leverage some of the proposed MKL optimization techniques (Vishwanathan et al. 2010).
However, in the zero-shot learning scenario, learning R from training data is not helpful as
the correlations between labels during training might be significantly different from those
during testing.

Instead, we rely on the standard zero-shot learning assumption, that the test category
attributes are known a priori (Farhadi et al. 2009, 2010; Lampert et al. 2009; Palatucci et al.
2009). Furthermore, if the prior distribution of test categories was known, then R could be
set to approximate the average pairwise test label correlation (see Sect. 7.2.1 for details).

Note that, in the zero-shot learning scenario, R can be dense, as almost all the attributes
might be shared across categories and correlated with each other, and can also have negative
entries representing negative label correlations. We propose to improve prediction accuracy
on the novel test categories by encoding prior knowledge about their label correlations in R.

Note that we deliberately chose not to include bias terms b in f even though the reduction
from (P1) to (P2) would still have gone through and the resulting kernelised optimisation
been more or less the same (see Sect. 7.1). However, we would then have had to regularise b
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and correlate it using R. Otherwise b would have been a free parameter capable of undoing
the effects of R on Z. Therefore, rather than explicitly have b and regularise it, we implicitly
simulate b by adding an extra dimension to the feature vector. This has the same effect while
keeping optimisation simple.

We briefly discuss two special cases before turning to the dual and its optimisation.

3.1 The special case of 1-vs-all

If label correlation information is not included, i.e. R = I, then (P2) decouples into L com-
pletely independent sub-problems each of which can be tackled in isolation. In particular,
for the Hamming loss we get

P3 =
L∑

l=1

Sl (15)

Sl = min
zl ,ξ

1

2
zt
lzl + 2C

N∑

i=1

ξi (16)

s.t. yilzt
lφ(xi ) ≥ 1 − ξi (17)

ξi ≥ 0 (18)

Thus, Sl reduces to an independent binary classification sub-problem where the positive
class contains all training points tagged with label l and the negative class contains all other
points. This is exactly the strategy used in the popular and effective 1-vs-All method and
we can therefore now make explicit the assumptions underlying this technique. The only
difference is that one should charge a misclassification penalty of 2C to be consistent with
the original primal formulation.

3.2 Relating the kernel to the loss

In general, the kernel is chosen so as to ensure that the training data points become well
separated in the feature space. This is true for both Kx , the kernel on x, as well as Ky , the
kernel on y. However, one might also take the view that since the loss Δ induces a measure
of dissimilarity in the label space it must be related to the kernel on y which is a measure
of similarity in the label space. This heavily constrains the choice of Ky and therefore the
label space mapping ψ . For instance, if a linear relationship is assumed, we might choose
Δ(yi , y) = Ky(yi , yi ) − Ky(yi , y). Note that this allows Δ to be asymmetric even though
Ky is not and ensures the linearity of Δ if ψ , the label space mapping, is linear.

In this case, label correlation information should be encoded directly into the loss. For
example, the Hamming loss could be transformed to ΔH (yi , y) = yt

iR(yi − y). R is the
same matrix as before except the interpretation now is that the entries of R encode label
correlations by specifying the penalties to be charged if a label is misclassified in the set. Of
course, for Δ to be a valid loss, not only must R be positive definite as before but it now
must also be diagonally dominant. As such, it can only encode “weak” correlations. Given
the choice of Δ and the linear relationship with Ky , the label space mapping gets fixed to
ψ(y) = Py where R = Pt P.

Under these assumptions once can still go from (P1) to (P2) using the same steps
as before. The main differences are that R is now more restricted and that Δl(yi , yl) =
(1/L)yt

iRyi − ylyt
iRl where Rl is the lth column of R. While this result is theoretically

interesting, we do not explore it further in this paper.
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4 The M3L dual formulation

The dual of (P2) has similar properties in that it can be viewed as the maximisation of
L related problems which decouple into independent binary SVM classification problems
when R = I. The dual is easily derived if we rewrite (P2) in vector notation. Defining

Yl = diag
([y1l , . . . , yNl]

)
(19)

Kx = φt (X)φ(X) (20)

Δ±
l = [

Δl(y1,±y1l ), . . . ,Δl(yN,±yNl)
]t

(21)

we get the following Lagrangian

L =
L∑

l=1

(
1

2

L∑

k=1

R−1
lk zt

lzk + C1tξ l − β t
l

(
ξ l − Δ+

l

)

− αt
l

(
2Ylφ

t (X)zl − Δ−
l + ξ l

)
)

(22)

with the optimality conditions being

∇zl
L = 0 ⇒

L∑

k=1

R−1
lk zk = 2φ(X)Ylαl (23)

∇ξ l
L = 0 ⇒ C1 − αl − β l = 0 (24)

Substituting these back into the Lagrangian leads to the following dual

D2 = max
0≤α≤C1

L∑

l=1

αt
l

(
Δ−

l − Δ+
l

) − 2
L∑

l=1

L∑

k=1

Rlkα
t
l YlKxYkαk (25)

Henceforth we will drop the subscript on the kernel matrix and write Kx as K.

5 Optimisation

The M3L dual is similar to the standard SVM dual. Existing optimisation techniques can
therefore be brought to bear. However, the dense structure of R couples all NL dual vari-
ables and simply porting existing solutions leads to very inefficient code. We show that,
with book keeping, we can easily go from an O(L2) algorithm to an O(L) algorithm. Fur-
thermore, by re-utilising the kernel cache, our algorithms can be very efficient even for
non-linear problems. We treat the kernelised and linear M3L cases separately.

5.1 Kernelised M3L

The Dual (D2) is a convex quadratic programme with very simple box constraints. We can
therefore use co-ordinate ascent algorithms (Platt 1999; Fan et al. 2005; Lin et al. 2009)
to maximise the dual. The algorithms start by picking a feasible point—typically α = 0.
Next,two variables are selected and optimised analytically. This step is repeated until the
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projected gradient magnitude falls below a threshold and the algorithm can be shown to
have converged to the global optimum (Lin et al. 2009). The three key components are
therefore: (a) reduced variable optimisation; (b) working set selection and (c) stopping cri-
terion and kernel caching. We now discuss each of these components. The pseudo-code of
the algorithm and proof of convergence are given in the Appendix.

5.1.1 Reduced Variable Optimisation

If all but two of the dual variables were fixed, say αpl and αql along the label l, then the dual
optimisation problem reduces to

D2pql = max
δpl ,δql

−2
(
δ2
plKppRll + δ2

qlKqqRll + 2δplδqlyplyqlKpqRll

)

+ δplgpl + δqlgql (26)

s.t. − αpl ≤ δpl ≤ C − αpl (27)

− αql ≤ δql ≤ C − αql (28)

where δpl = αnew
pl − αold

pl and δql = αnew
ql − αold

ql and

gpl = ∇αpl
D2 = Δ−

pl − Δ+
pl − 4

N∑

i=1

L∑

k=1

RklKipyikyplαik (29)

Note that D2pql has a quadratic objective in two variables which can be maximised an-
alytically due to the simple box constraints. We do not give the expressions for αnew

pl and
αnew

ql which maximise D2pql as many special cases are involved for when the variables are at
bound but they can be found in Algorithm 2 of the pseudo-code in Appendix A.

5.1.2 Working set selection

Since the M3L formulation does not have a bias term, it can be optimized by picking a single
variable at each iteration rather than a pair of variables. This leads to a low cost per iteration
but a large number of iterations. Selecting two variables per iteration increases the cost per
iteration but significantly reduces the number of iterations as second order information can
be incorporated into the variable selection policy.

If we were to choose two variables to optimise along the same label l, say αpl and αql ,
then the maximum change that we could affect in the dual is given by

δD2(αpl, αql) = g2
plKqq + g2

qlKpp − 2gplgqlyplyqlKpq

8Rll(KppKqq − K2
pq)

(30)

In terms of working set selection, it would have been ideal to have chosen the two vari-
ables αpl and αql which would have maximised the increase in the dual objective. However,
this turns out to be too expensive in practice. A good approximation is to choose the first
point αpl to be the one having the maximum projected gradient magnitude. The projected
gradient is defined as

g̃pl =
⎧
⎨

⎩

gpl if αpl ∈ (0,C)

min(0, gpl) if αpl = C

max(0, gpl) if αpl = 0
(31)
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and hence the first point is chosen as

(
p∗, l∗

) = argmax
p,l

|g̃pl| (32)

Having chosen the first point, the second point is chosen to be the one that maximises (30).
Working set selection can be made efficient by maintaining the set of gradients g. Every

time a variable, say αpl is changed, the gradients need to be updated as

gnew
jk = gold

jk − 4yplyjkRklKpj

(
αnew

pl − αold
pl

)
(33)

Note that because of the dense structure of R all NL gradients have to be updated even
if a single variable is changed. Since there are NL variables and each has to be updated
presumably at least once we end up with an algorithm that takes time at least N2L2.

The algorithm can be made much more efficient if, with some book keeping, not all
gradients had to be updated every time a variable was changed. For instance, if we were
to fix a label l and modify L variables along the chosen label, then the gradient update
equations could be written as

gnew
jk = gold

jk − 4yjk

N∑

i=1

yilRklKij

(
αnew

il − αold
il

)
(34)

= gold
jk − 4Rklyjkujl (35)

where ujl =
N∑

i=1

Kijyil

(
αnew

il − αold
il

)
(36)

As long as we are changing variables along a particular label, the gradient updates can be
accumulated in u and only when we switch to a new variable do all the gradients have to be
updated. We therefore end up doing O(NL) work after changing L variables resulting in an
algorithm which takes time O(N2L) rather than O(N2L2).

5.1.3 Stopping criterion and kernel caching

We use the standard stopping criterion that the projected gradient magnitude for all NL dual
variables should be less than a predetermined threshold.

We employ a standard Least Recently Used (LRU) kernel cache strategy implemented
as a circular queue. Since we are optimising over all labels jointly, the kernel cache gets
effectively re-utilised, particularly as compared to independent methods that optimise one
label at a time. In the extreme case, independent methods will have to rebuild the cache for
each label which can slow them down significantly.

6 Linear M3L

We build on top of the stochastic dual coordinate ascent with shrinkage algorithm of Hsieh
et al. (2008). At each iteration, a single dual variable is chosen uniformly at random from
the active set, and optimised analytically. The variable update equation is given by

αnew
pl = max

(
0,min

(
C,αold

pl + δαpl

))
(37)
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where δαpl = Δ−
pl − Δ+

pl − 4
∑

q

∑
k KpqRlkyplyqkαqk

4KppRll

(38)

= Δ−
pl − Δ+

pl − 2yplzt
lxp

4Rllxt
pxp

(39)

As can be seen, the dual variable update can be computed more efficiently in terms of the
primal variables Z which then need to be maintained every time a dual variable is modified.
The update equation for Z every time αpl is modified is

znew
l = zold

l + 2Rklypl

(
αnew

pl − αold
pl

)
xp (40)

Thus, all the primal variables Z need to be updated every time a single dual variable is
modified. Again, as in the kernelised case, the algorithm can be made much more efficient
by fixing a label l and modifying L dual variables along it while delaying the gradient
updates as

znew
k = zold

k + 2Rkl

N∑

j=1

yjl

(
αnew

j l − αold
j l

)
xj (41)

= zold
k + 2Rklvl (42)

where vl =
N∑

j=1

yjl

(
αnew

j l − αold
j l

)
xj (43)

In practice, it was observed that performing L stochastic updates along a chosen label right
from the start could slow down convergence in some cases. Therefore, we initially use the
more expensive strategy of choosing dual variables uniformly at random and only after
the projected gradient magnitudes are below a pre-specified threshold do we switch to the
strategy of optimising L dual variables along a particular label before picking a new label
uniformly at random.

The active set is initialised to contain all the training data points. Points at bound having
gradient magnitude outside the range of currently maintained extremal gradients are dis-
carded from the active set. Extremal gradients are re-estimated at the end of each pass and if
they are too close to each other the active set is expanded to include all training points once
again.

A straightforward implementation with globally maintained extremal gradients leads to
inefficient code. Essentially, if the classifier for a particular label has not yet converged,
then it can force a large active set even though most points would not be considered by the
other classifiers. We therefore implemented separate active sets for each label but coupled
the maintained extremal gradients via R. The extremal gradients lbl and ubl , for label l. are
initially set to −∞ and +∞ respectively. After each pass through the active set, they are
updated as

lbl = min
k

(
|Rkl |min

i∈Ak

g̃ik

)
(44)

ubl = max
k

(
|Rkl |max

i∈Ak

g̃ik

)
(45)

where Ak is the set of indices in the active set of label k. This choice was empirically found
to decrease training time.
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Once all the projected gradients in all the active sets have magnitude less than a thresh-
old τ , we expand the active sets to include all the variables, and re-estimate the projected
gradients. The algorithm stops when all projected gradients have magnitude less than τ .

7 Experiments

In this section we first compare the performance of our optimisation algorithms and then
evaluate how prediction accuracy can be improved by incorporating prior knowledge about
label correlations.

7.1 Optimisation experiments

The cutting plane algorithm in SVMStruct (Tsochantaridis et al. 2005) is a general purpose
algorithm that can be used to optimise the original M3L formulation (P1). In each iteration,
the approximately worst violating constraint is added to the active set and the algorithm is
proved to take a maximum number of iterations independent of the size of the output space.
The algorithm has a user defined parameter ε for the amount of error that can be tolerated
in finding the worst violating constraint.

We compared the SVMStruct algorithm to our M3L implementation on an Intel Xeon
2.67 GHz machine with 8 GB RAM. It was observed that even on medium scale problems
with linear kernels, our M3L implementation was nearly a hundred times faster than SVM-
Struct. For example, on the Media Mill data set (Snoek et al. 2006) with a hundred and one
labels and ten, fifteen and twenty thousand training points, our M3L code took 19, 37 and
55 seconds while SVMStruct took 1995, 2998 and 7198 seconds respectively. On other data
sets SVMStruct ran out of RAM or failed to converge in a reasonable amount of time (even
after tuning ε). This demonstrates that explicitly reducing the number of constraints from
exponential to linear and implementing a specialised solver can lead to a dramatic reduction
in training time.

As the next best thing, we benchmark our performance against the 1-vs-All method,
even though it can’t incorporate prior label correlations. In the linear case, we compare
our linear M3L implementation to 1-vs-All trained by running LibLinear (Fan et al. 2008)
and LibSVM (Chang and Lin 2001) independently over each label. For the non-linear case,
we compare our kernelised M3L implementation to 1-vs-All trained using LibSVM. In each
case, we set R = I, so that M3L reaches exactly the same solution as LibSVM and LibLinear.
Also, we avoided repeated disk I/O by reading the data into RAM and using LibLinear and
LibSVM’s API’s.

Table 1 lists the variation in training time with the number of training examples on the
Animals with Attributes (Lampert et al. 2009), Media Mill (Snoek et al. 2006), Siam (SIAM
2007) and RCV1 (Lewis et al. 2004) data sets. The training times of linear M3L (LM3L)
and LibLinear are comparable, with LibLinear being slightly faster. The training time of
kernelised M3L (KM3L) are significantly lower than LibSVM, with KM3L sometimes be-
ing as much as 30 times faster. This is primarily because KM3L can efficiently leverage
the kernel cache across all labels while LibSVM has to build the cache from scratch each
time. Furthermore, leaving aside caching issues, it would appear that by optimising over all
variables jointly, M3L reaches the vicinity of the global optimum much more quickly than
1-vs-All. Figure 2 plots dual progress against the number of iterations for all four data sets
with ten thousand training points. As can be seen, kernelised M3L gets to within the vicin-
ity of the global optimum much faster than 1-vs-All implemented using LibSVM. Figure 3
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Table 1 Comparison of training times for the linear M3L (LM3L) and kernelised M3L (KM3L) optimisation
algorithms with 1-vs-All techniques implemented using LibLinear and LibSVM. Each data set has N training
points, D features and L labels. See text for details

(a) Animals with Attributes: D = 252, L = 85

N Linear Kernel (s) RBF Kernel (s)

1-vs-All LibLinear LM3L 1-vs-All LibSVM KM3L 1-vs-All LibSVM KM3L

2,000 3 7 234 15 250 20

10,000 48 51 5438 245 6208 501

15,000 68 74 11990 500 13875 922

24,292 102 104 29328 1087 34770 3016

(b) RCV1: D = 47,236(sparse), L = 103

N Linear Kernel (s) RBF Kernel (s)

1-vs-All LibLinear LM3L 1-vs-All LibSVM KM3L 1-vs-All LibSVM KM3L

2,000 7 4 54 6 139 11

10,000 23 27 743 110 1589 177

15,000 33 43 1407 230 2893 369

23,149 45 57 2839 513 5600 817

(c) Siam: D = 30,438(sparse), L = 22

N Linear Kernel (s) RBF Kernel (s)

1-vs-All LibLinear LM3L 1-vs-All LibSVM KM3L 1-vs-All LibSVM KM3L

2,000 1 1 27 5 43 7

10,000 2 2 527 126 775 185

15,000 3 3 1118 288 1610 422

21,519 5 5 2191 598 3095 878

(d) Media Mill: D = 120, L = 101

N Linear Kernel (s) RBF Kernel (s)

1-vs-All LibLinear LM3L 1-vs-All LibSVM KM3L 1-vs-All LibSVM KM3L

2,000 2 2 11 2 15 6

10,000 18 19 456 57 505 123

15,000 35 37 1014 124 1107 275

25,000 62 75 2662 337 2902 761

30,993 84 97 4168 527 4484 1162

shows similar plots with respect to time. The difference is even more significant due to ker-
nel caching effects. In conclusion, even though M3L generalises 1-vs-All, its training time
can be comparable, and sometimes, even significantly lower.

Finally, to demonstrate that our code scales to large problems, we train linear M3L on
RCV1 with 781,265 points, 47,236 dimensional sparse features and 103 labels. Table 2
charts dual progress and train and test error with time. As can be seen, the model is nearly
fully trained in under six minutes and converges in eighteen.
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Fig. 2 Dual progress versus number of iterations for the kernelised M3L algorithm and 1-vs-All imple-
mented using LibSVM for an RBF kernel and ten thousand training points. M3L appears to get close to
the vicinity of the global optimum much more quickly than 1-vs-All. The results are independent of kernel
caching effects

Table 2 Linear M3L training on
RCV1 with 781,265 points,
47,236 dimensional sparse
features and 103 labels

Time (s) Dual Train Error (%) Test Error (%)

60 1197842 0.86 0.98

183 1473565 0.74 0.84

300 1492664 0.72 0.83

338 1494012 0.72 0.82

345 1494050 0.72 0.82

353 1494057 0.72 0.82

1080 1494057 0.72 0.82

7.2 Incorporating prior knowledge for zero-shot learning

In this section, we investigate whether the proposed M3L formulation can improve label
prediction accuracy in a zero-shot learning scenario. Zero-shot learning has two major com-
ponents as mentioned earlier. The first component deals with generating an intermediate
level representation, generally based on attributes for each data point. The second concerns
itself with how to map test points in the intermediate representation to points representing
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Fig. 3 Dual progress versus normalised time for the kernelised M3L algorithm and 1-vs-All implemented
using LibSVM for an RBF kernel and ten thousand training points. The difference between M3L and 1-vs-All
is even starker than in Fig. 2 due to kernel caching effects

novel categories. Our focus is on the former and the more accurate prediction of multiple,
intermediate attributes (labels) when their correlation statistics on the training and test sets
are significantly different.

7.2.1 Animals with attributes

The Animals with Attributes data set (Lampert et al. 2009) has forty training animal cate-
gories, such as Dalmatian, Skunk, Tiger, Giraffe, Dolphin, etc. and the following ten disjoint
test animal categories: Humpback Whale, Leopard, Chimpanzee, Hippopotamus, Raccoon,
Persian Cat, Rat, Seal, Pig and Giant Panda. All categories share a common set of 85 at-
tributes such as has yellow, has spots, is hairless, is big, has flippers, has buckteeth, etc.
The attributes are densely correlated and form a fully connected graph. Each image in the
database contains a dominant animal and is labelled with its 85 attributes. There are 24,292
training images and 6,180 test images. Some example images are shown in Fig. 4. We use
252 dimensional PHOG features that are provided by the authors. M3L training times for
this data set are reported in Table 1(a).

We start by visualising the influence of R. We randomly sample 200 points from the
training set and discard all but two of the attributes—“has black” and “is weak”. These
two attributes were selected as they are very weakly correlated on our training set, with a
correlation coefficient of 0.2, but have a strong negative correlation of −0.76 on the test
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Fig. 4 Sample training (top) and test (bottom) images from the Animals with Attributes data set

Fig. 5 Test Hamming loss
versus classifier correlation

animals (Leopards, Giant Pandas, Humpback Whales and Chimpanzees all have black but
are not weak). Figure 5 plots the Hamming loss on the test set as we set R = [1 r; r 1], plug
it into the M3L formulation, and vary r from −1 to +1. Learning independent classifiers
for the two attributes (r = 0) can lead to a Hamming loss of 25 % because of the mismatch
between training and test sets. This can be made even worse by incorrectly choosing, or
learning using structured output prediction techniques, a prior that forces the two labels
to be positively correlated. However, if our priors are generally correct, then negatively
correlating the classifiers lowers prediction error.

We now evaluate performance quantitatively on the same training set but with all 85
labels. We stress that in the zero shot learning scenario no training samples from any of the
test categories are provided. As is commonly assumed (Farhadi et al. 2009, 2010; Lampert et
al. 2009; Palatucci et al. 2009), we only have access to yc which is the set of attributes for a
given test category. Furthermore we require, as additional information, the prior distribution
over test categories p(c). For the M3L formulation we set R = ∑10

c=1 p(c)ycyt
c . Under this

setup, learning independent classifiers using 1-vs-All yields a Hamming loss of 29.38 %.
The Hamming loss for M3L, with the specific choice of R, is 26.35 %. This decrease in error
is very significant given that 1-vs-All, trained on all 24,292 training points, only manages to
reduce error to 28.64 %. Thus M3L, with extra knowledge, in the form of just test category
distributions, can dramatically reduce test error. The results also compare favourably to other
independent methods such as BoostTexter (Schapire and Singer 2000) (30.28 %), power set
multi-class classification (32.70 %), 5 nearest neighbours (31.79 %), regression (Hsu et al.
2009) (29.38 %) and ranking (Crammer and Singer 2003) (34.84 %).
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Table 3 Test Hamming loss (%) on benchmark data sets

Method fMRI-Words SIAM Media Mill RCV1 Yeast a-Yahoo

M3L 47.29 8.41 3.78 3.45 24.99 9.897

1-vs-All 53.97 11.15 4.69 4.25 26.93 11.35

BoostTexter 49.89 12.91 4.91 4.12 31.82 13.17

Power Set 48.69 14.01 6.27 3.71 32.32 17.81

Regression 53.76 11.19 4.69 4.26 26.70 11.36

Ranking 52.38 9.41 9.06 5.67 28.02 10.27

5-NN 50.81 12.51 4.74 4.47 28.82 13.04

7.2.2 Benchmark data sets

We also present results on the fMRI-Words zero-shot learning data set of Mitchell et al.
(2008). The data set has 60 categories out of which we use 48 for training and 12 for testing.
Each category is described by 25 real valued attributes which we convert to binary labels
by thresholding against the median attribute value. Prior information about which attributes
occur in which novel test categories is provided in terms of a knowledge base. The exper-
imental protocol is kept identical to the one used in Animals with Attributes. R is set to∑10

c=1 p(c)ycyt
c where yc comes from the knowledge base and p(c) is required as additional

prior information. We use 400 points for training and 648 points for testing. The test Ham-
ming loss for M3L and various independent methods is given in Table 3. The M3L results
are much better than 1-vs-All with the test Hamming loss being reduced by nearly 7 %. This
is noteworthy since even if 1-vs-All were trained on the full training set of 2592 points, it
would decrease the Hamming loss by just over 5 % to 48.79 %.

Table 3 also presents results on some other data sets. Unfortunately, most of them
have not been designed for zero-shot learning. Siam (SIAM 2007), Media Mill (Snoek
et al. 2006), RCV1 (Lewis et al. 2004) and Yeast (Elisseeff and Weston 2001) are tradi-
tional multi-label data sets with matching training and test set statistics. The a-PASCAL+a-
Yahoo (Farhadi et al. 2009) data set has different training and test categories but does not
include prior information about which attributes are relevant to which test categories. Thus,
for all these data sets, we sample the original training set to create a new training sub-
set which has different label correlations than the provided test set. The remainder of the
original training points are used only to estimate the R matrix. As Table 3 indicates, by
incorporating prior knowledge M3L can do better than all the other methods which assume
independence.

8 Conclusions

We developed the M3L formulation for learning a max-margin multi-label classifier with
prior knowledge about densely correlated labels. We showed that the number of constraints
could be reduced from exponential to linear and, in the process, generalised 1-vs-All multi-
label classification. We also developed efficient optimisation algorithms that were orders
of magnitude faster than the standard cutting plane method. Our kernelised algorithm was
significantly faster than even the 1-vs-All technique implemented using LibSVM and hence
our code, available from Hariharan et al. (2010a), can also be used for efficient independent
learning. Finally, we demonstrated on multiple data sets that incorporating prior knowledge
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using M3L could improve prediction accuracy over independent methods. In particular, in
zero-shot learning scenarios, M3L trained on 200 points could outperform 1-vs-All trained
on nearly 25,000 points on the Animals with Attributes data set and the M3L test Hamming
loss on the fMRI-Words data set was nearly 7 % lower than that of 1-vs-All.
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Appendix A: Pseudo code of the kernelised M3L algorithm

The dual that we are trying to solve is:

max
α

L∑

l=1

αt
l

(
Δ−

l − Δ+
l

) − 2
L∑

l=1

L∑

k=1

Rlkα
t
lYlKYkαk (46)

s.t.

0 ≤ α ≤ C1

where αl = [α1l , . . . αNl], Yl = diag([y1l . . . yNl]) and K = φ(X)tφ(X). Algorithm 1 de-
scribes the training algorithm. The algorithm relies on picking two variables at each step
and optimising over them keeping all the others constant. If the two variables are αpl and
αql (note that we choose two variables corresponding to the same label l), then at each step
we maximise h(δpl, δql) = D2(α + [δpl, δql, 0t ]t ) − D2(α) subject to −αpl ≤ δpl ≤ C − αpl

and −αql ≤ δql ≤ C − αql . Here, the indices have been reordered so that αpl, αql occupy the
first two indices. D2 is the dual objective function. It can be seen that h(δpl, δql) comes out
to be:

h(δpl, δql) = −2
(
δ2
plKppRll + δ2

qlKqqRll + 2δplδqlyplyqlKpqRll

)

+ δplgpl + δqlgql (47)

Here gpl = ∇plD2 and similarly gql = ∇qlD2. Since h is basically a quadratic function, it
can be written as:

h(δpq) = −1

2
δpqQpqδpq + gt

pqδpq (48)

where

δpq =
[
δpl

δql

]
(49)

Qpq =
[

4KppRll 4KpqRllyplyql

4KpqRllyplyql 4KqqRll

]
(50)

gpq =
[
gpl

gql

]
(51)

The constraints too can be written in vector form as:

mpq ≤ δpq ≤ Mpq (52)
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Algorithm 1 Kernelised M3L
1: θik ← 0 ∀i, k

2: gik ← Δ−
ik − Δ+

ik

3: repeat
4: for i = 1 to N do
5: ui ← 0
6: end for
7: l ← arg maxk(maxi | g̃ik |)
8: for iteration = 1 to L do
9: p ← arg maxi | g̃il |

10: Sp ← {j : Kpj <
√

KppKjj and g̃jk �= 0}
11: if Sp �= φ then
12: q ← arg maxj∈Sp hmax

pj

13: (δpl, δql) ←Solve2DQP(Qpq, gpq, mpq, Mpq )
14: αpl ← αpl + δpl

15: αql ← αql + δql

16: for i = 1 to N do
17: gil ← gil − 4Rllyil(Kipyplδpl + Kiqyqlδql)

18: ui ← ui + (Kipyplδpl + Kiqyqlδql)

19: end for
20: else
21: δpl ←Solve1DQP(4KppRll, gpl,−αpl,C − αpl)
22: αpl ← αpl + δpl

23: for i = 1 to N do
24: gil ← gil − 4RllyilKipyplδpl

25: ui ← ui + Kipyplδpl

26: end for
27: end if.
28: for k ∈ {1, . . . ,L}\{l} do
29: for i = 1 to N do
30: gik ← gik − 4Rklyikui

31: end for
32: end for
33: end for
34: until | g̃ik |< τ ∀i, k

where

mpq =
[−αpl

−αql

]
(53)

Mpq =
[
C − αpl

C − αql

]
(54)

Therefore at each step we solve a 2-variable quadratic program with box constraints. The
algorithm to do so is described later.

The variables αpl and αql being optimised over need to be chosen carefully. In particular
we need to ensure that the matrix Qpq is positive definite so that it can be maximised easily.
We also need to make sure that none of αpl and αql has projected gradient 0. The projected
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gradient of αpl , denoted here as g̃pl , is given by:

g̃pl =
⎧
⎨

⎩

gpl if αpl ∈ (0,C)

min(0, gpl) if αpl = C

max(0, gpl) if αpl = 0
(55)

We also use some heuristics when choosing p and q . It can be seen that the unconstrained
maximum of h is given by:

hmax
pq = g2

plKqq + g2
qlKpp − 2gplgqlyplyqlKpq

8Rll(KppKqq − K2
pq)

(56)

This is an upper bound on the dual progress that we can achieve in an iteration and we pick
p and q such that hmax

pq is as big as possible.

Algorithm 2 Solve2DQP(Q, g, m, M)

1: x∗ = Q−1g = 1
Q11Q22−Q2

12

[
Q22g1 − Q12g2

Q11g2 − Q12g1

]

2: x0 = min(M,max(m, x∗));
3: if x∗ ∈ [m, M] then
4: return x∗
5: else if x∗

1 ∈ [l1, u1] then
6: x1 ← Solve1DQP(Q11, g1 − Q12x

0
2 ,m1,M1)

7: return (x1, x
0
2 )

8: else if x∗
2 ∈ [l2, u2] then

9: x2 ← Solve1DQP(Q22, g2 − Q12x
0
1 ,m2,M2)

10: return (x0
1 , x2)

11: else
12: x1 ← [x0

1 ,Solve1DQP(Q22, g2 − Q12x
0
1 ,m2,M2)]

13: x2 ← [Solve1DQP(Q11, g1 − Q12x
0
2 ,m1,M1), x

0
2 ]

14: d1 ← − 1
2 x1t Qx1 + gt x1

15: d2 ← − 1
2 x2t Qx2 + gt x2

16: if d1 > d2 then
17: return x1

18: else
19: return x2

20: end if
21: end if

Algorithm 2 solves the problem:

max
m≤x≤M

−1

2
xt Qx + gt x (57)

where x is 2-dimensional. Setting the gradient = 0, we get that the unconstrained maximum
is at Q−1g. If this point satisfies the box constraints, then we are done. If not, then we need
to look at the boundaries of the feasible set. This can be done by clamping one variable to
the boundary and maximising along the other, which becomes a 1-dimensional quadratic



Mach Learn (2012) 88:127–155 149

problem. Solve1DQP(a, b, m, M), referenced in lines 21 of Algorithm 1 and lines 6, 9, 12
and 13 solves a 1-dimensional QP with box constraints:

max
m≤x≤M

−1

2
ax2 + bx (58)

The solution to this is merely min(M,max(m, b
a
)).

Appendix B: Proof of convergence of the kernelised M3L algorithm

We now give a proof of convergence of the kernelised M3L algorithm. The proof closely
follows the one in Keerthi and Gilbert (2002) and is provided for the sake of completeness.

B.1 Notation

We denote vectors in bold small letters, for example v. If v is a vector of dimension d , then
vk, k ∈ {1, . . . , d} is the k-th component of v, and vI , I ⊆ {1, . . . , d} denotes the vector with
components vk, k ∈ I (with the vk’s arranged in the same order as in v). Similarly, matrices
will be written in bold capital letters, for example A. If A is an m × n matrix, then Aij

represents the ij -th entry of A, and AIJ represents the matrix with entries Aij , i ∈ I, j ∈ J .
A sequence is denoted as {an}, and an is the n-th element of this sequence. If â is a limit

point of the sequence, we write an → â.

B.2 The optimisation problem

The dual that we are trying to solve is:

max
α

L∑

l=1

αt
l

(
Δ−

l − Δ+
l

) − 2
L∑

l=1

L∑

k=1

Rlkα
t
lYlKYkαk (59)

s.t.

0 ≤ α ≤ C1

where αl =[α1l , . . . , αNl], Yl =diag([y1l . . . yNl]), K = φ(X)tφ(X) and Δ±
l = (Δl(y1,±y1l ),

. . . ,Δl(yN,±yNl)). This can be written as the following optimisation problem:
Problem:

max
α

f (α) = −1

2
αtQα + ptα (60)

s.t.

l ≤ α ≤ u

Here the vector α = [α11 . . . α1L,α21, . . . αNL]t and Q = 4YK ⊗ RY where ⊗ is the Kro-
necker product. Y = diag([y11 . . . y1L, y21, . . . yNL]). p = Δ−

l − Δ+
l , l = 0 and u = C1. We

assume that R and K are both positive definite matrices. The eigenvalues of K ⊗ R are then
λiμj (see, for example, Bernstein 2005), where λi are the eigenvalues of K and μj are the
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eigenvalues of R. Because all eigenvalues of both R and K are positive, so are the eigenval-
ues of K ⊗ R and thus Q is positive definite. Thus the dual we are trying to solve is a strictly
convex quadratic program.

Our algorithm will produce a sequence of vectors {αn} where {αi} is the vector before the
i-th iteration. For brevity, we denote the gradient ∇f (αn) as gn and the projected gradient
∇P f (αn) as g̃n. The algorithm stops when all the projected gradients have magnitude less
than τ . It can be easily seen that by reducing τ , we can get arbitrarily close to the optimum.

Hence, in the following, we only need to prove that the algorithm will terminate in a
finite number of steps.

B.3 Convergence

In this section we prove that the sequence of vectors αn converges.
Note the following:

– In each iteration of the algorithm, we optimise over a set of variables, which may either
be a single variable αpl or a pair of variables {αpl, αql}.

– The projected gradient of all the chosen variables is non zero at the start of the iteration.
– At least one of the chosen variables has projected gradient with magnitude greater than τ .

Consider the n-th iteration. Denote by B the set of indices of the variables chosen:
B = {(p, l)} or B = {(p, l), (q, l)}. Without loss of generality, reorder variables so that
the variables in B occupy the first |B| indices. In the n-th iteration, we optimise f over
the variables in B keeping the rest of the variables constant. Thus we have to maximise
h(δB) = f (αn + [δt

B , 0t ]t ) − f (αn). This amounts to solving the optimisation problem:

max
δB

h(δB) = −1

2
δt

BQBBδB − δt
B

(
Qαn

)
B

+ pt
BδB (61)

s.t.

lB − αB ≤ δB ≤ uB − αB

Note that since gn
B = −(Qαn)B + pB

h(δB) = −1

2
δt

BQBBδB + δt
Bgn

B (62)

QBB is positive definite since Q is positive definite, so this QP is convex. Hence standard
theorems (see Nocedal and Wright 2006) tell us that δ∗

B optimises (61) iff it is feasible and

∇P h
(
δ∗

B

) = 0 (63)

Then we have that αn+1 = αn + δ∗, where δ∗ = [δ∗t
B , 0t ]t . Now

∇h
(
δ∗

B

) = −QBBδ∗
B + gn

B (64)

Also,

gn+1
B = −(

Qαn+1
)
B

+ pB (65)

= −(
Q

(
αn + [

δ∗t
B , 0t

]t))
B

+ pB
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= (−(
Qαn

)
B

+ pB

) − QBBδ∗
B

= gn
B − QBBδ∗

B

= ∇h
(
δ∗

B

)

Then (65) means that:

g̃n+1
B = ∇P h

(
δ∗

B

)
(66)

Using (63)

g̃n+1
B = ∇P h

(
δ∗

B

) = 0 (67)

This leads us to the following lemma:

Lemma 1 Let αn be the solution at the start of the n-th iteration. Let B be the set of indices
of the variables over which we optimise. Let the updated solution be αn+1. Then

1. g̃n+1
B = 0

2. αn+1 �= αn

3. If ljk < αn+1
jk < ujk then gn+1

jk = 0 ∀(j, k) ∈ B

Proof 1. This follows directly from (67).
2. If αn+1 = αn, then δ∗

B = 0 and so, from (65), gn+1
B = ∇h(0) = gn

B . This means that
from (67) g̃n

B = g̃n+1
B = 0. But this is a contradiction since we required that all variables in

the chosen set have non zero projected gradient before the start of the iteration.
3. Since the final projected gradients are 0 for all variables in the chosen set (from (67)),

if ljk < αn+1
jk < ujk then gn+1

jk = 0 ∀(j, k) ∈ B . �

Lemma 2 In the same setup as the previous lemma, f (αn+1) − f (αn) ≥ σ‖αn+1 − αn‖2,
for some fixed σ > 0.

Proof

f
(
αn+1

) − f
(
αn

) = h
(
δ∗

B

)

= −1

2
δ∗t

B QBBδ∗
B + δ∗t

B gn
B (68)

where δ∗
B is the optimum solution of Problem (61). Now, note that since δ∗

B is feasible and
0 is feasible and h is concave, we have that (see Nocedal and Wright 2006):

(
0 − δ∗

B

)t∇h
(
δ∗

B

) ≤ 0 (69)

⇒ δ∗t
B QBBδ∗

B − δ∗t
B gn

B ≤ 0 (70)

⇒ δ∗t
B QBBδ∗

B ≤ δ∗t
B gn

B (71)

This gives us that

−1

2
δ∗t

B QBBδ∗
B + gnt

B δ∗
B ≥ 1

2
δ∗t

B QBBδ∗
B (72)
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⇒ f
(
αn+1

) − f
(
αn

) ≥ 1

2
δ∗t

B QBBδ∗
B (73)

⇒ f
(
αn+1

) − f
(
αn

) ≥ νB

1

2
δ∗t

B δ∗
B (74)

where νB is the minimum eigenvalue of the matrix QBB . Since QBB is positive definite al-
ways, this value is always greater than zero, and bounded below by the minimum eigenvalue
among all 2 × 2 positive definite sub matrices of Q. Thus

f
(
αn+1

) − f
(
αn

) ≥ σδ∗t
B δ∗

B

= σ
∥∥αn+1 − αn

∥∥2
(75)

for some fixed σ ≥ 0. �

Theorem 1 The sequence {αn} generated by our algorithm converges.

Proof From Lemma 2, we have that f (αn+1) − f (αn) ≥ 0. Thus the sequence {f (αn)} is
monotonically increasing. Since it is bounded from above (by the optimum value) it must
converge. Since convergent sequences are Cauchy, this sequence is also Cauchy. Thus for
every ε, ∃n0 s.t. f (αn+1) − f (αn) ≤ σε2 ∀n ≥ n0. Again using Lemma 2, we get that

∥∥αn+1 − αn
∥∥2 ≤ ε2 (76)

for every n ≥ n0. Hence the sequence {αn} is Cauchy. The feasible set of α is closed and
compact, so Cauchy sequences are also convergent. Hence {αn} converges. �

B.4 Finite termination

We have shown that {αn} converges. Let α̂ be a limit point of {αn}. We will start from the
assumption that the algorithm runs for an infinite number of iterations and then prove a
contradiction.

Call the variable αik as τ -violating if the magnitude of the projected gradient g̃ik is greater
than τ . Note that at every iteration, the chosen set of variables contains at least one that is
τ -violating. Now suppose the algorithm runs for an infinite number of iterations. Then it
means that the sequence of iterates αk contains an infinite number of τ -violating variables.
Since there are only a finite number of distinct variables, we have that at least one variable
figures as a τ -violating variable in the chosen set B an infinite number of times. Suppose
that αil is one such variable, and let {kil} be the sub-sequence in which this variable is chosen
as a τ -violating variable.

Lemma 3 For every ε ∃k0
il s.t |αkil+1

il − α
kil

il | ≤ ε ∀kil > k0
il .

Proof We have that since αk → α̂, αkil → α̂, and αkil+1 → α̂. Thus, for any given ε ∃ k0
il

such that

∣∣αkil

il − α̂il

∣∣ ≤ ε/2 ∀kil > k0
il (77)

∣∣αkil+1
il − α̂il

∣∣ ≤ ε/2 ∀kil + 1 > k0
il (78)
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This gives, by triangle inequality,
∣∣αkil+1

il − α
kil

il

∣∣ ≤ ε ∀kil > k0
il (79)

�

Lemma 4 |ĝil | ≥ τ , where ĝil is the derivative of f w.r.t. αil at α̂.

Proof This is simply because of the fact that |gkil

il | ≥ τ for every kil , and the absolute value
of the derivative w.r.t. αil is a continuous function of α, and αkil → α̂. �

We use some notation. If α
kil

il ∈ (lil , uil) and if α
kil+1
il = lil or α

kil+1
il = uil , then we say

that “kil is int → bd”, where “int” stands for interior and “bd” stands for boundary. Similar
interpretations are assumed for “bd → bd” and “int → int”. Thus each iteration kil can be
of one of only four possible kinds: int → int, int → bd, bd → int and bd → bd. We will
prove that each of these kinds of iterations can only occur a finite number of times.

Lemma 5 There can be only a finite number of int → int and bd → int transitions.

Proof Suppose not. Then we can construct an infinite sub-sequence {sil} of the sequence
{kil} that consists of these transitions. Then we have that g

sil+1
il = 0, using Lemma 1. Hence

g
sil+1
il → 0. Since the gradient is a continuous function of α, and since αsil+1 → α̂, we have

that g
sil+1
il → ĝil . But this means ĝil = 0, which contradicts Lemma 4. �

Lemma 6 There can be only a finite number of int → bd transitions.

Proof Suppose that we have completed sufficient number of iterations so that all int → int
and bd → int transitions have completed. The next int → bd transition will place αil on the
boundary. Since there are no bd → int transitions anymore, αil will stay on the boundary
henceforth. Hence there can be no more int → bd transitions. �

Lemma 7 There can only be a finite number of bd → bd transitions.

Proof Suppose not, i.e. there are an infinite number of bd → bd transitions. Let til be the
sub-sequence of kil consisting of bd → bd transitions. Now, the sequence α

til
il → α̂il and is

therefore Cauchy. Hence ∃n1 s.t.
∣∣αtil

il − α
til+1
il

∣∣ ≤ ε � uil − lil ∀til ≥ n1 (80)

Similarly, because the gradient is a continuous function of α, the sequence {gtil
il } is conver-

gent and therefore Cauchy. Hence ∃n2 s.t.

∣∣gtil
il − g

til+1
il

∣∣ ≤ τ

2
∀kil ≥ n2 (81)

Also, from the previous lemmas, ∃n3 s.t. til is not int → int, bd → int or int → bd ∀til ≥ n3.
Take n0 = max(n1, n2, n3). Now, consider til ≥ n0. Without loss of generality, assume

that α
til
il = lil . Then, since |g̃til

il | ≥ τ , we must have that g
til
il ≥ τ . From (80), and using the

fact that this is a bd → bd transition, we must have that

α
til+1
il = lil (82)
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From (81), we have that

g
til+1
il ≥ τ

2
(83)

From (82) and (83), we have that g̃
til+1
il ≥ τ

2 , which contradicts Lemma 1. �

But if all int → int, int → bd, bd → int and bd → bd transitions are finite, then αil

cannot be τ -violating an infinite number of times and hence we have a contradiction. This
gives us the following theorem:

Theorem 2 Our algorithm terminates in finite number of steps.
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