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Abstract The ROC convex hull (ROCCH) is the least convex majorant of the empirical
ROC curve, and represents the optimal ROC curve of a set of classifiers. This paper pro-
vides a probabilistic view to the ROCCH. We show that the ROCCH can be characterized as
a nonparametric maximum likelihood estimator (NPMLE) of a convex ROC curve. We pro-
vide two NPMLE formulations, one unconditional and the other conditional, both of which
yield the ROOCH as the solution. The solution technique relates the NPMLEs to convex op-
timization and classifier calibration. The connection between the NPMLEs and the ROCCH
also suggests efficient algorithms to compute NPMLEs of a convex ROC curve, and a con-
ditional bootstrap procedure for assessing uncertainties in the ROCCH.

Keywords ROC convex hull - ROC curve - Convexity - NPMLE - Geometric
programming - Classifier calibration

1 Introduction

A receiver operating characteristic (ROC) curve is a graphical representation of two per-
formance measures of binary classifiers, the false positive rate (FPR) and the true positive
rate (TPR). The FPR is the probability of erroneously reporting negative instances as being
positive, whereas the TPR is that of correctly reporting positive instances. The ROC space
is a set of (FPR, TPR) pairs. Traditionally the ROC space is visualized by plotting the FPR
on the x axis and the TPR on the y axis. A classifier that reports a class label corresponds
to a point in the ROC space. To be specific, suppose a diagnostic test uses a continuous
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variable X to diagnose a certain disease; if the value of X is larger than a critical value c,
the subject of the diagnosis is classified into the disease (positive) class; otherwise into the
non-disease (negative) class. Each critical value corresponds to a classifier. We use class
conditional survival functions, defined as the complement of class conditional distribution
functions, for notational convenience. Let Syp and Sp be class conditional survival func-
tions of X for the negative and the positive classes, respectively. That is, S;(c) = P;(X > ¢)
for i = ND, D, where P; is a probability measure of X on class i. The FPR and the TPR of
the given classifier are

FPR(c) = Snp(¢),
TPR(c) = Sp(c).

The ROC curve plots TPR(c) against FPR(c) for all values of c. Explicitly, for p € [0, 1],

R(p) = Sp(Sxp(») 2

by substituting FPR(c) with p and eliminating c.

A natural question that arises is how to estimate R(p) from the observed data. If the TPR
and the FPR are estimated by the empirical survival functions Sp and SND, i.e., the propor-
tions of the true positives and the false positives in the training data set, the estimated curve is
a piecewise constant function called the empirical ROC curve. The empirical ROC curve is a
nonparametric maximum likelihood estimator (NPMLE) of the R(p). We may also impose
geometrical constraints, such as convexity,! when estimating R(p). Lloyd (2002) studies
nonparametric and semiparametric maximum likelihood estimation of a convex ROC curve.
Parametric methods enjoy the ability of producing a smooth, as well as convex, ROC curve.
These methods assume that Sxp and Sp belong to a specific parametric family of distri-
butions that guarantees (2) is convex. Pan and Metz (1997) and Metz and Pan (1999) use
the normal error distribution, Dorfman et al. (1997) consider the gamma distribution, and
Campbell and Ratnaparkhi (1993) introduce the Lomax family of curves.

The ROC curve of randomized diagnoses traces the least convex majorant (LCM) of the
given ROC curve, well known as the ROC convex hull (ROCCH) to the machine learning
community (Provost and Fawcett 2001). The properties and applications of the ROCCH have
been extensively studied in the machine learning literature: Pareto optimality (Kim et al.
2006), repairing local non-convexity (Flach and Wu 2005), and cost-sensitive classification
(Lim and Pyun 2009), to name a few. In particular, in the use of the ROCCH for classifier
calibration, i.e., to transform classifier scores into posterior class probabilities, Fawcett and
Niculescu-Mizil (2007) show that their ROCCH-based calibration method is equivalent to
the pool-adjacent-violation (PAV) isotonic regression-based method by Zadrozny and Elkan
(2002). However, its connection with maximum likelihood estimation has not been much
explored, to the best of our knowledge.

In this paper, we show that the ROCCH is the nonparametric maximum likelihood es-
timator (NPMLE) of the true ROC curve when it is assumed convex. We formulate the
NPMLE problem as a convex optimization problem, whose solution yields the ROCCH
(Sect. 2). This convex programming formulation allows us to consider a conditional
NPMLE, which also has the ROCCH as the optimal solution (Sect. 3). The benefit of this
conditional NPMLE interpretation is that the uncertainty in the ROCCH can be systemati-
cally evaluated. To demonstrate this, we propose a conditional bootstrap procedure (Sect. 4).

)]

IThe use of the term ‘convex’ in the machine learning community in the context of ROC analysis is the
opposite to its mathematical definition, as pointed out by Hand (2009). Since this article targets at the machine
learning community, we adopt the machine learning convention.
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2 Nonparametric maximum likelihood estimation of convex ROC curves
2.1 Likelihood

We can formulate the problem of NPMLE of ROC curves (under no constraint) using the
class conditional survival functions (1) and the prior class probability that will be intro-
duced shortly. Consider independent random samples from two classes, ND (negative) and
D (positive). Let x;y, . .., x;,, be the observed diagnostic scores from class i whose survival
function is S; for i = ND, D, i.e., nnp and np are the sizes of the negative and the positive
classes, respectively. Complete observations occur on a subset of scores x| < xp < -+ < X,
where {xi, ..., x,,} is the union of all observed scores x;, ..., X;,; for i =ND, D. Note that
this union partitions the axis of scores into m + 1 intervals. Assuming that the observa-
tions are mutually independent, the interval frequencies for each class follow a multinomial
distribution (Metz et al. 1998). Then the likelihood of the observation is written as

m+1
Lo, Sxp. Sp) =1 (1 =7y ] TS -0 = Siap}™
i=ND,D j=1
= L£(70)L(Sxp. Sp). 3)

where 7y is the prior probability of class D, and d;; denotes the number of observations
of class i in the semi-closed interval (x;_;, x;]. (We interpret xo = —o0 and x,,4; = 00 S0
that S; (xo) = 1 and S; (x,,41) =0.) L(7p) is maximized at 7y = np/(nnp + np) independent
of L(Snxp, Sp). It turns out that the maximizer of £(Snp, Sp) is the pair of empirical class
conditional survival functions (SND, S’D). Hence the NPMLE of the ROC curve with no
constraint is the empirical ROC curve

R(p) =S (Sxn(p),  for p 0, 1], 4)

or a plug-in estimator of (2). Note that only £(Snp, Sp) is needed to estimate the ROC curve.
2.2 Geometric programming formulation

The NPMLE of a convex ROC curve can be obtained by solving (3) after imposing appro-
priate constraints, and we show in this section that the resulting optimization problem is
formulated as a geometric program (GP), a special class of convex optimization problems.
What we want to solve is the following problem.

m—+1
maximize L(Sp.Sp)= [| []{Si@-0) - Sip}™
i=ND,D j=1
subjectto  R(p) = Sp(Syp(p)) is convex in p € [0, 1].

(&)

The solution to (5) is a pair of distributions that change their values only at the finite number
of points xi, ..., x,,: if an estimated pair (S‘fﬁ%‘, S’]C)"“) does not have such property, we could
find an alternative solution satisfying the convexity constraint, whose likelihood is larger
than that of (Sﬁ{g‘, S'f,"") (Kaplan and Meier 1958; Johansen 1978; Feltz and Dykstra 1985).

Therefore we can fully specify convexity of the ROC curve in terms of the observed points
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and write problem (5) as

m+1
maximize L(Snp, Sp) = 1_[ l_[ {Sitej-) =S (xj)}dij
i=ND,D j=1 6)
SD()C_,‘) — SD()C]'_l) < SD(xj-H) - SD(xj)

subject to < ,
SND(xj) - SND(Xj—l) SND(Xj+1) - SND(Xj)

j=1,...,m.

Note that Sxp and Sp are non-increasing in x. Now write
pij =3Si(x;)/Si(xj—1), i=ND,D, j=1,...,m.

so that §; (x;) = I—[f:l Pir» and introduce auxiliary variables g;; = 1 — p;;. Then (6) is written
as:

m-+1

.. d;; di;
maximize E({(pij, q,»j)}) = l_[ 1_[ q; le,r’
i=ND,D j=1 r<j
. PND, j qpo,;j 4qND, (j+1) . @)
subject to —= ) — || —— ) <1, j=1,...,m,
gND, j Pp,j 4D, (j+1)

pij+q;=1 i=ND,D, j=1,....,m.

If we further relax the equality constraints p;; + ¢;; = 1 with inequalities p;; + ¢q;; < 1,
problem (7) becomes a GP:

maximize  L({(pij, q:))})

subject to (—pND’j)<—qD’j > (qiND’('HI)) <1, forj=1,...,m, (8)

gND., j Pp,j qp.(j+1)

pij+qi;<1, i=ND,D, j=1,....,m.

A standard GP is not in general convex, but can be transformed to a convex form using a
simple change of variables, e.g., u;; = log p;; and v;; = logg;,; here. To see the equivalence
of the relaxed GP formulation (8) to the original problem (7), observe that the quantity
pij + gij 1s monotone increasing in both p;; and ¢;; and the objective is increasing in these
variables. We see that at the optimal point {(p;;, gi;)}, the inequality constraints p;; +¢;; <1
must be tight for all i and j. Otherwise there exist i’ and j’ with py ;7 4+ gy < 1. Then
{(ﬁijvéij)} cannot be optimal since a pOil’lt {(ﬁijvéij)} with Iaij = ]3[]' and éij =1- ﬁij
for i =ND,D, j =1,...,m is feasible for (8) and gy = 1 — p;y;» > grj». This results
in

c({pij-ain}) > L{Bijr@ip)}).

which is a contradiction. Therefore the two problems are equivalent.
2.3 NPMLE yields the ROCCH

The solution to the GP (8) is readily available as the ROCCH of the empirical ROC curve (4),
without needing a numerical GP solver, e.g., ggplab (Mutapcic et al. 2006). To see this,

@ Springer



Mach Learn (2012) 88:433-444 437

write the full likelihood (3) in terms of class conditional densities, instead of survival func-
tions, in two alternative factorizations:

n;

Lo, S, Sp) = L) L faw, fo) =75 (1 —70)™ [ [] A ©)
i=ND,D j=1
=[TrGp®™ (1= 7)™ [T fprtws = LeoLif).  (10)
Jj=1 j=1

where fyp(x) and fp(x) are class conditional densities with f; (x;;) = Si(x;—1) —S; (x;), i =
ND, D;? f(x) = (1 — mp) fap(x) + mo fp(x) is the marginal density of score X; and 7 (x)
is the posterior class probability given X = x, so that my = f w(x)f(x)dx. Lloyd (2002)
shows that the following two-step optimization procedure maximizes (9) (equivalently (10))
subject to the convexity constraint on the ROC curve being estimated, hence solves the
GP (8).

Step 1: estimate 7 (x) nonparametrically so that

m
. . dnp. ;
maximize L(w)= Hrr(xj)d[’v-f (1 — ﬂ(xj)) ND.j
j=1
subject to 7 (x) monotone nondecreasing.

Step 2: estimate fxp and fp so that

maximize L(fxp, fp) = l_[ 1_[ i (i)
i=ND,D j=1

subjectto  fp(x)/fnp(x) x rr(x)/(l — rr(x)).

The solution to Step 1 is specified by the discrete density 7 (x) that is the PAV isotonic
regression of the observed proportion dp_; /(dnp,j +dp, ;) of the positive class at each x = x;.
The solution to Step 2 is given by

Alovd (dxp.j +dp )1t/ (p(x)) + nxpp),  $(x;) < oo,
Np (X)) = . 1D
0, ¢(x;) =00,
and
f];loyd(xj) _ { (dnp, j +dD,j)¢3(xj)/("D<£(xj) +nNpu), ¢:>(Xj) < 09, (12)
(dnp,j +dp,j)/np, P(x;) =00,

where ¢(x) =7 (x)/(1 — 7 (x)). d(x) = 00 if # (x) = 1. u is chosen so that both fu®(x;)
and Atl)loyd(x ;) sum to one. This solution yields an estimate of the class probability

7o = np/(nnp + np). The NPMLE of the convex ROC curve is obtained by reconstruct-

2The existence of the class conditional density function and writing it in this form is supported by that S;
changes its value only at the points x1, ..., x;; see Sect. 2.2.

@ Springer



438 Mach Learn (2012) 88:433-444

ing the class conditional survival functions S/ (x NEDYN AboYd(x) and Spd(x X)) =
i Dy (x;), and plotting S loyd (x;) against S (xj).

To see why this estimate coincides with the ROCCH, it suffices to recognize that 7 (x),
the PAV isotonic regression of the proportion of the positive class at a given x, is essentially
the classifier score calibrated using the same regression method (Zadrozny and Elkan 2002).
The estimated ROC curve is that determined by the calibrated scores. This is precisely the
ROCCH, because of the equivalence between the ROCCH and the PAV regression-based
calibration as discussed in Sect. 1 (for more details, see Fawcett and Niculescu-Mizil 2007).
This connection between the NPMLE and the ROCCH has not been known previously.

The GP formulation (8) can be used to impose a wider class of constraints to the NPMLE
problem, e.g., ordering of several convex ROC curves that establishes superiority of a clas-
sifier to another; for various order constraints in GP, see Lim et al. (2009). More importantly
in this paper, the GP (8) provides a crucial insight leading to the results of the next section.

3 Conditional NPMLE that yields the ROCCH

Surprisingly, even if we condition that each FPR estimate is equal to the corresponding
empirical FPR, the resulting NPMLE of the convex ROC curve still coincides with the
ROCCH. To be specific, assume that Syp = SND Let {vl, VS v <<y, be a subset
of {1,...,m} such that each SND(xV ) is unique, i.e., SND(xv] ) # SND(xU ) for any j. By
the assumptlon we set pnp,;j as its ernpmcal estimate

Pnp,j = SND(XV,)/S'ND(XW,I) (13)

for j =1,...,1. (We interpret x,, = —oco and x,,, = oo so that §;(x,) = 1 and
Si(xy,,) =0,i=ND,D.) The conditional NPMLE is then formulated as follows.

I+1

maximize L({pp,;}) H(l_l’D )D/HPDV
re<j (14)

subject to ( pNP’j )(1 — pD'j)<l — pND’(H1)> <1, forj=1,...,1,
1 — pnp.j Pp.j L — pp.i+n
where variables are {pp ;}, pp,; = Sp (xU )/ SD(xv .). Note that each dp ; is appropriately
redefined to be the number of observations of class D in the semi-closed interval (x,;_,, x,,]
of scores. We refer to this problem as conditional NPMLE. Note that (14) can also be rewrit-
ten as a GP in a similar fashion to the unconditional NPMLE (7).

That the ROCCH, or the LCM of the empirical ROC curve, is the conditional NPMLE of
the convex ROC curve can be summarized by the following theorem.

Theorem 1 Let Skm be the class conditional survival function such that the curve

(SND, Slc"‘) is the LCM of the empirical ROC curve (SND, SD) Then, Sl"" solves the condi-
tional NPMLE (14). More precisely, pp ; = Slcm(xvj)/Slcm(xvjfl) solves (14).

Proof We consider an iterative (coordinate ascent) procedure to solve (14), which iteratively
updates pp x by maximizing (14) with respect to pp for k =1, ...,[. In updating pp, all
other pp ; with j # k are held fixed at their current estimates. Since the problem (14) is
equivalent to a GP, which can be converted to a convex problem, and the auxiliary variables
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g, ;» introduced to construct the GP, satisfy gp ; = 1 — pp ; for all j (see Sect. 2.2), the
suggested coordinate ascent procedure will solve the problem. It is easy to see that for each
step of the iterative procedure solves the following subproblem.

maximize nplog ppx 4+ dpxlog(l — ppi)
(15)

subject to Ly < Pk = Uy,
where np j = lrilj 41 dp,r denotes the number of observations of class D whose scores are
greater than x,;; L, and Uy are bounds determined by the other coordinates pp,;, j # k.
By construction, it suffices to show that {pp ;} is a fixed point of the iterative procedure.
For each k, we fix all the coordinates except for pp x at pp j, i.e., pp j = Pp,j, j # k. Then,

_ {Pnoc (1 — P, ae+1) 3/ {1 = Prp) (1 = pog+y)}
1+ {pxoi (1 = pro,w+) 3/ = pap,) (1 = Po,gsy))

Ly

fork=1,...,1,and

P, k—1)(1 = Pnpi) (1 = Pp,e—1))

U=1-— — -
Pp.k-1) (1 — PND,(k-1))

fork=2,...,[.Fork=1,wesetU; =1.
Now consider

P =58p(x,))/Sp(xy,_ ), j=1....,1

Together with {pnp,;} defined in (13), {pp, ;} constitutes the empirical ROC, which solves
the unconstrained version of the unconditional NPMLE (7). Therefore {pp ;} solves the
unconstrained version of the conditional NPMLE (14). It follows that pp ; maximizes the

objective of (15) provided the constraint was removed. Let [7};’“,;‘1 denote the (constrained)

solution to (15). Showing that ﬁ};’“,jl = Pp.x completes the proof.
The following property of pp ; locally characterizes not only the LCM, but also the em-
pirical ROC curve in the neighborhood of [x,, ,, x,, ], leading to identification of the solution

ﬁgf,f‘l. Observe that pp ; < Uy if and only if the inequality in the convexity constraint in (5) is

strict for j = k — 1. In other words, the LCM changes its slope at (SND (X)), S’})Cm (X ).
Change of slope of the LCM occurs if and only if it touches the empirical ROC curve, hence
we have Si§™(x,, ) = Sp(x,,_,) (note that in general S5™ (x) > Sp(x)). Similarly, L < P
if and only if S}gm(ka) = S‘D (x,,). Since the LCM is convex by construction, pp always
satisfies Ly < pp < U. Depending on the tightness of these bounds, there are four cases

to consider:
1. Ly < pps < Uy: From the observation above, S8™(x,, ) = Sp(x,,_,) and SK™(x,,) =

Sp(x,,). Then,

Pod = SE™(x,,)/SKE™ (2, _,) = Sp(x,)/Sp (X)) = Prks

ie., Ly < ppx < Uy. Since pp  is the unconstrained maximizer of the objective of (15),
which is convex in pp x, pp x also solves the constrained problem (15). Therefore ﬁg’“,jl =

ﬁD,k = p~D,k-

@ Springer



440 Mach Learn (2012) 88:433-444

2. Ly = ppx < Uj: We have

k—1 k—1
SE™ () = Spxy,_). or [ ho=]]so; (16)

Jj=1 Jj=1

k
SE™(xy) > Sp(xy). or [ [hos>[]pv.- (17)
j=1 j=1
Dividing (17) by (16) we obtain

Pok < Pox = Ly, (18)

i.e., the unconstrained maximizer pp ; of (15) is less than L;. Combined with the con-
vexity of the objective, this implies that the constrained maximizer of (15) satisfies
Alocal __ L.=p
Ppox = Lk = PDk-

3. Ly < ppx = U;: This case is essentially the same as case 2, with L; replaced by Uy and
the inequality in (18) reversed.

4. Ly = ppx = Uy: Since L = Uy, the solution to the constrained maximizer of (15) is
~local

Poi = Ly =Ux = ppy.

Therefore we have pi! = pp; in all four cases. O

Although both the conditional and the unconditional NPMLEs result in the ROCCH as
the estimated ROC curve, the two methods produce distinct estimates of the TPR and the
FPR. In general, unconditional NPMLE gives smoother estimates of these since it gives
distinct scores to the samples. To understand this, we show in Table 1 estimated quantities
including TPRs and FPRs using these two NPMLE methods from the example presented in
Fawcett and Niculescu-Mizil (2007). The first two columns represent the observation, where
the score is sorted in decreasing order. Class label 1 corresponds to the positive class (D),
and O to the negative class (ND). The third and the fourth columns are the empirical FPRs
and TPRs, so that (S’ND, SD) constitutes the empirical ROC curve. The fifth column consists
of numerical solutions of the GP (14) given the empirical FPRs, so that (S'ND, S']ljcm) con-
stitutes the conditional NPMLE. Columns 6 through 11 are for the unconditional NPMLE
coms)uted using Lloyd’s method discussed in Sect. 2.3. In particular, the last two columns
Sﬁ‘g and S};"yd together make up the unconditional NPMLE of the convex ROC curve. The
boldfaced indicates that both NPMLEs coincide with the ROCCH and meet the empirical
ROC curve at the same points. These points are the vertices of the ROCCH. The conditional
NPMLE estimates the TPRs effectively only at these vertex points, whereas the uncondi-
tional NPMLE estimates them (and the FPRs) in between.

Finally, it is worth note that from the (anti-)symmetry in the formulation (6) and the proof
of Theorem 1 we can obtain the ROCCH by fixing the TPR estimate:

Corollary 1 Let SS2 be the class conditional survival function such that the curve

(S}gg, S’D) is the least~concawe3 majorant of the empirical ROC curve (S’ND, SD) seen from
the TPR axis. Then, SX3 solves the conditional NPMLE (14) with the roles of ND and D
switched.

3Used as the opposite to the notion of “convex” as described in footnote 1.
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Table 1 An illustration of the unconditional and the conditional NPMLEs

1 2 3 4 5 6 7 8 9 10 11
Score  Class  Snp Sp Sll)cm bid é fll\}f)yd f]goy d Sg(]))yd S‘Boy d
0.9 1 0 0 0.2222 1 00 0 0.1111 0 0

0.8 1 0 0.1111 02222 1 00 0 0.1111 0 0.1111
0.7 0 0 0.2222  0.2222 0.75 3 0.0417 0.0833 0 0.2222
0.6 1 0.1667  0.2222  0.5556  0.75 3 0.0417 0.0833  0.0417 0.3056
0.55 1 0.1667 03333  0.5556 0.75 3 0.0417  0.0833  0.0833  0.3889
0.5 1 0.1667  0.4444  0.5556 0.75 3 0.0417  0.0833  0.125 0.4722
0.45 0 0.1667 0.5556 0.5556 0.6667 2 0.0556  0.0741 0.1667  0.5556
0.4 1 0.3333  0.5556  0.7778  0.6667 2 0.0556  0.0741 0.2222  0.6296
0.35 1 0.3333  0.6667 0.7778  0.6667 2 0.0556  0.0741 0.2778  0.7037
0.3 0 0.3333 0.7778 0.7778 0.5 1 0.0833  0.0556 0.3333  0.7778
0.27 1 0.5 0.7778  0.8889 0.5 1 0.0833  0.0556 0.4167  0.8333
0.2 0 0.5 0.8889 0.8889 0.3333 0.5 0.1111 0.0370 0.5 0.8889
0.18 0 0.6667 0.8889 0.9444 03333 0.5 O0.1111 0.0370 0.6111  0.9259
0.1 1 0.8333  0.8889 1 0.3333 0.5 0.1111  0.0370 0.7222  0.9630
0.02 0 08333 1 1 0 0 0.1667 0 08333 1

4 Conditional bootstrap of the ROCCH

That the conditional NPMLE of a convex ROC curve coincides with the ROCCH of the
empirical ROC curve suggests an useful bootstrap procedure to estimate the variance of the
ROCCH (see, e.g., Macskassy et al. 2005). This conditional bootstrap procedure, which
samples separately from the positive and the negative groups, allows us to evaluate the
variance component contributed by each of the groups being compared (Hinkley 1988;
Tibshirani and Knight 1999). Decomposing the variance components is advantageous be-
cause each term constitutes an achievable minimum fotal variance of the ROCCH estimate
when the size of the corresponding group increases. Therefore, this procedure also provides
a simple means to compute the total variance of the ROCCH when the sample is imbalanced
(Mladenic and Grobelnik 1999). The pointwise confidence limit for a convex ROC curve
R(p) = SD(SIQ];(p)) relies on the variance of its conditional NPMLE R(p) = SD(Sﬁll)(p)),
or the ROCCH. (We use boldface letters to emphasize that the corresponding quantities
are random. Normal-faced letters are their realizations.) From the law of total variance, the
variance of the ROCCH can be decomposed as

Var[Sp(S5.(1)] = E[Var[So (S (1) Swo]] + Var[E[So (S () Swo]]. - (19)
where the first and the second terms indicate the sampling variability from the negative (ND)

and the positive (D) groups, respectively. The expectations in (19) can be approximated
using a mode (or mode-type) approximation as

E[Var[Sp (S35(»)) 18xp]] ~ Var[So (S3h (7)) 1Sx0 ][, 5.

= Var[Sp (Sxn ()] (20)
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and
E[Sb (Sxb(2))18x0] ~ 8o (Sxb (P) [, _s, = So(Sxb () 1)
where S'D and S‘ND (normal-faced) are the observed TPR and FPR. Now it is seen that
Var[Sp (Sxp (1)) ] & Var[Sp ($55(p) ] + Var[Sn (Sxp () ] (22)
a separation of the contribution to the variance from the positive and the negative groups, re-
spectively. Observe that the first term (resp. the second term) of the right-hand side becomes
the achievable minimum total variance (the left-hand side) by increasing np (resp. nnp); the

second term (resp. the first term) degenerates to zero as np (resp. nnp) increases.
The first (“positive”) term is computed as follows.

Algorithm 1: Conditional bootstrap method for variance component decomposition

input : Negative samples {Xxp.1, . .., XND.uyp }; POSItive samples {xp 1, ..., XD up}
Bootstrap sample size B

output: Estimate of the variance component Var[SD(S‘;H') (p)] of the ROCCH due to
the positive group

1 begin

2 Fix the negative group;

3 for b < 1to B do

4 Bootstrap from the positive group only;

5 Estimate the ROCCH Sg’) (3'13]'3 (p)) of the bootstrapped samples;

6 end

7 Output the pointwise sample variance of { S’g’) (3‘1\_,1;( p))}f:, R

8 end

Note that Theorem 1 takes action in line 5. For the second (“negative”) term, switch the
positive and the negative groups in the above procedure. Note that this separate evaluation
is not possible in a naive bootstrap, that resamples the whole np + nnxp observations. When
the sample is imbalanced, e.g., np < nnp, then

Var[Sp (Sxb(2))] ~0 and  Var[Sp(Sgb(p))] &~ Var[Sp (Sib ()],

so that only the “positive” conditional bootstrap suffices.

We conducted a simple numerical study to demonstrate how the proposed conditional
bootstrap procedure approximates the variance components in (19) and how these compo-
nents vary as the sample gets imbalanced. We set np = 50 and varied nxp = 50, 100, 200,
300, and 1000. The scores of the negative group were distributed normally with mean 0 and
variance 1, and the scores of the positive group are distributed normally with mean 0.5 and
variance 1. For each choice of nyp, we generated B = 500 data sets and applied the condi-
tional bootstrap to estimate the “positive” and the “negative” variance terms. We compared
them with their true values in (19). The results are shown in Fig. 1 for nxp = 100 and 1000.
Note that the bootstrap estimates of both variance terms are very close to the true values. In
particular, the “negative” variance estimate almost vanishes at nyp = 1000.
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Fig. 1 Tllustration of conditional bootstrap for np = 50. In the figure, the circle indicates the true variance;
the cross indicates bootstrap estimate of the variance; the dash-dot indicates the 5 % and 95 % bootstrap
confidence limits of the variance, obtained from 500 bootstrap samples

5 Conclusion

In this paper we interpreted the ROC convex hull, which has been known as an efficient
tool to account for the class-dependent misclassification cost in designing a classifier, from
a maximum likelihood estimation perspective. We provided two nonparametric maximum
likelihood formulations subject to the convexity constraint on the ROC curve and showed
that the ROCCH is derived as the solution to both NPMLE problems. In particular the condi-
tional NPMLE interpretation of the ROCCH enables standard machinery, such as the boot-
strap, to assess uncertainties in the ROCCH. The proposed conditional bootstrap method
can estimate the finite-sample variabilities of the ROCCH arising from the positive and the
negative class separately, and allow us to find the achievable confidence limit of the ROCCH
efficiently for imbalanced samples.
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