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Abstract Multi-instance multi-label learning (MIML) is a newly proposed framework, in
which the multi-label problems are investigated by representing each sample with multiple
feature vectors named instances. In this framework, the multi-label learning task becomes
to learn a many-to-many relationship, and it also offers a possibility for explaining why a
concerned sample has the certain class labels. The connections between instances and labels
as well as the correlations among labels are equally crucial information for MIML. How-
ever, the existing MIML algorithms can rarely exploit them simultaneously. In this paper, a
new MIML algorithm is proposed based on Gaussian process. The basic idea is to suppose
a latent function with Gaussian process prior in the instance space for each label and infer
the predictive probability of labels by integrating over uncertainties in these functions us-
ing the Bayesian approach, so that the connection between instances and every label can be
exploited by defining a likelihood function and the correlations among labels can be identi-
fied by the covariance matrix of the latent functions. Moreover, since different relationships
between instances and labels can be captured by defining different likelihood functions, the
algorithm may be used to deal with the problems with various multi-instance assumptions.
Experimental results on several benchmark data sets show that the proposed algorithm is
valid and can achieve superior performance to the existing ones.
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1 Introduction

Nowadays, multi-label learning (ML) problems have attracted more and more attention in
machine learning field due to their extensive applications in text categorization (McCallum
1999; Kazawa et al. 2005), scene classification (Boutell et al. 2004), functional genomics
(Barutcuoglu et al. 2006), music categorization (Wieczorkowska et al. 2006), and so on. As
shown by the examples in Fig. 1(a), multi-label learning studies the problems where a real-
world object is associated with a number of class labels, i.e., the object has different semantic
meanings simultaneously if it is viewed from different aspects. A straightforward approach
solving multi-label problem is to transform it into one or more single-label problems. This
can be realized by regarding every possible combination of labels as a ‘meta-label’ (Boutell
et al. 2004; Diplaris et al. 2005) or considering the prediction of each label as an indepen-
dent binary classification problem (Yang 1999). However, the first strategy is infeasible in
most cases because the number of meta-labels will increase substantially and the samples of
such meta-label are usually sparse; the second one has limitations as well because it neglects
the correlations among the labels. Another approach is to consider the problem as a one-to-
many mapping and design special learning algorithms for it. In Elisseeff and Weston (2002),
a multi-label support vector machine was developed by defining a specific cost function and
the corresponding margin. Some other multi-label support vector machines also were devel-
oped by Boutell et al. (2004) and Godbole and Sarawagi (2004). Zhang and Zhou (2006)
employed neural networks for multi-label learning by defining a new error function to cap-
ture the characteristics of multi-label problem. Many other multi-label learning algorithms
were developed as well, such as multi-label version of C4.5 decision tree (Clare and King
2001), multi-label k-nearest neighbor classifier (Zhang and Zhou 2007a), parametric mix-
ture model (Ueda and Saito 2003), and boosting (Schapire and Singer 2000). Noting that
although these studies on multi-label learning assume that an instance can be associated
with multiple valid labels, one-to-many mapping is not a proper mathematical function and
it may be the major difficulty in dealing with multi-label problems (Zhou et al. 2012). More-
over, in many ML problems, different labels are often tied to the different parts of the object,
thus, developing classifiers based on the whole object would incur too much noise and harm
the performance.

Recently, a multi-instance multi-label learning (MIML) framework was proposed by
Zhou et al. (2007, 2012) for learning with ambiguous objects, in which an object is described
by multiple feature vectors named instances and associated with multiple class labels. Com-
pared with the traditional multi-label learning framework, MIML is more reasonable for
dealing with the ML problems since it enables us to explore the inner causality between
the object and its labels. In other words, it offers a possibility for understanding why a con-
cerned object has the certain class labels, e.g., the object on the left part of Fig. 1(b) has label
‘tree’ because it contains instance;, while label ‘elephant’ is caused by instance,. The fol-
lowing two crucial problems should be considered for dealing with ML problems by using
the MIML framework.

The first one is how to model the relationships between instances and labels of a sample.
Although the MIML framework offers a possibility for understanding why a concerned ob-
ject has the certain labels and a correct model of these connections may be helpful for mak-
ing an accurate prediction, because different labels of an object usually arise from different
instances and the way how the instances trigger labels of object usually may be different in
different problems, for example, each label of the object on the right part of Fig. 1(b) is col-
lectively determined by multiple instances, in contrast, every label of the object on the left
part is only tied to a key instance, how to correctly model the connections between instances
and labels is a crucial and challenging problem for MIML.
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The second one is how to exploit the relationship among labels. For many multi-label
learning problems, different labels usually have strong correlations which also are the im-
portant information for improving the accuracy of prediction algorithms. For example, in
the place recognition problem, the places with near locations usually appear in the same
visual image and in contrast the places located at different areas scarcely appear in the same
image. So, if an image is simultaneously labeled as two places located at different areas, we
should reconsider this conclusion. Taking the subcellular localization prediction problem of
eukaryotic proteins (Chou and Shen 2010) as another example, it can be seen that almost all
the proteins of cyanelle and hydrogenosome have only one location. If a predictor can obtain
this information from the training data set, it will avoid some wrong prediction results such
as “a query protein belongs to cyanelle and hydrogenosome simultaneously”. Moreover, for
the problems with a large number of labels and small amount of training samples, the corre-
lation information among labels will be very important to complement the lack of training
samples. Thus, effective exploitation of the correlations among labels is also crucial for the
success of a MIML algorithm.

Although many MIML algorithms have been proposed by employing neural network,
maximum margin method, regularization method and so on, almost all of them pay attention
to only one of aforementioned problems and few can consider them simultaneously. As
shown by Zhou et al. (2012), the main reason may be that these models will become very
complex and difficult to be solved if these two problems are considered simultaneously. In
order to consider the two aforementioned problems simultaneously, an innovative MIML
algorithm is proposed by using Gaussian process in this paper. The basic idea is to define a
latent function with Gaussian process prior in the instance space for every label, and then
output the probabilities over different labels for each sample based on the latent function
values of its instances. In this algorithm, the correlations among the labels can be identified
by a covariance matrix of these latent functions and automatically inferred by maximizing
the marginal likelihood of the covariance matrix; the connections between instances and
labels of a sample can be exploited by defining a new likelihood function and we can employ
different likelihood functions to capture various connections.

The paper is organized as follows: In Sect. 2, we illustrate the formal definition of MIML
and review previous work in this area. The proposed MIML algorithm is then presented in
Sect. 3 and tested on several multi-label learning problems in Sect. 4. The conclusion is
given in Sect. 5.

2 Related works

As stated in the above section, a sample is described by multiple instances and associ-
ated with multiple class labels in the MIML framework. Formally, suppose X = R? is
the domain of instances and ) = {1, 2, ..., Q} is the set of class labels. Given a training
set S ={(X1, Y1), (X2, Y2),...,(Xu, Y}, where X; € X called bag is a set of instances
{x,-jlx,-j eX,j=1,2,...,n;}, and ¥; C Y is the label set {yi|vir € Y,k =1,2,...,[;}
associated with X;, here, n; denotes the number of instances in X; and /; denotes the
number of labels in Y;. For notational convenience, Y; usually is represented by a vec-
tor [y;1, yi2»---»Yipl', in which y;; = 1 denotes that label s is a proper label of bag
X;, otherwise y;; = —1. The task of MIML is to learn a function % : 2%¥ — 2Y from
S which can predict a set of labels for any unseen sample. It is interesting to com-
pare MIML with multi-instance learning framework and multi-label learning framework.
Multi-label learning considers the ambiguity in the label space; Multi-instance learning
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considers the ambiguity in the instance space; While MIML studies the ambiguities in
both the instance and label space simultaneously. It can be seen that MIML is also dif-
ferent from the framework of learning from candidate labeling sets (Cour et al. 2009;
Jie and Orabona 2010) where each sample is supplied with multiple potential labels, only
one of them is correct. Since many real objects are inherited with input ambiguity as well as
output ambiguity, MIML is more natural and convenient for learning with such objects.

The generality of MIML inevitably makes it much difficult to address and only a few lit-
eratures are available up to present. MIMLBOOST and MIMLSVM are the earliest MIML
algorithms, which were proposed by Zhou and Zhang (2007) for scene classification based
on a simple degeneration strategy. In Nguyen (2010), a new SVM approach named SISL-
MIML was developed by using an improved degeneration strategy. Considering that the
degeneration methods may lose useful information encoded in the training data during the
reduction process, another algorithm called M3MIML was proposed by Zhang and Zhou
(2008) based on a maximum margin method, which directly exploits the connections be-
tween instances and labels. In Zhang and Wang (2009), RBF neural network was adopted
to learn from MIML samples. A probabilistic generative model called Dirichlet-Bernoulli
alignment (DBA) was proposed by Yang et al. (2009) for MIML. Since the performance
of DBA may deteriorate exponentially as the number of classes increases and can not be
used to the task with a large number of classes, in 2010, they improved DBA to a hy-
brid generative/discriminative learning model (Yang et al. 2010) for the problem of auto-
matic image annotation. A common characteristic of these approaches is that they rarely
consider the correlations among the labels. In Zhou et al. (2012), a D-MIMLSVM algo-
rithm was presented, which tackles MIML problems directly in a regularization frame-
work. The algorithm defines an objective function which balances the loss between the
labels and predictions on the bags as well as on the constituent instances. It also con-
siders the correlations among the labels associated to the same sample. Unfortunately, as
shown in the discussion section of their paper, the algorithm is established under the as-
sumption that all the class labels share the same commonness, which over-simplifies the
real scenario. In fact, in real applications it is rare that all class labels share the same
commonness; it is more typical that some labels share commonness, but the common-
ness shared by different label subsets may be different. For example, label ‘surfing’ may
share commonness ‘water’ with label ‘beach’, and label ‘elephant’ may share common-
ness ‘animal’ with label ‘lion’, but maybe ‘surfing’, ‘beach’, ‘elephant’ and ‘lion’ share
nothing together. Although they also extend the model to exploit the problem that differ-
ent pairs of labels share different commonness, the new model is difficult to be solved
since it involves too many variables. In addition to the design of various MIML algo-
rithms, some other progresses on MIML, such as theoretical exploration to the learnability
of MIML (Wang and Zhou 2012), metric learning from MIML data (Jin et al. 2009), multi-
label learning by instance differentiation (Zhang and Zhou 2007b) as well as applications
of MIML in bioinformatics (Li et al. 2012), image classification (Zhou and Zhang 2007;
Zha et al. 2008), visual mobile robot navigation (He et al. 2012), have been made.

Although the existing MIML algorithms may achieve better performance than the tra-
ditional multi-label learning algorithms, most of them only focus on the correspondence
between instances and labels, and the correlations among the labels are rarely considered.
In the next section, Gaussian process is used to establish a new MIML algorithm which ex-
ploits not only the connections between instances and labels but also the correlations among
labels.
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Fig. 2 A graphic representation of the proposed MIML algorithm

3 The proposed algorithm

Gaussian process has been widely used for traditional supervised learning (Williams and
Rasmussen 1996; Lawrence and Platt 2004; Williams and Barber 1998; He et al. 2011), a
detailed introduction about this area can be found in Rasmussen and Williams (2006). Ex-
plicit probabilistic formulation is an important advantage of Gaussian process models over
other non-Bayesian models. This also provides the ability to infer model parameters such
as those control the kernel shape and the noise level. In this section, a probabilistic kernel
algorithm is established by using Gaussian process for MIML. To represent our uncertainty
over class labels for a sample X = {xi, x2, ..., X}, a better method is to output a probability
for each label. As shown in Fig. 2, the main idea of the proposed model is to assume an
unobservable latent function f; for every label y; on the instance space RY,s=1,2,...,0,
and then the probability that sample X belongs to label y; can be determined by the val-
ues {fs(x1), fs(x2), ..., fs(x;7)} of function f; on the bag {x;, x5, ..., x;}. In this model,
the correlations among the labels are identified by a covariance matrix K/ between the la-
tent functions { fi, f2, ..., fo}, it will be seen that K/ can be obtained by maximizing a
marginal likelihood; the connection between the instances and each label can be exploited
by defining a likelihood function p(ys| fi(x1), fs(x2), ..., fs(x;7)), for example, we can de-
fine the likelihood as p(y, = 1] fs(x1), fs(x2), ..., fs(x3)) = max; p(y, = 1] f;(x;)) for the
standard multi-instance assumption which states that the label of a bag is positive if and
only if it contains at least one positive instance. Noting that although the proposed model
also consists of three layers from input to output with one hidden layer just like the MIML-
RBF (Zhang and Wang 2009) and DBA model (Yang et al. 2009), they may be very different
because our model also introduces a direct relationship of the hidden variables. The details
of the proposed algorithm are shown as follows.

3.1 Gaussian process prior

The basic idea behind Gaussian process prediction is to place a Gaussian process prior over
the latent functions. Inspired by Bonilla et al. (2008), in which the same GP prior is placed
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for a multi-task regression problem, we approach MIML problem by placing a GP prior with
zero mean over the latent functions { f;|s =1,2,..., 0}, i.e.,

(i), £()) =K - k(x,x), Ls=1,2,...,0 (1)

where K/ = (K Z'Z)QXQ is a positive semi-definite matrix that specifies the correlations
among labels, so that the observation of one class can affect the prediction on another class.
An important property of this model is that the correlations among labels can be deduced
directly by a covariance matrix K /. k(x, x') is a covariance function over instances x and x’.
Two covariance functions are used in this study, i.e.,

_le=x)?

k(x,x)=e & 2)

k(x,x')=x- (x')T 3)

We assume that all the parameters have been given except matrix K/. For notational
convenience, let Y = [yi1, ..., Yuls-ves Vigsevs Yugseees Y10y s Yuol's D = {x;li =
I,...,n,j=1,...,n;} be the set including all the instances in training set, f;;; = f;(x;;) be
shorthand for the value of the latent function, F;; = [ fi1s, fizss---» f,«,”s]T be the values of la-
tent function f; corresponding to bag X;, and F = [FITI, e FnTl, e Ff;, e FnTs, e FITQ,

., FHTQ]T. So, the joint distribution

p(FID,K')=N(F|0, K’/ ® K) 4)

is a Gaussian distribution with zero mean and covariance matrix K/ ® K, where ® denotes
the Kronecker product, the element of K is k(x, x’), x, x’ € D. The joint prior over F and
Fo=[F}, F) ..., F,]"is

*12
(F. FID. X KN =N (| B |10 K’ ® K. KI®K, )
p *9 k] *9 - F ’ Kf ® K* Kf ® K
where, Fus = [ futs, fiass -« -s fanus|'s fajs = fo(xs;), the elements of K, are k(x,;, x.;), the
elements of K, are k(x, x"),x € D, x" € X,, . Thus, the conditional prior

p(FF. D, X, K')=N(F|(I' KK " \F, K/ ® (K., — K[ K'K))) (6

may be deduced analytically, where I/ is an identity matrix with the same order as K /.
3.2 Joint likelihood

The joint likelihood, denoted as p(Y|F), is the joint probability of observing class labels
given the latent functions. Generally, the class labels are assumed to be independent vari-
ables given the latent functions. Thus, the joint likelihood p(Y|F) can be evaluated as a
product of the likelihoods on individual observation, that is

n Q
pY|F)=T][]pislFis) )

i=1s=1
Because the way in which instances trigger labels may be different in different problems,
in different learning tasks, it is difficult to know which assumption is the fittest. Just as the
different assumptions on the relationship between instance-labels and bag-labels in multi-
instance learning (Maron and Lozano-Pérez 1998; Zhou 2004), different likelihood func-
tions can be defined to deal with various problems. In this paper, we will first present the
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algorithm under the collective multi-instance assumption, and then modify it to obey the
standard multi-instance assumption. Note that a more detailed description about different
multi-instance assumptions can be found in the work of Foulds and Frank (2010).

The collective assumption states that all the instances contribute equally and indepen-
dently to a bag’s label. Thus, the likelihood p(y;; = 1| F;;) can be intuitively defined as

1 &
PQis = 11Fy) =sig(; Zﬁjs> ®)
b=l

where, sig(-) is a sigmoid function and logistic function o (t) = Tle" is used in this study.
As the probability of the two classes must sum to 1, we have p(y;; = —1|Fi;) =1 — p(yis =
1] F;y). So, for logistic function, likelihood p(y;,|F;s) can be written as

Pl Fi) =a<fl— me) ©
i j=1

by using the property o (—t) =1 — o (t).
3.3 Posterior distribution

By using Bayes’s rule, the posterior distribution over F for a given K/ becomes

n_ PIF)p(FID,K)
p(FID,Y,K') = SID KD (10)

where,
p(YID,K') :/p(Y|F)p(F|D, K')dF (11)

denotes the marginal likelihood for the parameter matrix K /.

Note that the posterior p(F|D,Y, K) is a non-Gaussian distribution and can not be
computed analytically. In the traditional Gaussian process classification algorithms, a pop-
ular idea is to approximate the posterior by using a tractable Gaussian distribution, and
many approaches such as Laplace approximation (LA), expectation propagation (EP) and
Kullback-Leibler divergence minimization (KL) have been proposed. We can use any of
these approaches to approximate the posterior p(F|D, Y, K') of this paper. The major dif-
ference among them may be that the computational complexity and the performance are
different. A more comprehensive overview of these algorithms can be found in Nickisch
and Rasmussen (2008). Because it may spend more shorter computing time than others, in
this paper, the Laplace’s method is utilized to obtain a Gaussian approximation

q(FID,Y, K'Y =N (F|F,A™") (12)
of p(F|D, Y, K'), where F = argmax; p(F|D,Y,K/), A=—VVlog p(F|D,Y, K')|s_p
is the Hessian matrix of the negative log posterior distribution at F.

It can be seen that the marginal likelihood p(Y|D, K) is independent of F, so we only

need to consider the un-normalized posterior when maximizing (10) with regard to F. By
taking the logarithm and introducing (4), (7), we obtain

Y (F) £logp(Y|F)+log p(FID,K')

=log p(Y|F) — %FT(Kf ®K) 'F— %log|Kf ®K|— %loan (Zn)
i=1

13)
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Then, by differentiating (13) with regard to F', we obtain
V¢ (F)=Vlogp(Y|F) — (Kf®K)’1F (14)
VVY(F)=VViog p(Y|F) — (K/ @ K) ™' (15)

o 9Plog p(Y|F) _ Yis NV p : ) Yis NV £ W2 dlog p(Y|F) __
Taklng W - —CXP(n—i Zj:l fl_/s)/(nl + nlexp(ﬁ Zj:l fl]s)) and T =

yis/(n; +n; exp(yn#:' Z;":l fijs)) into VVlog p(Y|F) and Vlog p(Y|F) respectively, we ob-
tain,

Vleg p(Y|F) = (I' ® diag{l,,, 1,5, ..., 1,,})d (16)

W £ _VVliog p(Y|F)
= (I’ @ diag{l,,, 1,,, ..., 1, ) Wo(I’ ® diag{1,,, 1,,,....1,, })T 17)

Where, d= [d]], d21, ey dnla ey d]Q, sz, ey an]T’ dis = yis/(ni +n; CX]D(%Y Z’;l:] fijs))v
Wo = diag{w”, W2ly evvs Wyly ovny, W10, W20, -+ an}, Wiy = exp(%‘ Z;l’:l fm)/(n,- +
n; exp(%f Z';’:l fijs)?, 1p, is an n; dimensional column vector of ones, diag{A,, A,, ..., A,}
denotes a block matrix in which the ith main diagonal block is A; and the off-diagonal
blocks are zero matrices, exp(-) is the exponential function. It can be seen from the negative
definite Hessian matrix in (15) that ¥ (F) is concave and the equation Vy/(F) = 0 has a
unique solution F. Thus, (18) can be obtained by using (14)

F=(K'/®K)Vlog p(Y|F) (18)

Since (18) is a non-linear equation and can not be solved analytically, Newton’s method
is used to solve it in this paper. And the iterative formula is

Frew=F = (VYY) 'Vy = (W+ (K' ®K)"') " (Viog p(Y|F) + WF)  (19)
By using matrix inversion formula,
(z+UupPv)) =z —z'Uu(P +V 'z ') VT Z! (20)
formula (19) can be expressed as
Frew = (K’ ® (Kdiag{L,,, Luy, ..., 1,})) (I = Wy ?B7' Wy (K’ ® Kyum))
x (Wo(I’ @ diag{l,,, 1y, ..., 1,,}) F +d) @1)

where, K, = (diag{l,,, 1,,, ..., 1,,”})TK(diag{1n1 ,1,,,...,1,,}), I is an identity matrix,
B=1+ W, (K' @ Kym)Wy">.

At last, the matrix A may be obtained by substituting F’ into the negative Hessian matrix
in (15),

A=—VVY(F)lpp= W+ (K @K))|,_; (22)

By using Gaussian approximation (12) of posterior p(F|D, Y, K/), the distribution of the
latent variables F, can be simplified as a Gaussian distribution:

p(FiD.,Y, X, K7) :/p(F*|F,D,X*,Kf)q(F|D,Y, k)dF

—N(FJKE, K/ @ (Koo — KJK'K)+KAT'K')  (23)
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where, K = I/ ® KTK~'. And then by utilizing (18) and (20), formula (23) can be trans-
formed into another form:

p(FID, Y, X, K') = N(F.JK.d, K’ ® K, — KW 2B'WIPKL)  (24)

3.4 Prediction

Let p(y, = 1|D, Y, X,, K¥) denote the probability that label s is a proper label of bag
X.,s=1,2,..., Q, it can be predicted by averaging out F,, i.e.,

p(ves =11D.Y, X*,Kf)=/a(i Zf*js>p(F*s|D,Y, X.,K')dF,, (25
ny -
j=1

Because of the non-linear form of the logistic function o (-), the predictive probability (25)
can not be computed analytically. Thus, we need to resort to sampling methods or analytical
approximations to compute these integrals. In this paper, Monte Carlo sampling method is
used to compute (25).

3.5 Learning parameter matrix K/

The Bayesian framework described above is conditional on the kernel parameter matrix
K. In this section, we wish to learn the parameter matrix K/ by maximizing the marginal
likelihood in (11), in other words, maximizing the agreement between observed data and the
model. Since the integral is intractable, one way to achieve this is to provide a lower bound
of the marginal likelihood (11). A popular lower bound is the one obtained by Seeger (2003)
utilizing Jensen’s inequality and a Gaussian approximation of the posterior p(F|D,Y, Kf).
That is,

logp(Y|D,K') > /q(F|D,Y,Kf)logp(Y|F)dF
+/q(F|D, Y,K/)log p(F|D,K”)dF

—/q(F|D,Y,Kf)logq(F|D,Y,Kf)a'F
=:logZ (26)

Therefore, the parameter matrix K/ can be obtained by maximizing log Z. Because the
parameters F and A of g(F|D, Y, K') are also the non-linear functions of K, it is difficult
to maximize log Z directly. Inspired by Kim and Ghahramani (2006), an EM-like algorithm
is used to solve this problem. The algorithm is divided into two steps: in the E-step, we
compute the values of Fand A by using (21) and (22) given the parameter matrix K/, and
in the M-step, the lower bound log Z is maximized with regard to K/ given the values of
F and A obtained in the E-step. The E-step and M-step are alternated until convergence.
Since the first and third terms of log Z are independent of the parameter matrix K/ given
the values of F and A, we only need to maximize fq(F|D, Y, Kf)log p(F|D,K/)dF in
the M-step. By expanding it, we obtain
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/q(F|D, Y,K')log p(F|D,K”)dF

1 N _ R n
—§<FT(Kf ®K)'F+ Qlog2n Y n;+ Qlog|K|
i=1

+) nilog|K/ |+ w(A (K ® K)l))
i=1

= G(K'|F, A) (27)
For dlstlngulshmg different K/, we denote the K/ related to F and A as Kold, ie., F =
(K od ® K)Vlogp(Y|F) A=W+ (Kold ®K)~ 1)|F:F Then, by using matrix inversion
formula (20), G(K/ |F , A) can be expressed as

G(K'|F, A)= —% (Qlog K|+ (Zn) (Qlog2n + log| K’ | + (K}, (K') ™))

i=1
(W A (LK) K)o k)

where tr(-) denotes the trace of a matrix. Differentiating (28) with regard to K/,

VG(K'|F, A)
((Zn) (k')~ (Zn) (k") 'k, (k)7
+ (Kf)_lKgdHK(Zd(Kf)_j 29)

where H is a square matrix of order Q. The element H;; of H can be computed by
Hij = tI'(C,‘j Kxum) (30)

where, Cj;,1, j =1, ..., Q are square matrixes of order n by which Wg/zé‘l‘/f/&/z —dd"is
expressed with block , that is

Cu Cpp -+ Cip

Cy Cp -+ Cy A 1 oa .n

S =W PB Wy —ad” G1)
Coi Co2 -+ Cgg

By setting VG (K/|F, A) to zero, we have

K/ =K/, — Kj,'dHK;‘l'd/<Zn,»> (32)

Thus, in the M-step, we only need update K/ with (32). Till now, the whole MIML algo-
rithm has been presented. Note that a significant problem with Gaussian process prediction
is that it needs to invert the matrix B =1 + WO1 / 2(K I ® Ksum) WO1 / 2, which is prohibitive on
modern workstations for large problems. We will deal with this problem in the next section.
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3.6 Approximation of matrix K

The issue of dealing with large data set has been studied in many Gaussian process liter-
atures, and a more detailed overview can be found in Rasmussen and Williams (2006). In
this paper, we reduce the computational complexity of inverting the QOn x Qn matrix B by
approximating Ky, in the form K,,, &~ P PT, here, P is an n x m matrix, m < n. Notice
that, by representing Kj,,, with P, WO1 12p-1 WO1 /2 can be expressed as

Wy ?B~'Wy"? = Wy — Wo(L ® P)B (LT ® PT)W, (33)

where, By =1+ (LT ® PT)Wy(L ® P), K/ = LL". Thus, the problem is transformed into
the inversion of a Om x Om matrix. For the problem with moderate n, we can consider
reduced-rank approximations to Kj,,,. In this paper, the optimal reduced-rank approxima-
tion U,, A,, U,; of K., with respect to the Frobenius norm is used, where A,, is the diago-
nal matrix of the leading m eigenvalues of Kj,,, and U,, is the matrix of the corresponding
eigenvectors. Thus, P = U, A Unfortunately, this is limited for the problem with large
n because the eigendecomposition needs O (rn*) operations. However, the Nystrém method
(Williams and Seeger 2001) can be used to compute an approximation of Kj,,. This ap-
proximation is obtained by randomly choosing m rows/columns of Kj,,,, and then setting
P = K,,mK,;,},/ 2, where K,,, is an n x m block of the original matrix Kj,,,. In the next
section, we will give more details of the implementation of the proposed algorithm.

3.7 Implementation of the proposed algorithm

In this section, care is taken to minimize the computational cost and to avoid numerically
unstable computations. Because the mean of F;, not Fj,, is used in the whole algorithm, we
can rewrite the Newton iteration given in (21) as

Foum = (K¥ ® Kyun) (I = Wo?B™'W,*(K' @ Kyum)) (Wo Foum + d) (34)

where, Fy,,, denotes the vector composed of the sum of Fi;,i.e. Fy =1/ ® (diagf1,,, 1,,,
..., 1, DTF. By substituting (33) into (34), we obtain

Fym = (K/ ® PP")as (35)

where, as = a; — a; + Wo(L ® P)as,a; = By 'az,a3 = (L" ® PNaz,ay = Wop(K/ ®
PP"ay, a; = Wy Fy,, +d. For minimizing the cost of computing B]_', formula ay = B]_'a3
is transformed into a minimum problem a4 = arg min, %(le — a3)T(Bix — a3), which is
solved by using conjugate gradient method. Similarly, we also can rewrite formula (24) and
(31). Note that the main reason for using the symmetric positive definite matrix B, widely is
that it is well-conditioned for many covariance functions. Moreover, because Ky, not K,
is used in the whole algorithm, we only need to store kernel matrix K, in the system. The
flowchart of the algorithm is outlined in Algorithm 1. In this paper, the thresholds &y and &
are set to be 0.01 and 2 x 1076, respectively; m (the number of columns of P) is determined
by the cumulative percentage of A,,, and detailed discussions about m can be found in the
second paragraph of Sect. 4.1.

It can be seen from the flowchart that the computational complexity for training the
model is mainly dominated by solving the minimum problem in the step 3.2 and computing
the inverse of B in the step 4. Thus, in the training stage, the computational complexity of the
model is about O (I Q3nm?), where [ is the number of iterations of the EM-like algorithm
for solving the model. Notice that the computational complexity does not depend on the
instance number. This is because the algorithm only relates to the kernel matrix Kj,,, rather
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than K in the training stage. In the testing stage, the computational complexity is dominated

. p— A A A —T . . _
by computing the term K, WO1 g1 WOI/ ’K . in formula (24) which needs about O (Q*n*n)
operations, here, n denotes the average number of instances.

Algorithm 1 (the flowchart of proposed algorithm)

Input: D, Y, Ksym, Xu,m, &0, €

1 Initializing Fy,,, and K/ as a vector of ones and an identical matrix, respectively;

2 Approximating K, in the form K,,, ~ P PT;

3 E-step: given K/, updating Fj,,, by using formula (35);

3.1 a; = WoFym +d,ay=Wo(K/ ® PPV)aj, a3 = (LT ® PNay;

3.2 ay=argmin, 3 (Bix —a3)"(B1x — a3);

3.3 as =a; —ay + Wo(L ® P)ay, updating Fy,,, = (K ® PPT)as, obj = —1al Fyum +
lOg p(Y|F€um)7

3.4 1If the difference of obj between two subloops is smaller than a threshold g, then go
to 4, else go to 3.1;

4 M-step: given Fy,,, updating K /by using (32);

5 If the difference of K/ between two loops is smaller than a threshold ¢ (i.e., |K lf -
Kzf I/ K lf || < e, where K 1f and K2f denote the values of K/ obtained in the two loops),
then output Fj,,,, K/, else go to 3;

6 Computing the mean and variance of F,|D, Y, X,, K ! by using (24);

7 Predicting labels of X, with (25).

3.8 Extension to the standard multi-instance assumption

Through the efforts of above sections, we have shown the proposed algorithm under the
collective multi-instance assumption. In this section, the algorithm will be modified to deal
with the problems satisfying the standard multi-instance assumption. Being different with
the collective assumption, the standard multi-instance assumption states that a bag is positive
if and only if it contains at least one positive instance. Thus, for the standard assumption,
the likelihood p(y;; = 1| F;;) (8) can be redefined as

PO = 11F) =max pOos = 11fy) =maxo(fy) = (max fix)  (36)
and the likelihood function p(y;s|F;s) (9) can be written as
POl i) =0 (i max ) (37)

Since function max(-) is non-differentiable, the aggregate function (also known as exponen-
tial penalty function) can be used as an approximation of it, i.e.,

1 “
m]gix fijs & " log (Zl exp(vf,jx)> (38)
=
where, v > 0 is a control parameter. It can be seen that

1 o
ijs = lim —1 E ij: 39
mj‘?‘x fJ~ vl)nolo v 0g<j:1 exp(”f;s)) (39)
Substituting (38) into (37), we can obtain

1

1+ (L exp(ufij)) i

p(yis|Fis) ~ (40)
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which is an infinitely differentiable function.
Thus, formulas (16) and (17) may be approximately updated as below,

Vliog p(Y|F)~ Ed, W2 —VVliog p(Y|F)~ EW ET 41)
where, d = [dy1,da1, ..., dy1, ..., dig.dog, ... dnol", dis = yis/(1 + exp(yis max; fijs)),
Wo = diag{wii, war, ..., Wyt ..., WiQ, W2Q,5 -« an}, wis = exp(yis max fijs)/(l +
exp(yis max; fi;))?, E = diag{ei1, €21, ..., €u1, ..., €10, €20, ..., ng}, € is an n; dimen-

sional column vector with one on its joth element and zero elsewhere, jo = argmax; fjj,.
The iterative formula (21) can be expressed as

Fuow= (K" @ K)E(I — W, B'Wy?ET(K' ® K)E)(d + WoE"F) 42)

where B =1+ W,?ET(K' ® K)EW,'*. And the formula (32) for computing K / is

K' =K}, —KJHK],/ (Zm) 43)

i=1

where the (i, j)th element of H is H;; = tr(Cije_TKei), e; =diagfey;, exi, ..., €ni}-

At last, the distribution (24) of the latent variable F, and the predictive probability (25)
can be respectively written as

p(FD,Y, X, K'Y = N(F.|(K' ® K)Ed, K! ® K.
(KT @KMEW B WIET(K ®K,))  (@4)
and

P =1|D.Y, X,. K) =/a<max f*_js)p(F*le, Y. X, K')dF, 45)
J

Until now we have successfully modified the proposed algorithm to satisfy the standard
multi-instance assumption. It is also necessary to estimate the computational complexity
of it. It can be seen that the main difference from the original algorithm is that the term
ET(K' ® K)E is used in the modified algorithm instead of K,,,. Since E is a sparse matrix
and each of its elements is 0 or 1, the term ET(K/ ® K)E is indeed a submatrix of K/ ® K
which has the same size as K/ ® K,,,. Thus, the computational complexity of the modified
algorithm would be the same as the original one.

4 Experiments

In order to obtain a more comprehensive understanding about the proposed algorithm, we
test it on both multi-label learning problems and multi-instance learning problems. Since
the performance evaluation of multi-label learning algorithm is much more complicated
than single-label learning one, the following multi-label evaluation metrics proposed by
Schapire and Singer (2000) are used in this paper: (a) Average precision: computes the
average fraction of labels ranked above a particular label y € ¥ which actually is in Y.
(b) Coverage: evaluates how far one needs to go in the list of labels to cover all the relevant
labels of a sample. (c) Hamming loss: evaluates how many times an object-label pair is
misclassified, i.e., a proper label is missed or a wrong label is predicted. (d) One—error:
determines how many times the top-ranked label is not in the set of proper labels of a sample.
(e) Ranking loss: evaluates the average fraction of label pairs that not correctly ordered for a
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sample. Due to page limit, we only give some simple descriptions of these metrics, and the
detailed definitions of these metrics can be found in Schapire and Singer (2000). In order to
make the smaller value to indicate the better performance of the algorithm for all evaluation
metrics, 1—Average precision is used in all the experiments.

4.1 Multi-label learning problems

In this section, the proposed algorithm satisfying the collective multi-instance assumption
is validated on two MIML data sets respectively come from a multi-label scene classifica-
tion problem and a multi-label text categorization problem. As shown in the second row
in Table 1, the scene classification data set which is proposed by Zhou and Zhang (2007)
contains 2000 natural scene images belonging to five classes. Each image is represented as a
bag of nine 15-dimensional instances generated by the SBN method (Maron and AL 1998).
And over 22% images belong to multiple classes simultaneously and the average number
of labels per image is 1.24. The text categorization data set is a subset of the widely stud-
ied Reuters-21578 collection. Some information of this data set is listed in the third row in
Table 1. In this data set, each document is represented as a bag of instances, where each
instance is obtained by splitting the document into several passages by using overlapping
windows of maximal 50 words. The seven most frequent categories are considered. After
removing the documents that do not have labels and randomly removing some documents
which have only one label, the data set consists of 2000 documents and about 15% sam-
ples have multiple labels. More detailed information of this data set can be found in Zhou
et al. (2012) or Zhang and Zhou (2008). In order to evaluate the relative performance of
the proposed algorithm, it is also compared with three existing MIML algorithms named
MIMLRBF (Zhang and Wang 2009), MIMLSVM (Zhou and Zhang 2007) and MIML-kKNN
(Zhang 2010).

In order to speed up the computation of the proposed algorithm, as shown in Sect. 3.6,
we need to approximate the kernel matrix K, with an n x m matrix P, i.e., K, ~ PPT.
Although the computational complexity is greatly reduced when m < n, the quality of the
solution may be not guaranteed. Thus, it is necessary to analysis the influence of m on the
algorithm. Figure 3 shows the relationships between m and different aspects of the algo-
rithm on the scene classification data set when the Gaussian kernel (2) with § =1 is used.
In this experiment, the data set is randomly partitioned in half to form a training set and a
testing set. We repeat the experiment for 10 random splits, and report the mean of the results
obtained over 10 different testing sets. Figure 3(a) illustrates the relationships between m
and the relative errors of latent variables F and K /. It can be seen that the errors of F and
K/ reduce evidently when m changes from 5 to 100 and then gradually tend to O in the
remaining increasing phase of m. The relative error is defined as follows: taking F as an
example, let F be the truth value of F obtained by using Kj,,,, and F; be an approximate
value obtained by using P PT, the relative error of F is || F; — Fy||/|| Fo||. Figure 3(b) depicts
how the algorithm performs on the data set under different m. Just like what we have fore-
seen, the performance of the proposed algorithm will not be guaranteed if m is very small.
Fortunately, as can be seen from the figure, the performance will not change significantly as
long as m is greater than 50 which still is far smaller than 1000. Moreover, in the case of
50 < m < 150, although the errors of F and K/ are still great, the performance is already on
par with the best one. That is because the prediction results of the algorithm are mainly de-
pendent on the sign of F' rather than its numerical value. Figure 3(c) presents the influence
of m on the computing time of the algorithm, which is in accord with the computational
complexity of the algorithm achieved in Sect. 3.7, i.e., the computational complexity of the
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Table 1 Characteristics of the MIML data sets

Datasets Domains Number  Number Number Average number  Instances per bag

of bags of classes  of features  of labels Min Max Mean
Scene Vision 2000 5 15 1.24 9 9 9
Reuters Text 2000 7 243 1.15 2 26 3.56

Table 2 The experimental results of the compared algorithms (mean = std.) on the scene classification data
set

Evaluation metric Algorithms
The proposed algorithm MIMLRBF MIMLSVM MIML-KkNN
Normal Special

1-Average precision  0.183 +£0.018 0.225+0.027 0.216+0.017 0.238£0.019 0.210+0.017

Coverage 0.857 £0.063 1.002+£0.088 1.018+0.059 1.100£0.093 0.943 +0.046
Hamming loss 0.165+0.010 0.186£0.007 0.1834+0.013 0.192+£0.011 0.1734+0.010
One-error 0.286 £0.032 0.346£0.047 0.3294+0.032 0.361 £0.028 0.331+0.034
Ranking loss 0.146 £0.015 0.181+0.019 0.184+£0.016 0.205£0.020 0.169+0.013

model is proportional to m? in the training stage but irrelevant to m in the testing stage. Con-
sidering that the relationship between m and the performance of the algorithm may change
as the training set or number n of samples changes and it is difficult to determine a proper
m in practice, the cumulative percentage of A,, is introduced to determine m. Let A be the
diagonal matrix consisting of the eigenvalues of Kj,,, the cumulative percentage of A,
is defined as tr(A,,)/tr(A). The relationship between m and the cumulative percentage of
A, is depicted in Fig. 3(d). It can be seen that the shape of the curve in Fig. 3(d) is just
opposite to the ones in Fig. 3(b). We can deduce that the significant improvement of the
performance may be caused by the significant increase of the cumulative percentage in the
initial increasing phase of m. For validating this supposition, we analysis the relationship
between the performance and the cumulative percentage on different data sets and using
different kernels with various parameters. We found that the performance of the proposed
algorithm gradually gets better when the cumulative percentage tends to 100% and will not
significantly change as long as the cumulative percentage is greater than 99.5%. In contrast,
there is no unified rule to follow in the relationship between the performance of the algo-
rithm and m. Thus, in the practical applications, m can be obtained based on the condition
tr(A,,)/tr(A) > 0.995. Note that the m obtained through above condition is still far smaller
than the size of training set in most situations. Taking the experiment of Fig. 3 as an example,
the cumulative percentage already reaches to 99.5% when m is 50.

Tables 2 and 3 summarize the experimental results of each compared algorithm obtained
by using the 10-fold cross-validation on the scene and Reuters data sets respectively, where
the best result on each metric is shown in bold face. For the kernel-based algorithms includ-
ing MIMLSVM and the proposed one, the Gaussian kernel (2) and linear kernel (3) are used
on the scene and Reuters data sets respectively. For a fair comparison, the 2-fold cross valida-
tion is performed on the training data set for each algorithm to select the optimal parameter.
It is evident from these tables that the proposed algorithm achieves superior performance to
the other existing algorithms in terms of all metrics. In addition, the MIMLSVM algorithm
performs apparently worse on the both data sets, which may be an experimental evidence
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Table 3 The experimental results of the compared algorithms (mean = std.) on the Reuters data set
Evaluation metric Algorithms
The proposed algorithm MIMLRBF MIMLSVM MIML-kKNN
Normal Special
1-Average precision  0.029+0.009 0.033+£0.011 0.037+0.008 0.039+0.017 0.046 £0.013
Coverage 0.252£0.037 0.273+£0.039 0.283+0.032 0.298 £0.061  0.341 +£0.067
Hamming loss 0.030 £0.003 0.033£0.005 0.034+0.005 0.033£0.008 0.039 +0.006
One-error 0.046 £0.015 0.052+£0.017 0.059+0.012 0.061 £0.026 0.069 +0.022
Ranking loss 0.015+£0.005 0.018£0.006 0.0194+0.005 0.022£0.009 0.027 +0.008

of the supposition that degeneration methods may lose information during the degeneration

process.

As described in Sect. 3, compared with the existing MIML algorithms, a main contribu-
tion of the proposed algorithm is that the correlations among labels are exploited by using
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Table 4 The computing time of each compared algorithm on both the scene classification and Reuters data
sets (minutes)

Computing time Algorithms
The proposed algorithm MIMLRBF  MIMLSVM  MIML-kNN
Normal Special

Scene Training time ~ 133.43£5.22 0.49+0.02 4.68+0.07 4.92+0.09 5.76 £0.01

Testing time 1.63+0.01 1.63+0.02 0.33+£0.01 0.26£0.01 6.03+0.01
Reuters  Training time 42.55+137 238+0.17 1.51+£0.02 2.0£0.08 2.78 £0.06
Testing time 041+£0.01 043£0.01 0.1£0.01 0.06 +0.01 2.344+0.06

a covariance matrix. In order to further investigate whether the superior performance of the
proposed algorithm benefits by considering the correlations among labels, the third column
‘the proposed algorithm (special)’ of each table presents the experimental result of the pro-
posed algorithm when the covariance matrix K/ is set to be the identity matrix, i.e., the
labels are considered as mutually independent ones. It can be seen that the covariance ma-
trix has important influence on the performance of the algorithm. In other words, as what we
expect, the correlations among the labels are the important information for improving the
performance of the MIML algorithms. It is interesting that the performance of the proposed
algorithm (special) also is competitive compared with the existing algorithms.

It is well known that the efficiency also is an important factor for investigating the practi-
cality of an algorithm. Table 4 reports the training and testing time consumed by each com-
pared algorithm on both data sets. These results are based on the experiments conducted on
a 2.7 GHz PC with 2 GB RAM. It can be seen that the proposed algorithm (normal) spends
more time than the others in the training stage. That is mainly because the EM-like is of
linear rates of convergence and we only initialize K/ with an identical matrix. In practice,
we can speed up the algorithm by initializing K/ with the value obtained in a subset of
the training set. Certainly, we will try to solve the model by using an approach with super-
linear rates of convergence in the future. In the testing stage, the efficiency of the proposed
algorithm is slightly worse than MIMLRBF and MIMLSVM while superior to MIML-KNN.

4.2 Multi-instance learning problems

In addition to the correlations among the labels, another motivation of the paper is to model
the connections between the instances and labels. In Sect. 3.8, we also extend the proposed
algorithm to obey the standard multi-instance assumption. In this section, we will conduct
experiments on several multi-instance learning problems to justify the usefulness of model-
ing different instance-label correspondences. Note that ‘collective’ and ‘standard’ are used
to distinguish the algorithms satisfying the collective multi-instance assumption and the
standard multi-instance assumption, respectively.

We first validate the proposed algorithm on a text categorization problem approximately
satisfying the standard multi-instance assumption. It includes twenty data sets respectively
derived from 20 Newsgroups corpus by Zhou et al. (2009) in order to test the performance
of their miGraph algorithm. For each of the twenty data sets, 50 positive and 50 negative
bags are generated. Each instance is a post represented by the top 200 TFIDF features.
Each positive bag contains 3% posts randomly drawn from the target category and 97%
posts randomly and uniformly drawn from the other categories. All instances in negative
bags are randomly and uniformly drawn from the other categories. In Table 5, column 2
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Table 5 The average accuracies of the compared algorithms (mean = std.) on the data set proposed by Zhou
et al. (2009)

Data sets Algorithms
# inst MI-Kernel miGraph The proposed algorithm
Standard Collective
alt.atheism 54.4 60.2+£3.9 65.5+4.0 845+25 474+4.4
comp.graphics 30.9 47.0+3.3 778+ 1.6 83.8+19 51.0£0.0
comp.os.ms-windows.misc 51.8 51.0£52 63.1£1.5 67.4+6.3 48.0+4.0
comp.sys.ibm.pc.hardware 48.3 46.9+3.6 59.5+£2.7 77.8+25 504+1.7
comp.sys.mac.hardware 44.7 445432 61.7+4.38 79.6 1.9 49.0+3.9
comp.windows.x 31.1 50.8£4.3 69.8 £2.1 79.5+£3.0 50.2+£0.8
misc.forsale 53.1 51.8+2.5 552427 71.5+1.7 50.8£3.3
rec.autos 34.6 529+33 72.0£3.7 792+1.5 49.6£2.8
rec.motorcycles 47.3 50.6+3.5 64.0+2.8 82.0+1.0 50.0+2.5
rec.sport.baseball 33.6 51.7+2.38 64.7+3.1 85.2+0.8 482+ 1.8
rec.sport.hockey 19.8 513+£34 85.0£25 90.0+1.7 492+1.3
sci.crypt 42.8 56.3+£3.6 69.6£2.1 77.8£1.9 48.8+£2.3
sci.electronics 31.9 50.6+2.0 87.1£1.7 91.6 £ 0.5 53.0£0.0
sci.med 30.5 50.6£1.9 62.1£3.9 842+0.38 49.8+3.4
sci.space 36.6 547+£25 75.7+£3.4 804+1.8 49.5+1.9
sci.religion.christian 46.8 492434 59.0+4.7 820+14 455+ 1.7
talk.politics.guns 35.6 47.7+3.8 58.5+£6.0 754+£23 48.0+4.1
talk.politics.mideast 33.8 559+£238 73.6+£2.6 80.2+15 48.3+3.0
talk.politics.misc 47.9 51.5£3.7 70.4+3.6 70.5+£2.2 55.0£6.3
talk.religion.misc 46.1 55.4+43 63.3+3.5 76.0 1.7 50.0+£1.2

lists the average number of instances per bag for each data set. The average accuracy (%)
with standard deviation of each compared algorithm is presented in the other columns of
Table 5, where the best result on each data set is shown in bold face. The accuracies of
miGraph and MI-Kernel are taken from Zhou et al. (2009). For all these methods, the ten-
times 10-fold cross validation is run on each data set; moreover, the Gaussian RBF Kernel
is used and the parameters are determined through cross validation on the training set. It is
obviously that the performance of the proposed algorithm (standard) is superior to those of
other algorithms. In addition, the performance of the proposed algorithm (collective) is not
competitive. The main reason may be that there is only about 3% positive instances in each
positive bag but the proposed algorithm (collective) is based on the assumption that bag’s
label is collectively determined by all its instances.

Image categorization has been formulated and tackled as a MIL problem in the past work.
The 1000-Image and 2000-Image data sets have been used in many literatures such as Chen
and Wang (2004), Chen et al. (2006) and Zhou et al. (2009) to test the performance of their
algorithms. In this section, these data sets are used to further evaluate the performance of the
proposed algorithm. The 1000-Image and 2000-Image data sets consist of ten and twenty
categories of COREL images, respectively, where each category contains 100 images. Each
image is regarded as a bag and its segmented regions are regarded as instances. Each instance
is characterized by a 9-dimensional feature vector in several aspects such as the color, tex-
ture, and shape properties. Being different with the above text categorization problem, the
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Table 6 The average accuracies of the compared algorithms on the data set proposed by Chen and Wang
(2004)

Algorithms 1000-Image Data Set 2000-Image Data Set
The proposed algorithm (collective) 84.6: [83.6, 85.5] 73.0: [71.8, 74.2]
The proposed algorithm (standard) 70.0: [67.5, 72.5] 53.2: [48.6, 57.8]
MIGraph 83.5:[81.2, 85.7] 72.1: [71.0,73.2]
miGraph 81.4: [80.2, 82.6] 70.5: [68.7,72.3]
MI-Kernel 81.8: [80.1, 83.6] 72.0: [71.2,72.8]
MILES 82.6: [81.4, 83.7] 68.7: [67.3,70.1]
DD-SVM 81.5:[78.5, 84.5] 67.5: [66.1, 68.9]
MI-SVM 74.7: [74.1,75.3] 54.6: [53.1, 56.1]
k-means-SVM 69.8: [67.9,71.7] 52.3:[51.6,52.9]

class labels of the sample in these data sets are usually determined by the collective property
of multiple regions. Taking the label ‘skiing’ as an example, it should include the regions of
snow, people, and perhaps a steep slope or mountain in the image. Since the proposed algo-
rithm will be compared with other existing MIL algorithms, we adopt the same experimental
routine as what has been used in Chen et al. (2006) and Zhou et al. (2009). Images within
each category are randomly partitioned in half to form a training and a testing set. Each
experiment is repeated for 5 random splits. Since the problem is multi-class, one-against-the
rest strategy is used by the proposed algorithm. The average accuracy with 95% confidence
intervals obtained on 5 different testing sets is shown in Table 6. In order to evaluate the
relative performance of the proposed algorithms, the results of some other MIL algorithms
reported in Chen et al. (2006) and Zhou et al. (2009) are also shown in the table. As can
be seen from Table 6, the proposed algorithm can achieve competitive performance on both
1000-Image and 2000-Image data sets. Moreover, in contrast to the results of Table 5, the
performance of the proposed algorithm (standard) is relatively poor. It also is consistent with
the instance-label correspondence of the image data sets.

Thus, besides to the superior performance of the proposed algorithm, it also can be seen
from the quite different results of the proposed algorithm in the above two experiments
that an important condition for achieving better performance in a certain problem is that
the algorithm can efficiently capture the connections between the instances and the labels
contained in the problem.

5 Conclusion

Considering that the existing MIML algorithms can not efficiently exploit the advantages
of the MIML representation, a novel MIML algorithm was proposed by employing Gaus-
sian process in this paper. Through supposing a latent function for every label over instance
space, the connections between instances and class labels can be exploited by defining dif-
ferent likelihoods and the correlations among labels can be identified by a covariance matrix
of the latent functions which may be obtained by maximizing a marginal likelihood func-
tion. Experimental results show that the proposed algorithm outperforms the existing ones.
It is well known that the ways in which instances trigger labels are different in different
problems. In the future work, we will try to define the likelihood p(y;; = 1|F;;) based on

@ Springer



Mach Learn (2012) 88:273-295 293

other assumptions such that the algorithm can be used to deal with more practical prob-
lems. Moreover, since the computational complexity of the algorithm in the training stage is
still prohibited for the problems with larger number of labels, to improve the computational
complexity of the algorithm also is a major focus in the future research.

Appendix: Derivation of formula (41)

By differentiating log p(Y|F) with regard to f;;; based on (40), we obtain

dlog p(Y|F) .
) is/ (46)
afijs (= (Zjo eXP(UfijOS))yu D+ Z.fo#j exp(v(fijos - flja)))
22logpviF) | (i, 5) # (ir, s1)
T pi(F), (@, Jj,s)= (1, ji,51) 47)
Fajor s p2(F), other
where,
PUF) = (Z«/’o eXP(Ufijos))—"lx/v —yisv(1l + (Zjo exP(vfij“S))M/U)(Zjo;éj exp(0(fios — fi7e))
(4 (X jy expWfijos )21+ 2 12 P (fijos — fijo))?
p2(F) = (Zjo exp(vfl-jox)))'i.:/v

(T4 (X expfiipe )2+ 2 02 exp i — iU+ 2 0251 expW(Figps — fijns)))
+ yisUeXP(U(fij]s - fl].&))
1+ (3, exp(ufijgs)) s /) (1 + 302 exp(v(fijos — fijs))?

Suppose that for each (i, s) there exists unique jiqx € {1,2,...,n;} such that fi;, ... =
max; f;;s, formulas (46) and (47) may be approximatively written as

Yis ] — . L.
Aog p(YIF) ) Trepommang 7gey® /= AT8MaXj, fijos 48)
afijs 0, other
and

(I+exp(yis max j fijos)
8ﬁ1j1 51 aﬁﬁ‘

3 9’ logp(Y|F) _ T 7o (@ ),8) = (1, ji,51) and j = argmax;, fiM9)
0, other
By using (48) and (49), we can obtain (41) directly.
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