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Abstract Directly applying single-label classification methods to the multi-label learning
problems substantially limits both the performance and speed due to the imbalance, depen-
dence and high dimensionality of the given label matrix. Existing methods either ignore
these three problems or reduce one with the price of aggravating another. In this paper,
we propose a {0,1} label matrix compression and recovery method termed “compressed
labeling (CL)” to simultaneously solve or at least reduce these three problems. CL first
compresses the original label matrix to improve balance and independence by preserving
the signs of its Gaussian random projections. Afterward, we directly utilize popular binary
classification methods (e.g., support vector machines) for each new label. A fast recovery
algorithm is developed to recover the original labels from the predicted new labels. In the
recovery algorithm, a “labelset distilling method” is designed to extract distilled labelsets
(DLs), i.e., the frequently appeared label subsets from the original labels via recursive clus-
tering and subtraction. Given a distilled and an original label vector, we discover that the
signs of their random projections have an explicit joint distribution that can be quickly com-
puted from a geometric inference. Based on this observation, the original label vector is
exactly determined after performing a series of Kullback-Leibler divergence based hypoth-
esis tests on the distribution about the new labels. CL significantly improves the balance
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of the training samples and reduces the dependence between different labels. Moreover, it
accelerates the learning process by training fewer binary classifiers for compressed labels,
and makes use of label dependence via DLs based tests. Theoretically, we prove the recovery
bounds of CL which verifies the effectiveness of CL for label compression and multi-label
classification performance improvement brought by label correlations preserved in DLs. We
show the effectiveness, efficiency and robustness of CL via 5 groups of experiments on 21
datasets from text classification, image annotation, scene classification, music categoriza-
tion, genomics and web page classification.

Keywords Multi-label prediction · Labelset selection · Compressed sensing · Random
projection · Label compression · Distilled labelsets · Binary matrix decomposition · KL
divergence · Hypothesis test of distribution · Support vector machines

1 Introduction

The past years have witnessed significant contributions of multi-label learning for various
practical applications, such as text classification, image annotation, scene classification, mu-
sic categorization, genomics and web page classification, where each sample simultaneously
belongs to several classes out of a great amount of possible candidates. Recently, learning
from data with multiple labels attracts growing attention from related fields and is devel-
oped rapidly. Its importance and necessity have been well appreciated by plenty of specific
utilizations.

In contrast to single-label binary classification, multi-label learning predicts a {0,1} label
matrix Y ∈ {0,1}n×k (n is the number of samples and k is the number of labels) rather than
a {0,1} label vector y ∈ {0,1}n. At an early stage, binary relevance (BR) (Tsoumakas and
Katakis 2007) and label powerset (LP) (Tsoumakas and Katakis 2007) were developed to
transform a multi-label learning problem to several binary classification tasks. Specifically,
BR associates each label with an individual class, i.e., assigns samples with the same label
to the same class; and LP treats each unique set of labels as a class, in which samples share
the same label vector.

Although BP/LP and their variants can directly transform a multi-label learning problem
into multiple binary classification tasks, it has been widely acknowledged that these transfor-
mations share the following three problems: sample imbalance, label dependence and label
high-dimensionality. Because these transformations do not consider the differences between
the information embedded in several independent single labels and multiple labels. These
problems may ruin the binary classifier training and even end up with trivial solutions to the
label prediction, e.g., assigning the same label to all samples from different classes.

1.1 Three problems

The problem of sample imbalance It usually occurs in multi-label learning and multi-class
learning, when more than two classes are considered and the one-versus-all rule is adopted.
In such a case, the conventional binary classification methods tend to overwhelm the class
with more samples. This sample imbalance between these two classes will seriously weaken
the classification performance and even make the learning task fail by assigning the same
label to all samples from different classes.

Specifically, BR directly uses the original label matrix as the class indicator matrix and
trains a classifier for each label. It allows the overlapping of classes and treats them as
independent ones. Thus BR has the imbalance problem when 0 and 1 in columns of the
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label matrix are imbalanced. LP treats each unique labelset as the sign of an independent
class and transfers a multi-label prediction problem to a larger size multi-class classification
problem. In contrast to BR, LP tremendously increases the number of classes and decreases
samples in each class, so it aggravates the sample imbalance problem.

The problem of label dependence This is a characteristic problem of multi-label learning
and tells the difference between multi-label learning and multi-class learning, because it is
admitted a simultaneous appearance of different labels on one sample. The dependence or
correlation between different labels can then be studied by using statistics of their distri-
butions, e.g., χ2 test and Pearson’s correlation coefficient. This dependence between labels
ends up with the poor performance of multi-label learning when it is directly decomposed
into several binary classification tasks. That is because the direct decomposition assumes
different labels are independent of each other and ignores the label dependence. In con-
trast to binary classification, samples sharing one identical label in multi-label learning may
quite differ in concepts and have large pairwise distances in the feature space, because their
other labels can be different. There are two types of label dependence (Dembczyński et
al. 2010), the conditional dependence and unconditional dependence. The former captures
the label dependence given a specific sample, while the latter considers the global label
dependence in the label space. Exploiting label dependence becomes a popular motivation
in recently developed multi-label learning methods (Read et al. 2009; Bianchi et al. 2006;
Tsoumakas et al. 2008). Both empirical and theoretical studies have proved that it helps
improving the learning performance by considering the label dependence.

BR simply ignores the dependence between labels and independently trains classifiers
for given labels. Thus it performs unsatisfying when the labels are highly correlated to each
other. LP treats the unique different labelsets as independent classes and trains one binary
classifier for each of them. It takes label dependence into consideration, but it neglects the
correlation or shared labels between different labelsets and deteriorates the data imbalance
as the cost.

The problem of label high dimensionality In practical problems, e.g., text classification
(Gomez et al. 2011; Liu and Liang 2011) and image annotation, data usually have hundreds
or even thousands of labels, which leads to a {0,1} label matrix with sparse entries and high
dimensionality. The high dimensionality of the label matrix makes the multi-label learn-
ing task very challenging. In particular, the increasing of label dimensionality enlarges the
sample imbalance in each binary classification and increases the number of classifiers to be
trained.

BR directly adopts the original label matrix, while LP increases the number of labels to
K much larger than that of the original labels. Most existing multi-label learning methods
transfer the original problem to m binary classifications, wherein m is a number between k

and K .

1.2 Previous works

Both empirical and theoretical studies of the existing multi-label algorithms suggest that the
learning performance is determined by specific properties of a multi-label dataset, e.g., label
dependence, label structure and dependence between samples and the corresponding labels.
Nevertheless, most existing methods either partially tackle some of the three problems and
ignore the others, or eliminate one with the price of exacerbating the other two. In this paper,
we categorize these methods into five groups. It is impossible to exhaustively summarize all
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the published methods. Thus, domain experts will easily note the missing references. We
hope that the cited reviews (Tsoumakas et al. 2010; Tsoumakas and Katakis 2007) cited
here will point to the missing references.

Label transformation Methods belonging to this group transform the given labels into new
ones, and then decompose the original multi-label prediction problem into a series of binary
classification tasks according to the new labels. This group of methods can embed the label
dependence information into the transformed labels, and can exploit the label structure to
decrease the number of new labels.

Some methods, e.g., BR and LP, in this group treat new labels independently, so the la-
bel transformation and the classifier training are independent. After obtaining the new labels,
one binary classifier is trained for each new label independently without considering its rela-
tionship to others. The pruned problem transformation (PPT) (Read et al. 2008) modifies LP
via replacing the rare labelsets with their more frequent subsets, and thus both the sample
imbalance problem and label high dimensionality problem are alleviated. The random k-
labelsets (RAkEL) method (Tsoumakas and Vlahavas 2007) randomly selects an ensemble
of subset from the original labelsets, and then LP is applied to each subset. The sequential
prediction is accomplished by ranking and thresholding on the results of the ensemble of LP
classifiers. It is a modification of LP with the motivation of utilizing the label dependence.
Ranking by pairwise comparison (RPC) (Hüllermeier et al. 2008) adopts one-versus-one
rule by training a binary classifier for each pair of labels and ranking the classification results
for prediction. RPC alleviates the sample imbalance problem in the training of each classi-
fier, but increases the number of labels to k(k − 1)/2 (k is the number of original labels).
Related methods includes multi-label pairwise perceptron (MLPP) (Mencía and Fürnkranz
2008) and calibrated label ranking (CLR) (Fürnkranz and Hüllermeier 2008).

Other methods in this group establish a structure of labels. The classifier training and
label prediction are then implemented on the obtained structure. These methods take the
label dependence into consideration and reduces the sample imbalance problem. Two rep-
resentatives are hierarchical binary relevance (HBR) (Bianchi et al. 2006) and hierarchy of
multi-label classifiers (HOMER) (Tsoumakas et al. 2008). HBR builds a general-to-specific
tree structure of labels, where a sample with a label must be associated with its parent labels.
For each non-root label on the hierarchical structure, a binary classifier is designed by using
a subset of samples whose labels include the parent labels of the current one. HOMER recur-
sively partitions the labels into several subsets and builds a tree hierarchy. In the hierarchy,
each node is composed of several labels that are separated into a number of subsets in its
child nodes. HBR method is then applied to each node for obtaining multi-label classifiers
to separate the child nodes.

Regularized classifications This group of methods formulates the problem as a series of
classifications with regularization. Stacking method (Cheng and Hüllermeier 2009) and
“Curds and Whey (C&W)” procedure (Breiman and Friedman 1997) separate the classi-
fication and regularization as two isolated stages. They train a classifier on each label as BR,
and then correct the prediction of each label by using the predictions of the others. These
two methods impose a regularization to the conventional classification results, wherein the
predictions of the other labels perform as a bias to decrease the variance of current label
prediction. The regularization item always aims to exploit label dependence. Another kind
of regularization directly solve regularized classification problems and jointly learn all the
binary classifiers that share a parameter space. Two examples are regularized multi-task
learning (Evgeniou and Pontil 2004) and shared-subspace learning (Jia et al. 2010). If a lin-
ear classifier wi is trained on each label, the former method assumes wi = vi + w0, while
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the latter method assumes wi = vi + uiΘ . Both the w0 and Θ are shared parameters that
store the label dependence information.

Multi-label learning problem reformulation This group of methods formulates the multi-
label learning problem as other supervised learning problems (Kong and Yu 2011) rather
than classification and ranking, which are two methods usually extended from single-label
learning. Multi-label dimensionality reduction via dependence maximization (MDDM)
(Zhang and Zhou 2008) tackles the “curse of dimensionality” in multi-label data and for-
mulates the problem as a discriminative dimension reduction (Zhou et al. 2011; Bian and
Tao 2011). It maximizes the dependence between feature space and label space via maxi-
mizing the empirical estimate of Hilbert-Schmidt Independence Criterion (HSIC) (Gretton
et al. 2005). Graphical models such as conditional random fields (CRF) (Ghamrawi and
McCallum 2005) are natural solutions to estimate the joint distribution of samples and la-
bels in multi-label learning. They provide a probabilistic formulation of the problem. The
classifier chain (CC) (Read et al. 2009) adopts a greedy way to concatenate the binary clas-
sifiers for all the labels and makes use of conditional label dependence. It trains a classifier
for each label at a time by using given samples and the previously predicted labels as the
input. Thus the prediction of each label is related to the previously predicted ones. It has an
ensemble variant (ECC) (Read et al. 2009) and a probabilistic variant (PCC) (Dembczyński
et al. 2010). The former alleviates the influence of label order, while the latter tackles the
Bayes-optimal solution of CC.

Linear regression This group of methods adopts linear regression model to solve multi-
label learning problems. Although linear model for classification is criticized due to its un-
derlying assumption (Hastie et al. 2009), a number of popular techniques can be used to
solve the aforementioned three problems in this scenario. In particular, the linear model
is Y = XW , where Y is the label matrix and the columns of W are the corresponding
model coefficient vectors. In Jia and Ye (2009), the optimization of W is formulated as a
matrix completion problem when W is assumed to be low-rank. The given samples and
the corresponding label vectors comprise the random measurement matrix ensemble XT

i Yi

(i = 1, . . . , n). The low rank assumption of W embeds the label dependence in the learning
process. A multi-task method proposed in Chen et al. (2010) assumes that W is the sum of a
low-rank component and a sparse component. Different from imposing an extra assumption
on W in the linear model, another observation is that the {0,1} label matrix Y is sparse and
thus compressible. In Hsu et al. (2009), Y is compressed via random projections Y ′ = YA,
and then a new regression model Y ′ = XW ′ is obtained, the original Y can be recovered
via compressed sensing algorithms. This is a successful application of compressed sensing
(CS) (Donoho 2006) to multi-label learning and inherits the theoretical merit of CS, i.e.,
only O(log(k)) models needs to be trained for data with k labels. This method reduces the
model complexity caused by the large number of labels.

Algorithm extension This group of methods extends or modifies the existing supervised
learning algorithms to the multi-label learning scenario. C4.5 is a popular decision tree
algorithm and is extended to multi-label learning in Clare and King (2001) via modify-
ing the entropy criterion. AdaBoost has been extended to multi-label data ranking and
Hamming loss minimization in AdaBoost.MR and AdaBoost.MH (Schapire and Singer
2000), respectively. The multi-class multi-label perceptron (MMP) (Crammer and Singer
2003), back-propagation for multi-label Learning (BP-MLL) (Zhang and Zhou 2006),
and RBF neural networks for multi-instance multi-label learning (MIMLRBF) (Zhang
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and Wang 2009) are extensions of neural networks algorithms in multi-label learning.
Multi-label k-nearest neighbor (ML-knn) (Zhang and Zhou 2007) is an extension of knn.
It obtains the label prior distribution from the k nearest neighbors and applies “maxi-
mizes a posteriori (MAP)” to the label prediction. It partially solves the imbalance prob-
lem.

Multi-label learning methods can also be roughly distinguished into learning reduction
methods and fully-specified learning methods. In particular, the “label transformation” and
“algorithm extension” in our results can be attributed to “learning reduction methods” be-
cause they transform the multi-label learning problem into other different subproblems.
“Regularized classification”, “multi-label learning problem reformulation”, “linear regres-
sion” and some methods of “algorithm extension” in our results can be attributed to “spec-
ified learning methods” because they formulate multi-label learning as specific problems.
From some perspective, compressed labeling (CL) proposed in this paper can be viewed as
a learning reduction method.

1.3 The proposed method

In this paper, we propose a {0,1} label matrix compression and recovery scheme termed
“compressed labeling (CL)” for multi-label learning. It simultaneously solves or at least
substantially alleviates the aforementioned three problems via random coding of the label
matrix and fast corresponding decoding (recovery). CL is a general scheme for embedding
existing single-label learning methods in a multi-label learning setting. The label compres-
sion in CL leads to a shrinkage of the problem size, and thus it is efficient in large-scale
problems (Masud et al. 2011).

We summarize the CL scheme including its training stage and prediction stage in Fig. 1.
In the training stage, CL first compresses the given {0,1} label matrix Y into a sign

matrix Z of its random projections on Gaussian random matrix A. Due to the properties
of random projections, the new labels in Z are independent of each other and the sample
imbalance problem for each class is substantially alleviated. Afterward, one binary classifier,
e.g., SVM, is trained for each new label independently on the training set {X,Z}.

Fig. 1 Compressed labeling on distilled labelsets. In the training stage, CL first compresses the original
label matrix Y into Z, which is the sign matrix of random projections of Y on Gaussian random matrix A.
Then binary classifiers (such as SVM) corresponding to the training set {X,Z} are independently learned and
stored in W . Meanwhile, the frequently appeared label subsets in Y are extracted by labelset distilling method
(LDM) and stored in the distilled labelsets (DLs) D. In the prediction stage, CL first predicts the new labels
z of a given sample x via the binary classifiers W . Given A and D, the DLs appearing in z are identified by a
KL-divergence test based recovery algorithm and indexed by �. The final prediction y is the union of all the
appeared DLs
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In the prediction stage, CL first predicts the new labels z of a given sample x via the
binary classifiers W obtained in the training stage, and then a fast recovery algorithm is
developed to recover the original labels y from the predicted new labels z. In the recovery
algorithm, we predict the original label vector of the given sample via performing a series
of KL divergence based hypothesis tests on the “distilled labelsets (DLs)”.

DLs are the frequently appeared label subsets extracted from the original labels Y via a
“label distilling method (LDM)”. LDM performs a recursive clustering and subtraction on
the label vectors, i.e., the rows of Y . Each distilled labelset (DL) is the intersection of the
label vectors in each cluster. LDM takes the label dependence into consideration and this
critical information guarantees the success of the recovery algorithm.

Given a DL and an original label vector, we discover that the signs of their random pro-
jections on a Gaussian ensemble follow an explicit joint distribution that can be quickly
computed from a geometric inference. The corresponding empirical joint distribution can
also be quickly obtained from the new label matrix. A KL divergence based comparison be-
tween the explicit joint distribution and the empirical one indicates whether a given DL is a
subset of the original label vector. Since this test includes only comparison and thresholding,
the recovery algorithm is fast with linear time complexity.

We theoretically prove the recovery bound of CL by investigating the upper bounds for
the probabilities of 2 types of recovery failures in CL. The probabilistic bound for recovery
failures exponentially shrinks with the increasing of measurements, i.e., the dimensionality
of the compressed label matrix, and with the increasing of the cardinalities of the distilled la-
belsets. This result soundly shows the effectiveness of label compression and the prediction
improvement brought by DL.

We evaluate CL on both large-scale datasets and small-scale ones including text classifi-
cation, music categorization, image annotation, scene classification, genomics and web data
mining. The experiments are divided into 5 groups on 21 datasets. The first group tests the
label matrix compression and recovery. The recovery accuracy, sample balance and mutual
independence of new labels are evaluated. The other 4 groups test CL in multi-label pre-
diction problems, and five different evaluation metrics are used to measure its prediction
performance. Thorough comparisons between CL and BR, 3 popular multi-label learning
methods, 2 SVM algorithms dealing with imbalance datasets are provided respectively. The
trade-off between label compression and prediction improvement is empirically studied and
analyzed. The experimental results show the effectiveness, efficiency and robustness of CL
in multi-label learning.

The rest of the paper is organized as follows. Section 2 presents the label matrix com-
pression and classification in CL. Section 3 presents LDM and the KL divergence test based
recovery algorithm of CL. Section 4 studies the relationship between compressed labeling
and compressed sensing, and the contribution of CL to multi-label learning. Section 5 shows
the experimental results. Section 6 concludes the paper.

2 Compressed labeling via random projections

This section presents the label matrix compression and the subsequent classification in CL,
which comprises the training stage of CL. The label matrix compression is based on the
random projections of the given {0,1} label matrix on a Gaussian ensemble. We show that
the pseudorandomness of the new label matrix results in (1) an improved balance of samples
for the binary classification on each label, (2) the mutual independence among the new labels
and (3) the information of original label matrix is properly preserved in a low-dimensional
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subspace. These improvements solve or at least reduce the three aforementioned problems
in Sect. 1.1 and thus benefit simultaneously the subsequent classification.

2.1 Random projection signs of label matrix

Random projection (Vempala 2004) is a simple yet powerful technique that has been widely
used in fast approximation algorithms and data recovery. It is introduced as an efficient pair-
wise distance calculation and approximation method according to Johnson-Lindenstrauss
(JL) Lemma (Johnson and Lindenstrauss 1984) and its variants in particular metric spaces,
i.e., �2 (Euclidian) space (Vempala 2004), �p (0 < p < 2) space (stable random projec-
tion) (Li 2008), �p(p > 2) (high-order) space (Li 2010) and smooth manifold (Clarkson
2008). This property has been broadly used in fast nearest neighbor search (Indyk and Mot-
wani 1998), low distortion embedding (Dasgupta 2000) and hashing (Dasgupta and Freund
2008). Compressed sensing (Candès et al. 2006) proves that an exact reconstruction of a
sparse signal from a few of its random projections is possible, when the random projection
ensemble satisfies restricted isometry property (RIP). Random projection also attracts atten-
tions in matrix low-rank approximation, because the column space of a matrix’s low-rank
random projection is proved as a sufficiently close approximation of its principle subspace
(Halko et al. 2009).

In CL, the random projection offers a different function. Since CL formulates the multi-
label prediction as a classification problem rather than a linear regression problem, the label
matrix after compression has to be a binary matrix rather than a real-valued one. Thus the
direct utilization of random projection is improper. We consider the signs of the random
projections in CL, so the compressed label matrix Z is:

Z = sign (YA) , (1)

where Z ∈ {−1,1}n×m is the compressed label matrix, Y ∈ {0,1}n×k is the original label ma-
trix, A ∈ R

k×m is a random matrix whose columns are randomly sampled from an ensemble,
and sign(·) is an element-wise sign operator. In CL, we adopt the i.i.d. standard Gaussian
ensemble, i.e., entries of A are independent standard normal variables.

Although it seems that the hard thresholding of random projections in (1) discards partial
useful information for recovery at the first glance, the information is fully retained in DLs
and the {0,1} binary prior of the label matrix, which play critical roles in the CL recovery
algorithm.

This simple label compression method provides an effective cure for the aforementioned
three problems, i.e., sample imbalance, label dependence and label high dimensionality. It
is self-evident that the last problem is alleviated on the CL labels, because the number of
random projections m can be much less than k in CL. Therefore, the number of binary
classifiers in the training stage can be substantially reduced from k to m, which significantly
reduces the computational complexity.

Below, we theoretically show that CL improves the sample balance and ensures the label
independence. Empirical studies of these two properties on several datasets are presented in
the experimental section.

2.2 Improved sample balance of CL labels

Given a set of positive samples labeled by 1 and negative ones labeled by 0 for each label
in multi-label learning, without loss of generality, we can define the degree-of-balance of



Mach Learn (2012) 88:69–126 77

a given label matrix Y ∈ {0,1}n×k as the average proportion of positive samples on all the
different labels, i.e.,

balance = 1

k

k∑

i=1

npi

n
, (2)

where npi is the number of positive samples on the ith label. The degree-of-balance close
to 0.5 yields a balanced sample set for training.

In CL labels, the degree-of-balance on each label has essential connection with the over-
laps between unique labelsets of the original labels. Before investigating this phenomenon,
we first give an important theorem that will be used several times in this paper. The main
significance of this theorem is that it bridges the inner distribution of the compressed label
vector z (an arbitrary row of Z) with the corresponding original label vector x via a one-to-
one bijection. This bijection provides a direct and efficient estimate to x from the statistics
of z, which will be presented in Sects. 3.2 and 3.3.

Theorem 1 (Random projection signs of two binary vectors) Given two nonzero binary
vectors x, y ∈ {0,1}k , the signs of their projections on a random vector α satisfies the fol-
lowing distribution, if the entries of α are independent standard Gaussian variable with unit
variance and zero mean.

Pr(sign (〈x,α〉) · sign (〈y,α〉) = −1) = 1

π
arccos

(
card (x ∩ y)√

card(x)
√

card(y)

)
, (3)

where card(·) refers to the cardinality of a given vector.

Proof The proof follows a geometric inference on a sphere in a high dimensional space.
Since the entries of α are i.i.d. standard Gaussian variables, α is a vector which is drawn
uniformly from a hypersphere Sk in the k dimensional space. Figure 2 shows the random
projections of x, y on two Gaussian random vectors α and β .

In Fig. 2, we uses “+” and “−” to indicate the signs of random projections. Two hyper-
planes W1 and W2 are perpendicular to x and y, respectively. Figure 2 verifies that if x and
y are projected onto a random vector β in the two shaded regions, which determined by W1
and W2, the random projections will have opposite signs. When x and y are projected onto
a random vector α in the unshaded regions, their random projection signs will be identical.

Fig. 2 Random projections of
x, y on two random vectors α

and β , which are drawn
uniformly from a k-dimensional
hypersphere. The signs of
random projections are marked
as “+” for positive and “−” for
negative in the figure. The
hyperplanes W1 and W2 are
perpendicular to x and y,
respectively
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Since the dihedral angle θ is equal to the angle between vectors x and y, i.e.,

θ = arccos

( 〈x, y〉
‖x‖2‖y‖2

)
= arccos

(
card (x ∩ y)√

card(x)
√

card(y)

)
, (4)

and the Gaussian random vector α is drawn uniformly from the hypersphere, the probability
that x and y have different random projection signs is proportional to the area of the shaded
regions. Therefore, we have

Pr(sign (〈x,α〉) · sign (〈y,α〉) = −1) = 2θ

2π
, (5)

which completes the proof of Theorem 1. �

Theorem 1 can be seem as an extension of Lemma 3.2 in Goemans and Williamson
(1995). Now we analyze the degree-of-balance of CL labels based on Theorem 1. Without
loss of generality, we assume the original label matrix Y has the following label powerset
L, which consists of the unique rows of Y :

L = [L1;L2; . . . ;LK ] , Li ∈ {0,1}k. (6)

We call each unique row of Y as a “labelset”. The appearance times of labelset Li in
all the rows of Y is represented as ni , so we have n =∑K

i=1 ni . Given a vector α whose
entries are randomly drawn from independent standard Gaussian distributions, if the random
projection sign of Li on α, i.e., zl:Yl=Li

= sign(〈Li,α〉) in the corresponding column of Z is
known, the probabilities that random projection signs of the other label vectors Lj :j 	=i in L

are −zl can be obtained by using (3). In particular, we calculate the expected number of label
vectors (rows) in Y whose random projection signs on an arbitrary row α of A are opposite
to zl , namely, the expected number of −zl in arbitrary column z of CL label matrix Z:

Ezl

(∣∣p : zp = −zl

∣∣)=
K∑

j=1,j 	=i

nj Pr(zl · sign
(〈Lj ,α〉)= −1)

=
K∑

j=1,j 	=i

nj Pr(sign (〈Li,α〉) · sign
(〈Lj ,α〉)= −1)

=
K∑

j=1,j 	=i

nj

π
arccos

(√
card(Li ∩ Lj)

card(Li)
·
√

card(Li ∩ Lj)

card(Lj )

)
, (7)

where | · | denotes the number of given variable, and the last step is due to Theorem 1.
The conditional expectation in (7) computes the expected number of samples with CL

label −zl in an arbitrary column of Z given the CL label of Li , i.e., zl . Without loss of
generality, we assume zl = −1. Thus the expected degree-of-balance Ezl=−1(balance) given
zl = −1 can be calculated by using (7). Since the distribution of Li in rows of Y is given by

Pr(Li) = ni/n, (8)
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the unconditioned expected degree-of-balance E(balance) can be computed over the whole
label powerset L, i.e.,

E(balance) =
K∑

i=1

Pr(Li)Ezl=−1(balance) =
K∑

i=1

Pr(Li) · npi

n

=
K∑

i=1

ni

n
· 1

n
Ezl

(∣∣p : zp = −zl

∣∣)

=
K∑

i=1

K∑

j=1,j 	=i

ninj

n2π
arccos

(√
card(Li ∩ Lj)

card(Li)
·
√

card(Li ∩ Lj)

card(Lj )

)
. (9)

In multi-label learning, a degree-of-balance close to 0.5 is preferred, because the num-
bers of positive samples and negative ones will be equal to each other in the training set. To
see how CL improves the sample balance, we first study a special case of multi-label learn-
ing: multi-class learning. In multi-class learning, each labelset in L includes only one “1”
in its entries. There is no overlap between any two different labelsets in multi-class learn-
ing, which is a special case of multi-label learning. When the number of labelsets K in L

increases, the label matrix Y seriously confronts the problem of sample imbalance. That is
because each class has only a few positive samples and a large amount of negative ones. In
such case, we have:

K∑

i=1

K∑

j=1,j 	=i

ninj

n2
→ 1, (10)

√
card(Li ∩ Lj)

card(Li)
= 0, (i 	= j). (11)

Equation (10) is a result of a large K , while (11) is due to the orthogonality of the unique
labelsets. Thus the expected degree-of-balance of CL labels in multi-class learning problem
can be calculated by substituting the above equations into (9):

Emulti-class(balance) = 1

2

K∑

i=1

K∑

j=1,j 	=i

ninj

n2
→ 0.5. (12)

Therefore, after label compression in CL, the problem of sample imbalance in multi-class
learning is substantially alleviated.

The situation in general multi-label learning is similar but different because of the exis-
tence of labelset overlapping. Without loss of generality, we consider a pair of labelsets Li

and Lj . Referring to the situation of multi-class learning, small values of

√
card(Li ∩ Lj)

card(Li)
and

√
card(Li ∩ Lj)

card(Lj )
(13)

are preferred in multi-label learning, because the arccosine of their multiplication will be
close to π/2. Thus the expected degree-of-balance in (9) will approach to 0.5. This corre-
sponds to a small overlap card(Li ∩ Lj) or large cardinalities card(Li) and card(Lj ), which



80 Mach Learn (2012) 88:69–126

are exactly in accordance with the multi-label data. That is because in multi-label data, a la-
belset Li with large overlap to the other ones usually has very large cardinality, while a
labelset Li with small cardinality often has ultra-small overlap to the other ones. In both of
these two cases, the two values in (13) will be kept close to 0.

Even when Li and Lj share a large overlap and both have small cardinality, the degree-
of-balance of CL labels will not deviate far away from 0.5. That is because this case causes
small ni and nj , which results in a small weight ninj /n2π in (9) to eliminate the influence
of small arccosine in (9). Therefore, E(balance) approaches to 0.5.

We place an empirical study of the sample balance of CL labels on various multi-label
datasets in the experimental section. The result demonstrates that the sample degree-of-
balance after label compression in CL is significantly improved and is close to the ideal
value 0.5.

2.3 Mutual independence of CL labels

The mutual independence between CL labels after label compression is a natural result of
random projection sign. To see this, we have the following theorem:

Theorem 2 (Label independence) Given a binary and nonzero vector x ∈ {0,1}k , its CL la-
bels obtained via random projection signs z = sign(xA) are independent random variables,
if A is a standard Gaussian matrix with entries drawn from independent standard Gaussian
distribution.

Proof Consider two random variables yi = xAi and yj = xAj , if Ai and Aj are both com-
posed by independent standard Gaussian variables, yi and yj are weighted sum of indepen-
dent standard Gaussian variables. Thus the two variables yi and yj are independent Gaussian
variables. Since zi = sign(yi) and zj = sign(yj ), the random variables zi and zj are indepen-
dent. Therefore, the CL labels in z are mutual independent random variables. Two similar
analyses can be found in Halko et al. (2009), Vempala (2004). This completes the proof. �

The mutual independence between CL labels after compression is not equal to a sheer
discard of the label dependence information in the original labels. Actually, we extract and
store the label dependence information in the distilled labelsets (DLs) that consists of the
most frequent label subsets in the original label matrix, and use it in the recovery algorithm.
We transform the original labels into independent ones before the training stage, because
the conventional binary classification methods cannot use the label dependence, and will
be even harmed by the label dependence under some circumstances. Therefore, CL isolates
the application of label dependence from the training stage in its scheme in order to apply
binary classification methods without loss of useful information.

The label compression preserves the distribution and the pairwise distance of the original
label vectors in the low-dimensional space, though it reduces the number of labels. The
pairwise-distance preservation of random projections has been proved in various scenarios
(Vempala 2004). Its variant, the random projection signs, has also been proved as a pairwise-
distance preservation method in terms of the cosine distance (Raginsky and Lazebnik 2009;
Goemans and Williamson 1995). Therefore, the classifications on the compressed labels will
not be more difficult than on the original labels.
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2.4 Classification via support vector machines

After obtaining the CL label matrix Z via random projections of the original label matrix Y ,
we train one binary classifier for each new label on the CL label matrix Z. There are a large
number of binary classification methods with appealing performance and fast speed. Most
of them can be directly applied to the training stage of CL.

Among the existing binary classification methods, support vector machine (SVM) (Vap-
nik 1995) has been widely used because of its appealing properties in statistical machine
learning theory, optimality in classification hyperplane design, robustness to different types
of data, extensionality to nonlinear kernel space, and many existing fast solvers. In this pa-
per, we adopt SVM as the binary classification method used in the training stage of CL.

3 Recovery algorithm on distilled labelsets

In this section, we introduce the label distilling method (LDM) and the label recovery al-
gorithm in CL, which comprise the prediction stage of CL. In recovery, given the CL label
vector z predicted by the m binary classifiers from a sample x and a {0,1} binary dictionary
D for label vectors, CL predicts the original label vector y by testing whether each binary
vector Di is included in y, i.e., whether Di ∩ y = Di and then recovers y =⋃

i∈� Di (�
is the index set of Di included in y). The recovery is based on the fact that the random
projection signs of y and Di have explicit joint distributions in two cases, i.e., Di ∩ y = Di

and Di ∩ y = ∅. In the recovery algorithm, a hypothesis test is designed to decide whether
Di ∩ y = Di by comparing the Kullback-Leibler (KL) divergence (Kullback and Leibler
1951) between the empirical joint distribution of the random projection signs and the two
explicit joint distributions in the two cases. An available and natural choice of Di is unit
vector. In this case, the CL recovery algorithm element-wisely recovers y, i.e., each label
is recovered independently. However, in CL, we develop LDM to obtain D. In particular,
LDM extracts the most frequent label subsets, i.e., distilled labelsets (DLs) D ∈ {0,1}d×k ,
by recursive clustering and subtraction of the label vectors (rows) in the label matrix Y of
training set. Therefore, CL exploits label dependence via jointly recovering the correlated
labels in y on DLs. We will show that DLs improves the accuracy of the recovery algorithm
by increasing the KL divergence between the two explicit joint distributions in the two cases.

3.1 Labelset distilling method (LDM)

The discrete patterns frequently appearing in the label matrix Y refers to the label subsets
that are frequently shared by the rows of Y . These patterns reveal the structural information
of the binary matrix Y and label dependence embedded in the given label vectors.

In multi-label learning, BR simply ignores the label dependence information, while LP
treats the unique labelsets independently and thus ignores the shared information of differ-
ent label vectors. Recently, several methods have been developed to exploit the label depen-
dence by building a tree-structural hierarchy for the labels. However, the correlation (e.g.,
co-occurrence and mutual exclusion) between two labels are probabilistic rather than de-
terministic. Therefore, it is hard to prune the tree hierarchy without discarding the minority
instances. A tree hierarchy that retains most leafs explains few label dependence information
and will significantly increase the problem size.

We propose “labelset distilling method (LDM)” method to exploit the correlations be-
tween the unique labelsets of L rather than single labels. LDM can be interpreted as a greedy
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search for the frequent discrete patterns of L. It decomposes {0,1} label matrix L as:

L = UD, U ∈ {0,1}K×d ,D ∈ {0,1}d×k. (14)

The obtained dictionary D is called “distilled labelsets (DLs)”, each row of which is a “dis-
tilled labelset (DL)”.

In LDM, the above decomposition is accomplished by a greedy search of discrete pat-
terns. The greedy search is a recursive clustering and subtraction of the labelsets (rows) in
L. It is described by the following procedure:

1. The rows of L are clustered by using an existing clustering algorithms, e.g., spectral clus-
tering (Luxburg 2007; Ng et al. 2001) or k-means (MacQueen 1967). In our experiments,
we use spectral clustering.

2. The shared binary pattern of each cluster is extracted as a row Di in the DLs D and then
subtracted from the labelsets Li in the cluster.

3. For the clusters without shared pattern, labelsets in them are kept the same in the la-
bel powerset L. For the labelsets Li that become all-zero vectors after substraction, we
remove them from L. The other labelsets Li after subtraction are updated in L.

4. Update coefficients in U corresponding to the newly extracted atoms in D.

The above procedure is iterated until the label powerset L is empty, i.e., all the unique
labelsets Li in the initial L are completely represented by the atoms in the dictionary D.

We use spectral clustering to group the rows of L, because the number of clusters ob-
tained by spectral clustering in each iteration can be adaptively adjusted by a given thresh-
old τ . In particular, we sort q eigenvalues of the Graph Laplacian from small to large, and
compute the following metric for each one:

ei =
∑q

j=i λj∑q

j=1 λj

, i = 2, . . . , q. (15)

Only the eigenvectors with ei < τ are selected for the subsequent processing (including k-
means and thresholding). The number of selected eigenvectors is the number of clusters in
the iteration. A properly selected parameter τ can efficiently generate clusters with shared
labelsets. Empirically, we select 0.01 ≤ τ ≤ 0.25 in all experiments. This fact will be verified
in our experiments.

We show LDM in Algorithm 1.

3.2 Joint distribution of two random projection signs

An interesting phenomenon in CL is that given a label vector Li , the signs of its projection
and an arbitrary Di ’s projection on a standard Gaussian random vector α have an explicit
joint distribution that can be quickly computed. Based on this fact, the existence of a distilled
labelset Di in an unknown label vector y can be tested by using the information of their
random projection signs.

In particular, the following theorem states the random projection signs of y and Di fol-
lows an explicit joint distribution.

Theorem 3 (Joint distribution of random projection signs) Given a label vector y ∈
{L1,L2, . . . ,LK} that is selected from the rows of the label powerset L, let D be L’s dis-
tilled labelsets (DLs) that satisfy L = UD. If Di is included in y, i.e., Di ∩y = Di , the signs
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Algorithm 1: Labelset distilling method (LDM)

Input: Label powerset L ∈ {0,1}K×k , threshold τ

Output: Distilled labelsets D, coefficient matrix U

Initialize: D := ∅, U := ∅
while The rows of L are not empty do

Cluster the rows of L into t clusters by Spectral Clustering with
threshold τ ;
for i ← 1 to t do

Extract the label subset Di ∈ {0,1}k shared by the label vectors in Cluster i,
i.e., Di =⋂j {Lj : Lj ∈ Cluster i};
Subtract the obtained Di from all the label vectors in Cluster i, i.e.,
Lj := Lj − Di for {Lj : Lj ∈ Cluster i};
if {Lj : Lj ∈ Cluster i} = 0 then

Remove Lj from L

end
Add the extracted Di into the distilled labelsets D as a new row;
Add the corresponding coefficient vector
UT

i ∈ {0,1}K = {UT
ij = 1 if Lj ∈ Cluster, else UT

ij = 0} into the coefficient
matrix U as a new column;

end
end

of their random projections on a standard Gaussian random vector α follows the following
joint distribution P 1:

P 1(1) = Pr(sign (〈y,α〉) · sign (〈Di,α〉) = −1) = 1

π
arccos

(√
card(Di)

card(y)

)
, (16)

P 1(2) = Pr(sign (〈y,α〉) · sign (〈Di,α〉) = 1) = 1 − 1

π
arccos

(√
card(Di)

card(y)

)
. (17)

If Di is not included in y, i.e., Di ∩y = ∅, the signs of their random projections on a standard
Gaussian random vector α follows the following joint distribution P 2:

P 2(1) = Pr(sign (〈y,α〉) · sign (〈Di,α〉) = −1) = 1

2
, (18)

P 2(2) = Pr(sign (〈y,α〉) · sign (〈Di,α〉) = 1) = 1

2
. (19)

Both P 1(l) and P 2(l) (l = {1,2}) refer to the corresponding two probabilities associated
with the two cases of the two random projection signs’ product.

Proof By substituting Di and y into Theorem 1, the above distributions can be directly ob-
tained. This completes the proof. Theorem 3 and the subsequent lemmas about the recovery
bounds of CL are based on Theorem 1 and are independent of Theorem 2. �

Note that only the cardinality information of the label vector y is required in computing
the joint distribution given in Theorem 3. Therefore, if we are given the distilled labelsets D
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and y’s cardinality, the joint distribution of an arbitrary Di and y’s random projection signs
can be explicitly computed by using Theorem 3.

3.3 KL divergence test for recovery

Given classifiers W obtained in the training stage, the CL labels of a sample x ∈ R
p can be

predicted as z ∈ {0,1}m. Our goal in the recovery algorithm is to reconstruct the correspond-
ing original label vector y ∈ {0,1}k from z. In CL, we propose a recovery algorithm via
testing the KL divergence between possible joint distributions of random projection signs
and the corresponding empirical joint distribution.

According to Theorem 3, given the cardinality of y’s, the joint distribution of Di and y’s
random projection signs can be quickly computed in two scenarios: Di is included in y and
Di is not included in y. The corresponding empirical joint distribution P̂ can be calculated
from v = sign(DiA) and z = sign(yA), i.e.,

P̂ (1) = P̂r(sign (〈y,α〉) · sign (〈Di,α〉) = −1) = |j : zjvj = −1|
m

, (20)

P̂ (2) = P̂r(sign (〈y,α〉) · sign (〈Di,α〉) = 1) = |j : zjvj = 1|
m

. (21)

The P̂ (l) (l = {1,2}) refers to the corresponding two estimated probabilities associated with
the two cases of the two random projection signs’ product.

In the following discussion, the joint distribution associated with the situation that Di is
included in y is marked as P 1, while the joint distribution associated with the situation that
Di is not included in y is marked as P 2. Both P 1 and P 2 are defined in Theorem 3. We
denote the empirical joint distribution computed from v = sign(DiA) and z as P̂ .

The target of recovery in CL is to determine whether Di is included in y or not. This
can be done by comparing the distance between P 1 and P̂ and that between P 2 and P̂ .
A smaller distance between P 1 and P̂ indicates a higher probability that Di is included in
y, while a smaller distance between P 2 and P̂ indicates a higher probability that Di is not
included in y.

KL divergence, also known as relative entropy, measures the distance between two prob-
ability distributions P and Q,

DKL (P ‖Q) =
∑

i

P (i) log
P (i)

Q(i)
. (22)

In the recovery algorithm of CL, given a y, we use KL divergence to measure the distance
between P 1 and P̂ and the distance between P 2 and P̂ for different Di . The differences
between the two distances for all Di are sorted. Then Di with P̂ closer to P 1 than P 2 are
sequentially added into y as a subset from larger distance difference to smaller one until y

reaching its cardinality. In particular, given the predicted CL label vector z of y, we calculate
the following two KL divergences on each distilled labelset Di in D:

M1i = DKL

(
P 1‖P̂

)
=

2∑

j=1

P 1(j) log
P 1(j)

P̂ (j)
, (23)

M2i = DKL

(
P 2‖P̂

)
=

2∑

j=1

P 2(j) log
P 2(j)

P̂ (j)
. (24)
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The difference between M1i and M2i on each Di forms a difference vector Diff :

Diff = M2 − M1, Diff ∈ R
d . (25)

The positive entries of Diff corresponds to the distilled labelsets whose empirical joint distri-
bution P̂ is closer to P 1 than P 2, which indicates a higher possibility that the corresponding
Di are included in y. In addition, a larger and positive Diff i implies Di is more possible to
be the subset of y than the other DLs with positive difference in Diff . In the recovery algo-
rithm, we sort the positive entries of Diff from large to small, choose Di sequentially from
the ones with large Diff i to the ones with small Diff i , and add the selected Di to y until the
cardinality of y is arrived.

Since the cardinality of y cannot always be known previously in the prediction, we adds
an outer loop to the above recovery procedure and searches the cardinality with the smallest
recovery error ‖z− sign(yiA)‖ in a given range. In CL, we choose it as the cardinality range
of the training label vectors in Y .

Algorithm 2: Recovery algorithm of CL

Input: CL label vector z ∈ {−1,1}m, distilled labelsets D, Gaussian random matrix A

used in compression, cardinality range [card1, card2]
Output: original label vector y ∈ {0,1}k

Calculate V = sign(DA) with Vi = sign(DiA);
Calculate the joint distribution P 2 by using (18) and (19);
for i ← card1 to card2 do

for j ∈ {j : card(Dj ) ≤ i} do
Calculate the empirical joint distribution P̂j by using (20) and (21) with
v = Vj ;
Calculate the joint distribution P 1j by using (16) and (17), wherein
card(y) = i;
Calculate KL divergence between P 2 and P̂j , i.e.,
M2j =∑2

l=1 P 2(l) log P 2(l)

P̂j (l)
;

Calculate KL divergence between P 1j and P̂j , i.e.,

M1j =∑2
l=1 P 1j (l) log

P 1j (l)

P̂j (l)
;

Calculate the difference between the two KL divergences M2j and M1j , i.e.,
Diff j = M2j − M1j ;

end
Sort the positive entries in Diff from large to small;
yi := 0, j := 1;
while card(yi) < i do

Add the distilled labelset Dj which is associated with the j th largest entry in
sorted positive Diff to yi , i.e., yi := yi ∪ Dj ;

end
Calculate the recovery error errori = ‖z − sign(yiA)‖;

end
Return y = yi , wherein i = arg mini errori ;
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We show the recovery algorithm of CL in Algorithm 2 and highlight advantages of the
recovery algorithm below

1. The recovery algorithm based on the KL divergence comparison only includes simple
computations, e.g., comparison, sorting and thresholding. Thus the CL recovery algo-
rithm is much faster than the normal compressed sensing algorithms used in Hsu et al.
(2009).

2. Since the joint distribution of the random projection signs and the corresponding empiri-
cal distribution can be explicitly computed in the CL recovery algorithm, we can directly
compare the distributions on their KL divergence rather than on their means or variances.
This KL divergence comparison provides more useful information for testing whether
a given DL is included in y. Compared with the mean test used in 1-bit compressed
sensing, a direct comparison of distributions outputs more precise test result.

3. In the recovery algorithm, we test the existence of the distilled labelsets D rather than the
single labels or random labelsets in y. This is an application of label dependence infor-
mation in the multi-label prediction, because the distilled labelsets are the most frequent
label subsets and the significant discrete patterns mining from the training label matrix.
To see the benefits brought by this exploiting of label dependence, we compare the gaps
between P 1 and P 2 in two situations, i.e., using distilled labelsets and using single labels
in the test. Assume the dictionary corresponding to the single label situation is:

E = [E1;E2; . . . ;EK ], Ei ∈ {0,1}n×k, card (Ei) = 1. (26)

According to the two joint distributions P 1 and P 2 given in Theorem 3, we can calculate
the differences between P 1(l) and P 2(l) for all the l = {1,2}:

‖P 1(l) − P 2(l)‖ =
∥∥∥∥∥

1

2
− 1

π
arccos

(√
card(Di)

card(y)

)∥∥∥∥∥ . (27)

When dictionary generated by the single labels E is used, we have card(Di) = 1 in (27).
When distilled labelsets D is used instead, we have card(Di) > 1 in (27). Thus the gap
between P 1 and P 2 measured by ‖P 1(l) − P 2(l)‖ is larger when distilled labelsets D

is adopted. A larger gap between P 1 and P 2 will substantially reduce the number of
failures in the tests of P̂ . Therefore, the recovery accuracy is improved in CL by using
the label dependence information embedded in DL.

We show the training and prediction algorithms of CL in Algorithms 3 and 4, respec-
tively.

3.4 Recovery bound

In order to investigate whether and when the CL recovery shown in Algorithm 2 is suffi-
ciently accurate for reconstructing the original label vector y, we theoretically analyze the
upper bounds for probabilities of 2 types of recovery failures, i.e.,

1. Type I failure: accepting labelset b = Di,∀i = 1 : d included in y (i.e., b∩y = b) when it
is actually not (i.e., b ∩ y = ∅). According to the recovery algorithm, this failure happens
when the KL divergence between P 1 and P̂ is smaller than that between P 2 and P , but
P is actually estimated according to the samples from P 2. The probability of this type
of failure is

Pr
(
DKL

(
P 1‖P̂

)
< DKL

(
P 2‖P̂

))
, when P̂ = P̂ 2, i.e., b ∩ y = ∅. (28)
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Algorithm 3: Training algorithm of CL

Input: Data matrix X ∈ R
n×p , label matrix Y ∈ {0,1}n×k , label compression

dimension m, threshold τ , parameters for SVM solver
Output: m classifiers W ∈ R

p×m, distilled labelsets D, Gaussian random matrix A

label compression via random projections;
Generate a standard Gaussian random matrix A ∈ R

k×m;
Calculate the CL label matrix Z = sign(YA);
classification via support vector machines;
for i ← 1 to m do

Train binary classifier Wi on training set {X,Zi} by standard SVM solver,
wherein Zi is the ith column of Z;

end
W = [W1,W2, . . . ,Wm];
distilled labelsets extraction;
Calculate the label powerset L, whose rows are unique label vectors in Y ;
Extract the Distilled labelsets (DL) with input L and τ by using
Algorithm 1;

Algorithm 4: Prediction algorithm of CL

Input: Sample x ∈ R
p , CL classifiers W ∈ R

p×m, distilled labelsets D, Gaussian
random matrix A used in compression, cardinality range [card1, card2]

Output: Label vector y

Calculate the predicted CL label vector z ∈ {−1,1}m of x by using CL classifiers W ,
i.e., z = sign(xW);
Run Recovery algorithm of CL with input z, D, A and [card1, card2] by
using Algorithm 2;
Return the output y;

2. Type II failure: Excluding labelset b = Di,∀i = 1 : d from y (i.e., b ∩ y = ∅) when it is
actually included in y (i.e., b ∩ y = b). According to the recovery algorithm, this failure
happens when the KL divergence between P 1 and P̂ is larger than that between P 2 and
P , but P is actually estimated according to the samples from P 1. The probability of this
type of failure is

Pr
(
DKL

(
P 1‖P̂

)
> DKL

(
P 2‖P̂

))
, when P̂ = P̂ 1, i.e., b ∩ y = b. (29)

If the recovery algorithm is applied as a prediction model like in CL, from the view point
of classification, the type I failure corresponds to false positive and its probability denotes
1-specificity, while the type 2 failure corresponds to false negative and its probability de-
notes 1-sensitivity. Thus, if the probabilities of the two types of failures can both be upper
bounded by small probabilities, the prediction of CL will produce a satisfactory ROC (re-
ceiver operating characteristic).

In the following proofs, we derive the upper bounds for the probabilities of the two types
of failures. Firstly, we show the difference between the 2 KL divergences is determined by
P̂1, which is a binomial random variable. We give the distributions of P̂1 in the two cases
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in Lemma 1. In Lemma 2, we study the conditions of P̂1 that lead to the two types of fail-
ures. Some significant properties of parameter δ in the conditions are provided in Lemma 3.
By using the distributions of P̂1 and its conditions to cause the failures, we compute the
probabilities of the failures in Proposition 1. Then the probabilistic bounds for the failures
is derived in Theorem 4 based on Hoeffding’s inequality. We analyze the improvement of
measurement increase and distilled labelsets on the recovery bounds in Theorem 5.

For brevity of the analysis, we use the abbreviations P1i = P 1(i), P2i = P 2(i) and P̂i =
P̂ (i) for i = 1,2. According to their definitions in (16)–(21), define

γ = P11 = 1

π
arccos

(√
card(b)

card(y)

)
∈
[

0,
1

2

)
, (30)

we calculate the difference between the 2 KL-divergences DKL(P 1‖P̂ ) and DKL(P 2‖P̂ ):

DKL

(
P 1‖P̂

)
− DKL

(
P 2‖P̂

)

=
2∑

i=1

P1i log
P1i

P̂i

−
2∑

i=1

P2i log
P2i

P̂i

= P11 log
P11

P̂1

+ P12 log
P12

P̂2

− P21 log
P21

P̂1

− P22 log
P22

P̂2

= γ log
γ

P̂1

+ (1 − γ ) log
1 − γ

P̂2

− 1

2
log

1

2P̂1

− 1

2
log

1

2P̂2

=
(

1

2
− γ

)
log

P̂1

P̂2

+ γ logγ + (1 − γ ) log (1 − γ ) + log 2. (31)

Therefore, the difference between the 2 KL-divergences is determined by the two variables
P̂1 and P̂2 = 1 − P̂1, which distributions can be obtained by the following Lemma.

Lemma 1 Given m measurements of random projection signs, the m + 1 possible discrete
values of {P̂1, P̂2} are

P̂ (j) =
{
P̂1 = j

m
, P̂2 = m − j

m

}
, j = 0 : m, (32)

where j is the number of −1s in the m values of zivi associated with i = 1 : m, while m − j

is the number of 1s. The probability of P̂ (j) follows the following binomial distribution
when b ∩ y = ∅:

Pr
(
P̂ (j)

)
=
(

m

j

)(
1

2

)m

. (33)

The probability of P̂ (j) follows the following binomial distribution when b ∩ y = b:

Pr
(
P̂ (j)

)
=
(

m

j

)
(γ )j (1 − γ )m−j . (34)
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Proof According to the definition of P̂ in (20) and (21), P̂1 is the estimation for the probabil-
ity of event zivi = −1, while P̂3 + P̂4 is the estimation for the probability of event zivi = 1.
Thus the event P̂ (j) is equivalent to

P̂ (j) = {|i : zivi = −1| = j, |i : zivi = 1| = m − j} , j = 0 : m. (35)

By using the results of Theorems 3 and 1, the distribution of random projection sign zivi

can be obtained:
⎧
⎨

⎩
Pr (zivi = −1) = 1

2 ,Pr (zivi = 1) = 1
2 , b ∩ y = ∅;

Pr (zivi = −1) = γ,Pr (zivi = 1) = 1 − γ, b ∩ y = b.
(36)

Since the m values of zivi for different i are independent to each other, and the 2 distributions
of each zivi under the two conditions are both Bernoulli distributions, P̂ (j) follows the
following binomial distribution:

Pr
(
P̂ (j)

)
=
⎧
⎨

⎩

(
m

j

) (
1
2

)j ( 1
2

)m−j
, b ∩ y = ∅;

(
m

j

)
(γ )j (1 − γ )m−j , b ∩ y = b.

(37)

This leads to Lemma 1. �

By substituting (32) into (31), the difference between the 2 KL-divergences can be ex-
pressed as a function of j :

DKL

(
P 1‖P̂ (j)

)
− DKL

(
P 2‖P̂ (j)

)
=
(

1

2
− γ

)
log

j

m − j

+ γ logγ + (1 − γ ) log (1 − γ ) + log 2. (38)

Therefore, given the original label vector y and a labelset b ∈ D, the sign of the difference
between the 2 KL-divergences is determined by j . In the following lemma, we study which
j will lead to the 2 types of failures.

Lemma 2 When the probability estimation P̂ = P̂ (j), with definition

δ =
[

1

4γ (1 − γ )

] 1
1−2γ · γ

1 − γ
, (39)

for KL-divergences DKL(P 1‖P̂ (j)), DKL(P 2‖P̂ (j)) and integer j ∈ [0,m], we have

DKL

(
P 1‖P̂ (j)

)
> DKL

(
P 2‖P̂ (j)

)
, ∀j ∈

[
mδ

1 + δ
,m

]
, (40)

DKL

(
P 1‖P̂ (j)

)
< DKL

(
P 2‖P̂ (j)

)
, ∀j ∈

[
0,

mδ

1 + δ

]
, (41)

where x denotes the smallest integer larger than x and x denotes the largest integer smaller
than x.
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Proof According to (38), we have the following equivalences:

DKL

(
P 1‖P̂ (j)

)
> DKL

(
P 2‖P̂ (j)

)

⇐⇒ DKL

(
P 1‖P̂ (j)

)
− DKL

(
P 2‖P̂ (j)

)
> 0

⇐⇒
(

1

2
− γ

)
log

j

m − j
> −γ logγ − (1 − γ ) log (1 − γ ) − log 2

⇐⇒ log
j

m − j
> log

([
1

4γ (1 − γ )

] 1
1−2γ · γ

1 − γ

)

⇐⇒ j >
mδ

1 + δ
. (42)

Therefore, the necessary and sufficient condition for DKL(P 1‖P̂ ) > DKL(P 2‖P̂ ) is

j >
mδ

1 + δ
. (43)

The same derivation leads to the necessary and sufficient condition for DKL(P 1‖P̂ ) <

DKL(P 2‖P̂ ):

j <
mδ2

1 + δ2
. (44)

Since j is an integer between 0 and m, these conditions lead to (40) and (41). This completes
the proof. �

Before investigating the probabilities of the 2 types of failures, 5 significant properties of
δ must be discussed.

Lemma 3 The parameter δ defined in (39) has the following properties:

∂δ

∂γ
> 0, (45)

δ < 1, (46)

δ

1 + δ
− 1

2
< 0, (47)

δ

1 + δ
− γ > 0, (48)

∂
(

δ
1+δ

− γ
)

∂γ
< 0. (49)

Proof Since δ is a function of γ , its derivative can be calculated according to fundamental
differentiation rules:

∂δ

∂γ
= ∂( 1

4γ (1−γ )
)

1
1−2γ

∂γ
· γ

1 − γ
+
(

1

4γ (1 − γ )

) 1
1−2γ · ∂

γ

1−γ

∂γ
. (50)



Mach Learn (2012) 88:69–126 91

Define function ϕ as

ϕ =
(

1

4γ (1 − γ )

) 1
1−2γ

. (51)

Then its derivative can be calculated by computing the logarithm of both sides:

lnϕ = 1

1 − 2γ
ln

1

4γ (1 − γ )
. (52)

Computing the derivatives of both sides yields

ϕ′

ϕ
= 2

(1 − 2γ )2 ln
1

4γ (1 − γ )
− 1

γ (1 − γ )
. (53)

Thus we have

ϕ′ = ∂( 1
4γ (1−γ )

)
1

1−2γ

∂γ
= 2ϕ

(1 − 2γ )2
ln

1

4γ (1 − γ )
− ϕ

γ (1 − γ )
. (54)

By substituting (51) into (47) and using the definition of ϕ, we obtain

∂δ

∂γ
= 2γ ϕ

(1 − γ )(1 − 2γ )2
ln

1

4γ (1 − γ )
. (55)

The inequality γ ∈ [0,1/2) yields

1 − γ > 0, ln
1

4γ (1 − γ )
> 0, ϕ > 0. (56)

These lead to ∂δ
∂γ

> 0, which completes the proof of (45).

Since ∂δ
∂γ

> 0 and γ ∈ [0,1/2), we have

log δ < lim
γ→1/2

log δ = lim
γ→1/2

[
1

1 − 2γ
log

1

4γ (1 − γ )
+ log

γ

1 − γ

]

= lim
γ→1/2

[− log 4γ (1 − γ )

1 − 2γ

]
= lim

γ→1/2

[−∂ log 4γ (1 − γ )

∂ (1 − 2γ )

]

= 1 − 2γ

2γ (1 − 2γ )
= 0. (57)

The monotonicity of logarithm and log δ < 0 yield δ < 1. This completes the proof of (46).
By using (55), we have

∂ δ
1+δ

∂γ
= ∂ δ

1+δ

∂δ
· ∂δ

∂γ

= 1

(1 + δ)2 · 2γ ϕ

(1 − γ ) (1 − 2γ )2 ln
1

4γ (1 − γ )
(58)

= 2δ

(1 + δ)2 (1 − 2γ )2 ln
1

4γ (1 − γ )
> 0. (59)
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Fig. 3 Plot of δ/ (1 + δ) − γ as
a function of γ ∈ [0,1/2) on
5000 points between 0 and 1/2

Since γ ∈ [0,1/2), we have

δ

1 + δ
<

δ

1 + δ

∣∣∣∣
γ=1/2

= 1

2
. (60)

This completes the proof of (47).
It is tedious and unnecessary to prove inequalities (48) and (49) via similar derivation

to above ones, because very high (more than 6th) order derivatives of (δ/(1 + δ) − γ )2

have to be computed in this case, while this function is too complex to compute its high
order derivatives. Hence we prove (48) and (49) by plotting δ/(1 + δ) − γ as a function of
γ ∈ [0,1/2) in Fig. 3.

According to the curve of the function δ/(1 + δ) − γ shown in Fig. 3, the function is
always larger than 0 and decreases as γ increasing in interval γ ∈ [0,1/2). Since δ/(1 +
δ2) − γ is a continues function of γ , there is no spike or singularity on its curve. Therefore,
we obtain (48) and (49). This completes the proof. �

According to Lemmas 1 and 2, we have the following proposition about the probabilities
of the 2 types of recovery failures.

Proposition 1 The probabilities of the 2 types of recovery failures are functions of m and γ :

Pr
(
DKL

(
P 1‖P̂

)
< DKL

(
P 2‖P̂

))
=

mδ
1+δ∑

j=1

(
m

j

)(
1

2

)m

, b ∩ y = ∅, (61)

Pr
(
DKL

(
P 1‖P̂

)
> DKL

(
P 2‖P̂

))
=

m∑

j= mδ
1+δ

(
m

j

)
γ j (1 − γ )m−j , b ∩ y = b. (62)

Proof Lemma 1 gives the distribution of P̂ (j) follows binomial models (33) and (34) re-
spectively under the 2 different facts, i.e., b ∩ y = ∅ in type I failure and b ∩ y = b in type II
failure. Lemma 2 provides the 2 ranges of j that leads to the 2 kinds of failures in (40) and
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(41), respectively. Therefore, the probability of each kind of failure is the sum of all the
probabilities P̂ (j) with j in the respective range. Thus we have

Pr
(
DKL

(
P 1‖P̂

)
< DKL

(
P 2‖P̂

))
=

mδ
1+δ∑

j=1

Pr
(
P̂ (j)

)
, b ∩ y = ∅, (63)

Pr
(
DKL

(
P 1‖P̂

)
> DKL

(
P 2‖P̂

))
=

m∑

j= mδ
1+δ

Pr
(
P̂ (j)

)
, b ∩ y = b. (64)

Substitute Pr(P̂ (j)) given in Lemma 1 into the above probabilities, we obtain (61) and (62)
in Proposition 1. This completes the proof. �

Since P̂ (j) follows binomial distribution and the probabilities of the 2 kinds of failures
are CDFs of binomial distributions, we apply Hoeffding’s inequality to the 2 probabilities
in Proposition 1 and obtain the upper bounds for them.

Theorem 4 (Probabilistic bounds for recovery failures) The upper bounds for the probabil-
ities of the two types of recovery failures are:

Pr
(
DKL

(
P 1‖P̂

)
< DKL

(
P 2‖P̂

))
≤ 1

2
exp

[
−2

(
δ

1 + δ
− 1

2

)2

m

]
, b ∩ y = ∅, (65)

Pr
(
DKL

(
P 1‖P̂

)
> DKL

(
P 2‖P̂

))
≤ 1

2
exp

[
−2

(
δ

1 + δ
− γ

)2

m

]
, b ∩ y = b. (66)

Proof For type I failure, its probability (61) is a CDF of a binomial distribution (33). Ac-
cording to the condition of Hoeffding’s inequality

mδ

1 + δ
≤ mδ

1 + δ
<

1

2
· m, (67)

we apply Hoeffding’s inequality to (61) and obtain

Pr
(
DKL

(
P 1‖P̂

)
< DKL

(
P 2‖P̂

))
=

mδ
1+δ∑

j=1

(
m

j

)(
1

2

)m

≤ 1

2
exp

[
−2

( mδ
1+δ

− m
2 )2

m

]

≤ 1

2
exp

[
−2

(
δ

1 + δ
− 1

2

)2

m

]
, b ∩ y = ∅. (68)

The second inequality in the above derivation is due to (47) in Lemma 3, which yields

mδ

1 + δ
− m

2
≤
(

δ

1 + δ
− 1

2

)
m < 0. (69)

This completes the proof of (65).
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For type II failure, its probability (62) can be written as a CDF of a binomial distribution
related to (34):

Pr
(
DKL

(
P 1‖P̂

)
> DKL

(
P 2‖P̂

))
=

m∑

j= mδ
1+δ

(
m

j

)
γ j (1 − γ )m−j

=
m− mδ

1+δ∑

j=0

(
m

j

)
(1 − γ )j γ m−j . (70)

The inequality (48) in Lemma 3 yields the condition of Hoeffding’s inequality.

m − mδ

1 + δ
≤ m − mδ

1 + δ
< (1 − γ ) · m. (71)

We apply Hoeffding’s inequality to (70) and obtain

Pr
(
DKL

(
P 1‖P̂

)
> DKL

(
P 2‖P̂

))

≤ 1

2
exp

⎡

⎢⎣−2

[(
m − mδ

1+δ

)
− m(1 − γ )

]2

m

⎤

⎥⎦

≤ 1

2
exp

[
−2

(
δ

1 + δ
− γ

)2

m

]
, b ∩ y = b. (72)

The second inequality in the above derivation is due to (48) in Lemma 3, which yields

(
m − mδ

1 + δ

)
− m(1 − γ ) = mγ − mδ

1 + δ
≤
(

γ − δ

1 + δ

)
m < 0. (73)

This completes the proof of (66). �

The probabilistic bounds given in Theorem 4 are exponential functions of m and γ ,
wherein m is the number of measurements (number of random projection signs in the recov-
ery algorithm, i.e., dimension of CL label vector in CL), and γ ∈ [0,1/2) is a monotonically
decreasing function of card(b) according to (36). As a compression-recovery algorithm, it
is essential to investigate how many measurements are sufficient to ensure the success of the
recovery in CL. As a multi-label prediction algorithm, it is essential to analyze whether the
application of distilled labelsets (DLs) can improve the prediction performance. These two
significant questions can be well answered by Theorem 5 that analyzes how the probabilistic
bounds of recovery failures change with m and γ .

Theorem 5

1. The upper bounds of the probabilities for the 2 types of recovery failures exponentially
shrink with the increasing of measurements’ number m.

2. The upper bounds of the probabilities for the 2 types of recovery failures exponentially
shrink with the increasing of the distilled labelset b’s cardinality.
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Proof 1 In Theorem 4, the two upper bounds

1

2
exp

[
−2

(
δ

1 + δ
− 1

2

)2

m

]
and

1

2
exp

[
−2

(
δ

1 + δ
− γ

)2

m

]
. (74)

They are both exponentials of negative linear functions of m. Therefore, they exponentially
decreases with the increase in the number of measurements m. This completes the proof of
conclusion 1.

2 We study the monotonicities of the 2 functions of γ in the 2 upper bounds from Theo-
rem 4:

f1(γ ) =
(

δ

1 + δ
− 1

2

)2

and f2(γ )

(
δ

1 + δ
− γ

)2

. (75)

Their partial derivatives with respect to γ are

∂f1

∂γ
= 2

(
δ

1 + δ
− 1

2

)
· ∂ δ

1+δ

∂γ
, (76)

∂f2

∂γ
= 2

(
δ

1 + δ
− γ

)
· ∂( δ

1+δ
− γ )

∂γ
. (77)

By using inequalities (47), (45), (48), (49) and (59), we have

∂f1

∂γ
< 0 and

∂f2

∂γ
< 0. (78)

Thus f1 and f2 increase with the decreasing of γ . Since both f1 and f2 are nonnegative, the
2 upper bounds

1

2
exp

[−2f1(γ )m
]

and
1

2
exp

[−2f2(γ )m
]

(79)

exponentially decrease with the decreasing of γ .
According to (36), γ ∈ [0,1/2) is a monotonically decreasing function of card(b), so the

2 upper bounds in Theorem 4 exponentially decreases with the increase in the cardinality of
the DL b. This completes the proof of conclusion 2. �

Theorem 5 shows that the upper bounds for the probabilities of the 2 types of failures both
the recovery accuracy exponentially shrink with the increasing of either the measurements or
the cardinality of DL. It indicates that the multi-label prediction performance of CL will not
be harmed by the label compression and will be significantly improved by applying LDM.
In summary, Theorem 5 This theoretically shows CL saves the time costs and balances
the training data, and LDM explores the label correlations. When DL is replaced with unit
vectors whose elements are 0 except one element is 1, it is easy to derive from Theorem 5
that m = O(logk) can produce a sufficiently accurate recovery. Note that DL can produce
more robust and accurate recovery than the unit vectors (cf. (27) and the analysis below it),
though the value of m ensuring accurate recovery cannot be precisely identified in this case.

4 Discussion

In this section, we discuss CL’s contributions to multi-label learning, and analyze CL’s rela-
tionships with compressed sensing (CS) and error-correcting output codes (ECOC).
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4.1 Contributions to multi-label learning

In essence, CL is a label transformation method for multi-label learning. It solves or at
least substantially alleviates the three aforementioned problems harassing multi-label learn-
ing field via label random projection based compression and recovery. In particular, the
label compression in CL generates a new label matrix with improved sample balance for
each label, mutual independence between different labels and lower label dimensionality
than the original one. According to the analyses in Sect. 2, these are attributed to a series
of properties of random projection signs. The sample balance and mutual independence of
CL labels remove the two obstacles of applying conventional binary classification meth-
ods to multi-label learning problems. Thus the label compression method in CL avoids the
problems of directly applying single-label learning methods to multi-label learning tasks,
while inherits their advantages in binary classification tasks. Besides, the single-label learn-
ing methods are directly invoked in CL without any modification. For example, the SVM
based CL presented in this paper retains the optimality and robustness of margin maxi-
mization, and can be extended to nonlinear kernel space. The dimension reduction of the
label matrix significantly decreases the problem size and yields an efficient training stage.
These characteristics of CL improves both effectiveness and efficiency of multi-label learn-
ing.

Although the three problems have been more or less considered by existing methods,
they have rarely been simultaneously considered without introducing other problems. For
instance, methods for exploiting the label dependence usually expand the problem size and
aggravate the sample imbalance. Methods for label dimension reduction often transform the
classification problem to other problems that ignore the label dependence and have complex
label recovery algorithms.

Moreover, CL is a general method whose training process is isolated from the label com-
pression and recovery, and thus various existing single-label and multi-label learning meth-
ods can be directly invoked in the training stage of CL by using the compressed label matrix.
The benefits of these methods can be completely retained in their CL variants. Hence CL
is not only a multi-label classification solver but also a general method that can be directly
applied to most existing multi-label leaning techniques for improving their performance and
speed. LDM in CL is a greedy binary matrix decomposition technique that exploits the dis-
crete patterns of a given binary matrix. Thus LDM can be isolated from the CL scheme
and applied independently to multi-label learning in order to obtain better labelsets for LP
(Tsoumakas and Katakis 2007) or build the nodes in tree-structural hierarchy (Bianchi et al.
2006; Tsoumakas et al. 2008).

Furthermore, CL significantly decreases the problem size of multi-label learning by
adding a label compression and recovery procedure. However, the computation of the
additional procedure is simple and fast. In particular, the compression is composed
of random projections and hard thresholding, and the recovery includes only compar-
ison, thresholding and sorting. Thus the additional time cost brought by compression
is negligible comparing with the tremendous reduced time cost caused by CL. Com-
pared with the multi-label learning via CS (Hsu et al. 2009) whose recovery needs to
solve an �1 minimization, CL targets on a more powerful classification model and de-
velops a more efficient recovery algorithm by exploiting the {0,1} nature and discrete
pattern of the label matrix. Therefore, CL brings significant acceleration to multi-label
learning and makes the large-scale problems (Koufakou et al. 2011) computationally
tractable.
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4.2 Relationship with compressed sensing

CS (Donoho 2006; Candès et al. 2006) is a sparse signal compression and recovery scheme
that achieves remarkable success in recent years. It proves that a sparse signal x can be
exactly recovered from a small number of its random projections y = xA if the projection
matrix A follows the Restricted Isometry Property (RIP). Similarly, CL proposes a {0,1}
label matrix compression and recovery scheme. Thus it is interesting to discuss the relation-
ship between CS and CL.

1. CS and CL both use random projections in their compression of a sparse signal and a
{0,1} label matrix, respectively. Random projection can be deemed as a pseudorandom
generator that encodes certain information of the original data into random variables.
In CS, random projections provide linear random measurements that satisfy RIP, which
guarantees the success of exact recovery of sparse signal x from a few of its random mea-
surements y via �1 minimization. In CL, random projection signs of two binary vectors
have an explicit joint distribution, so a row of {0,1} label matrix can be exactly recovered
from its random projection signs by testing the joint distributions of the random projec-
tion signs of the row and several given {0,1} vectors, i.e., distilled labelsets. Note that the
measurements of CS are real-valued while the measurements (i.e., CL labels) are 1-bit.
From the viewpoint of transmission, the space costs of CL compression is significantly
reduced comparing with the CS compression.

2. CS and CL develop different recovery algorithms by exploiting the different properties
of sparse signals and the {0,1} label matrix, respectively. In CS, the sparsity leads to
the minimization of �1 norm of the unknown signal in the recovery algorithm, because
�1 norm is a convex relaxation of the signal cardinality. In CL, although the rows of
the {0,1} label matrix satisfy the sparse assumption as well, they have more specific
characteristics. In particular, (1) each entry is either 0 or 1 in value; and (2) there exist
discrete patterns that are frequently shared by the rows of the label matrix. These two
characteristics of the {0,1} label matrix inspire the KL divergence based hypothesis tests
in the recovery algorithm of CL.

A more related CS problem to the CL problem is 1-bit compressed sensing (Gupta et
al. 2010). Different from CS which recovers the sparse signal from a few of its random
projections, 1-bit CS aims to recover the support set of the sparse signal x from a few of its
random projection signs y = sign(xA). In the passive algorithm of 1-bit CS, the expectation
of yisign(Aji) over different i can be explicitly computed in a similar spirit of the geometric
inference in Theorem 1. A hypothesis test of the expectation is then conducted to determine
whether j is included in the support set of x.

The similarity between 1-bit CS and CL is as follows: the geometric inference of the
expectation in 1-bit CS and the geometric inference of the joint distribution in CL both
study the properties of random projection on a vector drawn uniformly on a hypersphere.

However, 1-bit CS and CL are different in the following three aspects:

1. Their problems are different. 1-bit CS targets on recovering the support set of a sparse
signal, while CL aims at recovering a {0,1} label matrix. Recovering the support set in
1-bit CS only cares about the positions of the nonzero entries in a single sparse vector,
while recovering {0,1} label matrix in CL explores the frequent {0,1} patterns appearing
in all the rows of the matrix via LDM.

2. 1-bit CS studies the random variable yisign(Aji), which can be explained as the product
of random projection signs of sparse signal x and a unit vector e with 1 on the j th entry
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and 0 otherwise. CL studies the random projection signs of {0,1} label vector y and a
given distilled labelsets Di .

3. 1-bit CS recovers the support set through tests of the expectation of two random pro-
jection signs’ product, while CL recovers the {0,1} label matrix via tests of the joint
distribution of two random projection signs based on KL divergence comparison.

Although 1-bit CS and CL are two different techniques for two different problems, it is
possible to extend the methods used in CL to 1-bit CS for improving its performance and
recovery bound. In particular, the expectation of yisign(Aji) used in the 1-bit CS recovery
can be replaced by yisign(zAi), wherein z is a vector revealing the structure information of
the original signal x. This will lead to a “structured 1-bit CS”. Another modification from
CL is to adopt a distribution test based on KL divergence rather than an expectation test in
the recovery of 1-bit CS, because the distribution includes more information about x than
its expectation.

4.3 Relationship with error-correcting output codes

Error-correcting output codes (ECOC) (Dietterich and Bakiri 1995; Escalera et al. 2010)
transforms multi-class problem to several binary problems. ECOC consists of two stages,
(1) coding stage that encodes each class label into a {−1,+1} or {−1,0,+1} codeword, and
(2) decoding stage that seeks for the class codeword closest to the predicted codeword of
a test sample. Each codeword of the training sample is a {−1,+1} or {−1,0,+1} vector
of dimension d that augments with the increasing of the class numbers k. In the training
step, the codewords of training samples are deemed as their new label vectors, and d binary
classifiers are learned from the training set to predict the d dimensions of the codeword of
a given sample, respectively. It has been shown that the error-correcting properties of the
decoding stage are helpful to reduce the bias and variance of the learning algorithm. Please
refer to Escalera et al. (2010) for a complete review of ECOC methods.

ECOC is related to CL for the following two reasons:

1. In label compression via random projections, CL transforms the original label matrix into
a new one, i.e., the CL label matrix. This compression step is similar to the coding stage
of ECOC, which assigns each class a new label vector called codeword. Both CL labels
and codewords in ECOC are used as the labels of the training samples when training the
subsequent binary classifiers.

2. In the recovery by KL-divergence test, CL recovers the original label vector of a test
sample from its CL label vector predicted by the binary classifiers. This recovery step
is similar to the decoding stage of ECOC, which finds the class codeword closest to the
predicted codeword of a test sample and assigns the corresponding class label to the
sample. The final prediction results of CL and ECOC are inferred from the predicted CL
label vector and ECOC codeword, respectively.

Although CL has a coding stage and a decoding stage similar to the two stages in ECOC,
these two schemes are essentially different on their targeted problems, coding and decoding
algorithms, and methodologies. Details are given below.

1. ECOC is designed for a multi-class problem, while CL is designed for a multi-label
learning problem. Although a multi-class problem can be viewed as a special case of
multi-label learning, their discrepancy leads to the key differences in developing ECOC
and CL. For example, there are only k possible codewords for a multi-class problem in
ECOC, so the training set can include all the k codewords for most datasets. Thus these k
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codewords can be independently generated in the coding stage, and treated isolatedly in
the training and decoding stages. However, there are at most 2k −1 possible label vectors
(exponentially increased with k) for a multi-label learning problem in CL, so the training
sets in most datasets cannot include all the possible CL label vectors. This fact indicates
the label vector that needs to be predicted could never appear in the training set before.
For this reason, the correlation between different label vectors and the dependence be-
tween different labels play significantly roles in multi-label learning and provide critical
information for prediction. Thus the CL label vectors cannot be generated independently
in compression. This is why we apply the same random matrix A to different label vec-
tors in CL. This is also why we develop LDM to extract the label correlations, preserve
them in DL and use DL in the CL recovery. Another difference caused by the problem
discrepancy is the decoding stage. It is possible to search for the closest codeword among
the k possible ones in ECOC. But it is impossible to search for the most accordable label
vector among the 2k − 1 possible ones in CL, at least from the aspect of computation.
Thus we have to develop an accurate recovery algorithm for finding the real label vector
in CL.

2. The coding stage in ECOC and the label compression in CL are different in the dimen-
sion of a codeword (the number of CL labels) and the correlation preservation. Common
coding strategies in ECOC include one-versus-all, one-versus-one, randomized design
such as dense random and sparse random, and problem-dependent design such as DE-
COC, Forest-ECOC and ECOC-ONE. One-versus-all and one versus-one suffer from
the problem of serious imbalance in the coding matrix whose rows are composed of
codewords. Moreover, one-versus-one needs to train k(k − 1)/2 binary classifiers in the
subsequent training step, which is computationally intractable for most datasets. Ran-
domized design generates the codeword for each class randomly and independently. The
burden brought by randomness is that high dimensionality of the codeword is required
to preserve sufficient information of the data. Problem-dependent design extracts the
codewords by mining the structure of the k classes. This method requires codewords of
dimension at least k−1. However, the imbalance problem of the coding matrix is ignored
in this method. In summary, the dimensionality of codewords in ECOC is much higher
than or at least around k in most strategies to guarantee successful coding, and the corre-
lations between different classes can be abandoned after coding. However, CL can com-
press the k-dimensional label vector to m = O(logk) (cf. the last paragraph of Sect. 3.4)
in order to solve the problem of label high dimensionality. Moreover, the distribution and
pairwise distance of the original label vectors are maintained after compression in CL
(cf. the last paragraph of Sect. 2.3). The preserved graph structure is helpful for training
classifiers on the CL labels. Note CL adopts random projection signs as the compression
of the original labels, which has not been used in the coding method of ECOC.

3. The decoding stage of ECOC and the KL divergence test based recovery in CL are dif-
ferent in algorithm development. The decoding stage in ECOC is based on the error-
correcting principles and finds the closest codeword among the k possible ones, while
the recovery of CL precisely reconstructs the original label vector dimension-wisely or
DL-wisely (by testing whether each DL belongs to the original label vector or not). The
decoding algorithm of ECOC can be grouped into three types, i.e., comparison of dis-
tances between the predicted codeword and existing ones, class membership possibility
estimation and pattern space transformation. But the recovery of CL is based on a series
of KL divergence tests on DL.

In ML-CS (Hsu et al. 2009), the regret transform in SECOC (Langford and Beygelz-
imer 2005) (one method of ECOC) provides a theoretical guarantee similar in formulation
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to RIP in compressed sensing. Therefore, to some extent, ML-CS (Hsu et al. 2009) can be
deemed as an extension of ECOC in multi-label learning. Compared with this method, CL
performs promisingly on three aspects: (1) less measurements, ML-CS needs m = O(logk)

real-valued labels, while CL requires only m = O(logk) 0-1 (1-bit) labels; (2) faster re-
covery, ML-CS invokes existing convex optimization based CS recovery algorithms, while
CL develops a non-iterative recovery algorithm with linear time; (3) ML-CS transforms a
0-1 prediction problem to a regression problem, while CL transforms a large 0-1 prediction
problem to a smaller one. Thus CL does not change the nature of the problem; (4) the as-
sociated improvement on prediction performance by exploring label correlation in ML-CS
cannot be analyzed, while CL thoroughly explores the label correlation via developing LDM
and applying DL in recovery. The benefits of applying DL can be clearly analysed (cf. the
last two paragraphs in Sect. 3.3).

In addition, CL can be applied to a multi-class problem without the application of LDM
and DL. Comparing with the existing ECOC methods, CL brings the following advantages
for multi-class problems: (1) smaller dimensionality of the codewords; (2) randomized cod-
ing that can simultaneously preserve class correlations and eliminate imbalance in the cod-
ing matrix; and (3) more robust and faster decoding based on an accurate recovery. There-
fore, CL on unit vectors can be deemed as a powerful and novel ECOC method for multi-
class problems.

5 Experiments

In this section, we evaluate CL via 5 groups of experiments on 21 datasets obtained from
real-world problems including text classification, image annotation, scene classification,
music categorization, genomics and web page classification. In the first group of exper-
iments, we evaluate the label compression and recovery in CL by measuring the sam-
ple balance, mutual independence of CL label matrix Z and the recovery error rate of
Algorithm 2. In the second group of experiments, we compare CL with BR in multi-
label prediction when SVM is adopted as the binary classifier in both methods. Time cost
and prediction performance are evaluated on different C parameters of SVM for a com-
parison of robustness. In the third group of experiments, we compare CL with 3 popu-
lar multi-label learning methods, i.e., ML-knn (Zhang and Zhou 2007), MDDM (Zhang
and Zhou 2008) and multi-label prediction via compressed sensing (ML-CS) (Hsu et al.
2009). ML-knn and MDDM are extensions of knn and dimension reduction (Si et al. 2010;
Guan et al. 2011) for multi-label learning, respectively. ML-CS is related to CL because
it adopts a compressed label embedding. In the fourth group of experiments, we compare
CL with 2 SVM methods dealing with imbalanced data, i.e., SVM-SMOTE (Chawla et al.
2002) and SVM-WEIGHT (Osuna et al. 1997). This group of experiments separates the per-
formance improvements caused by label correlation and sample balance in CL. In the fifth
group of experiments, we study the trade-off between time cost reduced by label compres-
sion and prediction performance enhanced by sample balance in CL. In order to eliminate
the influence of label correlation, DL is replaced by the dictionary composed of unit vectors.
In the last 4 groups of experiments, the performance of multi-label prediction is evaluated
in terms of 5 metrics, i.e., Hamming loss, precision, recall, F1 score and accuracy, and CPU
seconds for time cost contest. All the experiments are implemented and run in MatLab on a
server with dual quad-core 3.33 GHz Intel Xeon processors and 32 GB RAM.
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5.1 Evaluation metrics

In the experiments of label compression and recovery, three metrics are used to measure the
sample balance, label independence and recovery error rate, respectively. Given a {0,1} label
matrix Y ∈ {0,1}n×k , its balance-of-degree is defined as the average proportion of positive
samples on all the different labels in (2). A degree-of-balance close to 0.5 indicates a good
sample balance in Y .

The label independence in Y is measured by the average χ2 score after Yates’ correction
(Yates 1934) over all the label pairs in Y . In particular, for a label pair {i, j}, assume

a = ∣∣p : Ypi = 1, Ypj = 1
∣∣ , b = ∣∣p : Ypi = −1, Ypj = 1

∣∣ , (80)

c = ∣∣p : Ypi = 1, Ypj = −1
∣∣ , d = ∣∣p : Ypi = −1, Ypj = −1

∣∣ . (81)

The χ2 score for label pair {i, j} is defined as:

χ2
ij = n (‖ad − bc‖1 − n/2)2

(a + b)(c + d)(b + d)(a + c)
. (82)

The average χ2 score is:

χ2 = mean
(
χ2

ij

)
. (83)

A large χ2 score indicates a strong mutual independence between labels.
Given two label matrices Y1, Y2 ∈ {0,1}n×k , wherein Y1 is the real one an Y2 is the

recovered one, the recovery error rate in CL is measured by the Hamming loss:

HamLoss = 1

nk

n∑

i=1

k∑

j=1

Y1ij ⊕ Y2ij , (84)

where ⊕ is the exclusive disjunction, i.e., the XOR operation.
In the experiments of multi-label prediction, five metrics, i.e., Hamming loss, precision,

recall, F1 score and accuracy, are used to measure the prediction performance. Hamming
loss is defined in (84). The other four metrics are defined as:

Precision = 1

n

n∑

i=1

card (Y1i ∩ Y2i )

card (Y2i )
, (85)

Recall = 1

n

n∑

i=1

card (Y1i ∩ Y2i )

card (Y1i )
, (86)

F1 = 1

n

n∑

i=1

2card (Y1i ∩ Y2i )

card (Y1i ) + card (Y2i )
, (87)

Accuracy = 1

n

n∑

i=1

card (Y1i ∩ Y2i )

card (Y1i ∪ Y2i )
. (88)

These five metrics have been broadly applied on general binary data. However, their
importances differs when used in multi-label prediction evaluation, because there are much
more 1s than 0s in the label matrix. Hamming loss could be very small when the labels of all
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Table 1 Information of datasets that are used in label compression and recovery experiments and multi-label
prediction experiments. In the table, n refers to the number of samples, p refers to the number of features,
k refers to the number of labels, K refers to the number of unique label vectors, “Card” refers to the average
cardinality of all label vectors, “Density” refers to the average nonzero entry proposition of all label vectors

ID Datasets Domain n p k K Card Density

1 Bibtex Text 7395 1836 159 2856 2.402 0.015

2 Corel5k Image 5000 499 374 3175 3.522 0.009

3 Mediamill Video 43907 120 101 6555 4.376 0.043

4 IMDB Text 120919 1001 28 4503 1.9997 0.0714

5 Enron Text 1702 1001 53 753 3.378 0.064

6 Genbase Genomics 662 1186 27 32 1.252 0.046

7 Medical Text 978 1449 45 94 1.245 0.028

8 Emotions Music 593 72 6 27 1.869 0.311

9 Scene Scene 2407 294 6 15 1.074 0.179

10 Slashdot Text 3782 1079 22 156 1.1809 0.0537

11 Yahoo-Arts Web 5000 462 26 462 1.6360 0.0629

12 Yahoo-Business Web 5000 438 30 161 1.5878 0.0529

13 Yahoo-Computers Web 5000 681 33 253 1.5082 0.0457

14 Yahoo-Education Web 5000 550 33 308 1.4606 0.0443

15 Yahoo-Entertainment Web 5000 640 21 232 1.4204 0.0676

16 Yahoo-Health Web 5000 612 32 257 1.6622 0.0519

17 Yahoo-Recreation Web 5000 606 22 322 1.4232 0.0647

18 Yahoo-Reference Web 5000 793 33 217 1.1694 0.0354

19 Yahoo-Science Web 5000 743 40 398 1.4506 0.0363

20 Yahoo-Social Web 5000 1047 39 226 1.2834 0.0329

21 Yahoo-Society Web 5000 636 27 582 1.6920 0.0627

the test samples are predicted as 0, and thus it cannot indicates a successful prediction in this
case. Precision and recall should be considered together, because high precision always ac-
companies low recall when most positive samples are falsely predicted as positive. F1-score
and accuracy are less sensitive to the imbalance of label matrix. Therefore, the evaluation
of prediction performance should be a integrative consideration of all the five metrics with
rough importances according to F1-score,Accuracy > Precision,Recall > Hammingloss.

5.2 Datasets

We evaluate the performance of label compression and recovery, and multi-label predic-
tion of CL on 21 datasets from different domains and of different scales, including Bibtex
(Katakis et al. 2008), Corel5k (Duygulu et al. 2002), Mediamill (Snoek et al. 2006), IMDB
(Read 2010), Enron (Tsoumakas 2010), Genbase (Diplaris et al. 2005), Medical (Tsoumakas
2010), Emotions (Trohidis et al. 2008), Scene (Boutell et al. 2004), Slashdot (Read 2010)
and 11 sub datasets included in Yahoo dataset (Ueda and Saito 2002). These datasets are col-
lected from different practical problems such as text classification, image annotation, scene
classification, music categorization, genomics and web page classification. Table 1 shows
the number of samples n, number of features p, number of labels k and number of unique
labelsets K , the average cardinality of all label vectors Card, and the average nonzero entry
proportion of all label vectors Density of different datasets.
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5.3 Label compression and recovery

In this group of experiments, we test the sample balance and label independence on the
compressed CL labels, and the recovery accuracy of the corresponding recovery algorithm
given in Algorithm 2. We only test the label compression and recovery methods proposed
in CL in this group of experiments, and leave the classification and prediction to the sec-
ond group of experiments. That is because the classification error in CL is caused by two
issues, i.e., the label recovery error introduced by compression and the classification error
on CL labels. Since the former one is determined by the proposed CL, while the latter one is
mainly determined by the binary classification method CL invokes, independent evaluations
of different errors are important to the analysis of the effectiveness of CL.

For each of the datasets listed in Table 1, we compress the label matrix to its random
projection signs and extract its distilled labelsets by using DL algorithm given in Algorithm
1, and then the recovery algorithm of CL given in Algorithm 2 is invoked to recover the orig-
inal labels from their CL labels. We measure the degree-of-balance and the χ2 score of CL
labels, and calculate the Hamming loss between the original labels and the recovered ones
on different compression ratios. For the two datasets with 6 labels, i.e., Scene and Emotions,
the compression ratio is settled from 0 to 3, because the empirical joint distribution estima-
tion will become unstable when the number of random projection signs is too small. For the
other datasets, the compression ratio changes from 0 to 1. There are two parameters, i.e., the
threshold τ in DL algorithm and the cardinality range in the recovery algorithm. We select
0.01 ≤ τ ≤ 0.25 in all the experiments. In particular, a large τ is recommended for datasets
with a large number of unique labelsets, because a small τ often generates clusters without
shared label subset in this case. The cardinality range is chosen as the cardinality range of
the rows in the original label matrix.

We show the experimental results of label compression and recovery on multiple datasets
in Figs. 4 to 6.

In the all the figures, the degree-of-balance of CL labels are kept 0.5 ± 0.1 on differ-
ent compression ratios. For several datasets with large number of labels, e.g., Bibtex and
Corel5k, the degree-of-balance stays very close to the ideal value 0.5. Compared to the
degree-of-balance of the original labels, which is shown in the figures as well, CL labels
highly improve the sample balance.

In the experiments, the χ2 score is used to measure the label independence, namely,
a larger χ2 score indicates different labels are more independent. In χ2 test, when the degree
of freedom is 1, a χ2 score larger than 10.83 associates with a P -value 0.001 and thus
indicates the two discrete variables are independent with a very high probability 99.9%.
In the figures, most χ2 scores of the CL labels are much higher than 10.83 and thus the
different CL labels are independent. This result is consistent with our theoretical analysis.
Compared to the χ2 score of the original labels, CL labels removes the label dependence,
and thus the sequel classification by using conventional binary classification method will be
proper and will not downgrade the prediction performance.

The recovery error rates in the figures show that the recoveries are still very accurate with
very small Hamming losses when the compression ratio is very small. Thus the computa-
tional complexity of CL can be tremendously decreased by using a very low dimensionality,
while the learning performance will not be jeopardized. Another observation is that the
Hamming loss drops quite fast when the compression ratio is increased. This leads to an
efficient compression and precise recovery. Some noises appear on the Hamming loss curve
in some figures and makes the curves not monotonically deceasing. That is because the ran-
dom vectors in A are randomly selected on the hypersphere and thus their distribution on
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Fig. 4 Sample balance, label independence and recovery error rate on 21 datasets (1). From top to bottom:
Bibtex, Corel5k, Mediamill, IMDB, Enron, Genbase, Medical

the hypershpere is not absolutely even. However, these noises are of small amplitude and
thus will not harm the recovery accuracy.

5.4 Multi-label prediction: comparison with BR

In this group of experiments, we compare the multi-label prediction performance and the
time cost of CL with BR on 21 datasets with different parameter settings. Since we choose
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Fig. 4 (Continued)

SVM as the single-label learning method in the training stage of CL, BR is compared with
CL in the experiments as a baseline method by applying SVM directly on the original labels.
This group of experiments aims at verifying the improvement and robustness of prediction
performance brought by the training on the CL labels rather than on the original ones. We
use linear SVM in the training stages of both BR and CL. This is because linear SVM has
only one parameter C, thus the robustness of the performances can be conveniently com-
pared under different parameter settings. The broadly used standard SVM solver “LIBSVM
(Chang and Lin 2001)” is applied to all the datasets except Mediamill and IMDB, which
are of large scale and thus intractable for LIBSVM. For these two datasets, we alternatively
apply NESVM (Zhou et al. 2010), which is a fast gradient SVM solver for large-scale prob-
lems.

Table 2 summarizes the information about the training set, the test set and the obtained
distilled labelsets of each datasets used in the multi-label prediction experiments. Both train-
ing set and test set are randomly selected from the original datasets. The number of distilled
labelsets for most datasets is between the number of labels and that of the unique labelsets.
When the unique labelsets is of large size, the number of distilled labelsets keeps close to
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Fig. 5 Sample balance, label independence and recovery error rate on 21 datasets (2). From top to bottom:
Emotions, Scene, Slashdot, Yahoo-Arts, Yahoo-Business, Yahoo-Computers, Yahoo-Education

the number of labels. Thus the computational complexity of recovery algorithm will not be
significantly increased when the number of unique labelsets is augmented.

In each experiment, the training algorithm given in Algorithm 3 and the prediction algo-
rithm given in Algorithm 4 are applied to training set and test set, respectively. We test the
performance on different C in SVM. The parameter C can be interpreted as the weight of
hinge loss in the objective function of SVM. The threshold τ and the cardinality range are
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Fig. 5 (Continued)

chosen according to the same method in the label compression and recovery experiments.
BR is compared with CL on 3-7 different C values between 10−3 to 103 in all experiments.
For most datasets, 4 C values [10−3,10−2,10−1,1] are used. Since BR fails on some datasets
with these C values when it overwhelmingly predicts all the test samples as negative, we
choose different C values in this case to guarantee a thorough comparison on sufficient C

values.
The prediction performance is evaluated by five metrics, which are Hamming loss, preci-

sion, recall, F1 score and accuracy. The good performance is indicated by a small Hamming
loss with the large values of the other four metrics. The evaluation of performance should
be an integrative consideration of all the five metrics, because one good metric is possibly
associated with poor other metrics and a trivial prediction result. For instance, a small ham-
ming loss can associate with other four metrics that are nearly zeros, when most test samples
are predicted as negative in all the binary classifications and the number of positive samples
is very small. Another example is that a high precision can associate with other four small
metrics when the number of positive samples in the predicted one is very small. Compared
with precision and recall, F1 score and accuracy are more robust to the above problems.



108 Mach Learn (2012) 88:69–126

Fig. 6 Sample balance, label independence and recovery error rate on 21 datasets (3). From top to bot-
tom: Yahoo-Entertainment, Yahoo-Health, Yahoo-Recreation, Yahoo-Reference, Yahoo-Science, Yahoo-So-
cial, Yahoo-Society

We show the multi-label prediction experimental results of CL and BR given different C

values on 5 large-scale datasets in Table 3. In this table, we use “–” as the mark of prediction
failure, namely, predicting all the samples into one class in each binary classification. The
“Time” column in the tables is the sum of training and test CPU seconds. Thus the CPU
seconds for label compression and recovery in CL is included in “Time”. The best perfor-
mance of BR and CL are shadowed with different colors in the table. For each dataset, we
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Fig. 6 (Continued)

choose the number of CL labels much less than the number of the original ones except in
datasets Scene and Emotions, where the numbers of labels are too small (6) and thus random
projection signs less than it are not stable for estimating the empirical joint distribution.

In most experiments, CL significantly outperforms BR on different metrics and differ-
ent values of C. In particular, CL has overwhelming privilege on large-scale datasets with
large number of labels (which is one of the most difficult cases in multi-label learning),
e.g., Bibtex, Corel5k, Enron and Medical. CL also has appealing prediction performance
on small datasets whose density is small, e.g., Genbase, Slashdot and most sub datasets of
Yahoo. Another interesting phenomenon is that the dimension increasing of label matrix on
Scene dataset generates a satisfying prediction. This indicates that CL can also be used to
improve multi-label prediction on dataset with small number of labels by increasing the di-
mensionality of CL labels. There exist rare cases when BR has better performance, e.g., on
Yahoo-Business with C = 103 and C = 102, but CL and BR arrive the same metrics when
C = 101 and C = 1.

CL also brings a tremendous reduction of the time cost. According to the CPU seconds
and the number of labels shown in the tables, CL can compress the original label matrix
to a low dimensionality, which saves a great amount of computation in the training stage.
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Table 2 Training set size, test set size and the obtained distilled labelsets size of each datasets in the multi-
label prediction experiments. In order to compare the number of distilled labelsets d with the number of labels
k and the number of unique labelsets K , we list k and K of each datasets in the table as well

ID Datasets Training Test DL k K

1 Bibtex 4880 2515 253 159 2856

2 Corel5k 4500 500 418 374 3175

3 Mediamill 30993 12914 161 101 6555

4 IMDB 62050 58869 61 28 4503

5 Enron 1123 579 73 53 753

6 Genbase 463 199 27 27 32

7 Medical 333 645 46 45 94

8 Emotions 391 202 14 6 27

9 Scene 1211 1196 6 6 15

10 Slashdot 2338 1444 20 22 156

11 Yahoo-Arts 2000 3000 37 26 462

12 Yahoo-Business 2000 3000 35 30 161

13 Yahoo-Computers 2000 3000 39 33 253

14 Yahoo-Education 2000 3000 35 33 308

15 Yahoo-Entertainment 2000 3000 26 21 232

16 Yahoo-Health 2000 3000 35 32 257

17 Yahoo-Recreation 2000 3000 31 22 322

18 Yahoo-Reference 2000 3000 38 33 217

19 Yahoo-Science 2000 3000 47 40 398

20 Yahoo-Social 2000 3000 47 39 226

21 Yahoo-Society 2000 3000 39 27 582

Therefore, CL is capable to reduce the problem size of multi-label learning and makes the
large-scale problems computationally tractable.

Since the unique difference between CL and BR is that CL invokes linear SVM on the
compressed labels rather than on the original ones as BR does, this group of experimental
results shows that single-label classification methods can be conveniently extended to solve
multi-label learning problems with improved performance and reduced time cost by using
the label compression and recovery scheme proposed in CL. The leverages in both effec-
tiveness and efficiency are attributed to the removal of the three main problems of applying
single-label learning method to multi-label learning tasks. In particular, the performance
improvement benefits from the sample balance and exploration of label correlation in CL,
while the time cost is decreased by label compression. In addition, the benefits and the
strength of conventional single-label learning methods are well inherited in the scheme of
CL. Therefore, CL proposes a general extension of single-label learning method to multi-
label scenarios rather than merely a specific algorithm for multi-label learning.

CL is robust to the change of parameters in the training stage. In the experimental results,
CL can generate appealing prediction result when BR fails on some C values. Moreover, its
performance changes a little when C decreases from 103 to 10−3, e.g., on the Scene dataset.
We explain the reasons for the improvement of robustness on two aspects:

1. SVM is more robust to the parameter C on more balanced data. In imbalanced data, the
insufficient number of samples in the minor class are more likely to be within the mar-
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gin when C decreases, i.e., when the margin becomes larger. This leads to less support
vectors for the minor class. Thus the prediction performance of BR drops dramatically
with the decreasing of C. CL trains SVM classifiers on compressed labels with improved
sample balance, and thus the prediction performance is more robust to a wide range of C.

2. In CL, although the number of labels are reduced due to the label compression, the num-
ber of labels that each sample belongs to is increased, because the label matrix is much
more dense and balanced. Thus the information of the original labels are disseminated
rather than condensed in the CL labels. In the prediction stage, each original label is pre-
dicted according to the statistics of all the CL labels. This scheme makes the prediction
of the original label robust to the failures in predicting one or two CL labels.

Therefore, CL improves the robustness of the multi-label learning via random projection
signs of the labels.

5.5 Multi-label prediction: comparison with other multi-label learning methods

In this group of experiments, we compare CL with 3 popular multi-label learning methods,
i.e., ML-knn (Zhang and Zhou 2007), MDDM (Zhang and Zhou 2008) and multi-label pre-
diction based CS (ML-CS) (Hsu et al. 2009). ML-knn is an extension of knn. It obtains the
label prior distribution from the k nearest neighbors and maximizes a posterior to the label
prediction. ML-knn aims at solving the imbalance problem of the k nearest neighbors’ la-
bels. MDDM tackles the “curse of dimensionality” in multi-label data and formulates the
problem as a discriminative dimension reduction (Tao et al. 2009). It maximizes the de-
pendence between feature space and label space via maximizing the empirical estimate of
Hilbert-Schmidt Independence Criterion. Then ML-knn can be applied to the obtained low-
dimensional subspace. MDDM aims at decreasing the time complexity of the sequential
ML-knn.

ML-CS compresses the original 0–1 label matrix Y via random projection Y ′ = YA to
a real valued matrix Y ′, and then builds a new linear regression model Y ′ = XW ′. In its
prediction, the original label vector y is recovered from y ′ via compressed sensing or model
selection algorithms such as least angle regression (LARS) (Efron et al. 2002). ML-CS is
related to CL because it builds models on the low-dimensional embedding of the original
label. Their main difference is that CL compresses the original 0–1 label matrix to another
0–1 label matrix and builds binary classification models on it rather than regression models
in the training stage.

In the experiments, we set the number of neighbors in ML-knn as 20 and the dimen-
sions of the subspace obtained in MDDM as 40% of the dimensions of the original data.
In ML-CS, the low-dimensional embedding of the label matrix has the same dimension as
the compressed label matrix in CL. We use LARS as the recovery algorithm in its predic-
tion stage. The sparse level is determined by selecting the solution with the minimum least
square measurement error in the same cardinality range as CL. This is similar to the last step
in the recovery algorithm of CL in Algorithm 2. The performance of CL is collected from
the first group of experiments.

We show the experimental results in Tables 4 and 5.
In most experiments, CL outperforms the other 3 multi-label learning methods on most

performance metrics. Since ML-knn is more robust to sample imbalance than BR based on
SVM, and ML-CS eliminates the sample imbalance via random projections, sample balance
problem are considered in these 3 methods. Moreover, ML-knn explores the label correla-
tion by its instance-based learning scheme. Thus the 3 methods have better prediction per-
formance than BR in the first group of experiments. However, ML-knn and MDDM are vul-
nerable to dataset with ultra sample imbalance, e.g., Bibtex, Corel5k and Mediamill, where
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Table 4 Prediction performances and time costs of ML-knn, MDDM, ML-CS and CL on 10 datasets. “–”
denotes the failed experiment whose time cost exceeds 105 seconds

Methods HL Prec Rec F1 Acc Time Labels

Bibtex ML-knn 0.0140 0.5511 0.0397 0.2034 0.0364 42697 159

MDDM 0.0140 0.5334 0.0534 0.2138 0.0492 970.7 159

ML-CS 0.1645 0.0798 0.6499 0.1026 0.0760 1901.5 80

CL 0.1075 0.2210 0.5658 0.2445 0.1839 1640 80

Corel5k ML-knn 0.0093 0.6197 0.0103 0.0321 0.0098 2106 374

MDDM 0.0093 0.6166 0.0161 0.0755 0.0146 458 374

ML-CS 0.0857 0.0789 0.5108 0.1012 0.0741 612.6 160

CL 0.0153 0.2418 0.2595 0.2392 0.1585 526.5 160

Mediamill ML-knn 0.0314 0.4132 0.0632 0.5377 0.0534 5713 101

MDDM 0.0319 0.3679 0.0517 0.5278 0.0439 48237 101

ML-CS 0.1116 0.2503 0.7033 0.3402 0.2206 99.48 40

CL 0.0390 0.5751 0.4629 0.4659 0.3467 76.70 40

IMDB ML-knn – – – – – > 105 28

MDDM – – – – – > 105 28

ML-CS 0.1890 0.1654 0.4228 0.2286 0.1406 3608 20

CL 0.1492 0.2621 0.5178 0.3080 0.2187 3273 20

Enron ML-knn 0.0518 0.5083 0.0665 0.4632 0.0532 527 53

MDDM 0.0505 0.5000 0.0883 0.4966 0.0715 29 53

ML-CS 0.3857 0.1315 0.6732 0.1747 0.1189 40.36 36

CL 0.0779 0.5027 0.5926 0.5076 0.3905 35.60 36

Genbase ML-knn 0.0065 1.0000 0.5071 0.9231 0.5071 9.38 32

MDDM 0.0063 0.9881 0.5170 0.9258 0.5133 6.09 32

ML-CS 0.0143 0.9140 0.9949 0.8627 0.9104 0.327 20

CL 0.0101 0.9605 0.9728 0.9568 0.9441 0.321 20

Medical ML-knn 0.0204 0.7554 0.0743 0.4879 0.0657 22.8 45

MDDM 0.0249 0.7395 0.0323 0.3058 0.0258 32.3 45

ML-CS 0.3306 0.0896 0.9356 0.1334 0.0893 3.14 25

CL 0.0273 0.5904 0.8147 0.6565 0.5694 1.43 25

Emotions ML-knn 0.2855 0.6852 0.2819 0.4155 0.2237 0.66 6

MDDM 0.2962 0.5437 0.2885 0.4163 0.2239 0.66 6

ML-CS 0.3960 0.4339 0.6113 0.5171 0.3927 0.68 15

CL 0.3201 0.5208 0.6007 0.5353 0.4373 0.51 15

Scene ML-knn 0.1016 0.7788 0.6257 0.6881 0.5373 14.3 6

MDDM 0.1044 0.7568 0.6393 0.6870 0.5338 7.59 6

ML-CS 0.4123 0.2672 0.6768 0.3734 0.2635 20.42 15

CL 0.0780 0.6080 0.8023 0.6627 0.5887 16.50 15

Slashdot ML-knn 0.0481 0.7104 0.1016 0.3067 0.0800 708 22

MDDM 0.0518 0.3973 0.0129 0.0452 0.0118 114 22

ML-CS 0.3866 0.0881 0.6774 0.1530 0.0866 31.86 12

CL 0.0833 0.4269 0.6514 0.4913 0.4122 27.68 12
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Table 5 Prediction performances and time costs of ML-knn, MDDM, ML-CS and CL on 11 sub datasets
from Yahoo dataset

Methods HL Prec Rec F1 Acc Time Labels

Arts ML-knn 0.0587 0.6257 0.0708 0.2477 0.0639 77.6 26

MDDM 0.0595 0.6783 0.0614 0.2123 0.0562 37.4 26

ML-CS 0.4538 0.1004 0.7994 0.1753 0.0975 35.3 22

CL 0.1836 0.3032 0.6452 0.3583 0.2693 29.7 22

Business ML-knn 0.0266 0.6789 0.0920 0.7042 0.0822 93.2 30

MDDM 0.0279 0.6609 0.0733 0.6878 0.0661 42.7 30

ML-CS 0.1089 0.3975 0.8186 0.4246 0.3663 30.3 25

CL 0.0287 0.8633 0.6797 0.7332 0.6797 21.9 25

Computers ML-knn 0.0408 0.6959 0.0344 0.3328 0.0303 124 33

MDDM 0.0414 0.5669 0.0497 0.4075 0.0403 50 33

ML-CS 0.1329 0.3149 0.6432 0.2914 0.2817 54.0 25

CL 0.0736 0.4846 0.6850 0.5196 0.4334 51.6 25

Education ML-knn 0.0389 0.5883 0.0618 0.3159 0.0560 99.8 33

MDDM 0.0398 0.5914 0.0502 0.2655 0.0468 45.2 33

ML-CS 0.1382 0.2406 0.6218 0.2755 0.2188 40.9 25

CL 0.1079 0.3123 0.6383 0.3749 0.2844 36.0 25

Entertain ML-knn 0.0575 0.6662 0.1126 0.3328 0.1067 108 21

MDDM 0.0585 0.6485 0.1093 0.3005 0.1040 43.8 21

ML-CS 0.2202 0.2192 0.5965 0.2550 0.2027 28.8 16

CL 0.1433 0.4028 0.6573 0.4500 0.3697 28.2 16

Health ML-knn 0.0362 0.7316 0.1618 0.5657 0.1471 101 32

MDDM 0.0391 0.7040 0.1448 0.5138 0.1310 46.6 32

ML-CS 0.1092 0.3739 0.7319 0.3900 0.3384 23.3 25

CL 0.0299 0.6140 0.7062 0.6039 0.5636 21.1 25

Recreation ML-knn 0.0595 0.7016 0.0862 0.2310 0.0804 112 22

MDDM 0.0612 0.6655 0.0725 0.1801 0.0671 41.9 22

ML-CS 0.2264 0.1794 0.5383 0.2228 0.1653 24.6 12

CL 0.2210 0.3125 0.6966 0.3721 0.2864 23.7 12

Reference ML-knn 0.0274 0.6663 0.0699 0.4696 0.0638 136 33

MDDM 0.0290 0.6620 0.0676 0.4325 0.0598 51.6 33

ML-CS 0.1404 0.2610 0.6823 0.2484 0.2480 24.1 25

CL 0.0161 0.4892 0.6582 0.5252 0.4618 36.2 25

Science ML-knn 0.0330 0.5999 0.0479 0.2056 0.0446 139 40

MDDM 0.0336 0.6603 0.0456 0.1986 0.0424 53 40

ML-CS 0.1851 0.1496 0.6130 0.1792 0.1405 45.8 30

CL 0.0957 0.2725 0.5939 0.3381 0.2521 59.1 30
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Table 5 (Continued)

Methods HL Prec Rec F1 Acc Time Labels

Social ML-knn 0.0219 0.7759 0.0718 0.5537 0.0675 175 39

MDDM 0.0238 0.6751 0.0577 0.5003 0.0535 70.8 39

ML-CS 0.1443 0.2215 0.7271 0.2386 0.2123 65.2 29

CL 0.0597 0.5642 0.7544 0.5913 0.5288 59.0 29

Society ML-knn 0.0547 0.6258 0.0574 0.3422 0.0499 111 27

MDDM 0.0542 0.6077 0.0530 0.3136 0.0488 44.1 27

ML-CS 0.2130 0.2214 0.5983 0.2351 0.1975 49.9 19

CL 0.1429 0.3785 0.5924 0.4044 0.3191 43.2 19

they have high precision and F1 score but near 0 recall and accuracy. ML-knn and MDDM
have similar performance on most datasets, but MDDM exceeds ML-knn on datasets of high
data dimensionality such as Bibtex and Enron. This indicates the advantages of MDDM on
high dimensional data when ML-knn is applied as the classification model. ML-CS per-
forms better than ML-knn and MDDM because of the independence among the dimensions
of the label embedding brought by random projection. The main reason that ML-CS does
not outperform CL is that ML-CS transforms the original discrete classification model to
a continuous linear regression model, which small estimation error may induce large error
in the label recovery. Although both the estimation error of linear regression model and the
recovery error of the compressed sensing algorithm can be theoretically bounded, it is not
clear how the linear regression estimation error as an input of the recovery influences the
final classification error. CL remains training discrete classification model (of smaller size
than the original one) on CL labels and thus does not meet this problem. Another advan-
tage of CL comparing with ML-CS is that the label correlations are explicitly and directly
explored via LDM, and thus the prediction is improved.

The time cost of CL is less than those of ML-knn and MDDM in all the experiments,
especially on the large-scale datasets such as Bibtex, Corel5k and Mediamill. ML-knn and
MDDM fail on IMDB because we fail to train them in 105 CPU seconds. This is due to
the expensive time complexity O(n2p) of the pairwise distance calculation in ML-knn and
MDDM. MDDM is more efficient than ML-knn with a decreased p. The time costs of CL
and ML-CS are close to each other, and CL performs slightly faster than ML-CS on most
datasets. However, it is worthy to note that CL and ML-CS have different training time
and prediction time. In particular, the training of SVM in CL is slower than the training of
linear regression in ML-CS. But the prediction time of CL is much less than that of ML-
CS, because the recovery algorithm in CL is based on a simple statistical test, while the
recovery algorithm in ML-CS invokes time consuming �1 minimization. In addition, CL
can be substantially faster than ML-CS if we replace LIBSVM with other efficient SVM
solvers such as NESVM.

5.6 Multi-label prediction: comparison with 2 SVM algorithms dealing with imbalanced
data

In this group of experiments, we compare CL with 2 representative SVM extensions dealing
with the sample imbalance problem, i.e., SVM-SMOTE (Chawla et al. 2002) and SVM-
WEIGHT (Osuna et al. 1997). The goal of these experiments is to (1) study whether the
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Table 6 Prediction performances and time costs of SVM-SMOTE, SVM-WEIGHT and CL on 5 datasets

Methods HL Prec Rec F1 Acc Time Labels

Medical SMOTE 0.9679 0.0129 0.3964 0.0253 0.0128 2.435 45

WEIGHT 0.3413 0.0388 0.3078 0.0548 0.0377 2.708 45

CL 0.0273 0.5904 0.8147 0.6565 0.5694 1.433 25

Emotions SMOTE 0.2962 0.4600 0.57178 0.4562 0.3982 1.625 6

WEIGHT 0.2962 0.4547 0.5379 0.4426 0.3805 0.253 6

CL 0.3201 0.5208 0.6007 0.5353 0.4373 0.517 15

Scene SMOTE 0.1128 0.5301 0.6182 0.5631 0.5261 23.42 6

WEIGHT 0.1128 0.5318 0.6207 0.4938 0.5269 9.244 6

CL 0.0780 0.6080 0.8023 0.6627 0.5887 16.50 15

Genbase SMOTE 0.9885 0.0086 0.1264 0.0164 0.0082 2.098 32

WEIGHT 0.5736 0.0497 0.7089 0.0945 0.0488 0.964 32

CL 0.0101 0.9605 0.9728 0.9568 0.9441 0.321 20

Slashdot SMOTE 0.9311 0.0270 0.4361 0.0516 0.0268 43.65 22

WEIGHT 0.3102 0.0797 0.4310 0.1366 0.0778 121.5 22

CL 0.0833 0.4269 0.6514 0.4913 0.4122 27.68 12

Arts SMOTE 0.1200 0.3172 0.5360 0.3421 0.2696 115.4 26

WEIGHT 0.1195 0.3143 0.5300 0.3403 0.2674 54.54 26

CL 0.1836 0.3032 0.6452 0.3583 0.2693 29.72 22

Business SMOTE 0.0448 0.6763 0.8006 0.6462 0.5958 86.36 30

WEIGHT 0.0458 0.6577 0.7171 0.6179 0.5535 38.99 30

CL 0.0287 0.8633 0.6797 0.7332 0.6797 21.98 25

Computers SMOTE 0.0724 0.4435 0.5849 0.4161 0.3765 141.1 33

WEIGHT 0.0709 0.4505 0.5722 0.4154 0.3790 79.93 33

CL 0.0736 0.4846 0.6850 0.5196 0.4334 51.69 25

Education SMOTE 0.0678 0.3341 0.5516 0.3529 0.2279 111.9 33

WEIGHT 0.0680 0.3327 0.5548 0.3531 0.2290 53.89 33

CL 0.1079 0.3123 0.6383 0.3749 0.2844 36.02 25

Entertain SMOTE 0.0920 0.4587 0.5948 0.4437 0.4001 121.4 21

WEIGHT 0.0920 0.4566 0.5882 0.4415 0.3961 62.37 21

CL 0.1433 0.4028 0.6573 0.4500 0.3697 28.22 16

Health SMOTE 0.0652 0.5637 0.6616 0.5417 0.4709 102.8 32

WEIGHT 0.0650 0.5605 0.6567 0.5409 0.4692 48.46 32

CL 0.0299 0.6140 0.7062 0.6039 0.5636 21.18 25

Recreation SMOTE 0.109 0.3062 0.5339 0.3116 0.2773 121.5 22

WEIGHT 0.1081 0.3036 0.5295 0.3208 0.2843 59.22 22

CL 0.2210 0.3125 0.6966 0.3721 0.2864 23.71 12
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Table 6 (Continued)

Methods HL Prec Rec F1 Acc Time Labels

Reference SMOTE 0.0413 0.5096 0.5366 0.4595 0.4468 123.4 33

WEIGHT 0.0411 0.5091 0.5330 0.4583 0.4452 69.04 33

CL 0.0161 0.4892 0.6582 0.5252 0.4618 36.29 25

Science SMOTE 0.0563 0.3584 0.4780 0.3604 0.3023 186.5 40

WEIGHT 0.0556 0.3622 0.4669 0.3579 0.3011 97.09 40

CL 0.0957 0.2725 0.5939 0.3381 0.2521 59.10 30

Social SMOTE 0.0293 0.6698 0.6374 0.5739 0.5566 163.8 39

WEIGHT 0.0292 0.6689 0.6356 0.5732 0.5532 87.57 39

CL 0.0597 0.5642 0.7544 0.5913 0.5288 59.04 29

Society SMOTE 0.1100 0.3272 0.5022 0.3240 0.2532 173.5 27

WEIGHT 0.1088 0.3306 0.5038 0.3263 0.2567 92.26 27

CL 0.1429 0.3785 0.5924 0.4044 0.3191 43.211 19

sample balance obtained via random projection signs in CL works well as the other methods
which imposes over-sampling or larger weight to the minor class; (2) evaluate the perfor-
mance improvement caused by exploring label correlation in CL isolated from that caused
by the sample balance. In the experiments of SVM-SMOTE and SVM-WEIGHT, we replace
the ordinary SVM in BR with these two modified versions, respectively. SVM-SMOTE in-
vokes SMOTE algorithm to generate synthetic but pseudo samples for minor (positive) class
and then train SVM on an dataset with over-sampled positive samples and the original neg-
ative ones. We let the positive sample has the same amount of the negative ones after over-
sampling. SVM-WEIGHT assigns a larger weight penalty to the major class, which leads to
a larger margin for the major class than that for the minor class. We set the weights for the
negative samples and the positive ones in proportion to the ratio of their amounts. We show
the experimental results in Table 6.

Table 6 shows that CL outperforms SVM-SMOTE and SVM-WEIGHT on both effec-
tiveness and efficiency. Compared with the performance of BR using the ordinary SVM in
the first group of experiments, the 2 SVM algorithms are designed to alleviate the harm
brought by sample imbalance to SVM, and thus outperform BR. The phenomenon of “high
precision low recall” is rare in this group of experiments (though still exists on Genbase and
Slashdot), which indicates that the sample balance is helpful for improving multi-label pre-
diction. Different from over-sampling and weighting in SVM-SMOTE and SVM-WEIGHT,
CL eliminates the sample balance via random projection signs. The experimental results
show this method works well as the other two. Compared with SVM-SMOTE and SVM-
WEIGHT, the improvement of prediction performance in CL is due to the application of
DLs that preserve label correlation. Therefore, the sample balance and label correlation in-
deed help to improve the prediction in CL.

SVM-SMOTE adopts over-sampling technique and thus increases the time complexity
of the original SVM in BR by augmenting the training samples. SVM-WEIGHT has similar
time complexity of the original SVM in BR, but the changing of weight in major (negative)
samples may influence the convergence of the SVM training, and thus the time cost will be
slightly different. CL decreases the time complexity of BR by reducing the number of SVM
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models that need to be trained, and thus has the smallest time cost among the 3 methods in
this group of experiments.

5.7 Compression-performance trade-off

In this group of experiments, we study the trade-off between the recovery error due to label
compression and the improvement brought by sample balance for prediction performance
in CL. In particular, we evaluate the time cost and the 5 performance metrics of CL without
using DL on 10 different label compression ratios between 0 and 1. The C parameter for
each dataset is selected as the C with the best performance on the same dataset in the first
group of experiments. We use NESVM (Zhou et al. 2010) as the SVM solver. In order
to isolate the improvement caused by sample balance, we eliminate the influence of label
correlation via replacing DLs in CL with the dictionary D composed of unit vectors, i.e.,

D = {ei
}

i=1,...,k
, ei = [0, . . . ,0,1,0, . . . ,0], ei

i = 1. (89)

In order to ensure that the least label compression ratio can generate more than 2 CL labels,
we choose the 5 datasets with the largest number of labels k which is larger than 40 among
the 21 datasets and show their trade-off curves in Fig. 7. There are some noises that make the
curves not strictly monotonic. These noises are generated by the randomness of CL labels.
However, these noises slightly affect the trends of the trade-off curves.

Among the 6 trade-off curves, the time cost linearly grows with the increasing of the label
compression ratio. This can be explained by that the increasing of SVM models needs to be
trained in CL with the increasing compression ratio. The hamming loss does not affect the
trend because it is unstable when the sample imbalance is severe. In this case, a failed pre-
diction that assigns all the test samples to negative classes can produce an extremely small
hamming loss. The other 4 metrics, i.e., precision, recall, F1 score and accuracy, rapidly
increase with the increasing of the compression ratio. Moreover, they quickly reach satis-
factory performances when the compression ratio is fairly small (less than 0.4) on all the
5 datasets. These results indicate that the prediction performance of CL stably and rapidly
improves with the increasing of CL labels. Furthermore, CL reaches satisfactory sample
balance when the compression ratio is small. Thus CL finds the equilibrium with both com-
petitive efficiency and effectiveness.

Another interesting property shown on the trade-off curves is the improvement brought
by exploring the label correlation in CL. For example, the best performance of CL on Bibtex
in Fig. 7 with compression ratio 1 and without using of DLs is much less than the perfor-
mance with compression ratio 0.5 shown in Table 4 where DLs is applied. This difference
suggests that LDM preserves label correlations in improving multi-label prediction perfor-
mance.

6 Conclusion

In this paper, we have proposed a label transformation method “compressed labeling (CL)”
for multi-label learning. In the training stage of CL, the original label matrix is compressed
to the sign matrix of its low-dimensional random projections on a standard Gaussian en-
semble. Existing binary classification is then directly applicable to the labels in the new
label matrix. In the prediction stage of CL, the CL label vector of a given sample is initially
estimated by using the classifiers obtained in the training stage. Afterward, a fast recovery
algorithm is used to reconstruct the original label vector from the CL label vector.
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We have developed a greedy binary matrix decomposition method, the “labelset distill-
ing method (LDM)”, to extract the discrete patterns, i.e., distilled labelsets (DLs) that are
frequently shared by the label vectors in the original label matrix. LDM recursively divides
the label vectors in the label matrix into several clusters, extracts the shared label subset of
each cluster as a distilled labelset (DL), adds it to the DLs and subtracts it from the label
vectors in the corresponding cluster. We have discovered that the random projection signs
of an arbitrary DL and a given label vector have an explicit joint distribution in two cases,
i.e., the DL is included in the label vector, and the DL is not included in the label vector.
The computation of these two kinds of joint distributions is accomplished by a geometric
inference.

In the recovery algorithm of CL, the empirical estimation of the joint distribution is
calculated from the predicted CL label vector and the random projection signs of distilled
labelsets. A series of statistical tests are conducted on the empirical joint distributions of all
the DLs to determine whether each DL is included in the original label vector. This test is
based on a comparison of the KL divergences between the empirical joint distribution and
the two explicit joint distributions in two different cases.

CL solves or at least substantially alleviates the three main problems harassing multi-
label learning, which are the problem of sample imbalance, the problem of label dependence
and the problem of label high dimensionality. CL is a general method that allows direct
embedding of most existing multi-label and single-label learning techniques in its training
stage, their advantages will be inherited in their CL variants for multi-label learning. Since
CL significantly reduces the problem size by label compression and compressed CL labels
can be efficiently recovered, it provides an efficient solver for large-scale multi-label learn-
ing tasks. In CL, the label dependence information is stored in DLs after compression and
used in the recovery algorithm. LDM is also an isolated method that can be used in other
multi-label learning methods to exploit the label dependence. To our best knowledge, CL
is the first multi-label learning method with model complexity much less than that of BR,
while the label correlations are simultaneously explored.

Theoretically, we have proved that the probabilistic upper bounds of recovery failures
exponentially shrink with increasing either the dimensionality of the CL label vector or the
cardinality of DL. These analyses demonstrate the effectiveness of label compression and
prediction improvement brought by LDM. In the near future, we will theoretically study
how the error (or regret) of the learned binary classifiers for the subproblems is transformed
into the error (or regret) of the final classifier for the multi-label problem.

We have evaluated the performance of CL in label compression/recovery and multi-label
prediction via 5 groups of experiments on 21 datasets from different real-world problems.
In the experiments, we have compared CL with BR, 3 multi-label learning methods (ML-
knn, MDDM and ML-CS) and 2 SVM algorithms dealing with imbalanced data on 5 pre-
diction performance metrics and time cost. We also have studied the trade-off between
compression and performance improvement in CL without using DLs. The experimental
results of label compression/recovery have verified our theoretical analyses about the im-
provement of the sample balance, elimination of label independence and accurate recov-
ery brought by CL. The five groups of multi-label prediction experiments demonstrate the
competitive prediction performance, efficiency and robustness of CL in multi-label learn-
ing.
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