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Abstract In comparing clusterings, several different distances and indices are in use. We
prove that the Misclassification Error distance, the Hamming distance (equivalent to the
unadjusted Rand index), and the χ2 distance between partitions are equivalent in the neigh-
borhood of 0. In other words, if two partitions are very similar, then one distance defines
upper and lower bounds on the other and viceversa. The proofs are geometric and rely on
the concavity of the distances. The geometric intuitions themselves advance the understand-
ing of the space of all clusterings. To our knowledge, this is the first result of its kind.

Practically, distances are frequently used to compare two clusterings of a set of obser-
vations. But the motivation for this work is in the theoretical study of data clustering. Dis-
tances between partitions are involved in constructing new methods for cluster validation,
determining the number of clusters, and analyzing clustering algorithms. From a probability
theory point of view, the present results apply to any pair of finite valued random variables,
and provide simple yet tight upper and lower bounds on the χ2 measure of (in)dependence
valid when the two variables are strongly dependent.

Keywords Clustering · Comparing partitions · χ2 divergence · Misclassification error ·
Rand index · Convexity

1 Introduction and motivation

1.1 Why study distances?

In modern machine learning, there is a tendency to move from the perspective of the
space where the data points lie, to that of the space of “learned functions.” This change
in paradigm accompanied a number of significant and lasting advances. Two such ex-
amples are kernel machines, whose development is tightly related to reproducing kernel
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Hilbert spaces (RKHS) (Cortes and Vapnik 1995; Schölkopf and Smola 2002), and com-
pressed sensing (Candès and Tao 2005; Donoho 2006), an algorithm for sparse regres-
sion, grounded in high dimensional vector spaces. In both cases the geometric intuitions
about these spaces were instrumental in the discovery of the new techniques (Donoho 2006;
Cortes and Vapnik 1995) and continue to be productive to this day.

For clustering, the natural space of “learned functions” is the space of all partitions of
a set with n elements. Unlike the two examples above, which have intuitive, Euclidean or
almost Euclidean geometries, well understood for a long time, the space of all partitions is
much more challenging from the geometric point of view.

For instance, the space of partitions is not a vector space, which means that operations
like “shift” and “rescaling” do not make sense for clusterings. Consequently, it does not
admit a norm (while common vector spaces in machine learning admit the popular l1, l2, l∞
norms) and so a clustering does not have a “magnitude”. But it does admit several metrics,
or distances, and in the absence of a norm, distances are the best means to analyze the
geometric properties of clusterings.

Evaluating, comparing, predicting, and averaging distances are basic, ubiquitous mental
operations when one reasons about clustering. For instance, one may want to know how
accurate an algorithm can be, or how fast it converges. These are measured by the distance
between the algorithm’s output and an optimal clustering. Or, one may want to know how
much variation in the result will be induced by randomness in the clustering algorithm.
Again, since the result is a clustering, natural measure of variation is a distance between
clusterings. Regarding clustering quality criteria (for instance, the quadratic distortion opti-
mized by the k-means algorithm), one may want to know how fast they vary with the change
in the partition, i.e., how “smooth” they are. This also requires a way to express the change
in the partition, i.e., a distance. Finally, if one takes a statistical point of view and regards
the data set itself as a sample from some distribution, one deals with averages and limits of
such distances.1

Unfortunately, distances between partitions are both little studied and significantly less
intuitive than the familiar lp norms for other spaces of functions. This paper, which is a
quantitative analysis of the relationships between several distances, represents a most basic
result. Such results must exist before the more advanced results pertaining to algorithms,
learning theory or statistics can be formulated.

1.2 The distances

Thus, we will be interested in distances d(X,Y ) between two clusterings X,Y of the same
data set. A variety of different distances and indices2 are in use today. While some work in
understanding the properties of these distances and their relative merits exists, very little is
known about how the values of various distances translate into each other. For instance, if
we know the Rand index (Rand 1971) r(X,Y ) between two clusterings of a data set, can
we evaluate from it the value of another index or distance, say the Misclassification Error
distance dME(X,Y )?

With few exceptions, there is no one-to-one transformation between two different dis-
tances d, d ′ between clusterings. In other words, from the Rand index alone, we cannot
compute the dME value exactly. But we can provide bounds on the range of values that
dME(X,Y ) can take. This is what the present paper sets out to do.

1Usually over different spaces of partitions.
2An index i(X,Y ) is typically between 0 and 1, with 1 indicating identity of X with Y .
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We will consider three distances between clusterings, defined in the next section: the
Misclassification Error distance dME , the Hamming distance dH (equivalent to the unad-
justed Rand index), and the χ2 distance dχ2 and we will show that they are equivalent in
the neighborhood of 0. In other words, as two clusterings X,Y become more similar to each
other, all three distances will tend to 0, but at different rates. We establish these rates, by
obtaining upper bounds on one distance, given another distance.

The Misclassification Error is widely used in the computer science literature on cluster-
ing. The Hamming distance is equivalent to the well known Rand index, and is popular in
machine learning. The χ2 distance originated in statistics. It is less used in practice but is a
convenient vehicle for proofs.

Various properties of the Misclassification Error and of the Hamming distance, that are
relevant to the task of comparing clusterings have been established and discussed in Meilă
(2005). The three distances are defined in Sect. 2.

1.3 Equivalence, local equivalence, and a summary of the results

Two distances d and d ′ are called equivalent iff there exist constants β, β̄ > 0 such that for

any two clusterings X,Y , βd(X,Y ) ≤ d ′(X,Y ) ≤ β̄d(X,Y ). If two distances are equiva-
lent, then they behave essentially in the same way; for instance, d ′ can be approximated
by d and viceversa, and if one distance is small, the other one cannot be too large. For
finite-dimensional vectors, it is well known that all the norms are equivalent, and so are the
distances derived from them.

As we shall see in Sect. 2, dME,dH and dχ2 are bounded respectively by 1, 1
2 and√

(K + K ′)/2, where K,K ′ are the number of clusters of the two clusterings. Thus, for
fixed or bounded K,K ′, global equivalence is trivial.

In this paper we are concerned with the property of local equivalence which is weaker
than equivalence in two respects: (a) it holds only locally, when the distances are small, or
(b) the constants β, β̄ depend on certain properties of the clusterings X and Y , and thus they
vary over the space of all partitions. As we shall see, by choosing this framework we will
obtain finer grained relationships between the distances.

The next table summarizes the results obtained, and indicates in which section they are
presented; the quantities pmin,pmax and β,β ′ are defined in the respective sections. The
results are followed by a discussion and conclusions contained in Sect. 8.

Section Relation Global? Proof approach

3 (Theorem 9) d2
χ2 ≥ 1

pmax
dME no convexity, extreme points

4 (Theorem 19) d2
χ2 ≤ 2

pmin
dME yesa convexity, first order definition

5 (Theorem 26) dH ≤ 4pmaxdME yesa convexity, first order definition

6 (Theorem 27) dME ≤ 1
2pmin

dH no convexity, extreme points

7 (Theorem 28) dH ≤ 4p2
maxd

2
χ2 no Theorems 19 and 27

dH ≥ p2
mind

2
χ2 no Theorems 9 and 26

7 (Theorem 29) d2
χ2 ≤ βdH + β ′ yes matrix calculus

d2
χ2 ≥ βdH − β ′ yes matrix calculus

aRestricted to K = K ′ or K ≤ K ′
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2 Definitions and representation

We consider a finite set Dn with n elements. A clustering is a partition of Dn is into sets
C1,C2, . . . ,CK called clusters such that

Ck ∩ Cl = ∅ and
K⋃

k=1

Ck = Dn.

Let the cardinality of cluster Ck be nk . We have, of course, that n =∑K

k=1 nk . We assume
that nk > 0; in other words, that K represents the number of non-empty clusters.

Representing clusterings as matrices Without loss of generality the set Dn can be taken to

be {1,2, . . . , n} def≡ [n]. Denote by X a clustering {C1,C2, . . . ,CK}; X can be represented
by the n × K matrix AX with Aik = 1 if i ∈ Ck and 0 otherwise. In this representation, the
columns of AX are indicator vectors of the clusters and are orthogonal.

Representing clusterings as random variables The clustering X can also be represented
as the random variable (denoted abusively by) X : [n] −→ [K] taking value x ∈ [K] with
probability nx

n
. One typically requires distances between two partitions to be invariant to

the permutations of the labels 1, . . . ,K . By this representation, any distance between two
clusterings can be seen as a particular type of distance between random variables that is
invariant to permutations.

Let a second clustering of Dn be Y = {C ′
1,C

′
2, . . . ,C

′
K ′ }, with cluster sizes n′

y . Note that
the two clusterings may have different numbers of clusters.

Lemma 1 The joint distribution of variables X,Y is given by

pXY = 1

n
AT

XAY (2.1)

In other words, pXY (x, y) is the x, y-th element of the K × K ′ matrix in (2.1).

In the above, the superscript ()T denotes matrix transposition. The proof is immediate
and is left to the reader. We now define the three distances between two clusterings in terms
of the joint probability matrix defined above.

Definition 2 The misclassification error distance dME between clusterings X,Y (with
K ≤ K ′) is

dME(X,Y ) = 1 − max
π∈�K′

∑

x∈[K]
pXY (x,π(x))

where �K ′ is the set of all permutations of K ′ objects represented as mappings π : [K ′] →
[K ′].

Although the maximization above is over a set of (K ′)! permutations, dME can be com-
puted in polynomial time by a maximum bipartite matching algorithm (Papadimitriou and
Steiglitz 1998). It can be shown that dME is a metric (see e.g., Meilă 2005). This distance
is widely used in the computer science literature on clustering, due to its direct relationship



Mach Learn (2012) 86:369–389 373

with the misclassification error cost of classification. It has indeed very appealing proper-
ties as long as dME(X,Y ) takes small values (i.e., the clusterings are “close”) (Meilă 2007).
Otherwise, its poor resolution (Meilă 2007) represents a major hindrance.

It can be seen that dME is always smaller than 1. The bound 1 is never attained, but is
approached arbitrarily closely. For example, between the clustering with a single cluster and
the clustering with n singleton clusters the Misclassification Error distance is 1 − 1

n
.

Definition 3 The χ2 distance dχ2 is defined as

d2
χ2(X,Y ) = K + K ′

2
− χ2(pXY )

with

χ2(pXY ) =
∑

x,y

pXY (x, y)2

pX(x)pY (y)
(2.2)

The above definition and notation are motivated as follows.

Lemma 4 Let pX = (px)x∈[K],p′
Y = (p′

y)y∈[K ′] be the marginals of pXY . Then, the function
χ2(pXY ) defined in (2.2) represents the functional χ2(f, g) + 1 applied to f = pXY , g =
pXp′

Y .

Proof Denote pxy = pXY (x, y). By the definition of Lancaster (1969),

χ2(f, g) =
∑

xy

(pxy − pxp
′
y)

2

pxp′
y

=
∑

xy

[
p2

xy

pxp′
y

− 2pxy + pxp
′
y

]
=
∑

xy

p2
xy

pxp′
y

− 2 + 1
�

Hence, d2
χ2 is a measure of independence. It is equal to 0 when the random variables X,Y

are identical up to a label permutation, and to (K +K ′)/2 when they are independent. Once
can also show that d2

χ2 is a squared metric (Bach and Jordan 2006) and for completeness this
result will be included in a lemma to follow shortly.

The dχ2 distance with slight variants has been used as a distance between partitions by
Hubert and Arabie (1985), Bach and Jordan (2006) with the obvious motivation of being
related to the familiar χ2 functional. The following definition and lemma give another, tech-
nical motivation for paying attention to dχ2 .

Definition 5 The normalized matrix representations for X is defined by ÃX(i, k) = 1√
nk

if
i ∈ Ck and 0 otherwise.

The columns of ÃX have thus unit length, and this representation has orthonormal
columns, being an orthogonal matrix.

Lemma 6 (Bach and Jordan 2006) Let ‖‖F represent the Frobenius norm. Then

χ2(pXY ) = ‖ÃT
XÃY ‖2

F (2.3)

and

d2
χ2(pXY ) = ‖ÃXÃT

X − ÃY ÃT
Y ‖2

F (2.4)
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Proof To prove (2.3) note that (ÃT
XÃY )xy = pxy√

pxp′
y

. To prove the second equality, note that

‖ÃT
XÃX‖2

F = K , ‖ÃT
Y ÃY ‖2

F = K ′. Then, we use the identity ‖A‖2
F = traceAT A and basic

properties of the matrix trace. �

The above lemma shows that d2
χ2 is a quadratic function, making it a convenient in-

strument in proofs. Contrast this with the apparently simple dME distance, which is not
everywhere differentiable and is theoretically much harder to analyze.

A third distance between partitions, which has a long history, is the distance known under
the names of Hamming distance (Ben-David et al. 2006), Rand index (Rand 1971), or Mirkin
metric (Mirkin 1996). The three names refer to slightly different forms of the same criterion
for comparing partitions.

Definition 7 The Hamming distance dH between clustering X,Y is defined as

dH (X,Y ) = 1

2n2
‖AXAT

X − AY AT
Y ‖2

F (2.5)

Because AX,AY are {0,1} matrices representing clusterings, AXAT
X , AY AT

Y are also
{0,1} matrices, and the Frobenius norm on the r.h.s of (2.5) counts the positions in which
they differ. Hence, dH represents the Hamming distance between the matrices AXAT

X ,
AY AT

Y . Note the strong similarity with the expression of d2
χ2 in (2.4), which shows that√

dH is also a metric.
Other interpretations and variants of this distance are given by the following lemma.

Lemma 8

1. The Hamming distance is the probability of the event “i, j are in the same cluster under
X but in different clusters under X′ or viceversa” when the two points i, j ∈ [n] are
picked uniformly and independently.

2. The Mirkin metric (Mirkin 1996) is defined as

dMirkin(X,Y ) =
∑

x∈[K]
n2

x +
∑

y∈[K ′]
n′

y

2 − 2
∑

x∈[K]

∑

y∈[K ′]
n2

xy (2.6)

dH (X,Y ) = 1

2n2
dMirkin(X,Y ) (2.7)

3. The Rand index defined in Rand (1971) r(X,Y ) is given by

r(X,Y ) = 1 − dMirkin(X,Y )

n(n − 1)
(2.8)

Proof (1) This probabilistic interpretation of the Hamming distance was put forward in
Rand (1971) and later in Ben-David et al. (2006).

(2) One can easily verify that ‖AT
XAX‖2

F = ∑
x∈[K] n

2
x,‖AT

Y AY ‖2
F = ∑

y∈[K ′] n
′
y

2
,

‖AT
XAY ‖2

F =∑x∈[K]
∑

y∈[K ′] n
2
xy which shows that

dH (X,Y ) = 1

2

∑

x∈[K]
p2

x + 1

2

∑

y∈[K ′]
p′

y

2 −
∑

x∈[K]

∑

y∈[K ′]
p2

xy (2.9)

(3) This was proved in Meilă (2007). �
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Moreover, the Hamming distance is bounded above by 1
2 , which can be seen from (2.5)

because the number of elements of the matrices involved is n2, and all their entries are 0 or
1. The value 1

2 is approached asymptotically, as one can verify by calculating the distance
between the clustering with a single cluster and the clustering with n singletons.

We close this section by noting that the functions dME , d2
χ2 , and dH are concave in pXY .

For d2
χ2 , this follows from the convexity of the χ2 functional (Vajda 1989). The dME can be

expressed as the minimum of a set of linear functions3; therefore it is concave. The concavity
of dH is proved in Sect. 5.

The remaining sections prove the local equivalences between the three distances, in the
following sequence: d2

χ2 upper bounds dME in Sect. 3, dME upper bounds d2
χ2 in Sect. 4,

dME upper bounds dH in Sect. 5, dH upper bounds dME in Sect. 6. A slightly different kind
of relation between dH and d2

χ2 is proved in Sect. 7. The paper concludes with a discussion
of the results (Sect. 8).

3 Small dχ2 implies small dME

This is the first of the bounds in the paper. We first state the result precisely, then describe
the geometric intuition underlying it. We also establish a framework for the proof approach.
This framework is shared by the proofs in Sects. 4, 5 and 6.

Theorem 9 For two clusterings with the same number of clusters K represented by the
joint distribution pXY , denote pmin = min[K] px,pmax = max[K] px . Then, for any ε ≤ pmin,
if d2

χ2(pXY ) ≤ ε
pmax

then dME(pXY ) ≤ ε.

Before we embark on the proof, we give an example where d2
χ2/dME is arbitrarily close

to this bound.

Example 10 Consider the following pXY , with K = K ′.

1
K

− 1
n

1
n

. . .

1
K

. . .

1
K

. . .

. . .

dME = 1

n
and d2

χ2 = K

n
− 2

n2/K2 − 1

Hence, d2
χ2/dME approaches K = 1/pmax .

Geometric ideas All the bounds in this paper with the exception of Theorem 29 are based
on the concavity of the respective distances. The proofs make use of two geometric facts
about concave functions. The first is that a concave function attains its minimum at an ex-
treme point of its domain. In our case the domain is a (convex) set of joint probability
distributions pXY (that will be defined below) and the minimum value of 0 is attained at
multiple “corners” of this domain. Therefore, we expect all distances (i.e., dME,d2

χ2 , dH ) to
be small near these corners and large far away from them. This is the crucial idea of the proof
of Theorem 9, reiterated in Theorem 27. A second fact is that a concave function is always
below any tangent to its graph. This will be the main approach in the proofs of Theorems 19
and 26.

3dME = minimum of the off-diagonal mass of pXY over all permutations.
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Proof outline First we introduce some basic notation that will be used for the rest of the
paper. For any distribution pXY , we denote by ¯̄p the table of values of this distribution,
by pxy the probability of pair (x, y) ∈ [K] × [K ′] under pXY (i.e., an entry in ¯̄p), and by
pX = (p1 . . . pK), pY = (p′

1 . . . p′
K) respectively the X and Y marginals of pXY (or equiv-

alently of ¯̄p). As a matter of usage, the pXY notation will be used in the statements of the
main theorems, while the ¯̄p notation will be used in the proofs and minor results. This dual
notation corresponds to viewing a pair of clusterings as a distributions pXY in the statements
of the theorems, but viewing the same pair as a point ¯̄p in the K × K ′ space while proving
the theorems.

We adopt the following framework, which will also be common to all proofs. We will
assume without loss of generality that partition X is fixed, while Y is allowed to vary. In
terms of random variables, the assumption describes the set of distributions over [K]× [K ′]
that have a fixed marginal pX = (p1, . . . , pK). We denote this domain by P . Thus, P =
{ ¯̄p = [pxy]x∈[K],y∈[K ′],pxy ≥ 0,

∑
y pxy = px for x ∈ [K]}, a convex and bounded set. Note

also that since X is fixed, each ¯̄p corresponds to one or more clusterings Y ; thus we will
sometimes speak of clusterings (Y ) when we refer to points in P . Note also that our setting
is slightly more general than needed by Theorem 9. Indeed, some of the intermediate results
we prove do not require that K ′ = K .

For this particular theorem, the intermediate results are simpler in terms of the (convex)
χ2 function; the reader will keep in mind that d2

χ2 = K − χ2 by (2.2).

We will show that the maxima of χ2 over P have value K and are attained when the
second random variable is a one-to-one function of the first (note that these correspond to
the minima of d2

χ2 which are 0). We call such a point optimal; the set of optimal points of P
is denoted by E∗. Any element ¯̄p∗ in E∗ is defined as:

p∗
xy =

{
px if y = π(x)

0 otherwise

where π represents a permutation of the indices 1,2, . . . ,K .
We prove that if a joint distribution ¯̄p in P is more than ε away from any optimal point,

then χ2( ¯̄p) will be bounded away from K . A schematic description of the proof outline and
underlying geometry is given in Fig. 1.

For a fixed π , we denote the corresponding optimal point by ¯̄p∗
π and the points which

differ from ¯̄p∗
π by ε in paa,pab by ¯̄pε,π (a, b). We shall see that the regions where dME is

small/large are defined by these points. Below is the definition of ¯̄pε,π (a, b) in the case of
the identical permutation. In what follows, whenever we consider one optimal point only,
we shall assume without loss of generality that π is the identical permutation, and omit it
from the notation.

[ ¯̄pε(a, b)]xy =

⎧
⎪⎪⎨

⎪⎪⎩

ε x = a, y = b

pa − ε, x = y = a

px, x = y �= a

0, otherwise

(3.1)

and thus

[ ¯̄p∗ − ¯̄pε(a, b)]xy =
⎧
⎨

⎩

ε, x = y = a

−ε x = a, y = b

0, otherwise
(3.2)
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– the square represents P
– its corners are E∗ = { ¯̄p∗

π } (permutations of X)
– the • dots are ¯̄pπ

ε , special clusterings at exactly ε from
a ¯̄p∗

– the crosshatched regions near a ¯̄p∗ are clusterings for
which dME( ¯̄p) ≤ ε (Lemma 13); if ε ≤ pmin these re-
gions are disjoint

– the white central region is A, the convex hull of the •
points (Lemma 15)

– at the square corners χ2 = K , the maximum value
(Lemma 11)

– at • χ2 ≤ K − ε/pmax (3.5)
– on A, by convexity, χ2( ¯̄p) ≤ K − ε/pmax (Proof of

Theorem 17)
– therefore, if d2

χ2 (
¯̄p) ≤ ε/pmax , then ¯̄p must be in

the complement of A, the crosshatched regions where
dME( ¯̄p) ≤ ε

Fig. 1 Simplified geometric view of the proof of Theorem 9. Recall that because clustering X is fixed, each
¯̄p ∈ P represents one or more clusterings Y

For ε ≤ pmin = minx px let Eπ
ε = { ¯̄pε,π (a, b), a, b ∈ [K]× [K ′], a �= b}. We lower bound

the value of χ2 at all points in Eε = Eidentity
ε . We then show that if dME is greater than ε,

the value of χ2 cannot be lower than the aforementioned lower bound.
These results will be proved as a series of lemmas, after which the formal proof of the

theorem will close this section. Figure 1 shows a schematic walk-through the lemmas that
follow.

The first result says that the extreme points of P are the clusterings Y that do not break
up the clusters in X.

Lemma 11

1. The set of extreme points of P is

E = { ¯̄p | ∃φ : [K] −→ [K ′],pxy = px if y = φ(x),0 otherwise}
2. For ¯̄p ∈ E, χ2( ¯̄p) = |Range φ|.

Proof The proof of part 1 is immediate and left to the reader. To prove part 2, let ¯̄p ∈ E. We
can write successively

χ2( ¯̄p) =
∑

y

∑

x∈φ−1(y)

p2
x

px

∑
z∈φ−1(y) pz

=
∑

y

∑
x∈φ−1(y) px∑
z∈φ−1(y) pz

=
∑

y

1 = |Range φ|
�

If Range(φ) = K , then φ is a permutation and we denote it by π ; E∗ = { ¯̄p∗
π } is the set of

extreme points for which χ2 = K and E− = E \ E∗ the set of the extreme points for which
χ2 = K ′ ≤ K − 1. Hence E− contains the clusterings Y that join several clusters of X and
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E∗ the clusterings identical to X (up to a relabeling of the clusters). Note also that E− is
non-empty only when K ′ < K and that for K ′ > K no additional extreme points are created.

The second step, in two lemmas, describes the regions near the optimal clusterings, where
dME is small. These are the crosshatched corners in Fig. 1.

Lemma 12 Let B1(r) be the 1-norm ball of radius r centered at ¯̄p∗ ∈ E∗. For all ¯̄p ∈
B1(2ε) ∩ P

dME( ¯̄p) ≤ ε

Proof For a point ¯̄p ∈ B1(2ε) ∩ P let e be defined as

e =
∑

x

∑

y �=x

pxy (3.3)

Note that ‖ ¯̄p∗ − ¯̄p‖1 = 2e. Now it is obvious that dME( ¯̄p) ≤∑x

∑
y �=x pxy = e ≤ ε. �

Lemma 13

B1(2ε) ∩ P = convex({ ¯̄p∗} ∪ Eε)

Proof First we show that ‖ ¯̄p∗ − ¯̄pε(a, b)‖1 = 2ε.

‖ ¯̄p∗ − ¯̄pε(a, b)‖1 =
∑

x,y

|p∗
xy − pε(a, b)xy | = |p∗

aa − pε(a, b)aa| + |p∗
ab − pε(a, b)ab|

= ε + ε = 2ε

Then, it is easy to check (with e defined in (3.3)) that

¯̄p =
(

1 − e

ε

)
¯̄p∗ +

∑

a

∑

b �=a

pab

ε
¯̄pε(a, b)

and
(

1 − e

ε

)
+
∑

a

∑

b �=a

pab

ε
= 1 �

Next, we focus on the region (denoted by A) where dME is large. In the following two
results we characterize it and show that it is convex.

Lemma 14 Let x =∑
i αixi with αi ≥ 0,

∑
i αi = 1 and, for all i, let yi be a point of the

segment [x, xi). Then x is a convex combination of {yi}.

Proof Let yi = βix + (1 −βi)xi, β ∈ [0,1). Then xi = yi−βix

1−βi
and replacing the above in the

expression of x we get successively

x =
∑

i

[
αi

1 − βi

yi − αiβi

1 − βi

x

]
=
∑

i

αi

1 − βi

yi − x
∑

i

αiβi

1 − βi
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and

x =
∑

i

αi

1−βi

1 +∑j

αj βj

1−βj︸ ︷︷ ︸
γi

yi with γi ≥ 0 and
∑

i

γi =
∑

i
αi

1−βi

1 +∑j

αj βj

1−βj

= 1 +∑i
αiβi

1−βi

1 +∑j

αj βj

1−βj

= 1.

�

Lemma 15 The set { ¯̄p|dME( ¯̄p) ≥ ε} with ε ≤ pmin is included in the convex hull of
{Eπ

ε }�K
∪ E−.

Proof Let A = {dME( ¯̄p) ≥ ε} and ¯̄p ∈ A. Because ¯̄p ∈ P is a convex combination of the
extreme points of P , it can be written as

¯̄p =
K!∑

i=1

αi
¯̄p∗
πi

+
|E−|∑

i=1

αi+K! ¯̄p−
i , αi ≥ 0,

∑

i

αi = 1

where by ¯̄p−
i we have denoted the points in E−. Let us look at the segment [ ¯̄p, ¯̄p∗

πi
]; its first

end, ¯̄p is in A, while its other end is outside A and inside the ball B
πi

1 (ε). As the ball is
convex, there is a (unique) point ¯̄pi = [ ¯̄p, ¯̄p∗

πi
] ∪ ∂B

πi

1 (ε). This point being on the boundary
of the ball, it can be written as a convex combination of points in Eπi

ε by Lemma 13. We
now apply Lemma 14, with xi = ¯̄p∗

πi
and yi = ¯̄pi for i = 1, . . . ,K! and xi = yi = ¯̄p−

i−K! for
i > K!. It follows that ¯̄p is a convex combination of ¯̄pi, i = 1, . . . , |E|, which completes the
proof.4 �

The last step is to look at the extreme points of A from the point of view of χ2 and show
that its values are bounded away from the optimal value K .

Lemma 16 For ε ≤ pmin

χ2( ¯̄p∗) − χ2( ¯̄pε(a, b)) ≥ ε

pmax

Proof Compute χ2( ¯̄pε(a, b)):

χ2( ¯̄pε(a, b)) = K − 2 + (pa − ε)2

pa(pa − ε)
+ ε2

pa(pb + ε)
+ p2

b

pb(pb + ε)

= K − 2 + 1 − ε

pa

+ ε2

pa(pb + ε)
+ 1 + ε

pb + ε

= K − ε(pa + pb)

pa(pb + ε)
(3.4)

≤ K − ε

pa

(3.5)

Therefore

χ2( ¯̄p∗) − χ2( ¯̄pε(a, b)) ≥ ε

pa

≥ ε

pmax
�

We are now ready to prove a result relating χ2 and dME that holds for any K,K ′.

4In fact, it can be easily shown (left to the reader) that A equals the convex hull of {Eπ
ε }�K

∪ E− .
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Theorem 17 For two clusterings X,Y with number of clusters K , respectively K ′, repre-
sented by the joint distribution pXY , denote pmin = min[K] px,pmax = max[K] px . Then, for
any ε ≤ pmin, if χ2(pXY ) ≥ K − ε

pmax
then dME(pXY ) ≤ ε.

Proof of Theorem 17 By contradiction. Assume dME( ¯̄p) ≥ ε. Then, ¯̄p ∈ A by Lemma 15.
Because χ2 is convex on A, χ2( ¯̄p) cannot be larger than the maximum value at the extreme
points of A, which are contained in E− ∪ (

⋃
π Eπ

ε ). But we know by Lemma 16 that the
value of χ2 is bounded above by K − ε/pmax at any point in Eπ

ε and equals K ′ at any point
in E−. Also E− is not empty only when K ′ ≤ K − 1.

Note also that a tight, non-linear bound can be obtained by maximizing (3.4) over all
a, b. �

Proof of Theorem 9 The theorem now follows from Theorem 17 when we set K = K ′, since
in this case d2

χ2( ¯̄p) = K − χ2( ¯̄p). �

It is interesting to see what happens if K �= K ′. Assume first that K ′ > K . We can write

d2
χ2(pXY ) = K ′ − K

2
+ (K − χ2(pXY )

)
.

Therefore, if d2
χ2(pXY ) ≤ K−K ′

2 + ε
pmax

then dME(pXY ) ≤ ε.

Now assume K ′ < K . In this case χ2(pXY ) ≤ K ′, but the values of K ′ −χ2(pXY ) do not
bound dME , as can be seen from the following example.

Example 18 K > 2,K ′ = 2 and p1 = p2 = · · · = 1
K

.

1
K

0

0 1
K

0 1
K

. . . . . .

χ2 = K ′ = 2 and dME = K − 2

K

Hence, χ2 is equal to its maximum while dME

can become arbitrarily close to 1.

4 Small dME implies small dχ2

This is the converse bound to the bound in the previous section. Together, the two results
prove the local equivalence between dME and dχ2 .

Theorem 19 Let pXY represent a pair of clusterings with the same number of clusters. Then

d2
χ2(pXY ) ≤ 2dME(pXY )

pmin

Example 20 Consider the following pXY , with K = K ′ = 2

1 − 2
n

1
n

0 1
n

dME = 1

n
and d2

χ2 = 1

2
+ 1

2(n − 1)

Hence, d2
χ2/dME is of order n = 1/pmin.
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Proof outline The proof is based on the fact that a convex function is always above any
tangent to its graph. We pick a point ¯̄p that has dME( ¯̄p) = ε and lower bound χ2( ¯̄p) by
the tangent to χ2 in the nearest ¯̄p∗ (which always exists). We first prove three intermediate
results then follow with the formal proof of the theorem.

First, we calculate the tangent slope at ¯̄p∗.

Lemma 21 The unconstrained partial derivatives of χ2 in ¯̄p∗ are

∂χ2

∂pxy

∣∣∣∣ ¯̄p∗
=
{− 1

py
, x �= y

1
px

, x = y
for x, y ∈ [K]

Proof

∂χ2

∂pab

= ∂

∂pab

[
∑

x

1

px

∑

y

p2
xy∑

x′ px′y

]

= 1

pa

∂

∂pab

(
p2

ab∑
x′ px′b

)
+
∑

x �=a

1

px

∂

∂pab

(
p2

xb∑
x′ px′b

)

= 1

pa

2pabp
′
b − p2

ab.1

p′2
b

+
∑

x �=a

−p2
xb

pxp
′2
b

= 2pab

pap
′
b

−
∑

x

p2
xb

pxp
′2
b

(4.1)

The result follows now by setting pxb = pxδxb,p
′
b = pb . �

Then, we calculate a first order approximation of χ2( ¯̄p) by projecting on the tangent
direction.

Lemma 22 For any ¯̄p ∈ P with K = K ′

χ2( ¯̄p∗) − χ2( ¯̄p) ≤
∑

x

∑

y �=x

(
pxy

px

+ pxy

py

)

Proof χ2 is convex, therefore χ2( ¯̄p) is above the tangent at ¯̄p∗, i.e.,

χ2( ¯̄p) ≥ χ2( ¯̄p∗) + vec(∇χ2( ¯̄p∗)) · vec( ¯̄p − ¯̄p∗)

vec(∇χ2( ¯̄p∗)) · vec( ¯̄p − ¯̄p∗) =
∑

x

1

px

⎛

⎝−
∑

y �=x

pxy

⎞

⎠+
∑

x

⎛

⎝− 1

py

∑

y �=x

pxy

⎞

⎠ (4.2)

= −
∑

x

∑

y �=x

(
pxy

px

+ pxy

py

)
(4.3)

�
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Denote

εx = 1

px

∑

y �=x

pxy, x ∈ [K] (4.4)

ε′
y = 1

py

∑

x �=y

pxy, y ∈ [K] (4.5)

These quantities represent the relative leak of probability mass from the diagonal to the
off-diagonal cells in row x, respectively in column y of the matrix ¯̄p w.r.t. ¯̄p∗.

The bound in Lemma 22 depends on all the pxy entries in ¯̄p. Therefore, the next step is
to upper bound it by something that depends only on ε and pmin.

Lemma 23 Let εx, x ∈ [K] be as defined above, and assume that the marginals px are
sorted so that pmin = p1 ≤ p2 ≤ p3 ≤ · · · ≤ pK = pmax with

∑
x pxεx = ε. Then,

max
{εx }

∑

x

εx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ε
p1

, if ε ∈ [0,p1]
1 + ε−p1

p2
, if ε ∈ (p1,p1 + p2]

. . .

k + ε−∑x≤k px

pk+1
, if ε ∈ (p1 + · · · + pk,p1 + · · · + pk+1]

. . .

Proof It is easy to verify the solution for ε ≤ p1. For the other intervals, one verifies the
solution by induction over k ∈ [K]. �

Proof of Theorem 19 Assume that dME( ¯̄p) = ε. Then, without loss of generality one can
assume that the off-diagonal elements of ¯̄p sum to ε. It is easy to see from Lemma 23 that

∑

x

εx ≤ ε

pmin

By symmetry, this bound also holds for
∑

y ε′
y . Therefore, by Lemma 22

K − χ2( ¯̄p) = χ2( ¯̄p∗) − χ2( ¯̄p) ≤ 2ε

pmin

(4.6)

from which the desired result follows. The case K ′ < K was proved in the previous sec-
tion. �

This theorem holds for every value of dME . Because of the linear approximation in
Lemma 22, the bound is not tight. However, the proof of Lemma 23 indicates that the bound
will be tighter when dME ≤ pmin, (when Lemma 23 gives a tight bound); that is, for smaller
differences between the two partitions.

5 Small dME implies small dH

This section and the next show the local equivalence of dH and dME . We start by presenting
a few useful facts about the Hamming distance dH , including the fact that it is concave.
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The first set of helpful facts can be obtained by direct calculations, and the proofs are
omitted. They prepare the ground for the more interesting concavity theorem.

Lemma 24

1. The Hamming distance dH can be expressed as

dH = 2
∑

x

∑

y �=y′
pxypxy′ + 2

∑

y

∑

x �=x′
pxypx′y (5.1)

where the sums are taken over the unordered pairs (x, x ′) and respectively (y, y ′).
2. Its partial derivatives are given by

∂dH

∂pab

= 2
∑

y �=b

pay + 2
∑

x �=a

pxb (5.2)

3. Its second order partial derivatives are given by

∂2dH

∂p2
ab

= 0 for all a, b (5.3)

∂2dH

∂pab∂pa′b
= ∂2dH

∂pab∂pab′
= 1 for all a, b, a′, b′, a �= a′, b �= b′ (5.4)

∂2dH

∂pab∂pa′b′
= 0 otherwise (5.5)

Theorem 25 The Hamming distance dH is concave in pXY .

Proof From (5.3), (5.4) and (5.5) we derive that the Hessian H of dH can be written as a
square matrix with K × K blocks of size K ′ × K ′. The off-diagonal blocks are of the form

IK ′ , the unit matrix of dimension K ′, and the diagonal blocks are of the form ¯̄1K ′ − IK ′ , with
¯̄1K ′ being the matrix of all ones.

It is immediate to verify that any v of dimension K × K ′ satisfying
∑

x vxy =∑y vxy = 0
is an eigenvector of H with eigenvalue −2 (for compatibility with pXY we index the “vector”
in the same way as we index probability tables). Now note that for any two probabilities
p

(1)
XY ,p

(2)
XY the difference v = p

(1)
XY −p

(2)
XY is exactly such a v. Therefore, the Hessian projected

on the probability simplex is always negative definite, hence dH is strictly concave. �

Now we are ready to prove this section’s main result.

Theorem 26 Let pXY represent a pair of clusterings with K ≤ K ′. Then

dH (pXY ) ≤ 4pmaxdME(pXY )

Proof The proof is similar to that of Theorem 19, using the fact that a concave function is
always below any tangent to its graph. We pick a point ¯̄p that has dME( ¯̄p) = ε and upper
bound dH ( ¯̄p) by the tangent to dH in the “nearest” extreme point of P . We define this
to be the point ¯̄p∗

πME , with πME the permutation of cluster assignments that realizes the
dME distance according to Definition 2. Assume without loss of generality that πME is the
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identity, so the extreme point in question is ¯̄p∗. We consider the tangent through ¯̄p∗ and
obtain

dH ( ¯̄p) ≤ 0 + vec(∇dH ( ¯̄p∗)) · vec( ¯̄p − ¯̄p∗) (5.6)

From (5.2) we get

∂dH

∂paa

∣∣∣∣ ¯̄p∗
= 0 and

∂dH

∂pab

∣∣∣∣ ¯̄p∗
= 2(pa + pb) for all a �= b

The expression of ¯̄p − ¯̄p∗ is given in (3.2). Hence, (5.6) becomes

dH ( ¯̄p) ≤
∑

x

∑

y �=x

2(px + py)pxy

= 4
∑

x

∑

y �=x

pxpxy

≤ 4pmax

∑

xy,y �=x

pxy = 4pmaxdME( ¯̄p)
�

Note that this is a global bound, holding for any values of dME and dH . Moreover, it can
be used to upper bound by dME any other concave distance between clusterings.

6 Small dH implies small dME

This result is formulated and proved similarly to the result of Sect. 3. Thus, we prove that if
a joint distribution ¯̄p in P is more than ε away w.r.t. dME from any optimal point ¯̄p∗ then
dH ( ¯̄p) will be bounded away from 0.

Theorem 27 For two clusterings represented by the joint distribution pXY , denote pmin =
min[K] px . Then, for any ε ≤ pmin, if dH (pXY ) ≤ 2εpmin then dME(pXY ) ≤ ε.

Proof The reasoning follows that of Theorem 9. We assume that dME ≥ ε, and we already
know that the subset of P where this is true is included in the convex hull of {Eπ

ε }�K
∪ E−.

Because dH is concave, its minimum over this convex set is attained in an extreme point.
We will find the minimum of dH over {Eπ

ε }�K
∪ E−; this is a lower bound for dH when

dME ≥ ε. By contradiction, we get that dH upper bounds dME .
We now need to find the minimum of dH over the points ¯̄pε(a, b) ∈ {Eπ

ε }�K
∪ E−, as all

the rest is taken care of as part of Theorem 9. For the points in Eπ
ε we have

dH ( ¯̄pε(a, b)) = 2

⎡

⎣
∑

x

∑

y �=y′
pxypxy′ +

∑

y

∑

x �=x′
pxypx′y

⎤

⎦

= 2pab(paa + pbb)

= 2ε(pa − ε + pb)

≥ 2ε(2pmin − ε) ≥ 2εpmin
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Let ¯̄p− be a point in E−. This means that the corresponding clustering Y , with K ′ < K

clusters, merges some clusters in X. For simplicity we will write x ∈ y to denote that cluster
Cx is one of the clusters included in C ′

y . Note also that for ¯̄p−, we have that pxypxy′ = 0
always, and that pxypx′y > 0 only if x, x ′ ∈ y. We will also write Ky for the number of
clusters of X that were merged to form cluster C ′

y . Then

dH ( ¯̄p−) = 2
∑

y

∑

x,x′∈y,x �=x′
pxpx′ ≥ 2

∑

y

Ky(Ky − 1)

2
︸ ︷︷ ︸

κ

p2
min

It is easy to verify that κ = 1 if K = 2,K ′ = 1 and κ ≥ 2 otherwise. Hence, in general
dH ( ¯̄p−) ≥ 2p2

min ≥ 2εpmin and if K �= 2 or K ′ �= 1 dH ( ¯̄p−) ≥ 4p2
min ≥ 2ε(2pmin − ε). �

This result holds for all possible numbers of clusters. It is easy to see from the proof that
the slightly stronger bound 2ε(2pmin − ε) can be used in all cases except K = 2,K ′ = 1.

7 The relation between d2
χ2 and dH

We now turn to the last pair of distances. Based on the inequalities that we already have, one
can derive local equivalence relations between d2

χ2 and dH .

Theorem 28 Let pXY represent a pair of clusterings X,Y with the same number of clusters,
and let ε ≤ pmin.

1. If dH ≤ 2εpmin, then d2
χ2 ≤ 2ε

pmin
.

2. If d2
χ2 ≤ ε

pmax
, then dH ≤ 4εpmax .

Proof The proof of part 1 follows immediately from Theorems 27 and 19; part 2 follows
from Theorems 9 and 26. �

However, for this pair of distances we can also prove another relationship.

Theorem 29 For any two clusterings X,Y we have

d2
χ2(X,Y ) ≤ dH (X,Y )

pmaxp′
max

+
(

K + K ′

2
−
∑

x∈[K] p
2
x +∑y∈[K ′](p

′
y)

2

2pmaxp′
max

)
(7.1)

d2
χ2(X,Y ) ≥ dH (X,Y )

pminp
′
min

+
(

K + K ′

2
−
∑

x∈[K] p
2
x +∑y∈[K ′](p

′
y)

2

2pminp
′
min

)
(7.2)

where pmax,pmin,p
′
max,p

′
min represent the probabilities of the largest and smallest clusters

in X, respectively in Y .

The additive terms in (7.1) and (7.2) cannot be removed, as it is shown in Lemma 30
below. Therefore, the result above is not strictly speaking a local equivalence.

There are several other differences between Theorem 29 and the previous theorems. First,
the additive terms depend on both marginals pX,pY , thus require more detailed knowledge
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of both clusterings. The second difference pertains to the proof; the proof is not geometric
and does not have a simple geometric interpretation due to the extra terms. Third, even the
simple coefficients 1

pmaxp′
max

, 1
pminp′

min
depend on both clusterings.

It is however worth noticing that the additive terms become 0 when all the clusters have
equal sizes, i.e., when pX,pY are uniform distributions over [K]. Hence, we find again
that the bounds become looser and the distances differ more when the clusterings are less
balanced.

Proof of Theorem 29 By definition

AX = ÃXdiag(
√

n1
√

n2 . . .
√

nK)

AY = ÃY diag(

√
n′

1

√
n′

2 . . .

√
n′

K ′).

We introduce these expressions in the definition of d2
χ2 .

d2
χ2(X,Y )

= K + K ′

2
− trace ÃT

XÃY ÃT
Y ÃX

= K + K ′

2
− trace [diag(n−1

1 , n−1
2 , . . . , n−1

K )AT
XAY diag(n′

1
−1

, n′
2
−1

, . . . , n′
K ′

−1
)(AT

XAY )T ]
(7.3)

The matrix AT
XAY has non-negative elements, and the diagonal matrices have positive di-

agonals, with npmin ≤ nx ≤ npmax , and np′
min ≤ n′

y ≤ np′
max . Hence, if we replace nx,n

′
y

with their lower (upper) bounds in (7.3) we obtain upper (lower) bounds for this expression.
It follows that

d2
χ2(X,Y )

≥ K + K ′

2
− trace

[
1

npmin

AT
XAY

1

np′
min

(AT
XAY )T

]

= K + K ′

2
− 1

n2pminp
′
min

traceAT
XAY (AT

XAY )T

= K + K ′

2
− 1

pminp
′
min

[
1

2

(∑

x∈[K]
p2

x +
∑

y∈[K ′]
p2

y

)
− dH (X,Y )

]

= 1

pminp
′
min

dH (X,Y ) +
(

K + K ′

2
−
∑

x∈[K] p
2
x +∑y∈[K ′] p

2
y

2pminp
′
min

)

The lower bound is proved in a similar way. �

We now show that the rightmost terms of the inequalities (7.1) and (7.2) are negative,
respectively positive, and hence that the equations cannot be simplified by removing them.

Lemma 30
∑

x∈[K] p
2
x +∑y∈[K ′](p

′
y)

2

2pmaxp′
max

≤ K + K ′

2
≤
∑

x∈[K] p
2
x +∑y∈[K ′](p

′
y)

2

2pminp
′
min
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Proof We only prove the first inequality, as the second one is proved similarly.
One first notes that as pmax,p

′
max ≥ 1/K it follows that

K ≥ 1

pmax

,
1

p′
max

Then we write successively

∑
x∈[K] p

2
x +∑y∈[K ′](p

′
y)

2

2pmaxp′
max

=
∑

x∈[K] px
px

pmax

2p′
max

+
∑

y∈[K ′] p
′
y

p′
y

p′
max

2pmax

≤
∑

x∈[K] px

2p′
max

+
∑

y∈[K ′] p
′
y

2p′
max

= 1

2pmax

+ 1

2p′
max

≤ K + K ′

2 �

Theorem 29 would be strictly stronger than Theorem 28, if the additive terms in the
former could be removed. However, these term can’t be ignored as shown above, but are
small if the two clusterings have balanced clusterings, with all cluster sized close to 1/K .
This makes it probable that for imbalanced clusterings, Theorem 28 provides the tighter
bound, while for well balanced clusterings Theorem 29 is the tighter one. But although at
times looser than the algebraic bounds, the geometric ones have the advantage of simplicity.

8 Concluding remarks

With few exceptions, there is no formula to transform one distance between clusterings into
another distance in the absence of additional information. Here we have proved computable
bounds on the range of one distance, given another distance, for the case of three specific
distances in use. The bounds show that the three distances are in an approximate linear
relation (if one considers d2

χ2 instead of dχ2 ) to each other for small distances, provided
quantities like pmin,pmax are kept constant. However, the distances can become arbitrarily
different when pmin becomes small.

Another characteristic of all the bounds is that they depend on additional features of the
clusterings. For Theorems 9, 19, 26 and 27, this information consists only of pmin or pmax of
one of the clusterings. This matters for two reasons: first, it highlights what are the primary
factors that govern the variability of a distance given another distance. These are the cluster
sizes, and most importantly, the size of the smallest/largest cluster.

Third, it can be seen that all bounds become tighter and hold for a larger range of ε when
the clusterings have approximately equal sized clusters, that is when pmin,pmax approach
1/K .5 This confirms the general intuition that clusterings with equal sized clusters are “eas-
ier” (and its counterpart, that clusterings containing clusters of very small size are “hard”).
From this perspective, here it was shown that clustering with equal sized clusters are “easy
to compare.”

5It is worth noticing that if either pmin or pmax are near 1/K this is sufficient to imply a balanced clustering.

This follows from the easy to prove fact that pmax = 1 + δ implies pmin ≥ 1
K

− (K − 1)δ. The symmetric
relation is also true.
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The aforementioned Theorems 9, 19, 26 and 27 are more useful than, say, Theorem 28,
which depends on all px,p

′
y , because they depend on pmin or pmax of one clustering only.

Hence, they can be applied in cases when only one clustering is known. For example, Meilă
et al. (2005) used this result in the context of spectral clustering, to prove that any clustering
with low enough normalized cut is close to the (unknown) optimal clustering of that data
set.

Some of the bounds involving dME found here are only correct when dME < pmin the
minimum cluster size of one clustering. This value can be considered the boundary within
which two clusterings can be considered “close”. Indeed if a proportion of points in X

smaller than pmin changes labels, none of the clusters in X will lose all its points. Thus, the
“identities” of the clusters in X are preserved in Y .

The proof techniques based on convexity/concavity that were developed in Sects. 3 and 4
can be extended to compare dME with any other concave distance, the way we did for the
dH . One can find bounds between arbitrary pairs of concave distances by using dME as
intermediary the way we did in Sect. 7. The Lemmas and proofs can also be immediately
applied to lower bound a distance by another distance, which is how we obtained the table
at the end of Sect. 1.

A natural question that was hinted at in the introduction is: can we hope to prove global
equivalence relationships between these distances instead of local ones? Our results provide
some answers. Example 20 in Sect. 4 shows that d2

χ2/dME can be as large as n (or 1/pmin)
which is essentially unbounded, even when the number of clusters K,K ′ are bounded. For
the reverse relationship the situation looks better, because dME/d2

χ2 can be bounded by

1/pmax ≤ K for small dME . Because maxdME

maxd2
χ2

= 1
K

we expect that Theorem 9 can be ex-

tended to all X,Y with a constant equal or close to K .
From Sect. 5 we know already that dH ≤ 4dME (by setting pmax = 1); since the converse

result is fundamentally similar to Theorem 9, there is hope that this can also be extended
to a global bound. For the relationship between dH and d2

χ2 , we have the one-sided local

relationship dH ≤ 4/K2d2
χ2 ; this can be extended to a global relationship if Theorem 9 can

be. However, in Example 20, dH = 2 1
n
(1 − 1

n
), and consequently d2

χ2/dH is of order n (or
1/pmin), hence it is unbounded.

Although the motivation for this work is in clustering, we have proved results which hold
for any two finite-valued random variables. The non-linear bound (3.4) in Theorem 17 is
tight. The proof of this theorem holds even when K ′ → ∞.

Of interests to statisticians, the two theorems give lower and upper bounds on the χ2 mea-
sure of independence between two random variables, holding locally when the two variables
are strongly dependent. The present approximation complements an older approximation of
χ2 by the mutual information IXY =∑xy pxy ln pxy

pxp′
y

. It is known (Cover and Thomas 1991)

that the second order Taylor approximation of IXY is 1
2 (χ2(pXY ) − 1) with χ2 defined as in

(2.2). This approximation is good when pXY ≈ pXp′
Y , hence in the weak dependence region,

while the bounds we introduce here work for the strong dependence region.
This result is, to our knowledge, the first ever to give a detailed local comparison of two

distances between partitions. The case of small distances is of utmost importance, as it is
in this regime that one desires the behaviour of any clustering algorithm to lie. The paper
concludes with a few examples where the present results can be used.

The first and simplest example is the empirical evaluation of clustering algorithms, where
understanding the small distances regime is necessary in order to make fine distinctions
among different algorithms. The present equivalence theorems represent a step toward re-
moving the dependence of the distance from the evaluation outcome. One notes that w.r.t.
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the dME distance, the fact that the equivalence holds only for small values (dME ≤ pmin) is
not a hindrance, because this distance becomes too coarse to be useful when its values are
large.

Second, any statistical analysis of clustering deals with small perturbations and with the
asymptotic limit n → ∞, and our results apply to both situations.

The third example relates to the recent and on-going efforts to relate clustering stability
with other “good” properties of a clustering. Various distances between clusterings were
used to quantify stability (Ben-David et al. 2006; Bach and Jordan 2006). A relationship be-
tween a low distortion and clustering stability has been established (Meilă 2006), and ques-
tions of the informational limits of clustering have been investigated (Srebro et al. 2006).
While the area of clustering stability is outside the scope of this paper, all work in this area
is intimately tied with distances between partitions and their small fluctuations.
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Meilă, M., Shortreed, S., & Xu, L. (2005). Regularized spectral learning. In R. Cowell & Z. Ghahramani
(Eds.), Proceedings of the artificial intelligence and statistics workshop (AISTATS 05).

Mirkin, B. G. (1996). Mathematical classification and clustering. Dordrecht: Kluwer Academic.
Papadimitriou, C., & Steiglitz, K. (1998). Combinatorial optimization. Algorithms and complexity. Minneola:

Dover.
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American

Statistical Association, 66, 846–850.
Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge: MIT Press.
Srebro, N., Shakhnarovich, G., & Roweis, S. (2006). An investigation of computational and informational

limits in Gaussian mixture clustering. In Proceedings of the 23rd international conference on machine
learning (ICML).

Vajda, I. (1989). Theory of statistical inference and information. Theory and decision library. Series B: Math-
ematical and statistical methods. Norwell: Kluwer Academic Publishers.


	Local equivalences of distances between clusterings-a geometric perspective
	Abstract
	Introduction and motivation
	Why study distances?
	The distances
	Equivalence, local equivalence, and a summary of the results

	Definitions and representation
	Representing clusterings as matrices
	Representing clusterings as random variables

	Small dchi2 implies small dME
	Geometric ideas
	Proof outline

	Small dME implies small dchi2
	Small dME implies small dH
	Small dH implies small dME
	The relation between d2chi2 and dH
	Concluding remarks
	References


