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Abstract Bayesian learning, widely used in many applied data-modeling problems, is often
accomplished with approximation schemes because it requires intractable computation of
the posterior distributions. In this study, we focus on two approximation methods, variational
Bayes and local variational approximation. We show that the variational Bayes approach for
statistical models with latent variables can be viewed as a special case of local variational
approximation, where the log-sum-exp function is used to form the lower bound of the
log-likelihood. The minimum variational free energy, the objective function of variational
Bayes, is analyzed and related to the asymptotic theory of Bayesian learning. This analysis
additionally implies a relationship between the generalization performance of the variational
Bayes approach and the minimum variational free energy.

Keywords Variational Bayes · Local variational approximation · Variational free energy ·
Generalization error · Asymptotic analysis

1 Introduction

Bayesian estimation provides a powerful framework for learning from data. Recently, its
asymptotic theory has been established, which supports its effectiveness for latent variable
models such as the Gaussian mixture model (GMM) and hidden Markov model (HMM).
More specifically, a formula for evaluating asymptotic forms of stochastic complexity or
free energy was obtained and the generalization errors of statistical models have been in-
tensively analyzed (Watanabe 2009; Yamazaki and Watanabe 2003a, 2003b, 2005; Rusakov
and Geiger 2005; Aoyagi and Watanabe 2005; Yamazaki et al. 2010).
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Practically, however, Bayesian estimation requires some approximation method since
computing the Bayesian posterior distribution is intractable in general. In this study, we fo-
cus on two approximation methods, variational Bayes and local variational approximation,
for Bayesian estimation. The former has been successfully applied to latent variable models
such as mixture models and HMMs (Attias 1999; Beal 2003; Bishop 2006). Furthermore,
its asymptotic analysis has progressed in several statistical models (Watanabe and Watanabe
2006, 2007; Hosino et al. 2005; Watanabe et al. 2009). The latter, also known as direct site
bounding, has been applied to logistic regression (Jaakkola and Jordan 2000) and sparse
linear models (Seeger 2008, 2009). This approximation is generally characterized and de-
scribed by using the Bregman divergence (Watanabe et al. 2011).

In this paper, by providing a general framework for local variational approximation,
we show that variational Bayes for the latent variable models can be interpreted as an
application of local variational approximation. From this viewpoint, we investigate the
asymptotic behavior of variational free energy, which is the objective function to be min-
imized by variational Bayes. More specifically, we present a formula for evaluating the
asymptotic form of the minimum variational free energy relating it to the asymptotic the-
ory of Bayesian estimation. This formula is applicable to general latent variable models
and explains relationships between several previous works where asymptotic free energy
and the minimum variational free energy have been analyzed respectively (Yamazaki and
Watanabe 2003a, 2003b, 2005; Watanabe and Watanabe 2006, 2007; Hosino et al. 2005;
Watanabe et al. 2009). We apply this formula to the GMM as an example and demonstrate
another proof of the upper bound of the minimum variational free energy previously ob-
tained in Watanabe and Watanabe (2006).

Furthermore, a byproduct of this analysis provides a quantity which is related to
the generalization ability of the variational Bayesian approach. Analysis of generaliza-
tion ability of a learning machine when it is used with the variational Bayesian ap-
proximation has been successful in quite limited cases (Nakajima and Watanabe 2007;
Nakajima and Sugiyama 2010). We extend the asymptotic analysis of the minimum vari-
ational free energy (Watanabe 2010) and show an inequality which implies a relationship
between the minimum variational free energy and the generalization error of the approxi-
mate predictive distribution. This relationship is also examined by a numerical experiment.

The rest of this paper is organized as follows. Section 2 describes Bayesian estimation
and briefly introduces its asymptotic theory. Section 3 reviews variational Bayes for the
latent variable models and the general framework for local variational approximation. Sec-
tion 4 shows that a special case of the local variational approximation reduces to the vari-
ational Bayes approach for latent variable models. Section 5 presents the formula for the
asymptotic analysis of the minimum variational free energy. Section 6 demonstrates its ap-
plication to the GMM. Section 7 derives an inequality relating the minimum variational
free energy and the generalization error of the variational Bayes approach. Discussion and
conclusion follow in Sects. 8 and 9.

2 Bayesian learning

Assume we are given i.i.d. training examples or observations x = {x1, x2, . . . , xn} where
each observation xi is defined in some domain X . Let w ∈ Rd be the parameter vector and
consider Bayesian learning for a model p(x|w) = ∏n

i=1 p(xi |w). In this paper, we focus
on the model p(x|w) that is formulated by using a latent (unobserved) variable y. More
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specifically, we consider the following model,

p(x|w) =
∑

y

p(x, y|w), (1)

which is obtained by marginalizing the joint distribution p(x, y|w) of the model, that is,
summing over all possible states of y. We assume a discrete latent variable y to include the
examples such as the GMM and HMM.

Let y = {y1, y2, . . . , yn} be the latent (unobserved) variables corresponding to the obser-
vations x = {x1, x2, . . . , xn}. Then, the likelihood function of the parameter w is expressed
as,

p(x|w) =
∑

y

p(x,y|w), (2)

where p(x,y|w) ≡∏n

i=1 p(xi, yi |w) and
∑

y denotes the summation over all possible real-
izations of the latent variables.

By using the prior distribution p0(w), the Bayesian posterior distribution of the latent
variables and parameter w is defined by

p(y,w|x) = p(x,y|w)p0(w)
∑

y

∫
p(x,y|w)p0(w) dw

. (3)

The normalizing constant,

Z(x) ≡
∑

y

∫

p(x,y|w)p0(w) dw =
∫

p(x|w)p0(w) dw, (4)

called the marginal likelihood or the evidence, is intractable since it requires the sum over
exponentially many terms as in GMMs and HMMs and so is the posterior of the parameter,

p(w|x) =
∑

y

p(y,w|x) = p(x|w)p0(w)

Z(x)
. (5)

The negative logarithm of Z(x),

F(x) ≡ − logZ(x) (6)

is termed the free energy or the stochastic complexity. This is a key quantity for model
selection and is directly related to the average generalization error of the Bayesian predictive
distribution as will be detailed in Sect. 7.1. Although it is an issue to compute or approximate
the free energy practically, an asymptotic theory for analyzing the Bayesian free energy was
established, of which we provide a brief overview.

Let p(x|w∗) be the true data generating distribution independently and identically and

S ≡ − 〈
logp(x|w∗)

〉
p(x|w∗)

(7)

be its entropy.1 For p(x|w∗) =∏n

i=1 p(xi |w∗), we define the (average) normalized free en-
ergy by

F ∗(n) ≡ 〈
F(x) + logp(x|w∗)

〉
p(x|w∗)

= 〈F(x)〉p(x|w∗) − nS. (8)

1For an arbitrary distribution p(x), 〈·〉p(x) denotes the expectation over p(x).
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Note that F ∗(n) is defined by the expectation of F(x) over datasets generated by the true
distribution p(x|w∗) and hence is no longer a random variable. As a random variable, F(x)

has the leading term − logp(x|w∗), the expectation of which is nS. The above expression
of F ∗(n) means that the expectation of F(x) is F ∗(n) + nS.

Then, it was proved that the average normalized Bayesian free energy has the following
asymptotic form,

F ∗(n) � λ logn − (m − 1) log logn + O(1), (9)

where the O(1) term is bounded by a constant independent of n. The constants −λ and
m are the rational number and the natural number respectively which are identified by the
largest pole and its order of the zeta function,

JH (z) ≡
∫

H(w)zp0(w) dw, (10)

where z is a complex number and

H(w) ≡
∫

p(x|w∗) log
p(x|w∗)
p(x|w)

dx. (11)

The free energy and the zeta function are related to the state density function of H(w) by
the Laplace and Mellin transforms respectively (Watanabe 2009). The asymptotic form (9)
is then derived by the asymptotic expansion of the state density function.

In statistical models such as exponential families, 2λ is equal to the number of parameters
and m = 1 (Schwarz 1978), whereas in latent variable models such as GMMs, 2λ is not
larger than the number of parameters and m ≥ 1. This means that the free energy of latent
variable models deviates from the standard Bayesian Information Criterion (BIC) (Schwarz
1978). The asymptotic form (9) also plays an important role in assessing the approximation
accuracy of the variational Bayes approach, which will be discussed in Sect. 8.2.2.

For several statistical models, the coefficient λ or its upper bound was evaluated by ana-
lyzing the pole of the zeta function (Yamazaki and Watanabe 2003a, 2003b, 2005; Rusakov
and Geiger 2005; Aoyagi and Watanabe 2005; Watanabe 2009; Yamazaki et al. 2010).
The condition that the true distribution is contained in the model is natural and essen-
tial for dealing with model selection problems, which is in fact assumed in these analyses
(Schwarz 1978; Yamazaki and Watanabe 2003a, 2003b, 2005; Rusakov and Geiger 2005;
Aoyagi and Watanabe 2005; Yamazaki et al. 2010).

3 Approximation methods

This section provides brief summaries of the two approximation methods of Bayesian esti-
mation. The relationship between them is detailed in the next section.

3.1 Variational Bayes for latent variable models

In the variational Bayesian framework, the Bayesian posterior distribution (3) of the la-
tent variables and the parameters is approximated by the variational posterior distribution
q(y,w|x), which factorizes as

q(y,w|x) = q(y|x)q(w|x), (12)
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where q(y|x) and q(w|x) are probability distributions on the latent variables and the pa-
rameters respectively. The variational posterior q(y,w|x) is chosen so that it minimizes the
functional F [q], called variational free energy. The variational free energy is defined in (13).
We can express this as the sum of the Bayesian free energy and the Kullback information
from the variational posterior q(y,w|x) to the Bayesian posterior p(y,w|x)2,

F [q] ≡
∑

y

∫

q(y,w|x) log
q(y,w|x)

p(x,y|w)p0(w)
dw (13)

= F(x) + K(q(y,w|x)||p(y,w|x)). (14)

This expression follows from the definitions of the free energy (6) and the posterior (3).
This formulation leads to the following alternate optimization over q(y|x) and q(w|x)

(Attias 1999; Beal 2003; Bishop 2006). For a fixed q(y|x), the functional F [q] as a function
of q(w|x) is minimized by

q(w|x) = 1

Cw

p0(w) exp
〈
logp(x,y|w)

〉
q(y|x)

. (15)

For a fixed q(w|x), it as a function of q(y|x) is minimized by

q(y|x) = 1

Cy

exp
〈
logp(x,y|w)

〉
q(w|x)

. (16)

Here Cw and Cy are normalization constants. In Sect. 4, we show that this algorithm can be
interpreted as an application of another approximation scheme, local variational approxima-
tion.

3.2 Local variational approximation

This section describes several facts regarding the local variational approximation (Bishop
2006; Watanabe et al. 2011).

Local variational approximation forms a lower bound of p(w,x) = p(x|w)p0(w), de-
noted by p

ξ
(w,x),

p
ξ
(w,x) ≤ p(w,x), (17)

and approximates the posterior distribution (5) by

pξ (w|x) ≡
p

ξ
(w,x)

Z(ξ)
, (18)

where Z(ξ) ≡ ∫
p

ξ
(w,x) dw, and ξ is called the variational parameter. The above approx-

imation is optimized by estimating the variational parameter ξ so that Z(ξ) is maximized

2Throughout this paper, we use the notation K(q(x)||p(x)) for the Kullback information from a distribution
q(x) to a distribution p(x), that is,

K(q(x)||p(x)) ≡
∫

q(x) log
q(x)

p(x)
dx.
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since the inequality

Z(ξ) ≤ Z(x) (19)

holds by definition. This is equivalent to the minimization of

F(ξ) ≡ − logZ(ξ), (20)

which is an upper bound of the free energy, F(x) = − logZ(x).
Most existing local variational approximation techniques are based on the convexity of

the log-likelihood function or the log-prior (Bishop 2006; Jaakkola and Jordan 2000; Seeger
2008, 2009). We characterize these cases by using a general convex function φ and the
Bregman divergence associated with φ. Let φ be a twice differentiable real-valued convex
function and h be a vector-valued function. Let us consider the case where the lower bound
of the joint distribution is formed as follows,

p(w,x) = p(x|w)p0(w) ≥ p(x|w)p0(w) exp{−dφ(h(w),h(ξ))} ≡ p
ξ
(w,x), (21)

where

dφ(u,v) ≡ φ(u) − φ(v) − (u − v) · ∇φ(v) ≥ 0, (22)

is the Bregman divergence associated with the convex function φ (Banerjee et al. 2005). The
interpretation of the bound (21) is summarized as follows (Watanabe et al. 2011). The nor-
malization of p(w,x) with respect to w is intractable. We can multiply by the exponential
of the Bregman divergence to obtain a lower bound of p(w,x). We choose the convex func-
tion φ of some function h transforming w such that the intractable terms in p(w,x) are can-
celed, giving us a tractable lower bound p

ξ
(w,x). For example, in the latent variable model,

logp(w,x) has the intractable term, log
∑

y p(x,y|w) originated from the log-likelihood,
logp(x|w). We choose φ to be such that this term is canceled as will be detailed in the next
section. Watanabe et al. (2011) demonstrates an example of the lower bound (21) for the
logistic regression model together with its upper bound variant.

Then, as for the free energy bound of the local variational approximation using the gen-
eral bound (21) with the convex function φ, we obtain the following expression,

F(ξ) − F = 〈
dφ(h(w),h(ξ))

〉
pξ (w|x)

+ K(pξ (w|x)||p(w|x)), (23)

the derivation of which is in Appendix A.
From (21), the approximating posterior is given by,

pξ (w|x) ∝ exp{h(w) · ∇φ(h(ξ)) + logp(x,w) − φ(h(w))}, (24)

which is a member of the exponential family. The expectation maximization (EM) algorithm
for minimizing the upper bound F(ξ) updates the old estimate ξ̃ to ξ so that

h(ξ) = 〈h(w)〉p
ξ̃
(w|x) (25)

is satisfied (Watanabe et al. 2011).
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4 An alternative view of variational Bayes

Let us consider an application of the local variational method for approximating the posterior
distribution of the latent variable model, p(w|x) in (5). By the convexity of the function
log

∑
y exp(·), the log-likelihood is bounded below as follows,

logp(x|w) = log
∑

y

exp{logp(x,y|w)}

≥ logp(x|ξ) +
∑

y

(

log
p(x,y|w)

p(x,y|ξ)

)

p(y|x, ξ), (26)

where p(y|x, ξ) = p(x,y|ξ)∑
y p(x,y|ξ)

. This corresponds to the case where φ(h) = log
∑

i exp(hi)

and h(w) is the vector-valued function which consists of the elements logp(x,y|w) for all
possible y. The inequality (26) is derived from lower bounding the log-sum-exp function φ

by its tangent hyperplane at h(w) = h(ξ) and the fact that the gradient vector of φ consists
of the elements ∂φ(h)

∂hi
= exp(hi )∑

j exp(hj )
. We can see that the sum

∑
y is inside the logarithm in

the left hand side of the inequality (26) while it is outside in the right hand side. Hence,
replacing the left hand side, the intractable term in p(w,x), with the right hand side yields
the tractable lower bound (21). These choices of φ and h yield the Bregman divergence,

dφ(h(w),h(ξ)) =
∑

y

p(y|x, ξ) log
p(y|x, ξ)

p(y|x,w)
= K(p(y|x, ξ)||p(y|x,w)), (27)

which is also verified by subtracting the right hand side of the inequality (26) from the left
hand side of it.

From (23), we have

F(ξ) = F + K(pξ (w|x)||p(w|x)) + 〈K(p(y|x, ξ)||p(y|x,w))〉pξ (w|x)

= F + K(pξ (w|x)p(y|x, ξ)||p(w,y|x)), (28)

which is exactly the variational free energy (14) of the factorized distribution, pξ (w|x) ×
p(y|x, ξ). In fact, from (24) and (26), the approximating posterior is given by

pξ (w|x) ∝ exp

{∑

y

logp(x,y|w)p(y|x, ξ)

}

p0(w)

= exp 〈logp(x,y|w)〉p(y|x,ξ) p0(w). (29)

From (25), the EM update for ξ yields

logp(x,y|ξ) = 〈logp(x,y|w)〉p
ξ̃
(w|x) , (30)

which implies

p(y|x, ξ) ∝ exp 〈logp(x,y|w)〉p
ξ̃
(w|x) . (31)

Equations (29) and (31) are exactly the same as the variational Bayes algorithm for mini-
mizing the variational free energy over the factorized distributions, (15) and (16).
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This view of the variational Bayes approach is partly mentioned in Jordan et al. (1999).
It provides the interpretation of the variational free energy in the form, F(ξ) = − logZ(ξ).
This implies that the asymptotic analysis of the minimum variational free energy can be
reduced to the formula developed for that of the Bayesian free energy, F = − logZ. In
the next section, based on this view, we relate the minimum variational free energy to the
asymptotic analysis of the Bayesian free energy (Watanabe 2009).

5 Minimum variational free energy

Let

F min(x) ≡ min
h(ξ)

F (ξ) (32)

be the minimum variational free energy. Recall that the variational free energy (13) is min-
imized with respect to the distributions q(w|x) and q(y|x). Also note from (28) and (29)
that the free energy bound F(ξ) depends on the variational parameter ξ only through the
form of the posterior distribution of the latent variables, p(y|x, ξ) in the alternative view
presented in the previous section. Hence, the minimization of the variational free energy is
equivalent to that of the free energy bound F(ξ) with respect not only to ξ but directly to
h(ξ) that has one-to-one mapping to p(y|x, ξ).

We assume that p(x|w∗) with the parameter w∗ is the underlying distribution generating
the data x independently and identically. Because of the non-identifiability of the latent
variable model, the set of true parameters

W ∗ ≡
{

w̃|
∑

y

p(x, y|w̃) = p(x|w∗)
}

, (33)

is not generally a point but can be a union of several manifolds with singularities (Watanabe
2009).

Since F min(x) is defined by the minimum over h(ξ), we obtain an upper bound for the
minimum value by substituting a specific choice of h(ξ). For arbitrary w̃∗ ∈ W ∗, by substi-
tuting h(ξ) = h(w̃∗

), we have

F min(x) = min
h(ξ)

{

− log
∫

p
ξ
(w,x) dw

}

= min
h(ξ)

{

− log
∑

y

p(x,y|ξ) − log
∫

exp

{∑

y

p(y|x, ξ) log
p(x,y|w)

p(x,y|ξ)

}

p0(w) dw

}

(34)

≤ − logp(x|w∗) − log
∫

exp

{∑

y

p(y|x, w̃∗
) log

p(x,y|w)

p(x,y|w̃∗
)

}

p0(w) dw

≡ U(x). (35)

Here, the second equality follows from the fact that the bound p
ξ
(w,x) is the exponential of

the right hand side of the inequality (26) multiplied by the prior p0(w). In the last inequality,
we have substituted h(ξ) = h(w̃∗

), that is, p(x,y|ξ) = p(x,y|w̃∗
). The expression (34) is

also obtained by substituting the optimal form (15) of q(w|x) into (13) and identifying
q(y|x) with p(y|x, ξ).
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By subtracting the entropy of the true distribution, we define the (average) normalized
minimum variational free energy and its upper bound by,

F
∗
min(n) ≡ 〈

F min(x) + logp(x|w∗)
〉
p(x|w∗)

= 〈
F min(x)

〉
p(x|w∗)

− nS, (36)

and

U ∗(n) ≡ 〈U(x)〉p(x|w∗) − nS. (37)

Note here again that F min(x) and U(x) are random variables with the leading term
− logp(x|w∗), the expectations of which are F

∗
min(n) + nS and U ∗(n) + nS respectively.

Then, as is proved in Appendix B, the following inequality holds,

F
∗
min(n) ≤ − log

∫

e−nH(w)p0(w) dw ≡ U
∗
(n), (38)

where

H(w) ≡
∫ ∑

y

p(x, y|w̃∗
) log

p(x, y|w̃∗
)

p(x, y|w)
dx. (39)

The asymptotic theory of the Bayesian estimation (Watanabe 2009) shows that the
asymptotic form of the right hand side of (38), providing an upper bound of F

∗
min(n), is

given by

U
∗
(n) � λ logn − (m − 1) log logn + O(1), (40)

where −λ and m are respectively the largest pole and its order of the zeta function defined
for a complex number z by

JH (z) ≡
∫

H(w)zp0(w) dw. (41)

This means that the asymptotic behavior of the minimum variational free energy is
characterized by H(w) while that of the free energy F is characterized by H(w) =
K(p(x|w∗)||p(x|w)) as in (9) and (10) (Watanabe 2009). These two functions are related
by the log-sum inequality,

H(w) ≤ H(w). (42)

Note that H(w) depends on the choice of w̃∗ ∈ W ∗. For different w̃∗, we have different
values of λ, which in (40) is determined by the minimum over different w̃∗ ∈ W ∗. Then, m

is determined by the maximum of the order of the pole for the minimum λ.

6 Example: Gaussian mixture model

In this section, we derive an asymptotic upper bound of the minimum variational free en-
ergy of the GMM. Although this upper bound was obtained in a previous work (Watanabe
and Watanabe 2006), the derivation was by direct evaluation and minimization of the vari-
ational free energy with respect to the expected sufficient statistics which corresponds to
the variational parameter ξ in this paper. We present another derivation through (38) for an
illustration of the asymptotic analysis described in Sect. 5.
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6.1 Variational Bayes for GMM

Let g(x|μ) ≡ 1√
2π

M exp{−‖x−μ‖2

2 } be the M-dimensional Gaussian density and consider the

GMM with K components,

p(x|w) =
K∑

k=1

akg(x|μk) (43)

where x ∈ RM and the parameter vector w consists of the mean vectors {μk}K
k=1 and the

mixing proportions a = {ak}K
k=1 that satisfy 0 ≤ ak ≤ 1 for k = 1, . . . ,K and

∑K

k=1 ak = 1.
As a latent variable model, this model is expressed as, p(x|w) =∑

y p(x, y|w), where

p(x, y|w) =
K∏

k=1

{akg(x|μk)}y(k)

. (44)

The latent variable y = (y(1), y(2), . . . , y(K)) indicates the component from which the datum
x is generated, that is, y(k) = 1 if x is from the kth component and y(k) = 0 otherwise. The
variational Bayes framework is successfully applied to this model (Attias 1999; Beal 2003;
Bishop 2006) using the prior distribution,

p0(w) ≡ p0(a)

K∏

k=1

p0(μk), (45)

where

p0(a) ≡ �(Kα0)

�(α0)K

K∏

k=1

a
α0−1
k (46)

is the Dirichlet distribution with hyperparameter α0 > 0 and

p0(μk) ≡
√

β0

2π

M

exp

{

−β0‖μk − ν0‖2

2

}

(47)

is the Gaussian distribution with hyperparameters β0 > 0 and ν0 ∈ RM . They are the conju-
gate prior distributions for the mixing proportions and each mean vector respectively.

6.2 Asymptotic analysis of minimum variational free energy

We assume that the true data generating distribution is p(x|w∗) with the parameter w∗ =
{{a∗

k }, {μ∗
k}},

p(x|w∗) =
K0∑

k=1

a∗
k g(x|μ∗

k), (48)

and K0 ≤ K holds, that is, the true distribution is realizable by the postulated model. Then,
it was proved in Watanabe and Watanabe (2006) that the normalized minimum variational
free energy satisfies

F
∗
min(n) ≤ λ logn + O(1), (49)
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where

λ =
{

(K − K0)α0 + MK0+K0−1
2 (α0 ≤ M+1

2 ),

MK+K−1
2 (α0 > M+1

2 ).
(50)

It was empirically demonstrated that this upper bound is tight in some cases (Watanabe
and Watanabe 2006). As will be discussed in Sect. 8.2.1, the inequality (49) holds for more
general mixture components than the Gaussian g(x|μ).

Note that when α0 > M+1
2 or K = K0, 2λ is equal to the number of parameters and λ logn

turns out to be the penalty term in the BIC (Schwarz 1978). When K0 < K , the set of true
parameters, W ∗ = {w̃|∑y p(x, y|w̃) = p(x|w∗)}, is not a point but a union of manifolds.

Reflecting this fact, the coefficient λ indicates where in the parameter space the (approxi-
mate) posterior distribution converges depending on the value of the hyperparameter α0.

6.3 Derivation of the upper bound

In this section, we derive (49) from (38), which provides another proof than that presented
in Watanabe and Watanabe (2006). Similar proofs can be found in Yamazaki and Watanabe
(2003a, 2003b, 2005) although they are intended for evaluating the Bayesian free energy (8)
asymptotically. Here, we intend to evaluate the minimum variational free energy and present
the details of the proof for the specific choice of the prior distribution (45) for the sake of
self-containedness.

First, in order to define p(x, y|w̃∗
) for y with K elements, we extend and redefine the

true parameter w∗ denoting it as w̃∗ = {{ã∗
k }K

k=1, {μ̃∗
k}K

k=1}. Suppose that the true distribution
with parameter w̃∗ has K̂ non-zero mixing proportions. For example, we can take

ã∗
k =

⎧
⎪⎨

⎪⎩

a∗
k (1 ≤ k ≤ K0 − 1),

a∗
K0

/(K − K0 + 1) (K0 ≤ k ≤ K̂),

0 (K̂ + 1 ≤ k ≤ K),

(51)

and

μ̃∗
k =

{
μ∗

k (1 ≤ k ≤ K0),

μ∗
K0

(K0 + 1 ≤ k ≤ K).
(52)

Note that the marginal distribution of p(x, y|w̃∗
) reduces to (48). Then, we have

H(w) =
∫ ∑

y

p(x, y|w̃∗
) log

p(x, y|w̃∗
)

p(x, y|w)
dx

=
∫ K∑

k=1

ã∗
k g(x|μ̃∗

k) log
ã∗

k g(x|μ̃∗
k)

akg(x|μk)
dx

=
K∑

k=1

ã∗
k

{

log
ã∗

k

ak

+
∫

g(x|μ̃∗
k) log

g(x|μ̃∗
k)

g(x|μk)
dx

}

=
K̂∑

k=1

ã∗
k

{

log
ã∗

k

ak

+ ‖μk − μ̃∗
k‖2

2

}

. (53)
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Second, we divide the parameter w into three parts,

w1 ≡ (a2, a3, . . . , aK̂), (54)

w2 ≡ (aK̂+1, . . . , aK), (55)

w3 ≡ (μ1,μ2, . . . ,μK̂), (56)

and define

W1 ≡ {w1| |ak − ã∗
k | ≤ ε,2 ≤ k ≤ K̂}, (57)

W2 ≡ {w2| |ak| ≤ ε, K̂ ≤ k ≤ K}, (58)

W3 ≡ {w3| ‖μk − μ̃∗
k‖ ≤ ε,1 ≤ k ≤ K̂}, (59)

for a sufficiently small constant ε. For an arbitrary parameter w ∈ W1 × W2 × W3 ≡ W(ε),
we can decompose H(w) as,

H(w) = H 1(w1) + H 2(w2) + H 3(w3), (60)

where

H 1(w1) ≡
K̂∑

k=2

ã∗
k log

ã∗
k

ak

+
⎛

⎝1 −
K̂∑

k=2

ã∗
k

⎞

⎠ log
1 −∑K̂

k=2 ã∗
k

1 −∑K̂

k=2 ak

, (61)

H 2(w2) ≡ 1

1 − c

1 −∑K0
k=2 ã∗

k

1 −∑K̂

k=2 ak

K∑

k=K̂+1

ak, (62)

and

H 3(w3) ≡
K̂∑

k=1

ã∗
k

2
‖μk − μ̃∗

k‖2. (63)

Here we have used the mean value theorem − log(1 − t) = 1
1−c

t for some c, 0 ≤ c ≤ t with

t =
∑K

k=K̂+1
ak

1−∑K̂
k=2 ak

. Furthermore, for w ∈ W(ε), there exist positive constants C1, C2 C3 and C4

such that

C1

K̂∑

k=2

(ak − ã∗
k )

2 ≤ H 1(w1) ≤ C2

K̂∑

k=2

(ak − ã∗
k )

2, (64)

and

C3

K∑

k=K̂+1

ak ≤ H 2(w2) ≤ C4

K∑

k=K̂+1

ak. (65)

Third, we evaluate the partial variational free energies defined, for i = 1,2,3, by

F i ≡ − log
∫

Wi

exp(−nHi(wi ))p0(wi ) dwi , (66)
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where p0(wi ) is the product of the factors involving the corresponding parameters in (45).
It follows from (38), (60) and (66) that

F
∗
min(n) ≤ F 1 + F 2 + F 3 + O(1). (67)

From (64) and (63), as for F 1 and F 3, the Gaussian integration yields,

F 1 = K̂ − 1

2
logn + O(1), (68)

and

F 3 = MK̂

2
logn + O(1). (69)

Since

nα0

∫ ε

0
e−nak a

α0−1
k dak → �(α0) (n → ∞), (70)

for k = K̂ + 1, . . . ,K , it follows from (65),

F 2 = (K − K̂)α0 logn + O(1). (71)

Finally, combining (68), (71), (69) and (67), we obtain

F
∗
min(n) ≤

{

(K − K̂)α0 + MK̂ + K̂ − 1

2

}

logn + O(1). (72)

Minimizing the right hand side of the above expression over K̂ (K0 ≤ K̂ ≤ K) leads to (49).
Alternatively, the above evaluations of all the partial variational free energies are obtained

by using the zeta function method as mentioned in Sect. 5. For example, as for F 2, the zeta
function

JH 2
(z) ≡

∫

H 2(w2)
zp0(w2) dw2 (73)

has a pole z = −(K − K̂)α0. This can be observed by the change of variables, the so-called
blow-up,

ak = a′
ka

′
K (k = K̂ + 1, . . . ,K − 1), (74)

aK = a′
K, (75)

which yields that JH 2
has a term

∫

a′z
Ka

′(K−K̂)α0−1
K J̃H 2

(w̃′
2) da′

K = J̃H 2
(w̃′

2)

z + (K − K̂)α0

, (76)

where J̃H 2
(w̃′

2) is a function proportional to

∫
⎛

⎝
K−1∑

k=K̂+1

a′
k + 1

⎞

⎠

z
K−1∏

k=K̂+1

a
′α0−1
k

K−1∏

k=K̂+1

da′
k. (77)

Hence, we can see that JH 2
has a pole z = −(K − K̂)α0.
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7 Variational free energy and generalization error

In this section, we focus on the relationship between the variational free energy and the
generalization ability of the variational Bayes approach. We denote the dataset by xn =
{x1, x2, . . . , xn} indicating the number of data explicitly only in this section.

7.1 Relationship between variational free energy and generalization error

Let p(x, y|w̃∗
) be the true distribution of the observed variable x and the latent variable y

which has the marginal distribution p(x|w∗). We define by

G
∗
(xn) ≡ K(p(x, y|w̃∗

)||p̃∗(x, y|xn)), (78)

the generalization error of the predictive distribution,

p̃∗(x, y|xn) ≡ 〈p(x, y|w)〉pw̃∗ (w|xn) =
∫

p(x, y|w)pw̃∗(w|xn) dw, (79)

where pw̃∗(w|xn) is the approximating posterior distribution (24) with h(w̃∗
) substituted for

h(ξ). We denote its mean by

G
∗
(n) ≡ 〈G∗

(xn)〉∏n
i=1 p(xi |w∗). (80)

Then, the following inequality holds,

U ∗(n + 1) − U ∗(n) ≥ G
∗
(n), (81)

where U ∗(n) is the upper bound (37) of the minimum variational free energy. The proof is
put in Appendix C.

The inequality (81) is analogous to the equality,

F ∗(n + 1) − F ∗(n) = G(n), (82)

which holds for the average free energy (8) and the generalization error of the Bayesian
predictive distribution,

G(n) ≡ 〈
K(p(x|w∗)||p(x|xn))

〉
∏n

i=1 p(xi |w∗)
, (83)

where

p(x|xn) ≡ 〈p(x|w)〉p(w|xn). (84)

If U ∗(n) has the asymptotic form U ∗(n) � λ logn + O(1) as in (40) for U
∗
(n), the

inequality (81) suggests that

G
∗
(n) ≤ λ

n
+ o

(
1

n

)

. (85)

This means that the coefficient λ of the leading term of U ∗(n) is directly related to the
generalization error of the variational Bayes approach measured by (78).

In the true sense, the generalization error of the variational Bayes approach should be
evaluated for the predictive distribution 〈p(x, y|w)〉p

ξ̂n
(w|xn) where h(ξ̂n) =
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argminh(ξ) F (ξ).3 Although the predictive distribution (79) consists of the true parameter w̃∗

instead of ξ̂n, it still depends on the samples xn and inherits some property of the variational
Bayesian approximation. In the next subsection, we will empirically examine the difference
between G

∗
(n) and the generalization error in the true sense (as will be defined in (86)). At

least, the inequality (81) implies the affinity of the minimum variational free energy and the
generalization error measured by the Kullback information of the joint distributions.

7.2 Numerical experiment

We empirically examine the relationship between the generalization error and the asymptotic
form of the minimum variational free energy and demonstrate that the asymptotic form (49)
partly describes the generalization error of the variational Bayes approach for GMM.

We implemented the variational Bayesian learning of GMM with K components (43).
For simplicity, we chose the true distribution to be the standard normal distribution in R2,
g(x|(0,0)T ). According to the choice of w̃∗ for evaluating λ in (49), we consider this dis-
tribution as the choice, ã∗

1 = 1, ã∗
k = 0 for k = 2, . . . ,K , μ̃∗

k = (0,0)T for k = 1,2, . . . ,K

and focus on the case where α0 < (M + 1)/2 = 1.5. Note that for this choice, the (Jensen’s)
inequality used to derive the inequality (81) holds with equality since p(y|xn+1, w̃

∗
) is either

1 or 0.
Samples of the size n = 100 were generated by the true distribution. The variational

Bayes algorithm was executed 21 times with 20 different random initializations and the one
from the true parameter w̃∗. We adopted the estimate p(y|xn, ξ̂n) that attained the minimum
of the variational free energy and evaluated the generalization error,

G(xn) ≡
∑

y

∫

p(x, y|w̃∗
) log

p(x, y|w̃∗
)

p̃(x, y|xn)
dx, (86)

where

p̃(x, y|xn) ≡ 〈p(x, y|w)〉p
ξ̂n

(w|xn) (87)

is the (approximate) predictive distribution.
In the above-mentioned case, the predictive distribution is given by the GMM,

p̃(x, y|xn) =
K∏

k=1

⎧
⎪⎨

⎪⎩

ak
√

2π(1 + σ 2
k)

M
exp

(

−‖x − μk‖2

2(1 + σ 2
k)

)
⎫
⎪⎬

⎪⎭

y(k)

. (88)

Here ak = nk+α0
n+Kα0

and μk = nkνk+β0ν0
nk+β0

are (approximate) posterior means of ak and μk where

nk =∑n

i=1〈y(k)
i 〉

p(yi |xi ,ξ̂n)
and νk = 1

nk

∑n

i=1〈y(k)
i 〉

p(yi |xi ,ξ̂n)
xi . σ 2

k = 1/(nk + β0) is the poste-
rior variance of μk . The generalization error is evaluated as

G(xn) =
K∑

k=1

ã∗
k

{

log
ã∗

k

ak

+ M

2
log(1 + σ 2

k) − M

2

σ 2
k

1 + σ 2
k

+ ‖μk − μ̃∗
k‖2

2(1 + σ 2
k)

}

. (89)

3In practice, we optimize p(y|xn, ξ̂n) directly instead of calculating ξ̂n explicitly as noted at the beginning
of Sect. 5.
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Fig. 1 Average generalization errors for K = 2 and different α0 (left) and for α0 = 0.2 and different K

(right) with 95%-confidence intervals. ◦: Average errors of the joint distribution (89). +: Average errors
of the marginal distribution (91). ∗: Average errors of the joint distribution with the variational parameter
substituted by the true one (78). Solid line: Theoretical values of the average error (90). The generalization
errors are multiplied by n = 100 for scaling purposes

To investigate the difference between G(xn) and G
∗
(xn) introduced in Sect. 7.1, we

also evaluated G
∗
(xn). Let n∗

k = ∑n

i=1〈y(k)
i 〉p(y|xi ,w̃

∗) and ν∗
k = 1

n∗
k

∑n

i=1〈y(k)
i 〉p(y|xi ,w̃

∗)xi for

k = 1,2, . . . ,K . For the above choice of w̃∗, we have n∗
1 = n, n∗

k = 0 for k = 2, . . . ,K , ν∗
1 =

1
n

∑n

i=1 xi and ν∗
k = 0 for k = 2, . . . ,K . Since ν∗

1 = 1
n

∑n

i=1 xi obeys the normal distribution
with mean (0,0)T and covariance matrix 1

n
I where I is the unit matrix, we can show that

G
∗
(n) �

{
M

2
+ (K − 1)α0

}
1

n
+ o

(
1

n

)

, (90)

by putting {n∗
k, ν

∗
k } into {ak,μk} and evaluating the expectation of (89) with respect to the

true distribution
∏n

i=1 p(xi |w∗). Note that the coefficient M
2 + (K − 1)α0 is exactly equal

to λ in the inequality (49) for the case where K0 = 1 and α0 < M+1
2 . This means that the

inequality (85) is tight in this case.
Additionally, we calculated the generalization error of the marginal distribution,

G(xn) ≡
∫

p(x|w∗) log
p(x|w∗)
p̃(x|xn)

dx (91)

where

p̃(x|xn) ≡ 〈p(x|w)〉p
ξ̂n

(w|xn) (92)

is the marginal predictive distribution. We evaluated the expectation with respect to p(x|w∗)
by generating 100000 test samples from the same true distribution. The generalization error
(89) of the joint distribution is always larger than G(xn).

Figure 1 shows the generalization errors averaged over 100 trials with different data
sets. Figure 1 (left) is for the case of K = 2 with different values of the hyperparameter
α0. As expected, the average of G

∗
(xn) fits the theoretical line (90) well. We can see that

for small α0, the behavior of the generalization error of the joint predictive distribution is
well described by that of G

∗
(n) and hence by the coefficient λ in the upper bound (49).

As α0 tends larger, the average of G(xn) also increases, as does that of the generalization
error G(xn) of the marginal distribution, although only slightly. This may be caused by
overfitting. Figure 1 (right) shows the average of the generalization errors for the case of
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α0 = 0.2 with different number K of components. Again, we can see that for small α0

the generalization error of the joint predictive distribution is described by λ in (49) while
the generalization error of the marginal distribution stays constant even when the model
becomes more redundant.

8 Discussion

We presented a formula for analyzing the asymptotic behavior of the minimum variational
free energy in Sect. 5 and demonstrated its application to the GMM in Sect. 6. In this section,
we discuss extension of the main results to other approximation schemes than the variational
Bayes approach. Then, we discuss the relationship to previous works where the free energy
and the minimum variational free energy were analyzed for specific latent variable models.

8.1 Extension to other Bregman divergences

In Sect. 4, we showed that the local variational approximation with the log-sum-exp function
derives an alternative view of the variational Bayes approach for latent variable models.
A similar argument to that in Sect. 5 may help in evaluating the asymptotic forms of free
energy approximations by the local variational approximations for other convex functions
than the log-sum-exp function.

Generally, the local variational approximation forms upper and lower bounds of the free
energy (Watanabe et al. 2011),

F(ξ) ≡ − log
∫

p(x|w) exp{−dφ(h(w),h(ξ))}p0(w) dw, (93)

F(η) ≡ − log
∫

p(x|w) exp{dψ(g(w),g(η))}p0(w) dw, (94)

where ξ and η are the respective variational parameters and h and g are functions trans-
forming the parameter w to utilize the convexity of the functions φ and ψ . For w∗ ∈ W ∗ =
{w|p(x|w) = p(x|w∗)}, let

H(w) ≡ H(w) + 1

n
〈dφ(h(w),h(w̃∗

))〉p(x|w∗), (95)

H(w) ≡ H(w) − 1

n
〈dψ(g(w),g(w̃∗

))〉p(x|w∗), (96)

where H(w) is the Kullback information (11).
As we have demonstrated for the case φ to be the log-sum-exp function, asymptotic

forms of the free energy approximations can be evaluated by

U
∗
(n) ≡ − log

∫

e−nH(w)p0(w) dw, (97)

and

L∗(n) ≡ − log
∫

e−nH(w)p0(w) dw. (98)

Corresponding zeta functions can be used for evaluating U
∗
(n) and L∗(n) asymptotically.

Note that L∗(n) does not necessarily provide a lower bound for the mean of maxg(η) F (η)
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since − log
∫

exp(·)p0(w) dw is concave. However, it may be useful for investigating the
average property of the approximation scheme.

8.2 Relation to previous works

8.2.1 Asymptotic analysis of free energy bounds

Asymptotic upper bounds of the free energy were obtained for some statistical models
including the GMM, HMM and the Bayesian network (Yamazaki and Watanabe 2003a,
2003b, 2005). The upper bounds are given in such forms as

F ∗(n) ≤ ν logn + O(1), (99)

where the coefficient ν was identified for each model by analyzing the largest pole of the
zeta function JH in (10). More specifically, however, these works analyzed the largest pole
of JH in (41) instead of JH by using the log-sum inequality (42) (Yamazaki and Watanabe
2003a, 2003b, 2005). Since the largest pole of JH provides a lower bound for that of JH ,
their analyses provided upper bounds of F ∗ for the above models.

On the other hand, the asymptotic forms of the minimum variational free energy were
analyzed also for the same models (Watanabe and Watanabe 2006, 2007; Hosino et al. 2005;
Watanabe et al. 2009), each of which has the form

F
∗
min(n) ≤ λ logn + O(1). (100)

In most cases, the asymptotic upper bound of F ∗(n) and F
∗
min(n) coincide, that is, ν = λ

holds. The assertion in Sect. 5 implies that this is generally true since it formally relates the
asymptotic form of the minimum variational free energy F

∗
min(n) to H(w) and the largest

pole of JH .
Moreover, the previous analyses of the minimum variational free energy were based on

the direct minimization of the variational free energy over the expected sufficient statistics
which correspond to the variational parameter ξ in this paper. Hence, the analyses were
highly dependent on the concrete algorithm for the specific model and the choice of the
prior distribution. Analyzing the right hand side of (38) is more general and is independent
of the concrete algorithm for the specific model. It does not even require that the prior
distribution p0(w) be conjugate prior although in this case the variational Bayes algorithm
turns out not to be practical. In fact, in the case of the mixture model, the upper bound (49)
is obtained in more general cases. The mixture component g(x|μ) can be generalized as
long as K(g(x|μ̃)||g(x|μ)) can be approximated by (μ − μ̃)T J (μ − μ̃) for some positive
definite matrix J while in Watanabe and Watanabe (2007) it was generalized only to the
exponential family.

8.2.2 Accuracy of approximation

For several statistical models, tighter bounds or exact evaluation of the coefficient λ of the
free energy (9) has been obtained recently (Aoyagi and Watanabe 2005; Yamazaki et al.
2010). If the free energy and the minimum variational free energy have the asymptotic forms,
F ∗(n) � λ logn + o(logn) and F

∗
min(n) � λ logn + o(logn) respectively and λ < λ, the

approximation accuracy of the variational Bayes approach is evaluated as

F
∗
min(n) − F(n) = (λ − λ) logn + o(logn). (101)
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This turns out to be the Kullback information from the approximating posterior to the true
posterior from (14). Such a comparison was first done for GMMs (Watanabe and Watanabe
2006). It was proved that λ can be strictly greater than λ while λ is not so large as the num-
ber of parameters divided by two, as in the BIC. The results presented in Sect. 5 imply that
such a comparison can be done for general latent variable models by examining the differ-
ence between infw̃∗∈W∗ U(n) and F ∗(n), which corresponds to that between the poles of JH

and JH . The discussion in Sect. 8.1 implies the possibility of assessing the approximation
accuracy of other approximation schemes in a similar way.

8.2.3 Average generalization error

Previous results on the variational Bayesian approximation have mentioned little about its
generalization ability except for a few limited models such as the reduced rank regression
and the matrix factorization models (Nakajima and Watanabe 2007; Nakajima and Sugiyama
2010). In Sect. 7.1, we derived an inequality which implies the relationship between the
generalization error and the variational free energy for general latent variable models. In
Sect. 7.2, we empirically demonstrated that the coefficient of the minimum variational free
energy partly describes the behavior of the generalization error. Thorough investigation of
the generalization ability of the variational Bayes algorithm including the case for large α0

and for the marginal predictive distribution will be left for future work.
In the original (not approximate) Bayesian estimation, the universal relation among the

quartet, Bayes and Gibbs generalization errors and Bayes and Gibbs training errors, was
proved (Watanabe 2009). It is an important undertaking to explore such relationships among
the quantities introduced in Sect. 7 for the approximate Bayesian estimation.

9 Conclusion

In this paper, we provided an alternative view of variational Bayes for latent variable models
as an application of local variational approximation. Combining this view with the asymp-
totic theory of Bayesian estimation, we derived a formula for asymptotic analysis of the
minimum variational free energy. As a byproduct of this formula, we also obtained an in-
equality that relates the minimum variational free energy to the generalization error.

It is an important undertaking to elucidate the condition under which the upper bound
evaluated by the formula gives the exact asymptotic form of the minimum variational free
energy. The approach presented in this paper is applicable for evaluating the asymptotic
approximation accuracy of other models and other choices of the convex function, that is,
approximation scheme. These will be pursued in the future.
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Appendix A: Derivation of (23)

From the definitions of Z(x), Z(ξ) and p
ξ
(w,x), we have

F(ξ) − F = log
Z(x)

Z(ξ)
= log

(
p(w,x)

p(w|x)

pξ (w|x)

p
ξ
(w,x)

)

= log

(
pξ (w|x)

p(w|x)

)

− dφ(h(w),h(ξ)). (102)
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Taking the expectations of both sides with respect to pξ (w|x) yields (23).

Appendix B: Proof of the inequality (38)

F
∗
min(n) ≤ U ∗(n)

= 〈U(x)〉p(x|w∗) − nS

= −
〈

log
∫

exp

{
∑

y

p(y|x, w̃∗
) log

p(x,y|w)

p(x,y|w̃∗
)

}

p0(w) dw

〉

p(x|w∗)

≤ − log
∫

exp

⎧
⎨

⎩

〈
∑

y

p(y|x, w̃∗
) log

p(x,y|w)

p(x,y|w̃∗
)

〉

p(x|w∗)

⎫
⎬

⎭
p0(w) dw

= − log
∫

e−nH(w)p0(w) dw. (103)

The first inequality follows from the fact, F min(x) ≤ U(x). The first equality is the definition
of U ∗(n). The second equality follows from the definitions of U(x) and the entropy S. We
have applied Jensen’s inequality to the convex function log

∫
exp(·)p0(w) dw to obtain the

last inequality. Finally, the last equality follows from the fact that p(x|w∗)p(y|x, w̃∗
) =

p(x,y|w̃∗
) and the i.i.d. assumption.

Appendix C: Proof of the inequality (81)

U ∗(xn+1) − U ∗(xn)

= − log

∫ ∏n+1
i=1 exp{∑y p(y|xi, w̃

∗
) log p(xi ,y|w)

p(xi ,y|w̃∗)
}p0(w) dw

∫ ∏n

i=1 exp{∑y p(y|xi, w̃
∗
) log p(xi ,y|w)

p(xi ,y|w̃∗)
}p0(w) dw

= − log
∫

exp

{∑

y

p(y|xn+1, w̃
∗
) log

p(xn+1, y|w)

p(xn+1, y|w̃∗
)

}

pw̃∗(w|xn) dw

=
∑

y

p(y|xn+1, w̃
∗
) logp(xn+1, y|w̃∗

)

− log
∫

exp

{

〈logp(xn+1, y|w)〉p(y|xn+1,w̃∗)

}

pw̃∗(w|xn) dw

≥
∑

y

p(y|xn+1, w̃
∗
) log

p(xn+1, y|w̃∗
)

〈p(xn+1, y|w)〉pw̃∗ (w|xn)

. (104)

In the last inequality, we have applied Jensen’s inequality due to the convexity of the function
log

∫
exp(·)p(w) dw. Taking expectation with respect to

∏n+1
i=1 p(xi |w∗) in both sides of the

above inequality yields the inequality (81).



Mach Learn (2012) 86:273–293 293

References

Aoyagi, M., & Watanabe, S. (2005). Stochastic complexities of reduced rank regression in Bayesian estima-
tion. Neural Networks, 18, 924–933.

Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In Un-
certainty in artificial intelligence (pp. 21–30).

Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J. (2005). Clustering with Bregman divergences. Journal
of Machine Learning Research, 6, 1705–1749.

Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. Ph.D. thesis, University Col-
lege London.

Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer.
Hosino, T., Watanabe, K., & Watanabe, S. (2005). Stochastic complexity of variational Bayesian hidden

Markov models. In Proc. of IEEE international joint conference on neural networks (pp. 1114–1119).
Jaakkola, T., & Jordan, M. (2000). Bayesian parameter estimation via variational methods. Statistics and

Computing, 10, 25–37.
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods

for graphical models. Machine Learning, 37, 183–233.
Nakajima, S., & Sugiyama, M. (2010). Implicit regularization in variational Bayesian matrix factorization. In

Proc. of the 27th international conference on machine learning.
Nakajima, S., & Watanabe, S. (2007). Variational Bayes solution of linear neural networks and its general-

ization performance. Neural Computation, 19, 1112–1153.
Rusakov, D., & Geiger, D. (2005). Asymptotic model selection for naive Bayesian networks. Journal of

Machine Learning Research, 6(1), 1–35.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.
Seeger, M. (2008). Bayesian inference and optimal design for the sparse linear model. Journal of Machine

Learning Research, 9, 759–813.
Seeger, M. (2009). Sparse linear models: variational approximate inference and Bayesian experimental de-

sign. Journal of Physics. Conference Series, 197, 012001.
Watanabe, S. (2009). Algebraic geometry and statistical learning theory. Cambridge: Cambridge University

Press.
Watanabe, K. (2010). An alternative view of variational Bayes and minimum variational stochastic complex-

ity. In Proc. of 3rd workshop on information theoretic methods in science and engineering (WITMSE-
10). Tampere International Center for Signal Processing.

Watanabe, K., & Watanabe, S. (2006). Stochastic complexities of Gaussian mixtures in variational Bayesian
approximation. Journal of Machine Learning Research, 7, 625–644.

Watanabe, K., & Watanabe, S. (2007). Stochastic complexities of general mixture models in variational
Bayesian learning. Neural Networks, 20, 210–219.

Watanabe, K., Shiga, M., & Watanabe, S. (2009). Upper bound for variational free energy of Bayesian net-
works. Machine Learning, 75, 199–215.

Watanabe, K., Okada, M., & Ikeda, K. (2011). Divergence measures and a general framework for local vari-
ational approximation. Neural Networks. doi:10.1016/j.neunet.2011.06.004.

Yamazaki, K., & Watanabe, S. (2003a). Singularities in mixture models and upper bounds of stochastic com-
plexity. Neural Networks, 16, 1029–1038.

Yamazaki, K., & Watanabe, S. (2003b). Stochastic complexity of Bayesian networks. In Uncertainty in arti-
ficial intelligence (pp. 592–599).

Yamazaki, K., & Watanabe, S. (2005). Algebraic geometry and stochastic complexity of hidden Markov
models. Neurocomputing, 69, 62–84.

Yamazaki, K., Aoyagi, M., & Watanabe, S. (2010). Asymptotic analysis of Bayesian generalization error with
Newton diagram. Neural Networks, 23, 35–43.

http://dx.doi.org/10.1016/j.neunet.2011.06.004

	An alternative view of variational Bayes and asymptotic approximations of free energy
	Abstract
	Introduction
	Bayesian learning
	Approximation methods
	Variational Bayes for latent variable models
	Local variational approximation

	An alternative view of variational Bayes
	Minimum variational free energy
	Example: Gaussian mixture model
	Variational Bayes for GMM
	Asymptotic analysis of minimum variational free energy
	Derivation of the upper bound

	Variational free energy and generalization error
	Relationship between variational free energy and generalization error
	Numerical experiment

	Discussion
	Extension to other Bregman divergences
	Relation to previous works
	Asymptotic analysis of free energy bounds
	Accuracy of approximation
	Average generalization error


	Conclusion
	Acknowledgements
	Appendix A: Derivation of (23)
	Appendix B: Proof of the inequality (38)
	Appendix C: Proof of the inequality (81)
	References


