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Abstract Averaged n-Dependence Estimators (AnDE) is an approach to probabilistic clas-
sification learning that learns by extrapolation from marginal to full-multivariate probability
distributions. It utilizes a single parameter that transforms the approach between a low-
variance high-bias learner (Naive Bayes) and a high-variance low-bias learner with Bayes
optimal asymptotic error. It extends the underlying strategy of Averaged One-Dependence
Estimators (AODE), which relaxes the Naive Bayes independence assumption while re-
taining many of Naive Bayes’ desirable computational and theoretical properties. AnDE
further relaxes the independence assumption by generalizing AODE to higher-levels of de-
pendence. Extensive experimental evaluation shows that the bias-variance trade-off for Av-
eraged 2-Dependence Estimators results in strong predictive accuracy over a wide range of
data sets. It has training time linear with respect to the number of examples, learns in a single
pass through the training data, supports incremental learning, handles directly missing val-
ues, and is robust in the face of noise. Beyond the practical utility of its lower-dimensional
variants, AnDE is of interest in that it demonstrates that it is possible to create low-bias
high-variance generative learners and suggests strategies for developing even more power-
ful classifiers.
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1 Introduction

This paper presents a family of learning algorithms that utilize a predefined function to
extrapolate from observed marginal distributions to the full multivariate distribution of in-
terest. This stands in contrast to the majority of learning algorithms that instead seek to fit
a model directly to the observed multivariate probability distribution. Whereas learning is
sometimes cast as a problem of searching through a space of hypotheses to find one that best
fits the training data (Mitchell 1982), this new approach does not employ search and does
not perform model selection.

The members of this new family of algorithms have a unique combination of features
that is well suited to many applications. We discuss these features in more detail below.
Notable amongst them are training complexity linear with respect to the number of training
examples; single pass learning; direct capacity for incremental learning; and accuracy that
is competitive with the state-of-the-art. They are of further theoretical interest because they
demonstrate that it is possible to create low bias generative learners.

The family contains algorithms that range from low variance coupled with high bias
through to high variance coupled with low bias. Successive members of the family will be
best suited to differing quantities of data, starting with low variance for small data, with
successively lower bias but higher variance suiting ever increasing data quantities (Brain
and Webb 2002). The asymptotic error of the lowest bias variant is Bayes optimal.

One member of this family of algorithms, naive Bayes (NB), is already well known.
A second member, Averaged One-Dependence Estimators (AODE) (Webb et al. 2005), has
enjoyed considerable popularity since its introduction in 2005 (Nikora 2005; Camporelli
2006; Flikka et al. 2006; Orhan and Altan 2006; Lasko et al. 2006; Hunt 2006; Ferrari and
Aitken 2006; Birzele and Kramer 2006; Kunchevaa et al. 2007; Lau et al. 2007; Masegosa et
al. 2007; Wang et al. 2007; Garcia et al. 2008; Tian et al. 2008; Kurz et al. 2009; Leon et al.
2009; Shahri and Jamil 2009; Simpson et al. 2009; Affendey et al. 2010; García-Jiménez et
al. 2010; Hopfgartner et al. 2010; Liew et al. 2010). The work presented in this paper arises
from the realization that NB and AODE are but two instances of a family of algorithms,
which we call AnDE.

In Sect. 2 we explain the underlying learning strategy, and define the AnDE family of
algorithms. The AnDE family of algorithms build upon the method pioneered by AODE
(Webb et al. 2005). In Sect. 3 we discuss how the AnDE algorithms relate to Feating (Ting
et al. 2011), a generic approach to ensembling that also builds upon techniques pioneered
by AODE. In Sect. 4 we present an extensive evaluation of the AnDE family of algorithms,
comparing their performance to relevant Bayesian techniques, to Feating and to the state-of-
the-art Random Forests classifier. Section 5 presents conclusions and directions for future
research.

2 The AnDE family of algorithms

We wish to estimate from a training sample T of t classified objects the probability P(y |x)

that an example x = 〈x1, . . . , xa〉 belongs to class y, where xi is the value of the ith attribute
and y ∈ {c1, . . . , ck}. We use v̄ to denote the average number of values per attribute. These
and other elements of notation are listed in Table 1.

From the definition of conditional probability we have

P(y |x) = P(y,x)/P(x) (1)
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Table 1 Notation

P(e) The unconditioned probability of event e

P(e |w) The conditional probability of event e given event w

P̂(e) An estimate of P(e)

P̂NB(e) A naive Bayes estimate of P(e)

P̂AODE(e) An AODE estimate of P(e)

P̂AnDE(e) An AnDE estimate of P(e)

a The number of attributes

ci The ith class

k The number of classes

t The number of training examples in T
v̄ The average number of values per attribute

y A value from the set of all classes {c1, . . . , ck}
T A training sample of t classified objects

x = 〈x1, . . . , xa〉 An object

xi The value of the ith attribute of x = 〈x1, . . . , xa〉
x{i,j,...,q} The subset of attributes values from x with the specified indices. For example,

x{2,3,5} = 〈x2, x3, x5〉
(A

n

)
The set of all size-n subsets of {1, . . . , a}

δ(xα) A function that is 1 if T contains an object with the value xα , otherwise 0

As P(x) = ∑k

i=1 P(ci,x), we can always estimate (1) from estimates of P(y,x) for each class
using

P(y,x)/P(x) = P(y,x)
/ k∑

i=1

P(ci,x). (2)

In consequence, in the remainder of this paper we consider only the problem of estimating
P(y,x), thereby setting the work in a generative framework.

We define the dimensionality of a probability or probability estimate as the number of
attributes in the distribution to which the probability or estimate relates. Hence, the dimen-
sionality of P(y,x) is a + 1.

If the training data do not include sufficient examples of x to directly derive accurate
estimates of each P(ci,x), we must extrapolate these estimates from observations of lower-
dimensional probabilities in the data. All other things being equal, an estimate of a lower-
dimensional probability from a given finite training set will be more accurate than an esti-
mate of a higher-dimensional probability, and estimates of higher-dimensional probabilities
will vary more from training sample to training sample. Hence, models derived from lower-
dimensional probability estimates are likely to have lower variance than models derived
from higher-dimensional probability estimates. On the other hand, models derived from
higher-dimensional probabilities are likely to have lower bias, as less restrictive assump-
tions are made about the form of the probability distribution.

This is illustrated in Fig. 1, that shows a simple attribute-space with three ternary at-
tributes and a binary class. To classify a new object with attribute-values Age = Old,
Pulse = Slow and Temperature = High, one wishes to infer the class distribution in the
cell highlighted in Fig. 1(a), which is a four-dimensional probability distribution. If there
are insufficient examples to directly estimate that distribution, it might be extrapolated
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Fig. 1 Probabilities of varying dimensionality for an attribute-space with three ternary attributes and a binary
class

from any of a number of lower dimensional probability distributions. The prior class dis-
tribution P(y) is a one-dimensional probability distribution that can be estimated from the
entire attribute-space (Fig. 1(b)). The two-dimensional probabilities P(y ∧ Age = Old),
P(y ∧ Pulse = Slow), P(y ∧ Temperature = High) can be estimated from the regions
depicted in Fig. 1(c–e). The regions associated with the three-dimensional probabili-
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ties P(y ∧ Age = Old ∧ Pulse = Slow), P(y ∧ Age = Old ∧ Temperature = High) and
P(y ∧ Pulse = Slow ∧ Temperature = High) are illustrated in Fig. 1(f–h).

From the definition of conditional probability we have

P(y,x) = P(y)P(x |y). (3)

If the number of classes, k, is small, it should be possible to obtain a sufficiently accurate
estimate of P(y) from the sample frequencies. However, we still have the problem that x
may not occur sufficiently frequently in the training data and hence accurate estimates of
P(x |y) cannot be obtained directly from the sample frequencies.

The solution used by NB is to extrapolate to P̂(x |y) from each two-dimensional proba-
bility estimate P̂(xi |y) by assuming the attributes are independent given the class:

P(x |y) =
a∏

i=1

P(xi |y). (4)

Hence we classify using

P̂NB(y,x) = P̂(y)

a∏

i=1

P̂(xi |y). (5)

With reference to Fig. 1, NB estimates the distribution in (a) by extrapolation from
the distributions in (b) (that gives P̂(y)), (c) (that gives P̂(Age = old | y)), (d) (that gives
P̂(Pulse = slow | y)) and (e) (that gives P̂(Temperature = high | y)).

The independence assumption is a very strong assumption about the underlying probabil-
ity distribution. As a result, NB has very high bias. However, due to the low dimensionality
of the base probabilities from which the model is estimated, it has low variance.

2.1 AODE

Averaged One-Dependence Estimators (AODE) (Webb et al. 2005) extends to three-
dimensional probabilities NB’s search-free strategy of extrapolation from lower-dimensional
probabilities. It does so by averaging the estimates of all of a class of three-dimensional es-
timators.

A Super-Parent One-Dependence Estimator (SPODE) is a three-dimensional probability
estimator that relaxes the assumption of conditional independence by making all other at-
tributes independent given the class and one privileged attribute, the super-parent, xα . This
is a weaker conditional independence assumption than NB’s, as it is necessarily true if NB’s
is true and may also be true when NB’s is not.

It uses

P(y,x) = P(y, xα)P(x |y, xα) (6)

together with a conditional independence assumption

P(x |y, xα) =
a∏

i=1

P(xi |y, xα). (7)

As this is a weaker assumption than (4), the bias of the model should be lower than that
of NB. However, it is derived from higher-dimensional probability estimates and hence its
variance should be higher.
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AODE exploits the lower bias of SPODEs while addressing their higher variance by
averaging over all estimates of P(y,x) produced by using different super-parents. AODE
seeks to use

P̂(y,x) =
a∑

α=1

P̂(y, xα)P̂(x |y, xα)/a. (8)

However, in practice it is desirable to only use estimates of probabilities for which relevant
examples occur in the data. Hence, AODE actually uses

P̂AODE(y,x) =

⎧
⎪⎨

⎪⎩

a∑

α=1

δ(xα)P̂(y, xα)P̂(x |y, xα)
/ a∑

α=1

δ(xα) :
a∑

α=1

δ(xα) > 0

P̂NB(y,x) : otherwise

(9)

where δ(xα) is 1 if attribute-value xα is present in the data, otherwise 0. That is, it averages
over all superparents whose value occurs in the data, and defaults to NB if there are no such
superparents.

As AODE uses all of a predefined family of estimators, each of which extrapolates the
desired high-dimensional probability from lower-dimensional probabilities, it does not per-
form search.

In terms of the example attribute space, AODE extrapolates to Fig. 1(a) from the lower-
dimensional probabilities illustrated in Fig. 1(c–h) with (f) conditioned on (c) and (d), (g)
conditioned on (c) and (e), and (g) conditioned on (d) and (e).

AODE has demonstrated strong prediction accuracy (both zero-one loss and mean-
squared error) with relatively modest computational requirements for low dimensional
data (Webb et al. 2005). In consequence, it has enjoyed substantial uptake (Nikora 2005;
Camporelli 2006; Flikka et al. 2006; Orhan and Altan 2006; Lasko et al. 2006; Hunt 2006;
Ferrari and Aitken 2006; Birzele and Kramer 2006; Kunchevaa et al. 2007; Lau et al. 2007;
Masegosa et al. 2007; Wang et al. 2007; Garcia et al. 2008; Tian et al. 2008; Kurz et al. 2009;
Leon et al. 2009; Shahri and Jamil 2009; Simpson et al. 2009; Affendey et al. 2010;
García-Jiménez et al. 2010; Hopfgartner et al. 2010; Liew et al. 2010).

2.2 AnDE

In this paper we generalize to higher-dimensional probabilities the strategy of search-free
extrapolation from lower-dimensional probabilities.

For notational convenience we define

x{i,j,...,q} = 〈xi, xj , . . . , xq〉. (10)

For example, x{2,3,5} = 〈x2, x3, x5〉.
AnDE aims to use

P̂(y,x) =
∑

s∈(A
n )

P̂(y, xs)P̂(x |y, xs)
/(

a

n

)
, (11)

where
(A

n

)
indicates the set of all size-n subsets of {1, . . . , a}.
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However, in practice we also need to avoid using pairs of superparents whose values do
not occur in the data, and hence use

P̂AnDE(y,x) =

⎧
⎪⎨

⎪⎩

∑

s∈(A
n )

δ(xs)P̂(y, xs)P̂(x |y, xs)
/ ∑

s∈(A
n )

δ(xs) :
∑

s∈(A
n )

δ(xs) > 0

P̂A(n−1)DE(y,x) : otherwise.

(12)

Attributes are assumed independent given the superparents and the class. Hence,
P(x |y, xs) is estimated by

P̂(x |y, xs) =
a∏

i=1

P̂(xi |y, xs). (13)

Note that P(xi |y, xs) = 1 when i ∈ s. Whereas other probability estimates should be
smoothed or regularized, smoothed estimates should not be used in this case, and in practice
these values are not included in the calculation.

It should be recalled that A0DE is NB and A1DE is AODE.
In terms of the simple attribute-space depicted in Fig. 1, A2DE extrapolates to (a) from

(a) conditioned on each of (f), (g) and (h), and A3DE makes inferences directly from the
class distribution in (a).

When n = a,
(A

n

) = {{1, . . . a}}, so xs = x. Therefore, the ultimate expression of AnDE,
AaDE seeks to classify using

P̂AaDE(y,x) = P̂(y,x)P̂(x |y,x)
/(

a

a

)
(14)

where P̂(y,x) is estimated directly from T , cascading to ever lower dependence estimators
should the combination of attribute-values not be present in T . As P(x |y,x) and

(
a

a

)
both

equal 1, it classifies using only its direct estimate of P(y,x).

Observation 1 The asymptotic classification performance of AaDE equals that of the Bayes
optimal classifier.

Proof AaDE classifies using

argmax
y

(

P̂(y,x)
/ ∑

z∈{c1,...,ck}
P̂(z,x)

)

where each P̂(·) is directly estimated from the observed data and hence approaches P(·) as
the quantity of data approaches infinity. Hence, in the limit, AaDE approaches

argmax
y

(

P(y,x)
/ ∑

z∈{c1,...,ck}
P(z,x)

)

which is the Bayes optimal classifier. �

However, assuming there is sufficient data to compute the necessary probabilities, and
we wish to store the necessary probabilities rather than computing them as required for
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classification, the space complexity of AaDE is O(kv̄a). This is because joint frequencies
must be stored for every combination of attribute value and class value. Except in cases
of low dimensional data, even the computational requirements of A3DE defeat our Weka
implementation, and hence in this paper we present primarily results for A2DE with some
illustrative examples of A3DE.

AnDE forms an (n+2)-dimensional probability table containing the observed frequency
for each combination of n + 1 attribute values and the class labels. The space complexity

of the table is O(k
(

a

n+1

)
v̄n+1) and the time complexity of compiling it is O(t

(
a

n+1

)
), as

we need to update each entry for every combination of the n + 1 attribute-values for every

instance. The time complexity of classifying a single example is O(ka
(

a

n

)
) as we need to

consider each attribute for every qualified combination of n parent attributes within each
class.

We demonstrate that as n increases, averaged n-dependence estimators achieve lower bias
at the cost of higher variance. In consequence, the ideal dimensionality of dependence will
depend on the degree to which the underlying probability distribution fits the assumptions of
the n-dependence estimator, the quantity of data available to estimate the base probabilities,
and the computational demands of averaging over higher-dimensional estimators.

2.3 Weighted averaging

AODE and its generalization AnDE perform an unweighted average of the component n-
dependence estimators. It has been demonstrated that weighted averaging can improve upon
the accuracy of AODE’s estimates (Cerquides and Mántaras 2005; Jiang and Zhang 2006;
Yang et al. 2007). The empirical evidence suggests that the Bayesian model averaging of
Maximum a Posteriori Linear Mixture of Generative Distributions (MAPLMG) is the most
effective of current approaches (Cerquides and Mántaras 2005; Yang et al. 2007). It seems
likely that similar approaches will be equally effective with n-dependence estimators.

It is notable that the introduction of Bayesian model averaging to the AnDE framework
introduces both search and discriminative learning, as a search is performed for the set of
weights that optimize the posterior probabilities relative to the training data. Doing so can
be expected to reduce bias at the cost of introduction of variance.

One of the interesting questions that this paper investigates is the relative payoff for the
investment of additional computation in either performing Bayesian model averaging on
AnDE or increasing n and using A(n+1)DE. Both approaches can be expected to reduce
bias at the cost of an increase in both variance and computation. Which provides the more
effective trade-off?

2.4 Tree Augmented Naive Bayes

An n-dependence Bayesian classifier (n-DBC) (Sahami 1996) is a Bayesian network in
which each attribute depends upon the class and at most n other non-class attributes. An n-
DBC uses (n+2)-dimensional probabilities. Within this framework, NB is a 0-DBC, AODE
is a 1-DBC and the full Bayesian classifier is an (a+1)-DBC.

An alternative to the AnDE approach to relaxing NB’s independence assumption is to
use search to select a single model that adds selected interdependencies between attributes.
Tree Augmented Naive Bayes (TAN) (Friedman et al. 1997) is a popular approach of this
type. It uses conditional mutual information to select a best single parent for each attributes,
in addition to the class. Thus, it is a 1-DBC.
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It is interesting to consider how search for a single Bayesian classifier model compares
with averaging over a class of Bayesian classifier models of the same level of dependence
or of a higher level of dependence. This paper also investigates this issue.

3 Relationship to Feating

Feating (Ting et al. 2011) is a generic ensemble learning technique that also builds upon
the ensembling strategy of AODE. Like AnDE, Feating operates by building a local model
for each combination of n attribute values. To classify a new instance, Feating applies all
applicable local models and aggregates the results by performing a majority vote of the
resulting classifications. AnDE is similar to Feating NB. However, Feating aggregates the
predictions of its base learners by taking the mode of the class predictions. For probabilis-
tic classifiers, these class predictions correspond to the maximum posterior probability. In
contrast, AnDE uses the ensemble to estimate the joint probability, P(x, y) for each class,
and then calculates its estimate of the posterior probability from this ensembled estimate
of the joint probability. A generic ensembling technique, such as Feating, cannot work by
calculating an ensemble estimate of the joint probabilities because many classifiers do not
produce appropriate probability estimates.

Despite the close relationship to Feating, AnDE is worthy of study in its own right for
three reasons.

First, irrespective of which aggregation method is used, coupling the search-less ensem-
bling strategy embodied by Feating with search-less base learner NB creates a learner that
can deliver low bias using a predefined mapping from low dimensional probabilities to the
desired high dimensional probabilities without search or model selection. Hence, AnDE pro-
vides an example of an alternative to the traditional search-based learning paradigm which
is able to deliver low bias classifiers.

Second, as already noted, AnDE utilizes a different aggregation method to Feating. It is
interesting to examine the consequences of these differences. Cerquides and de Màntaras
(2005) found that weighted ensembles of joint probability estimates achieved lower error
than weighted ensembles of posterior probability estimates, so there is some evidence that
the outcomes may be substantially different.

Third, as there is overlap in the information required by each of its local models,
AnDE can use a single compiled matrix of joint frequencies, saving considerable space
relative to storing all of the local models independently. The space complexity of an

AnDE model is O(k
(

a

n+1

)
)v̄n+1 whereas the space complexity of Feating NB to level n

is O(k(a−n)
(

a

n

)
v̄n+1), which is (n + 1) times the space complexity of AnDE. Most base

models formed by Feating will not have this property, and hence AnDE is a notable special
case.

4 Evaluation

In this section, we evaluate the efficacy of AnDE. Due to relatively high time complexity
of higher-dimensional estimators, the highest level of AnDE with which we perform de-
tailed assessment is A2DE. The primary metrics we use are bias, variance, zero-one loss
and RMSE. To assess computational overheads we use total training and classification times
divided by the number of examples.
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We first study the performance of NB, AODE and A2DE to reveal how performance
varies as n increases within the AnDE framework. TAN and MAPLMG are studied to show
how the search-free generative AnDE strategy compares with, respectively, discriminative
search for a single Bayesian network classifier of the same dimensionality of dependence,
and discriminative search for a weighted classifier of the next lower dimensionality of depen-
dence. We also compare A2DE, that estimates the mean joint probability of the submodels,
with variants that calculate the mean posterior probability (PA2DE) and perform Feating
of NB by taking the mode of the class predictions of the submodels (FA2DE). Finally, to
explore how the classification performance of A2DE compares to state-of-the-art classifiers,
we also study Random Forests (Breiman 2001) with ten trees (RF10) and Random Forests
with 100 trees (RF100).

We compare these algorithms implemented in the Weka workbench (Witten and Frank
2005) on the 62 data sets described in Table 2 that have been used previously in related

Table 2 Data sets used for experiments

No. Domain Case Att Class

1 Abalone 4177 9 3

2 Adult 48842 15 2

3 Annealing 898 39 6

4 Audiology 226 70 24

5 Auto Imports 205 26 7

6 Balance Scale 625 5 3

7 Breast Cancer (Wisconsin) 699 10 2

8 Car Evaluation 1728 8 4

9 Census-Income (KDD) 299285 40 2

10 Connect-4 Opening 67557 43 3

11 Contact-lenses 24 5 3

12 Contraceptive Method Choice 1473 10 3

13 Covertype 581012 55 7

14 Credit Screening 690 16 2

15 Cylinder Bands 540 40 2

16 Dermatology 366 35 6

17 Echocardiogram 131 7 2

18 German 1000 21 2

19 Glass Identification 214 10 3

20 Haberman’s Survival 306 4 2

21 Heart Disease (Cleveland) 303 14 2

22 Hepatitis 155 20 2

23 Horse Colic 368 22 2

24 House Votes 84 435 17 2

25 Hungarian 294 14 2

26 Hypothyroid(Garavan) 3772 30 4

27 Ionosphere 351 35 2

28 Iris Classification 150 5 3

29 King-rook-vs-king-pawn 3196 37 2
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Table 2 (Continued)

No. Domain Case Att Class

30 Labor negotiations 57 17 2

31 LED 1000 7 10

32 Letter Recognition 20000 17 26

33 Liver Disorders (Bupa) 345 7 2

34 Lung Cancer 32 57 3

35 Lymphography 148 19 4

36 MAGIC Gamma Telescope 19020 11 2

37 Mushrooms 8124 23 2

38 Nettalk (Phoneme) 5438 8 52

39 New-Thyroid 215 6 3

40 Nursery 12960 9 5

41 Optical Digits 5620 49 10

42 Page Blocks 5473 11 5

43 Pen Digits 10992 17 10

44 Pima Indians Diabetes 768 9 2

45 Postoperative Patient 90 9 3

46 Primary Tumor 339 18 22

47 Promoter Gene Sequences 106 58 2

48 Segment 2310 20 7

49 Sick-euthyroid 3772 30 2

50 Sign 12546 9 3

51 Sonar Classification 208 61 2

52 SPAM E-mail 4601 58 2

53 Splice-junction Gene Sequences 3190 62 3

54 Syncon 600 61 6

55 Teaching Assistant Evaluation 151 6 3

56 Tic-Tac-Toe Endgame 958 10 2

57 Vehicle 846 19 4

58 Volcanoes 1520 4 4

59 Vowel 990 14 11

60 Waveform-5000 5000 41 3

61 Wine Recognition 178 14 3

62 Zoo 101 17 7

research (Webb et al. 2005; Langley and Sage 1994; Pazzani 1996; Domingos and Pazzani
1996; Zheng and Webb 2000; Yang et al. 2006). Each algorithm is tested on each data
set using the repeated cross-validation bias-variance estimation method (Webb 2000). In
order to maximize the variation in the training data from trial to trial, we use two-fold cross
validation. To minimize the variance in our measurements we report average values over 50
cross-validation trials.

We also form learning curves for NB, AODE, A2DE and A3DE on the Adult data set to
further investigate how increasing n within the AnDE framework affects performance as the
quantity of data increases.
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The current implementations of AODE and A2DE are limited to categorical data. A num-
ber of approaches have been developed for extending AODE to numeric data (Flores et al.
2009). These could be generalized to the AnDE framework, but how best to do so is a matter
for future research. Hence, we assess only the relative capacities of these algorithms with
respect to categorical data. To this end, all numeric attributes are discretized. When MDL
discretization (Fayyad and Irani 1993), a common discretization method for NB, is used
to discretize quantitative attributes within each cross-validation fold, many attributes have
only one value. In these experiments, we discretize quantitative attributes using three-bin
equal-frequency discretization prior to classification.

The base probabilities are estimated using m-estimation (Cestnik 1990) (m = 1), as it
often appears to lead to more accurate probabilities than Laplace estimation for NB and
AODE. An exception is that we always use 1.0 for P̂(xi | y, xs) when i ∈ s.

The above experiments were conducted on a single CPU single core virtual Linux ma-
chine running on a Dell PowerEdge 1950 with dual quad core Intel Xeon E5410 processors
running at 2333 MHz with 32GB of RAM.1

Average values for each combination of metric, algorithm and dataset are provided in the
Appendix. Summary results are provided in the text.

4.1 Varying n within AnDE

We first consider the relative performance of the three variants of AnDE. For each perfor-
mance measure, the number of data sets for which A2DE has lower, equal or higher out-
comes relative to AODE and NB are summarized into win/draw/loss records, and likewise
for AODE relative to NB. For each win/draw/loss record a binomial sign test is performed to
assess the probability of observing the given number of wins and losses if each were equally
likely. These results are presented in Table 3. As expected, we see that increasing n from
0 (NB) to 1 (AODE) to 2 (A2DE) consistently decreases bias at the cost of an increase in
variance. As we believe that different bias and variance profiles suit different data quantities
(Brain and Webb 2002), we believe that the zero-one loss and RMSE results tell us as much
about the composition of the data collection as they do about the algorithms. Specifically,
we contend that whether one algorithm or another will win on a given dataset is determined

Table 3 Win/draw/loss: AnDE, n = 0, 1 and 2, on all 62 data sets

A2DE vs AODE A2DE vs NB AODE vs NB

W/D/L p W/D/L p W/D/L p

Bias 47/0/15 <0.001 49/2/11 <0.001 48/0/14 <0.001

Variance 19/1/42 <0.001 15/0/47 <0.001 20/1/41 0.005

Zero-one loss 33/2/27 0.259 42/1/19 0.002 44/1/17 <0.001

RMSE 35/1/26 0.153 15/0/47 <0.001 49/1/12 <0.001

1Due to technical issues including memory leaks in the Weka implementation of Random Forests, it was not
possible to complete all 50 runs of 2-fold cross validation for RF10 on Covertype and RF100 on Covertype
and Census-Income (KDD). These experiments were instead completed on a Linux Cluster of Xeon 2.8 GHz
CPUs, an environment that does not allow reliable time measurements to be taken. For RF10 and RF100 on
Covertype, compute times were estimated by averaging over those runs that could be completed on the virtual
machine. No runs could be completed on the virtual machine for RF100 on Census-Income (KDD) and so no
time results are reported.
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Fig. 2 Zero-one loss and RMSE of NB and AnDE on Adult dataset, as function of training set size

by how well the two algorithms’ learning biases match the underlying distribution, by their
variance, and by the quantity of data. A low variance algorithm will usually have an ad-
vantage for small data while a low bias algorithm will usually be advantaged by large data.
For our datasets, both AODE and A2DE reduce both zero-one loss and RMSE significantly
often relative to NB. While A2DE obtains lower zero-one loss and RMSE than AODE more
often than the reverse, this difference is not found to be significant.

To investigate in greater detail our expectation that algorithms with lower variance will
be advantaged for small data and those with lower bias for larger data, we form learning
curves for Adult, replicating the method of Webb et al. (2005). 1000 objects are selected at
random as a test set and training sets were sampled from the remaining objects. The training
set size starts from 23 and then doubles up to 47104, this being a progression that ends
with as close to all the available data as possible once the 1000 test cases are removed. This
process is repeated 50 times and each algorithm is evaluated on the resulting training-test
set pairs. The learning curves of zero-one loss and RMSE for NB, AODE, A2DE and A3DE
are presented in Fig. 2.

The plots for zero-one loss clearly show the predicted trade-off for increasing n. At the
smallest data size, where low variance is more important than low bias, zero-one loss is
minimized by n = 0 (NB) and increases as n increases. At the largest data size, where low
bias is most important, this dimensionality is reversed. A similar trend is shown with respect
to RMSE although the algorithms have not yet achieved their asymptotic rates at the largest
data sizes available.

It is interesting to see how the relative bias/variance trade-offs of increasing n play off
when NB’s attribute independence assumption holds. The LED dataset has a specific con-
figuration of attribute-values for each class, making the attributes conditionally independent
given the class. Each attribute has 10% noise added. AODE and A2DE overfit this noise,
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Table 4 Win/draw/loss: AnDE,
n = 0, 1 and 2, on the ten largest
data sets

A2DE vs AODE A2DE vs NB AODE vs NB

W/D/L p W/D/L p W/D/L p

Zero-one loss 10/0/0 0.001 10/0/0 0.001 10/0/0 0.001

RMSE 10/0/0 0.001 10/0/0 0.001 10/0/0 0.001

Fig. 3 Average per-example training and classification times for NB, AODE and A2DE

leading to increased error. NB’s zero-one loss is 0.2627, AODE’s is 0.2639 and A2DE’s
is 0.2667. These outcomes are with training set sizes of 500. Using the UCI data gener-
ator, we generated 10 LED datasets comprising 2,000 and 10 comprising 4,000 instances
and repeated the cross-validation experiments thereon. For the datasets of 2,000, the train-
ing set size is 1,000 and the mean and standard deviation of the respective zero-one loss is
NB: 0.2603±0.0099, AODE: 0.2601±0.0101 and A2DE 0.2603±0.0102. For the datasets
of 4,000, the training set size is 2,000 and the mean and standard deviation of the respective
zero-one loss is NB: 0.2597±0.0049, AODE: 0.2598±0.0051 and A2DE: 0.2603±0.0053.
It seems clear that increasing training set sizes rapidly reduces the error advantage that NB
enjoys in this context where its conditional attribute assumption is satisfied.

As final confirmation that higher n is best suited to larger data, on the ten largest datasets,
those with more than 8,000 examples, A2DE always achieves lower zero-one loss and
RMSE than AODE (p = 0.001), see Table 4.

As expected, both training and classification compute times increase as n increases. Fig-
ure 3 shows the grand averages for the per-example training and classification times for each
algorithm.

4.2 Comparison with TAN

We here explore the relative benefits of discriminative search for a single best Bayesian
classifier model against AnDE’s search-free approach of averaging over a class of Bayesian
classifier models. To this end we compare AODE and A2DE with TAN. Table 5 presents
win/draw/loss results comparing AODE and A2DE to TAN.

Overall, TAN has an advantage in bias but a disadvantage in variance relative to AODE.
When using search to select a single 1-DBC model is compared to averaging over a class
of 2-DBCs, the bias advantage is lost but the variance disadvantage remains. The relative
bias-variance tradeoffs of AODE and TAN result in a general error advantage to AODE.
Comparing TAN to A2DE, TAN no longer has a bias advantage, and at this higher value of
n, the error advantage of the AnDE classifier becomes even more consistent.

Figure 4 shows the relative training and classification times for AODE, A2DE and TAN.
It is clear that A2DE has a considerably greater computational requirements both for training
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Table 5 Win/draw/loss: AnDE,
n = 1 and 2 vs TAN on all 62
data sets

A2DE vs TAN AODE vs TAN

W/D/L p W/D/L p

Bias 34/0/28 0.263 20/1/41 0.005

Variance 48/0/14 <0.001 52/1/9 <0.001

Zero-one loss 48/0/14 <0.001 43/1/18 0.001

RMSE 43/1/18 0.001 40/1/21 0.010

Fig. 4 Average per-example training and classification times for AODE, A2DE and TAN. (Two values are
shown for each algorithm, the average across all datasets and the average across the ten lowest-dimensional
(4–7 attributes) datasets)

Table 6 Win/draw/loss: AnDE,
n = 1 and 2 vs MAPLMG on all
62 data sets

A2DE vs MAPLMG AODE vs MAPLMG

W/D/L p W/D/L p

Bias 40/0/22 0.015 17/4/41 0.001

Variance 19/1/42 0.002 36/5/21 0.031

Zero-one loss 30/1/31 0.500 22/4/36 0.043

RMSE 34/1/28 0.263 19/0/39 0.006

and classification. However, this disadvantage disappears when we consider only the ten
lowest dimensional datasets, also illustrated in this figure.

4.3 Comparison with MAPLMG

As discussed above, we wish to investigate the relative payoffs obtained by investing addi-
tional computation to that required by AODE by respectively using discriminative learning
of weights or, alternatively, increasing the dimensionality of the probabilities from which
the posterior probability is extrapolated. To this end, Table 6 presents win/draw/loss results
comparing A2DE and AODE to MAPLMG.

As established by previous research (Cerquides and Mántaras 2005), MAPLMG’s ap-
proach of using discriminative learning of weights for the AODE linear combination signif-
icantly reduces bias relative to AODE at the cost of an increase in variance. However, rel-
ative to this discriminative approach to extrapolating from three-dimensional probabilities,
A2DE’s search-free approach to extrapolating from four-dimensional probabilities further
reduces bias at the cost of an increase in variance. While the resulting difference in error is
not found to be significant across the full suite of 62 datasets, when the ten largest datasets
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Table 7 Win/draw/loss: AnDE,
n = 1 and 2 vs MAPLMG on the
ten largest data sets

A2DE vs MAPLMG AODE vs MAPLMG

W/D/L p W/D/L p

Zero-one loss 10/0/0 0.001 1/1/8 0.039

RMSE 10/0/0 0.001 0/0/10 0.001

Fig. 5 Average per-example training and classification times for AODE, A2DE and MAPLMG. (In addition
to the times for all datasets, training times are shown for the ten largest datasets)

are considered, the lower bias algorithm, A2DE, consistently achieves lower zero-one loss
and RMSE than MAPLMG (p = 0.001) (see Table 7).

MAPLMG’s Bayesian model averaging comes at considerable cost in training time.
Figure 5 shows the average per-example training and test times for AODE, A2DE and
MAPLMG. Note that MAPLMG is implemented as an external function to Weka, and hence
is likely to be inherently more efficient. The training and test times include a substantial
fixed overhead, and hence the per-instance training times should decrease if the complexity
is linear with respect to the training set size. However, MAPLMG’s super-linear training
complexity minimizes this effect, demonstrating that it will not be feasible to apply it to
very large data.

4.4 Comparison with Feating

To understand how the AnDE approach performs relative to Feating NB, we compare A2DE,
that calculates the mean of the joint probabilities, with a variant PA2DE, that calculates the
mean of the posterior probabilities, and another variant FA2DE, that calculates the mode of
the classes predicted by the submodels. As described in Sect. 3 and the start of Sect. 4, these
embody the two main differences between AnDE and Feating NB.

Table 8 shows the win/draw/loss results comparing A2DE to these variants. It is clear that
both variants have higher bias but lower variance than A2DE. It is straightforward to under-
stand why Feating would have lower variance. The mode is a much more stable estimator of
central tendency than the mean, which can be greatly influenced by a single outlier. It is less
obvious why lower variance should result from averaging over the estimates of the posterior
rather than of the joint probability. Nonetheless, the result is consistent with Cerquides and
de Màntaras’ (2005) finding that a linear combination of joint probability estimates resulted
in higher accuracy than a linear combination of posterior probability estimates. This remains
an interesting unexplained phenomena worthy of further investigation.

Over the full range of datasets these differences in bias and variance profiles do not
result in statistically significant differences on either measure of error, except with respect
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Table 8 Win/draw/loss: A2DE
vs PA2DE and FA2DE A2DE vs PA2DE A2DE vs FA2DE

W/D/L p W/D/L p

Bias 41/2/19 <0.001 46/1/15 <0.001

Variance 21/3/38 0.018 22/1/39 0.020

Zero-one loss 33/1/28 0.304 36/2/24 0.078

RMSE 30/0/32 0.449 49/0/13 <0.001

Table 9 Win/draw/loss: A2DE
vs PA2DE and FA2DE on the ten
largest datasets

A2DE vs PA2DE A2DE vs FA2DE

W/D/L p W/D/L p

Zero-one loss 8/0/2 0.109 9/0/1 0.021

RMSE 8/0/2 0.109 8/1/1 0.039

to RMSE for Feating. This reflects the manner in which Feating selects a single class rather
than producing a distribution of class probabilities.

Due to its lower bias, A2DE achieves lower zero-one loss than PA2DE on eight and
FA2DE on nine of the ten largest datasets. This outcome is statistically significant at the
0.05 level with respect to FA2DE, but misses out on being statistically significant with re-
spect to PA2DE. A2DE achieves lower RMSE than both the alternatives on eight of the ten
largest datasets, and draws on one of the remaining datasets with respect to FA2DE, again
attaining statistical significance at the 0.05 level relative to FA2DE but failing to do so rela-
tive to PA2DE. Hence, the evidence is suggestive that for large data the AnDE approach is
preferable to the selection of the mode, and calculating the mean of the joint probabilities is
preferable to calculation the mean of the posteriors.

4.5 Comparison with the state-of-the-art

In addition to the relative performance of these related algorithms, it is useful to understand
how the performance compares to well known examples of the state-of-the-art. We choose
Random Forests (Breiman 2001) as the comparator algorithm because it is relatively un-
parameterized and hence readily produces clearly understood performance outcomes. We
use Random Forests with both the default setting of 10 trees (RF10) and with 100 trees
(RF100), allowing us to explore the relative computational/accuracy trade-offs. Table 10
shows the win/draw/loss results for each of A2DE, AODE and NB against RF10 and RF100
for each of zero-one loss, Bias, Variance and RMSE.

All three levels of AnDE have higher bias but lower variance than both levels of Ran-
dom Forests. This trade-off delivers lower error significantly more often than not for both
A2DE and AODE relative to RF10. Both deliver lower error more often than RF100, but
not significantly so. Notably, relative to both RF10 and RF100, NB achieves higher error
almost as often as lower. This illustrates the weaknesses of such ‘bake-offs’ with respect to
error. As we have argued above, low variance algorithms such as NB will be advantaged by
the relatively small data sets used in this study. To assess this effect, we repeated the error
comparisons using only the ten largest datasets, those containing more than 8000 examples.
The results are shown in Table 11. For these larger datasets, both R10 and RF100 achieve
lower error more often than all three of A2DE, AODE and NB, significantly so with respect
to AODE and NB and when comparing RF100 to A2DE on zero-one loss. This suggests that
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Table 10 Win/draw/loss:
AnDE, n = 0, 1 and 2, vs RF10
and RF100 on all 62 data sets

AnDE vs RF10 AnDE vs RF100

W/D/L p W/D/L p

A
2D

E

Bias 18/1/43 0.001 22/2/38 0.026

Variance 57/0/5 <0.001 45/1/16 <0.001

Zero-one loss 42/0/20 0.004 36/3/23 0.059

RMSE 40/0/22 0.015 35/0/27 0.187

A
O

D
E

Bias 16/0/46 <0.001 20/0/42 0.004

Variance 57/1/4 <0.001 47/0/15 <0.001

Zero-one loss 41/0/21 0.008 33/1/28 0.304

RMSE 39/0/23 0.028 34/0/28 0.263
N

B

Bias 14/1/47 <0.001 16/1/45 <0.001

Variance 56/0/6 <0.001 51/0/11 <0.001

Zero-one loss 33/0/29 0.352 30/1/31 0.500

RMSE 30/0/32 0.450 28/0/34 0.263

Table 11 Win/draw/loss:
AnDE, n = 0, 1 and 2, vs RF10
and RF100 on the ten largest data
sets

AnDE vs RF10 AnDE vs RF100

W/D/L p W/D/L p

Zero-one loss 2/0/8 0.055 1/1/8 0.020

RMSE 3/0/7 0.172 2/0/8 0.055A
2D

E

Zero-one loss 0/0/10 0.001 0/0/10 0.001

RMSE 1/0/9 0.011 0/0/10 0.001A
O

D
E

Zero-one loss 0/0/10 0.001 0/0/10 0.001

RMSE 0/0/10 0.001 0/0/10 0.001N
B

for very large training data, in the absence of any prior knowledge of the nature of the multi-
variate probability distribution that the data embodies, Random Forests are likely to achieve
lower error than an AnDE classifier, although the data quantity at which this is achieved will
be ever greater as the dimensionality of AnDE is increased.

However, Random Forests’ error advantage for large data comes at a cost in training time.
Figure 6 shows the training and classification times for AODE, A2DE, RF10 and RF100. It
is apparent that, overall, RF100 has very high training times. While A2DE’s training time
does approach RF100’s for high dimensional data, for small data and low dimensional data
its training times are competitive with RF10. On the other hand, A2DE requires substantially
more classification time on average than Random Forests. This requirement grows greatly
with high-dimensional data. A2DE will not be feasible for classification of large numbers
of high-dimensional objects. In contrast, its classification time is very competitive on low-
dimensional data.

5 Conclusions and directions for future research

AnDE provides an attractive framework for developing machine learning techniques. A sin-
gle parameter n controls a bias-variance trade-off such that n = a provides a classifier whose
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Fig. 6 Average per-example training and classification times for AODE, A2DE, RF10 and RF100. (Training
times are presented for all, the ten largest (excluding Census Income, for which RF100 could not be executed
on a machine for which reliable times could be obtained, thus 5,620–581,012 examples), the ten lowest
dimensional (5–7 attributes) and the ten highest dimensional (43–70 attributes) datasets. Classification times
are presented for all, the ten lowest dimensional and the ten highest dimensional datasets)

asymptotic error is the Bayes optimal error rate. However, for high-dimensional data only
very low-dimensional forms of AnDE are feasible. Nonetheless, we have established that
higher-dimensional variants are likely to deliver greater accuracy than lower-dimensional
alternatives when the number of training examples is high. In consequence, a promising
direction for future research is to develop computationally efficient techniques for approxi-
mating AnDE for high values of n.

A further unresolved issue is how to select an appropriate value of n for any specific
dataset T . Are there more computationally efficient approaches than a simple wrapper-based
comparison of each possible value?

A number of techniques have been developed for extending AODE to handle numeric
data (Flores et al. 2009). There is a need to extend this work to the more general AnDE
framework.

We have presented a strategy for learning without fitting the full multivariate probability
distribution. We do not argue, however, that fitting the full multivariate probability distri-
bution should necessarily be avoided. Indeed, it has been demonstrated that it is possible
to reduce the error of AODE both by appropriate feature selection (Zheng and Webb 2006,
2007; Yang et al. 2007) and weighting of the submodels (Cerquides and Mántaras 2005;
Jiang and Zhang 2006; Yang et al. 2007) in order to better fit the full multivariate proba-
bility distribution. Therefore, it is likely to be worthwhile to explore efficient methods for
each of these strategies for higher values of n. If fast classification is required, and time for
training is less constrained, approaches that use search to select a small number of submod-
els from an AnDE model are likely to be desirable. Where there is sufficient training time
available, search for appropriate submodel weights is also likely to be useful.

We have developed a generative learning algorithm that generalizes the principles that
underlie AODE to ever higher levels of dimensionality. It has the following desirable fea-
tures:

• both time and space complexity are linear with respect to the number of training examples;
• it learns in a single pass through the training data;
• it performs direct prediction of class probabilities;
• it has integrated handling of missing values;
• it is robust in the face of noise;
• other than the choice of which instantiation (choice of n) and choice of smoothing tech-

nique, the approach uses no tunable parameters;
• it does not perform model selection;
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• a simple mechanism controls the bias/variance trade-off;
• it supports incremental learning;
• learning and classification can readily utilize parallel computation; and
• there is a direct theoretical basis that provides optimal prediction except insofar as clearly

specified assumptions are violated.

A single parameter n provides control over a bias-variance trade-off, such that higher val-
ues of n are appropriate for greater numbers of training cases. AnDE demonstrates that it
is possible to develop competitive learners without using search. Of further interest, this
family of algorithms show that it is possible to develop low bias algorithms in a generative
framework. Finally, A2DE proves to be a computationally tractable version of AnDE that
delivers strong classification accuracy for large data without any parameter tuning.
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Appendix: Detailed results

Detailed results for Bias, Variance, zero-one Loss, RMSE, Training Time and Classification
Times are presented in Tables 8 to 13. The datasets are listed in ascending order on number
of instances.
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