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Abstract Longitudinal data refer to the situation where repeated observations are available
for each sampled object. Clustered data, where observations are nested in a hierarchical
structure within objects (without time necessarily being involved) represent a similar type
of situation. Methodologies that take this structure into account allow for the possibilities of
systematic differences between objects that are not related to attributes and autocorrelation
within objects across time periods. A standard methodology in the statistics literature for
this type of data is the mixed effects model, where these differences between objects are
represented by so-called “random effects” that are estimated from the data (population-level
relationships are termed “fixed effects,” together resulting in a mixed effects model). This
paper presents a methodology that combines the structure of mixed effects models for lon-
gitudinal and clustered data with the flexibility of tree-based estimation methods. We apply
the resulting estimation method, called the RE-EM tree, to pricing in online transactions,
showing that the RE-EM tree is less sensitive to parametric assumptions and provides im-
proved predictive power compared to linear models with random effects and regression trees
without random effects. We also apply it to a smaller data set examining accident fatalities,
and show that the RE-EM tree strongly outperforms a tree without random effects while
performing comparably to a linear model with random effects. We also perform extensive
simulation experiments to show that the estimator improves predictive performance rela-
tive to regression trees without random effects and is comparable or superior to using linear
models with random effects in more general situations.
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1 Introduction

Some response data are one dimensional: observations over time or across objects. However,
panel or longitudinal data, in which we observe many objects over multiple periods, offers
a particularly rich opportunity for understanding and prediction, as we observe the different
paths over time that a response variable might take across objects. Such data, often on a large
scale, are seen in many applications, including business. Good examples are the tracking of
transactions by individual customers over time and the tracking of purchases of individual
products over time; the latter forms the basis of analyses in Sects. 4 and 5. The analysis
of longitudinal data is especially rewarding with large amounts of data, as this allows the
fitting of complex or highly structured functional forms to the data. Clustered data, wherein
multiple observations can be viewed as being sampled within objects (for example, students
within classes, classes within schools, etc.), also reflect this type of hierarchical structure.
In this paper, we present a data mining approach that is specialized for longitudinal and
clustered data with a numerical response variable. This method combines the flexibility of a
data mining method with the specific nature of a longitudinal or clustered data set. In what
follows we will generically refer to data of this type as longitudinal data, but the discussion
applies equally well to other kinds of hierarchical structure.

Consider the following situation, which is based on one of the examples discussed in
Sect. 4. A set of software titles is offered for sale by third party sellers on an online web
site. The goal is to model or predict the price at which a software title sells (or, as in the
example in Sect. 4, the price premium, which is the difference between the sale price and the
average price in the market). Each title can have multiple sales from possibly different sellers
at possibly different prices. Each sale has a set of attributes associated with it, including
characteristics of the seller and market that could differ both between titles and between
different sales for a given title (that is, they might be time-varying).

There are two types of tasks that an analyst might be interested in in this context: model-
ing and prediction. The modeling task is at the population level; that is, trying to understand
the overall relationship between average prices or price premiums and attributes of the soft-
ware titles from, for example, an economic point of view (examining the ways the market
reacts to properties of the sellers, for example). The simplest solution to this problem would
presumably be to fit a linear regression treating each individual sale as an independent ob-
servation, with price as the response (dependent) variable and the different attributes as
(potential) independent variables. It is natural to suppose, however, that a more flexible rela-
tionship than a linear one could be supported by the data, particularly if the sample is large,
which suggests consideration of methods such as nonparametric regression, regression trees,
multivariate adaptive regression splines (MARS), model trees, neural networks, and so on.

Unfortunately, while any of these methods can be applied to these hypothetical software
title data in this naive way, doing so would violate a fundamental assumption all share—
that the observations (or, more precisely, the random errors relative to the expected response
associated with the observations) be statistically independent of each other. For repeated
sales data of this type (or more generally, repeated measurement (longitudinal) or clustered
data) this will not be the case. Knowing that the price is higher than expected (based on the
attributes) for one sale of a particular title, for example, provides information about prices
for other sales of that title, because of characteristics of the title that do not depend on the
attributes being used as predictors at the population level (that is, the errors within a title are
apparently correlated). In other words, prices might be systematically higher or lower for a
given title for reasons that are not part of the attributes used to predict prices at the population
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level. This could reflect a simple shift in price upwards or downwards on average for a given
title (perhaps for reasons unknown or unavailable to the analyst), or it could be a function of
other known properties of the particular sale, such as the type of software, the time of year
of the sale, the manufacturer’s suggested retail price of the software at the time of the sale,
and so on (these might not be part of the population-level model because they do not reflect
general market economics). Ignoring this induced correlation can result in overstatement of
the strength of the relationship between the dependent and independent variables, and can
result in the decision to choose models that are too complex. An additional possible source
of correlation is autocorrelation of prices over time within a title even after taking the title
effects into account (that is, knowing that a given title sold for more than expected could
imply that its next sale will also be at a price higher than expected); ignoring the presence
of this conditional autocorrelation can also affect inferential decisions.

An even more direct need for methods that account for the longitudinal structure of the
data is in prediction. It is clear that a prediction of a future sale price based on hypothesized
future attribute values for a title for which sales are already in the data set should take
into account evidence in those previous sales that the title sells for systematically higher
or lower prices than expected, something that is not possible using methods that treat each
sale as an independent observation. Similarly, prediction of a future sale price for a new
title (not in the original data set) for which information on past sales becomes available
should evaluate evidence for systematic effects at the title level using those past sales and
the already-fit longitudinal model, and then take those effects into account when predicting a
future sale price, something that is once again not possible for methods that do not account
for the longitudinal structure. A third possible prediction is at the population level: what
is the “typical” price for a given set of attribute values over all possible titles? Since this
prediction is not a function of an individual title, it is likely that this type of prediction
from a longitudinal model would be similar to that from a corresponding model that ignores
longitudinal structure, although the recognition of within-title structure should improve the
accuracy of predictions somewhat.

A generalization of the linear regression model designed to address these issues is termed
a linear mixed effects model. The goal of this paper is to generalize the linear mixed effects
model to tree-based models. We first formalize notation and terminology. We observe a
panel of objects i = 1, . . . , I at times t = 1, . . . , Ti (such objects are often called individ-
uals in the longitudinal data literature, as they often correspond to individual patients in a
medical trial; in the example above, these are the software titles). Throughout this paper,
we will refer to a member of the panel, i, as an object, and a single observation period for
an object, (i, t), as an observation. That is, one object is associated with multiple obser-
vations. For each observation, we observe a vector of attributes, xit = (xit1, . . . , xitK)′ (in
the example above the properties of the seller, for example), and a response, yit (the sale
price or price premium above). The attributes may be constant over time, constant across
objects, or varying across time and objects. To account for the differences between objects
across time periods, we include a known design matrix, Zit , which may vary each period
and depend on the attributes, and a vector of unknown time-constant, object-specific ef-
fects, bi . In the case where only the intercept varies across objects (in the example above,
the only systematic difference in prices between software titles is a simple shift upwards or
downwards on average), Zi is a matrix of ones and bi is the object-specific intercept, but
in the more general situation where differences in prices for a particular sale of a particular
title could depend on other attributes (such as time of year of the sale), the columns of Zit

would correspond to these attributes. This then implies a general effects model with additive
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errors:

yit = Zitbi + f (xit1, . . . , xitK) + εit (1)
⎛
⎜⎝

εi1
...

εiTi

⎞
⎟⎠ ∼ Normal(0,Ri) (2)

bi ∼ Normal(0,D) (3)

Throughout this paper, we assume that the errors, εit , are independent across objects and
are uncorrelated with the effects, bi . Note, however, that autocorrelation structure within
the errors for a particular object is allowed; to do this, we allow Ri to be a non-diagonal
matrix. If f is a known function that is linear in the parameters and the bi are taken as fixed
or potentially correlated with the attributes, then this is a linear fixed effects model. Under
the same assumptions about f , if the bi are assumed to be random and uncorrelated with
the attributes, then the model is a linear mixed effects model. Mixed effects models, when
appropriate, are more efficient than fixed effects models, because the number of parameters
estimated in a fixed effects model increases with the addition of more objects. This is espe-
cially important when Ti is small and I is large, as would often be the case in data mining
applications. Furthermore, fixed effects models with object-specific intercepts (by far the
most common kind) do not allow the inclusion of attributes that are always constant for
objects, such as gender (when objects are people) or product type (when objects are prod-
ucts), because of collinearity, a serious drawback since such demographic-type variables
are often of great interest to businesses and researchers. Finally, because the distribution
of fixed effects bi is not estimated, we have no basis for modeling the properties of the
object-specific effects in predictions for objects not in the sample. For these reasons we will
focus here on mixed effects models (that is, those that include random effects at the object
level).

There are several approaches to fitting models with random effects in the literature. The
two-stage approach, described by Harville (1977), yields estimates of the random effects, bi ,
instead of including them in the error terms as an alternative, the generalized least squares
estimation method, would. These estimated random effects can be useful for prediction for
new sales of objects already in the sample as described above, and are also crucial for the
construction of the proposed tree estimator, so they are estimated in the methodology dis-
cussed here. We focus on the EM algorithm for two-stage mixed effects models given by
Laird and Ware (1982). For more information on mixed effects models, including modified
estimation procedures and extensions, see Patterson and Thompson (1971), Harville (1977),
Laird and Ware (1982), and Verbeke and Molenberghs (2000).

Traditional mixed effects models, such as the linear mixed effects model (where f =
Xβ), assume a parametric form for f , which might be too restrictive an assumption. The
functional form of f is frequently unknown, and assuming a linear model may not be the
best option. Furthermore, K may be very large, so that including all of the attributes directly
may lead to overfitting and therefore poor predictions. In addition, linear models cannot
include variables with missing values as many data mining methods can. A variety of non-
parametric and data mining methods exist to estimate f in the case where bi is constant
across objects (that is, when random effects are unnecessary). We focus on regression trees,
as described by Breiman et al. (1984), using the implementation of regression trees in the
rpart package (Therneau and Atkinson 2010) of the statistical software package R (R De-
velopment Core Team 2009). Tree-based methods have been widely studied and applied in



Mach Learn (2012) 86:169–207 173

the statistics and data mining literature for 25 years, as discussed in Witten and Frank (2000,
Sect. 3.7), Hastie et al. (2001, Sect. 9.2) Liu and Bozdogan (2004), Berk (2008), and many
other references. An rpart regression tree is a binary tree, where each non-terminal node
is split into two nodes based on the values of a single attribute. To find the predicted value
for a response, one finds the correct terminal node based on the attributes and then takes the
mean of all the response values in that node. This method allows for interactions between
variables and can represent a variety of functions of the attributes. One could fit a regres-
sion tree to a longitudinal data set, ignoring the longitudinal data structure and assuming
that bi = 0 for all i (that is, when random effects do not affect predictive performance),
but as noted above, when such effects exist applying a nonparametric method designed for
cross-sectional data directly to longitudinal data can be misleading and inefficient. Instead,
we discuss a method that accounts for the additional longitudinal structure in the data.

We continue in Sect. 2 with a review of the existing literature on data mining methods
for longitudinal data. In Sect. 3, we present and motivate the estimation method. In Sect. 4,
we provide case studies of the analysis of Amazon third party transactions and of state-level
traffic fatalities. These case studies demonstrate that the tree incorporating random effects
can improve on both linear mixed effects models and ordinary regression trees in out-of-
sample predictions for new observations and new objects. In Sect. 5, we use simulated data
sets to explore the efficacy of the method, showing that these properties carry over to general
situations. Section 6 concludes with a discussion of potential future work.

2 Previous applications of trees to numerical longitudinal data

Segal (1992) and De’Ath (2002), apparently independently, proposed the first application of
regression trees to longitudinal data, in the case where Ti = T for all i. Both created trees
in which the response variable was the vector yi = (yi1, . . . , yiT ). At each node, a vector of
means, μ(g), is produced, where μt(g) is the estimated value for yit at node g. Note that
these trees cannot be used for the prediction of future periods for the same objects. That is,
if we observe yi1, . . . , yiT for each i, this method will not be able to predict yi,T +1, since the
means for period T + 1 must be constructed based on observations for that period. Notice
that this approach uses a single set of attributes for all of the observation periods, since all of
the elements of yi lie in a single node. This prevents prediction of any observation using the
values of time-varying attributes observed after the first period. This could easily lead to a
loss of information and therefore poorer predictions. Alternatively, all of the periods of time-
varying attributes could be used for predicting every observation; this would likely not make
sense in many situations, since that would allow for attribute values from future time periods
to be used in predicting response values from earlier time periods (for example, a model that
requires knowing what the market will look like in the future is of little use to a seller or
buyer who wishes to estimate an object’s price now, and would be difficult to justify from
an economic point of view). Given the central importance of predictive performance in data
mining applications, these two limitations are quite serious in many practical applications,
as we will see in Sect. 4. De’Ath’s version of the tree is available as the R package mvpart
(De’Ath 2006). Various authors, such as Larsen and Speckman (2004) and Hsiao and Shih
(2007), have proposed alternative versions of this estimation method.

Work by Galimberti and Montanari (2002) developed a way to create trees that include
both time-varying attributes and a longitudinal data structure. While their underlying model
is similar to ours, their implementation is much more complex. They first assumed that the
covariances of the errors and the random effects were estimated outside their procedure.
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They then modified the split function to account for the correlation structure. Because they
allowed for time-varying attributes, different observations for the same group could appear
in different nodes; this made the split function particularly complicated (the method pro-
posed here also allows different observations for the same group to appear in different nodes,
but in a much more straightforward manner). Their algorithm is not generally available in
software. Furthermore, they did not propose a way to handle observations with missing at-
tribute values. Finally, because the group-specific effects are never estimated, one cannot
predict future observations for objects already included in the sample, which is (as noted
above) a serious deficiency. This paper will present an algorithm that accomplishes their
goal in a more direct way, while also overcoming these weaknesses.

Other papers have also applied the tools of data mining to longitudinal data. Some fol-
lowed the approach of Segal (1992), applying his method to other types of responses. Zhang
(1998) considered the case of binary response variables; these are classification trees instead
of regression trees. Lee (2005, 2006) and Lee et al. (2005) used generalized estimating equa-
tions to fit trees for general types of response variables. Their trees were not the traditional
regression trees; instead, they estimated a parametric model using maximum likelihood at
each node and then split based on the residuals from estimation. These methods also depend
on a single set of attributes for all periods and cannot predict future observations for objects
in the sample. Abdolell et al. (2002) discussed the use of trees to find clusters based on a
single attribute and a longitudinal outcome variable. Ritschard et al. (2008) discussed data
mining applications in the somewhat-related topic of event histories (although in that con-
text the event responses are categorical rather than numerical). Ritschard and Oris (2005)
applied classification trees to such data, taking lagged response values as potential predic-
tors, but still not treating the response variable as inherently multidimensional. Other papers
have considered data mining methods other than trees for longitudinal data. Zhang (1997)
used adaptive splines to fit longitudinal data models, while Evgeniou et al. (2007) used ridge
regression to fit models of consumer heterogeneity. We do not pursue either of these methods
further.

3 The RE-EM tree estimation method

Consider again the general mixed effects model given in (1). Hajjem et al. (2008, 2011)
and Sela and Simonoff (2009) independently proposed an estimation method that uses a
tree structure to estimate f , but also incorporates object-specific random effects, bi , which
we discuss further here. In this method, the nodes may split based on any attribute, so that
different observations for the same object may be placed in different nodes. However, the
method ensures that the longitudinal structure in the errors is preserved.

3.1 Longitudinal tree estimation

If the random effects, bi , were known, (1) implies that we could fit a regression tree to
yit −Zitbi to estimate f . If the population-level effects, f , were known, then we could esti-
mate the random effects using a traditional mixed effects linear model with population-level
effects corresponding to the values f (xi). Estimation methods for such models are included
in most statistical packages. Since neither the random effects nor the fixed effects are known,
we alternate between estimating the regression tree, assuming that our estimates of the ran-
dom effects are correct, and estimating the random effects, assuming that the regression tree
is correct. This alternation between the estimation of different parameters is reminiscent of
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the EM algorithm, as used by Laird and Ware (1982); for this reason, we call the resulting
estimator a Random Effects/EM Tree, or RE-EM Tree. Notice that regression trees are not
fitted through traditional maximum likelihood methods; this means that this is not a true EM
algorithm, so that the usual properties of the EM algorithm do not necessarily apply. More
formally, the estimation method is given as follows:

Method Estimation of a RE-EM Tree

1. Initialize the estimated random effects, b̂i , to zero.
2. Iterate through the following steps until the estimated random effects, b̂i , converge (based

on change in the likelihood or restricted likelihood function being less than some toler-
ance value):
(a) Estimate a regression tree approximating f , based on the target variable, yit −Zit b̂i ,

and attributes, xit · = (xit1, . . . , xitK), for i = 1, . . . , I and t = 1, . . . , Ti . Use this re-
gression tree to create a set of indicator variables, I (xit ∈ gp), where gp ranges over
all of the terminal nodes in the tree.

(b) Fit the linear mixed effects model, yit = Zitbi + I (xit ∈ gp)μp + εit . Extract b̂i from
the estimated model.

3. Replace the predicted response at each terminal node of the tree with the estimated pop-
ulation level predicted response μ̂p from the linear mixed effects model fit in 2b.

The fitting of the tree in Step 2a can be achieved using any tree algorithm, based on any
tree growing and pruning rules that are desired, such as, for example, GUIDE (Loh 2002). In
all of the examples and simulations performed here, tree building is based on the R function
rpart, which is an implementation of the CART tree algorithm proposed in Breiman et
al. (1984). The tree is a binary recursive splitting algorithm, in which splitting is based on
maximizing the reduction in sum of squares for the node. Splitting continues as long as the
increase in the proportion of variability accounted for by the tree (termed the complexity
parameter, cp) is at least 0.001 and the number of observations in the node being considered
for splitting is at least 20. Once the initial tree is formed, it is pruned based on 10-fold
cross-validation. First, the tree with final split corresponding to the cp value with minimized
10-fold cross-validated error is obtained. Then, the tree with final split corresponding to the
largest cp value with 10-fold cross-validated error that is no more than one standard error
above the minimized value is determined; this is the final tree.

The linear model with random effects in Step 2b can be estimated using maximum likeli-
hood or using restricted maximum likelihood (REML). In most of the results we present, we
estimate the linear model with REML, because it yields unbiased estimates for the variance,
Ri . Simulation results show that using maximum likelihood instead of REML has a very
small effect on the resulting estimates. Basing the algorithm on a linear model with random
effects also allows us to account for autocorrelation of errors within objects using existing
estimation methods for linear models (by allowing for non-diagonal Ri in the model fitting),
if necessary. Many statistical packages contain code to estimate linear mixed effects models;
the lme function of the R nlme package (Pinheiro et al. 2009) is used here. It fits the model
using a combination of the ECME algorithm (Liu and Rubin 1994), a modification of the
EM algorithm designed to speed its convergence, and the Newton-Raphson algorithm.

A faster alternative that will also be explored here is to limit Step 2 above to one iteration.
That is, an initial tree is fit ignoring the longitudinal structure, a mixed effects model is fit
based on the resultant tree structure, and a final population-level tree is reported with the
same structure, but with predicted responses that reflect the estimated random effects. This
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one-step approach only requires one linear mixed effects model fit above the computational
cost of the original tree. If the fully iterated version is used, convergence is based on the
change in the (restricted) log-likelihood being small enough (less than 0.001 in all results
reported here).

A useful property of tree algorithms is that they typically include automatic procedures to
handle missing values in the attributes X; for example, rpart uses surrogate split (Breiman
et al. 1984). This results in the ability to produce estimated responses for objects with miss-
ing attribute values. This means that the RE-EM tree also can be fit when there are missing
values in the attributes, since the tree fitting in Step 2a proceeds using (for example) surro-
gate split, while the estimating of bi , Ri , and D in Step 2b does not use X (Laird and Ware
1982), and hence is unaffected by the missing attribute values.

3.2 Allowing for autocorrelation within individuals

A simple test for whether autocorrelation should be included in the linear mixed effects
model is to compare the predictive power of the model with and without autocorrelation. To
test for autocorrelation in a linear mixed effects model more formally, we can use a likeli-
hood ratio test. This test compares the log-likelihoods of the mixed effects fits in-sample with
and without autocorrelation, correcting for the additional degrees of freedom (and therefore
potential for overfitting) that the linear mixed effects model with autocorrelation uses. The
two models used in this likelihood ratio test must have the same attributes. Generalizing the
likelihood ratio test to RE-EM trees is not entirely straightforward because different trees
will imply linear models with different attributes whenever the tree structures differ. Since
the estimation method is iterative, the inclusion or exclusion of autocorrelation in the linear
model can affect the estimated tree after the first iteration, so that the final estimated tree
structures differ. Because of this, we conduct two likelihood ratio tests for autocorrelation:
one where the attributes correspond to the RE-EM tree where autocorrelation is not allowed
and one where the attributes correspond to the RE-EM tree where autocorrelation is allowed.
In the examples we consider in Sect. 4, the two tests lead to identical conclusions.

3.3 Out-of-sample prediction

Given a RE-EM tree, the associated random effects, and the estimated covariance matrices,
the out-of-sample predictions discussed earlier are straightforward. Suppose the tree is esti-
mated on data for objects i = 1, . . . ,N1 for periods t = 1, . . . , T1; for notational simplicity,
we are assuming that all objects have the same number of observations, though this is not
required. As was noted earlier, based on this training data set, we may be interested in three
types of prediction:

1. Predicting observations for new objects for whom there are no past observations of the
response: i > N1 (that is, a population-level prediction).

2. Predicting future observations for objects in the sample: t > T1 for 1 ≤ i ≤ N1.
3. Predicting future observations for new objects for which past observations are available:

i > N1 with the target observed for t = 1, . . . , T1 and predictions for t > T1.

For the first sort of prediction, we have no basis for estimating bi , so we set it to its expected
value of 0, yielding the value f̂ (xit1, . . . , xitK). In this case, we might expect that methods
that do not incorporate random effects would have comparable performance to those that
do, as long as the sample is large enough so that f (xit1, . . . , xitK) is well-estimated by
those methods. For the second type of prediction, we predict f (xit1, . . . , xitK) using the
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estimated tree and then add on Zi b̂i , which is known from the estimation process. In the
third case, we can use the observations in the first T1 periods to estimate b̂i based on the
fitted f̂ (xit1, . . . , xitK). Estimating the new random effect applies (3.2) of Laird and Ware
(1982), with Zi equal to the design matrix for the new object and Ri equal to the covariance
matrix for the object based on the estimated parameters from the original model. We then
proceed with prediction as when the random effects had already been estimated.

4 Applications to real data

4.1 Transactions data

In order to illustrate the use of the RE-EM tree, we now apply this method to two real-
world data sets. The first example refers to data on third-party sellers on Amazon Web
Services to predict the prices at which software titles are sold based on the characteristics of
the competing sellers. See Ghose et al. (2005) for background on this data set and its first
use. We will use the tree structure of the RE-EM tree to describe the factors that appear to
influence prices. We also use the data set to compare the predictive performance of the RE-
EM tree to that of alternative methods through two types of leave-one-out cross validation.

Our data consist of 9484 transactions for 250 distinct software titles; thus, there are 250
objects in the panel with a varying number of observations per object. (While there are
also a few sellers who are included more than once, our longitudinal structure is based
only on the products.) In this analysis, our target variable is the price premium that a seller
can command; this is the difference between the price at which the good is sold and the
average price of all of the competing goods in the marketplace. We also analyze the logged
relative price premium, which is the logarithm of the ratio of those two quantities. Attributes
include both the seller’s own reputation and the characteristics of its competitors. The seller’s
reputation is measured by the total number of comments and the number of positive and
negative comments received from buyers over different time periods. The length of time that
the seller has been in the marketplace is also an attribute. Other attributes include the number
of competitors, the quality of competing goods in the marketplace, the average reputation
of the competitors, and the average prices of the competing goods. These variables allow us
to see the effect of seller reputation and other characteristics on the prices that consumers
will pay, which may allow sellers to set prices in a way that will encourage customers to buy
from them.

We first fit a tree without random effects and a RE-EM tree to the data. The estimated
regression tree without random effects is shown in Fig. 1, while the RE-EM tree is shown
in Fig. 2. All trees presented here are plotted using the package rpart.plot (Milborrow
2011), with abbreviated variable names used to improve readability of the plot. The trees
split on a variety of variables, and the structures of the two trees are noticeably different.
For these data, a RE-EM tree that allows for autocorrelation, shown in Fig. 3, has very
similar structure to a RE-EM tree that does not allow for autocorrelation. The two tests for
autocorrelation lead to the same conclusion. The autocorrelation parameter is estimated to
be 0.185 and the model without autocorrelation is strongly rejected (p < 10−50) when we
use either tree to compute the mixed effects models. The one-iteration version of the RE-EM
tree without autocorrelation is given in Fig. 4; the structure of the tree is identical to that in
Fig. 1 (as it must be), but the estimated population-level price premiums are different, since
those in Fig. 4 take the title random effects into account.

For comparison, we fit linear models with and without random effects. Because some
of the attributes have missing values, we cannot directly fit linear models that include all
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of the possible attributes. Instead, we fit two versions of linear models: first, one that in-
cludes all of the attributes that appear in the RE-EM tree, since it happened that none of
the attributes chosen for the RE-EM tree had missing values, and second, based on all of
the independent variables after missing values are imputed. The variables with occasional
missing values correspond to the proportion of comments about the seller that are positive,
neutral, or negative, respectively, over time periods of the previous 30 days, 90 days, and one
year, respectively. Within each time period the three comment variables can be considered
a trinomial probability vector, so imputation proceeds by first fitting a multinomial logistic
regression to the complete data with the counts of the different types of comments as the re-
sponse, and the other attributes as the independent variables (Simonoff 2003, Chap. 10) and
then estimating those proportions when they are missing using the fitted model and available
independent variable values. The parameter estimates from the different linear models are
given in Table 1. Few variables are statistically significant in the simpler linear model with-
out random effects, while all of the variables are at least marginally statistically significant
when random effects are included. Two of the variables that are statistically significant in
the model without random effects, the average competitor price and the number of competi-
tors, are statistically significant with the opposite signs when random effects are included;
similar reversals can be seen in the models using imputed missing values. This underscores
the importance of including random effects in the estimation of parameters. The average
competitor price appears in the RE-EM tree several times; in one branch, lower competitor
prices are associated with higher premiums, while in the other branch lower prices are asso-
ciated with lower premiums. This ambiguous effect is impossible for a linear model without
interactions to pick up and may explain why the coefficient changed sign from the linear
model without random effects to the linear model with random effects.

We compare the trees and linear models using two different types of root mean squared
errors RMSE = [∑(yi − ŷi )

2/n]1/2; both are reported in Table 2, using leave-one-out cross-
validation to measure out-of-sample prediction performance. To measure the performance
when a random effect can be estimated, we exclude one transaction (observation) at a time,
using the tree to estimate a random effect corresponding to an observation based on the other
observations for that object. To measure the performance for new objects (where random ef-
fects are not used), we repeat the leave-one-out cross-validation by now excluding all of the
observations for a single software title at each replication. For each type of cross-validation,
we measure performance by the RMSE of prediction for the omitted observation(s). It can
be seen that when single transactions are excluded, the linear models not including random
effects have the largest RMSE, while the one-iteration RE-EM tree has the smallest RMSE.
The difference in RMSE for the one-iteration RE-EM tree versus the rpart tree (without
random effects) is of greater practical importance than might be supposed from the values
in the table, as the former method has smaller absolute predictive error than the latter for
65% of the cross-validated observations. When all transactions are excluded for one title
at a time, the linear models with random effects perform much worse. We believe that this
reflects the fact that a linear population-level functional form is not appropriate here (as is
apparent from the higher RMSE values for the linear models), which has hurt estimation of
the population-level f in the linear mixed model more than in the ordinary linear model
without random effects. When individual transactions are omitted the estimated random ef-
fect for that transaction’s title (based on the other transactions for that title) can help recover
to some extent from the poor population-level estimate of f , but when all transactions for
that title are omitted the prediction is only based on the more poorly-estimated population
level f . Again, the one-iteration RE-EM tree performs best, though its RMSE is not very
different from the RMSE of a regression tree without random effects (recall that this is to be
expected, since no estimated random effect is used for the “new” title).
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Table 1 Parameter estimates for the linear models for the price premium with and without random effects.
Standard errors are reported in parentheses

Variable Linear
model

Mixed
effects
model

Mixed
effects
model
with
autocorr.

Linear
model
(imputed)

Mixed
effects
model
(imputed)

Mixed
effects
model
with
autocorr.
(imputed)

(Intercept) 88.800** 501.756*** 330.62*** −134.475*** 228.226*** 151.753***

(34.895) (52.742) (44.60) (40.72) (56.730) (48.847)

Average competitor
price
(AvgCompPrice)

0.064*** −1.654*** −1.367*** 0.063*** −1.678*** −1.399***

(0.004) (0.031) (0.027) (0.004) (0.031) 0.027

Average condition of
competing goods
(AvgCompCondition)

−0.218 12.231* 14.760** −12.816*** 32.659*** 25.345***

(4.943) (7.323) (6.292) (4.922) (7.432) (6.474)

Average rating of
competitors
(AvgCompRating)

7.168 −22.043*** −17.078*** 14.131*** −27.951*** −19.389***

(4.764) (6.044) (4.985) (4.697) (5.955) (5.009)

Life of the seller
(SellerLife)

0.001 0.002** 0.001* 0.001 0.002** 0.001*

(0.001) (0.001) (0.0006) (0.001) (0.001) (0.001)

Number of competitors
(Competitors)

2.115*** −1.099*** −0.864** 2.216*** −0.653 −0.885**

(0.160) (0.418) (0.345) (0.159) (0.423) (0.357)

Lifetime positive
comments (PLIFE)

−1.659*** −1.615*** −0.661*** −1.874*** −2.490*** −0.929**

(0.099) (0.084) (0.084) (0.602) (0.472) (0.431)

Number of comments
in the last year
(COUNTYR)

−0.001 −0.002* −0.0015 0.002 −0.001 −0.003

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

Average lifetime of
competitors
(AveCompLife)

0.00006* 0.0002*** 0.0001**

(0.00003) (0.00006) (0.00005)

Hours item was posted
for sale (PostHours)

0.009 0.004 0.016***

(0.006) (0.005) (0.004)

Item condition
(SellerCond)

24.810*** 23.401*** 21.405***

(2.407) (2.070) (1.959)

Seller rating
(SellerRating)

9.325 10.615 12.231

(12.653) (9.777) (8.912)

30-Day positive
comments (PTHRTY)

0.880*** 0.926*** 0.504

(0.194) (0.149) (0.127)

90-Day positive
comments (PNINTY)

1.736*** 1.777*** 0.696***

(0.315) (0.242) (0.218)

365-Day positive
comments (PYEAR)

−1.586*** −1.512*** −1.200***

(0.508) (0.397) (0.350)

30-Day neutral
comments (NTHRTY)

−1.213*** −1.610*** −1.185***

(0.304) (0.244) (0.207)
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Table 1 (Continued)

Variable Linear
model

Mixed
effects
model

Mixed
effects
model
with
autocorr.

Linear
model
(imputed)

Mixed
effects
model
(imputed)

Mixed
effects
model
with
autocorr.
(imputed)

90-Day neutral
comments (NNINTY)

1.747*** 2.415*** 1.388***

(0.568) (0.436) (0.373)

365-Day neutral
comments (NYEAR)

0.728 0.290 −0.253

(0.997) (0.759) (0.679)

Lifetime neutral
comments (NLIFE)

0.330 −0.675 0.292

(0.972) (0.742) (0.686)

Number of comments
in the last 30 days
(COUNTTH)

0.003 0.013 0.009

(0.011) (0.008) (0.007)

Number of comments
in the last 90 days
(COUNTNY)

−0.007 −0.008* −0.001

(0.006) (0.005) (0.004)

*Significantly different from zero at the 10% level; **significantly different from zero at the 5% level;
***significantly different from zero at the 1% level

Table 2 RMSEs from cross-validation leaving out one observation or one software title at a time, using the
transactions data, using the price premium

Method Excluding observations Excluding titles

Linear model 95.88 96.92

Linear model with random effects 73.62 461.48

Linear model with random effects—AR(1) 74.75 387.18

Linear model (imputed) 94.28 96.00

Linear model with random effects (imputed) 73.27 465.38

Linear model with random effects—AR(1) (imputed) 74.09 393.50

Tree without random effects 54.42 87.34

RE-EM tree 55.96 90.03

RE-EM tree—AR(1) 55.13 89.44

RE-EM tree (1 iteration) 51.12 86.27

RE-EM tree—AR(1) (1 iteration) 51.19 85.39

Diagnostic plots for the RE-EM tree and linear model (not shown here, but available on-
line at http://www.stern.nyu.edu/~jsimonof/REEMtree) highlight some potential violations
of the mixed effects model assumptions, including possible heteroscedasticity and fat tails
in the residuals. Because of this, we consider an alternative functional form of the target
variable, the logged relative price premium, which is the logarithm of the sale price divided
by the average price of the competing goods (note that the presence of heteroscedasticity is
a potential issue for two reasons: first, the tree algorithm is based on an unweighted reduc-
tion in sum of squares, when a weighted one would be appropriate, and second, the linear

http://www.stern.nyu.edu/~jsimonof/REEMtree
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mixed effects fit is based on an assumption of constant variance in the errors). The fitted
trees without random effects, with random effects, with random effects and autocorrelation,
and without autocorrelation based on one iteration of the algorithm are plotted in Figs. 5, 6,
7, and 8, respectively. The likelihood ratio test for autocorrelation rejects the hypothesis of
no autocorrelation (p < 10−50).

As before, we fit linear models with and without random effects to these data, using
the attributes chosen by the RE-EM tree (as with the price premium, none of the chosen
attributes has missing values) and using all of the attributes after imputing missing values
(Table 3). Many of the attributes chosen by the RE-EM tree have coefficients that are not
significantly different from zero in the linear models.

Diagnostic plots (not shown) for the estimates for the logged relative price premium
show that taking the logarithm has reduced the heteroscedasticity somewhat, but that non-
normality and outliers remain. Plots of the residuals versus the fitted values for the RE-EM
tree and linear mixed effects model show a large negative outlier, but little evidence of
heteroscedasticity. Omitting the outlier and re-estimating has little effect on the estimates.

We again compute the RMSE for predictions using leave-one-out cross validation in
which we omit one observation at a time and then one title at a time. The results are given
in Table 4. Once again, the trees outperform the linear models, and the RE-EM trees out-
perform the rpart tree when omitting observations. All of the tree methods have very
similar RMSE when we exclude all the observations for the title (again, the closeness of
performance for this measure is not surprising). Thus, for these data, the benefits of using a
tree-based model occur for both population and object-level predictions, and accounting for
longitudinal structure is beneficial for predictions at the object level; combining both in the
RE-EM tree provides best performance overall.

4.2 Accident fatality data

In this section we describe the analysis of a smaller data set. The data are described and
discussed in Dee and Sela (2003), and refer to the highway fatality rate in states of the
U.S. from 1982–1999, and how they relate to changes in driving laws (65 or 75 mile per
hour speed limit, mandatory seat belt, blood alcohol limit) and state unemployment rate
(a proxy for business activity). The response variable is the logged traffic fatality rate per
100,000 population of all drivers, while predictors include the year, the state speed limit
for that year (consisting of the five categories 55 MPH, 65 MPH, 70 MPH, 75 MPH, or
no speed limit), the drinking age, the driving age, the presence in the state of a mandatory
seat belt law, the presence of a zero tolerance law for drivers under the age of 21 related to
consuming alcohol, the minimum blood alcohol level (BAC) at which it is illegal to drive
(0.10 or 0.08), the presence of an administrative license revocation law, whereby the state
licensing authority is allowed to suspend a driver’s license prior to any court action, and
the state unemployment rate. The data thus consist of 48 objects (states, excluding Alaska
and Hawaii), each measured 18 times, and is thus much smaller than the transactions data
set analyzed previously; for this reason, it would not be surprising for a linear model to be
comparatively effective in this case.

Dee and Sela (2003) fit a fixed effects linear model (including 47 indicator variables to
account for state effects), but we will use a mixed effects model (fitting state using random
effects) here for comparative purposes. Table 5 gives the results of fitting linear models to the
data.It can be seen that in the ordinary linear model (where no state effects are accounted for)
speed limit (which is fit using four indicator variables, with the 55 MPH speed limit being the
reference category) has a very strong effect on (logged) fatality rate, with the higher speed
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Table 4 RMSEs from cross-validation leaving out one observation or one software title at a time, using the
transactions data, using the logged relative price premium

Method Excluding observations Excluding titles

Linear model 0.4566 0.4712

Linear model with random effects 0.4087 0.6478

Linear model with random effects—AR(1) 0.3957 0.6567

Linear model (imputed) 0.4358 0.4455

Linear model with random effects (imputed) 0.3787 0.6478

Linear model with random effects—AR(1) (imputed) 0.3873 0.6567

Tree without random effects 0.3186 0.3933

RE-EM tree 0.2880 0.3906

RE-EM tree—AR(1) 0.2881 0.3907

RE-EM tree (1 iteration) 0.2876 0.3917

RE-EM tree—AR(1) (1 iteration) 0.2879 0.3861

limits associated with progressively higher fatality rates holding all else fixed, but otherwise
the only variables that are statistically significant at a 0.05 level are administrative license
revocation and unemployment rate, with each having counterintuitive signs (with a license
revocation law associated with higher fatality rate and high unemployment, and hence less
economic activity, associated with a higher fatality rate, holding all else fixed). Accounting
for state effects changes the picture dramatically, however, with speed limit effects much
smaller, blood alcohol laws statistically significant, and administrative license revocation
and unemployment rate now having coefficients with intuitive signs.

Figures 9, 10, 11, and 12 give the tree estimates for these data. Not surprisingly given
the relatively small sample, the trees are much simpler than those for the transactions data.
The tree without state effects (Fig. 9) splits twice on speed limit, with large differences in
fatality rates between speed limits (for example, for years before 1990, the fatality rate is
estimated to be 90% higher when the speed limit is 70 MPH or there is no speed limit com-
pared to when it is 55 MPH). When state effects are taken into account in the RE-EM trees,
however, speed limit either does not appear in the tree at all (Fig. 10) or is associated with
much smaller effects (Figs. 11 and 12). This is particularly apparent when comparing the
rpart tree (Fig. 9) to the one-iteration RE-EM tree (Fig. 12), since they must have the same
structure; in the latter tree the difference in estimated fatality rate between a 55 MPH speed
limit and a 70 MPH speed limit or no speed limit only corresponds to a 10% difference,
clearly showing that taking state effects into account dramatically weakens any evidence of
an effect of speed limits on traffic fatalities.

Table 6 summarizes the cross-validated RMSE for the different methods, omitting one
state at a time and one observation at a time. It can be seen that all of the methods have
comparable performance omitting one state at a time, although that of the linear mixed
effects model lags behind. When predicting at the individual observation level, however, the
benefit of using a method that accounts for the longitudinal (repeated years within states)
structure in the data is apparent, as the ordinary linear and tree models fare far worse than
either the linear mixed effects or RE-EM estimates. In this case the linear mixed effects
model is slightly more effective than the RE-EM tree, but all of the versions of the RE-EM
tree are much better than the ordinary rpart tree. Thus, even in a case where a population-
level tree structure is not an improvement over a linear model, the benefits of estimating the
longitudinal structure when making predictions at the observation level are clear.
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Table 5 Parameter estimates for the linear models for the logged fatality rate with and without random
effects. Standard errors are reported in parentheses

Variable Linear model Mixed effects model Mixed effects model
with autocorr.

(Intercept) 7.1445*** 5.2217*** 5.0739***

(0.396) (0.170) (0.214)

Year −0.0376*** −0.0241*** −0.0216***

(0.004) (0.002) (0.002)

Speed limit = 65 0.3656*** −0.0096 −0.0061

(0.030) (0.012) (0.014)

Speed limit = 70 0.6616*** 0.0724*** 0.0525**

(0.054) (0.021) (0.025)

Speed limit = 75 0.7950*** 0.0846*** 0.0602**

(0.057) (0.022) (0.027)

No speed limit 0.9908*** 0.1066** 0.0317

(0.145) (0.052) (0.072)

Drinking age −0.0636 −0.0058 0.0046

(0.064) (0.021) (0.018)

Driving age 0.0149 0.0210 0.0036

(0.064) (0.021) (0.019)

Seatbelt law −0.0169 0.0009 0.0040

(0.014) (0.006) (0.007)

Zero tolerance −0.0511* 0.0109 0.0155

(0.028) (0.011) (0.013)

Illegal at BAC ≥ 0.10 −0.0334 −0.0307** −0.0290**

(0.029) (0.013) (0.014)

Illegal at BAC ≥ 0.08 −0.0608 −0.0428** −0.0354

(0.041) (0.020) (0.023)

Administrative license revocation 0.0524** −0.0599*** −0.0472***

(0.023) (0.012) (0.014)

Unemployment rate 1.6422 −3.7574*** −2.874***

(0.532) (0.245) (0.304)

*Significantly different from zero at the 10% level; **significantly different from zero at the 5% level;
***significantly different from zero at the 1% level

5 Simulated data sets

5.1 Design of simulations

We now use simulations to assess the usefulness and effectiveness of the RE-EM tree
method. (Comparing performance on a suite of additional large-scale, real-world longitu-
dinal data would be highly desirable, but such a suite is not available. Instead, we turn to
simulated data sets as a workable alternative. Simulated data sets also allow us to measure
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Fig. 9 Estimated tree without random effects for the logged fatality rate in the traffic data

Fig. 10 Estimated RE-EM tree
for the logged fatality rate in the
traffic data

Fig. 11 Estimated RE-EM tree with autocorrelation for the logged fatality rate in the traffic data
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Fig. 12 Estimated RE-EM tree with one iteration for the logged fatality rate in the traffic data

Table 6 RMSEs from cross-validation leaving out one observation or one state at a time, using the traffic
fatality data, using the logged fatality rate

Method Excluding observations Excluding states

Linear model 0.2798 0.3013

Linear model with random effects 0.0904 0.3913

Linear model with random effects—AR(1) 0.0920 0.3369

Tree without random effects 0.2821 0.3014

RE-EM tree 0.1016 0.3320

RE-EM tree—AR(1) 0.1031 0.3271

RE-EM tree (1 iteration) 0.1020 0.3330

RE-EM tree—AR(1) (1 iteration) 0.1031 0.3286

the success of the estimation methods in estimating the random effects and fixed effects
separately.) These simulations consider data sets that contain I = 50, 100, 200, 400, 1000
or 2000 objects, with T = 10, 25, 50 or 100 observations per object. We consider three data
generating processes, to allow for cases in which the tree is only an approximation to reality.
In each experiment, we compare the performance of the RE-EM tree with a tree that does
not account for random effects and with parametric linear models that do and do not include
random effects, as well as (when feasible) a different longitudinal tree method.

Our data generation procedure for attributes is based on the values in the transactions
data, while the response variable is based on the estimated RE-EM trees and linear models
for variables from the logged price premium fit to the full transactions data set discussed in
Sect. 4, fit to the price premium. This simulates complex yet realistic data patterns in both
attributes and response. Specifically, the “true” models are the RE-EM tree fit to the price
premium in the first set of experiments, the linear model with scalar random effects fit to
the price premium in the second set, and a more complicated non-tree, mixed effects model
in the third. In the third case, we define f by estimating the price premium using a linear
model including all possible products of the eight continuous variables that appeared in the
trees, listed in Table 1, together with the squares of AvgCompPrice, AvgCompLife,



196 Mach Learn (2012) 86:169–207

AvgCompCondition, and AvgCompRating. All but the last of the squared variables
has a statistically significant coefficient, and some of the product terms have statistically
significant coefficients as well. Each method is estimated based on the full data set. This
estimation yields a prediction for any set of attributes as well as a list of estimated random
effects, b̂i , and estimated observation errors, ε̂it , for each object. For each sample size, I ,
we use the attributes from a random sample (with replacement) of I objects to compute the
expected value, E(yit ), of the target variable given the true model. When T is larger than
the number of observations for the randomly chosen object, we use the attributes from the
next object(s) in the sample. We generate a random effect b̂i and errors ε̂it for t = 1, . . . , T

as normally distributed with zero mean and standard deviations equal to the observed val-
ues from the linear mixed effects fit to the data. Then, the new observed data consist of
yit = E(yit ) + b̂i + ε̂it together with the attributes. Data are created in the same way for an
additional 50 objects who are used as the hold-out sample. For each group of I +50 objects,
we resample 50 times in this way, which allows us to check for any effects of the attributes
on predictive performance. We then move on to a new sample of size I + 50 and repeat the
experiment for 50 different samples of objects.

There is little guidance in the literature for the assessment of predictive power for meth-
ods for longitudinal data. One exception is Afshartous and de Leeuw (2005), who found that
a mixed effects fit for new observations of objects in the sample was most effective among
the methods they studied (this corresponds to the prediction methods used here). Afshartous
and de Leeuw (2005) also examined the results of methods fit to one object at a time (treat-
ing the observations for that object as a complete sample); in our simulations this approach
performed quite poorly, particularly for prediction, as will be discussed in Sect. 5.2.

To measure out-of-sample performance for both objects already in the sample and new
objects, we fit each method to the first 75% of observations for I objects. We then predict
the future observations for those objects to estimate the out-of-sample performance of the
methods for future observations for objects used in estimation. For the additional sample
of 50 objects, we predict the first 75% of their observations using just f̂ ; this allows us
to measure the prediction performance for new objects. Finally, we use the original fitted
model and the first 75% of observations for the new objects to predict the last 25% of ob-
servations for those objects. This allows us to measure the predictive performance for future
observations of new objects. We start with examination of the accuracy of estimates of the
underlying population-level function f (xit ) and the random effects bi in Sect. 5.3. These
underlying values are of interest in their own right, but also go a long way to accounting for
predictive performance, which is discussed in Sect. 5.2. In that section, we also test whether
the RMSEs from RE-EM trees differ significantly from those of other methods, using the
Wilcoxon signed-rank test. We generalize to the case of unbalanced panels, where T varies
across objects, in Sect. 5.4. We also explore the effects of changing the parameters of the
model or the estimation method in Sect. 5.4. In each figure, results based on fits using the
RE-EM tree are given using a solid line and circles (REEM), the RE-EM tree based on one
iteration a short dashed line and triangle (REEM-I1), a single rpart tree fit to the entire
data set (ignoring the longitudinal structure) using a dotted line and plus (RPART), separate
rpart trees fit to each observation using a dotted and short dashed line and x (RPART-
Obj), a linear mixed effects model using a long dashed line and diamond (LME), a linear
model (ignoring the longitudinal structure) a dotted and long dashed line and inverted tri-
angle (LM), and an mvpart tree a solid line and square (MVPART). The figures given are
trellis displays (Becker et al. 1996), where the vertical axis in each panel of the display is the
appropriate RMSE, the horizontal axis is the number of objects I , and the panels correspond
to increasing time periods T (10, 25, 50, and 100, respectively) moving from left to right.
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Fig. 13 RMSEs of predictions of future observations when the true data generating process is a RE-EM tree.
In this and all figures symbols are as follows: RE-EM—solid line and circle; RE-EM (1 iteration)—short
dashed line and triangle; rpart—dotted line and plus; separate rpart trees—dotted and short dashed line
and x; linear mixed effects model—long dashed line and diamond; linear model—dotted and long dashed
line and inverted triangle; mvpart—solid line and square

Note that all of the linear models are fit using all of the available attributes (but without
products or quadratics) without any attempt to simplify the models. MVPART is fit using
the mvpart package of De’Ath (2006) in R.

5.2 Predictive performance

We first consider in this section the prediction error for future observations. Figure 13 refers
to the situation when the true data generating process is a RE-EM tree. As can be seen, the
display is dominated by the clear separation between methods that work comparably poorly
and those that work comparably well. The methods that work poorly are LM and RPART, the
two methods that ignore the longitudinal structure in the data. This is not surprising, since
prediction of future observations for a given object should take into account the random
effect associated with that object, and these methods ignore that. For this reason, in all
figures involving prediction of future observations these methods will be omitted, since they
always trail badly behind. Figure 14 gives results only for the other four methods (recall
that MVPART cannot be used to predict future observations, so it does not appear in the
display). The figure makes clear that the RE-EM tree provides best performance for the
prediction of future observations. The two other methods that use random effects (REEM-I1
and LME) are next, and have similar performance. The RMSE values of these two methods
are statistically significantly higher than that of REEM for all combinations of I and T

based on Wilcoxon tests. The construction of separate rpart trees for each object is better
than using a single tree for all observations (since it accounts for structure within an object
by being based only on data for that object), but since there are only T data points for each
object the small sample makes the predictions less accurate (statistically significantly so for
all I and T ).

Figure 15 gives results for the four longitudinal methods when the true model is a linear
mixed effects model. Not surprisingly, in this case LME is the best performer, as it is the
correct model. Once again trees on separate objects lag behind (doing worse for larger T ),
while the two RE-EM estimators are noticeably better performers (and perform similarly
to each other, although the fully iterated RE-EM tree is usually statistically significantly
better).
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Fig. 14 RMSEs of predictions of future observations when the true data generating process is a RE-EM tree,
omitting results for LM and RPART

Fig. 15 RMSEs of predictions of future observations when the true data generating process is a linear mixed
effects model, omitting results for LM and RPART

The more complicated model is an interesting test case, since it corresponds to a true
relationship that is not at all a tree (being based on a linear model), yet is not the simple
linear model being fit by LME, and includes product terms more analogous to an interaction
effect. Figure 16 gives results for this case. It can be seen that the RE-EM trees and LME are
much closer in performance than when the true model is a linear model (the performances
of the two versions of the RE-EM tree are often not statistically significantly different from
each other, but both significantly lag behind LME). Further, for larger T the performance
of the trees is very similar to that of LME (particularly for smaller I ), indicating that with
enough replications the tree can recover the signal well even when the true relationship is
not a tree, while also accounting for the random effects.

Next, we consider predictions for observations of new objects. Since object-specific re-
gression trees produce I different trees, the average prediction over all trees is used as the
prediction for that method. The MVPART tree is included in this case, since future obser-
vations are not being predicted. When the true data generating process is a RE-EM tree
(Fig. 17), prediction using RE-EM trees has the lowest mean squared errors (only by 2–3%,
but this is always statistically significant), with the other methods similar when I is large
enough (I ≥ 400 or so). For small values of I , RPART, RPART on individual objects, and
MVPART seriously lag behind, illustrating that merely fitting a tree does not necessarily
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Fig. 16 RMSEs of predictions of future observations when the true data generating process is the more
complicated mixed effects model, omitting results for LM and RPART

Fig. 17 RMSEs of predictions of new objects when the true data generating process is a RE-EM tree

lead to good estimation in the RE-EM situation. When the true process is a linear model with
random effects (Fig. 18), LME performs best (as expected); since prediction of new objects
does not involve the random effects the performance of LM is similar to that of LME, es-
pecially when I is larger. The RMSE values for the RE-EM trees are roughly 5–10% higher
than those of LME (and usually not significantly different from each other), with RPART
being a little worse. MVPART and the average of separate RPART trees on each object lag
behind badly. When the true generating process is the more complicated model (Fig. 19) the
performance of all of the methods is very similar (although LME is best), other than that of
MVPART and the average of individual RPART trees.

Finally, we examine the predictions of future observations for objects that were not in the
original sample, using some of their observations to estimate random effects. Once again
MVPART cannot be used here, and once again the two methods that do not account for
the random effects (LM and RPART), and the one that uses them inefficiently (RPART on
individual objects) lag behind badly and are not included. The results parallel those when
predicting future observations of objects in the original sample: when the true model is a
RE-EM tree the RE-EM tree method is best (Fig. 20), when the true model is LME the LME
method is best (Fig. 21), with REEM improving for larger I , and when the true model is
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Fig. 18 RMSEs of predictions of new objects when the true data generating process is a linear mixed effects
model

Fig. 19 RMSEs of predictions of new objects when the true data generating process is the more complicated
mixed effects model

Fig. 20 RMSEs of predictions of future observations of new objects when the true data generating process
is a RE-EM tree, omitting results for LM, RPART, and RPART on individual objects
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Fig. 21 RMSEs of predictions of future observations of new objects when the true data generating process
is a linear mixed effects model, omitting results for LM, RPART, and RPART on individual objects

Fig. 22 RMSEs of predictions of future observations of new objects when the true data generating process
is the more complicated mixed effects model, omitting results for LM, RPART, and RPART on individual
objects

the more complicated linear model LME is best but REEM becomes more competitive for
larger I (Fig. 22).

In all of the different types of prediction, the RE-EM tree estimation has the best predic-
tive performance when it is the true model and good performance otherwise, especially for
larger sample sizes. The RE-EM tree is clearly the most effective tree-based estimator. The
success of the RE-EM tree when it is not the correct model allows us to apply it to situations
when the model is unknown and is likely to be complicated, such as was the case for the
transactions data.

5.3 Estimation of the underlying function and random effects

Although in many contexts the predictive performance discussed in the previous section
is most important, we also investigate the ability of the different methods to estimate the
population-level expected response f (·) and true random effects b, using RMSE to measure
performance. The results underscore the patterns in the previous section as would be ex-
pected. When estimating the underlying function (Figs. 23, 24, 25) the method that is fitting
the correct model does best, while methods that fit the correct structure without accounting
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Fig. 23 RMSEs of estimates of underlying function when the true data generating process is a RE-EM tree

Fig. 24 RMSEs of estimates of underlying function when the true data generating process is a linear mixed
effects model

Fig. 25 RMSEs of estimates of underlying function when the true data generating process is the more com-
plicated mixed effects model
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Fig. 26 RMSEs of estimates of random effects when the true data generating process is a RE-EM tree

Fig. 27 RMSEs of estimates of random effects when the true data generating process is a linear mixed effects
model

for the random effects do less well, but still reasonably. When the model being fit is the
more complicated linear model LME performs best, but REEM gets closer for larger I . The
pattern is similar when estimating the random effects (Figs. 26, 27, 28). As expected, the
fully iterated version of the RE-EM tree outperforms the one-iteration version when the true
model is a RE-EM tree, with similar performance otherwise, and random effects are best
estimated using the method fitting the correct model. Thus, performance when estimating
the underlying function parallels the results in the previous section when predicting a new
object, since the latter prediction is based only on the underlying function. In contrast, per-
formance when estimating the random effects also affects performance when predicting new
observations of objects for which response information is available.

5.4 Autoregression, unbalanced panels, and estimation methods

In this section we briefly discuss performance when changing the simulation structure in
other ways. Since the results are very similar to those already presented, we do not pro-
vide figures, but merely summarize the results. We first explore the effect of an error term
with an autoregressive component of order one (so that Corr(εi,t , εi,t−1) = ρ). This turns
out to have a consistent, but relatively small, effect on performance. Methods that are fitting
the correct functional form are slightly more effective at predicting new observations when
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Fig. 28 RMSEs of estimates of random effects when the true data generating process is the more complicated
mixed effects model

the autocorrelation structure is accounted for, but autoregressive methods that fit the wrong
population-level functional form are slightly less effective. That is, if the true model is a RE-
EM tree with autoregressive errors, a RE-EM tree that accounts for autoregressive errors per-
forms slightly better than a RE-EM tree that does not, but a linear mixed effects model that
accounts for autoregressive errors performs slightly worse than one a linear mixed effects
model that does not. The corresponding opposite pattern occurs if the true model is a linear
mixed effects model with autoregressive errors. Thus, accounting for the second-order effect
of correlation in the errors is only helpful if the first-order effect of fitting the right function
is taken care of. The more complicated linear model (which corresponds to an incorrect
functional form for both estimators) occupies the expected middle ground: the RE-EM tree
accounting for autoregressive errors is worse than one without autoregressive errors, and so
is the linear mixed effects model (particularly for small I and T ). For all underlying func-
tional forms and both methods the choice of including or not including autoregressive errors
in the fitting has virtually no effect on prediction of new objects.

A balanced panel is one where the number of time periods with observed responses for
each object i (Ti ) is the same for all i, as was the case in all of the simulations reported
thus far. We also examined the performance of the estimation methods in unbalanced panels
where Ti may vary across objects, with averages of approximately 10, 25, or 38 observations
per object.1 Note that we cannot use the mvpart estimation method in this case, because
the method only applies when Ti is constant. Furthermore, separate linear regressions and
separate regression trees for each object in the resulting data set are sometimes not feasible,
since the simulated data can include objects for which Ti is too small to fit a linear regression
with eight attributes or a meaningful tree. All of the results for different values of E(Ti) are
very similar to those with balanced panels for corresponding values T , with one notable
exception: when E(Ti) ≈ 10 (and thus some data sets have very few observations within
some objects) LME can perform quite poorly (even when the linear mixed effects model is
the true model), especially when I ≤ 200. Thus, the RE-EM tree appears to be less sensitive
to a small number of time periods than is the linear mixed effects model.

We also assess the stability of our tree estimates by starting estimation with alternative
initial values for the random effects. The results we have presented so far fit RE-EM trees

1The average number of observations per object in the underlying price premium data set on which the
simulations are based is 38.
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with initial values of 0 for all of the random effects. We also fit trees in which we vary the
initial values for the random effects; specifically, we fit a RE-EM tree with initial values
of the random effects set to 0 and then use initial values that are those estimated effects in
random order or in reverse order. As additional comparisons, we fit trees using maximum
likelihood instead of restricted maximum likelihood when we estimate the linear model.
The estimated fitted values are generally similar across the different estimation possibilities.
Changing the initial values of the random effects has a small impact, and the difference
between performance with different initial values declines steadily as the sample size grows.
The change in estimates based on using maximum likelihood instead of REML to estimate
the random effects is even smaller, as there was almost no difference in estimates when
either optimization method is used for estimating the underlying tree.

5.5 Computation time for the RE-EM tree

An advantage of the RE-EM tree method is that it is based on two parts (a regression tree
algorithm and a linear mixed effects regression algorithm) for which there are many alterna-
tive methods; although all of the calculations here are based on the R packages rpart and
nlme, respectively, any alternative tree and mixed modeling methods could be used instead.
If a data set is large, the dominant contributor to computing time is the mixed model portion
of the fitting, and since different packages use different computational algorithms (see West
et al. 2007, pp. 30–33), it is possible that an algorithm using a package other than R, or a
function other than nlme, might be more computationally efficient.

Based on timings for data sets with 50 to 5000 objects (I ), 10 to 500 time periods (T ), and
10 to 50 attributes (K), the CPU time in seconds when running the single-iteration version
of the RE-EM tree on a PC running Windows XP using a 3.20 GHz Pentium 4 processor
and 2.0 GB of RAM roughly followed the relationship

CPU time ≈ 0.42 × I 1.15T 1.12K0.32

Thus, the complexity of the algorithm appears to be roughly linear in the number of objects
and the number of time periods, and much less than linear in the number of attributes being
used in the modeling.

6 Conclusion and future work

In this paper, we have presented a tool for data mining with longitudinal data and demon-
strated its usefulness in simulations and with two real data sets. The RE-EM tree accounts for
the structure of longitudinal or clustered data while allowing for unbalanced panels and pre-
diction of future time periods, while also providing the ability to use time-varying attributes
in the construction of a flexible representation for the underlying relationship between the
response and the attributes; indeed, by including time as a potential attribute, it is possible to
fit completely different tree structures for different time periods if the tree splits on time. Us-
ing data sets on web transactions and traffic fatalities, we have shown that RE-EM trees can
improve predictive performance over standard trees and allow the modeling of target vari-
ables without assuming that linear models hold. In simulation experiments, we have found
that RE-EM trees outperform trees that do not allow for random effects, are more effective
than other methods when the true relationship takes the form of a tree, and are comparable
to linear models that include random effects, even when a tree is not the underlying model.
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RE-EM trees also outperform multivariate regression trees and generally outperform regres-
sion trees that are fit separately to each object. This is true for different types of prediction
and in a wide variety of scenarios. We have also demonstrated that the RE-EM tree can be
more successful at estimating the underlying functional form and random effects than is a
linear mixed effects model, especially when the number of observations per object is small.

This paper has explored the basics of the RE-EM tree method. A number of possible
issues remain to be explored. First, methods such as bagging and boosting build on a tree
structure as a way to improve predictive performance (see for example, Hastie et al. 2001,
Sect. 8.7 and Chap. 10). We expect that the improvements from these methods would carry
over when they are applied to RE-EM trees as well. Further, these methods might generalize
to classification trees, which would extend their use to another class of response variables.
Finally, one could explore the extension of the existing consistency results for regression
trees and mixed effects models to RE-EM trees, checking whether f or the random effects
are estimated consistently.

An R package to implement the RE-EM tree, called REEMtree, is available on CRAN.

Acknowledgements The authors thank Foster Provost and Anindya Ghose for many helpful comments and
Norman White for assistance with computational issues. The authors also thank several anonymous reviewers
for comments that greatly improved the paper.

References

Abdolell, M., LeBlanc, M., Stephens, D., & Harrison, R. V. (2002). Binary partitioning for continuous longi-
tudinal data: categorizing a prognostic variable. Statistics in Medicine, 21, 3395–3409.

Afshartous, D., & de Leeuw, J. (2005). Prediction in multilevel models. Journal of Educational and Behav-
ioral Statistics, 30, 109–139.

Becker, R. A., Cleveland, W. S., & Shyu, M.-J. (1996). The visual design and control of trellis display. Journal
of Computational and Graphical Statistics, 5, 123–155.

Berk, R. A. (2008). Statistical learning from a regression perspective. New York: Springer.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees.

Monterey: Wadsworth.
De’Ath, G. (2002). Multivariate regression trees: a new technique for modeling species-environment rela-

tionships. Ecology, 83, 1105–1117.
De’Ath, G. (2006). mvpart: multivariate partitioning. R package version 1.2-4.
Dee, T. S., & Sela, R. J. (2003). The fatality effects of highway speed limits by gender and age. Economics

Letters, 79, 401–408.
Evgeniou, T., Pontil, M., & Toubia, O. (2007). A convex optimization approach to modeling consumer het-

erogeneity in conjoint estimation. Marketing Science, 26, 805–818.
Galimberti, G., & Montanari, A. (2002). Regression trees for longitudinal data with time-dependent covari-

ates. In K. Jajuga, A. Sokolowski, & H.-H. Bock (Eds.), Classification, clustering and data analysis
(pp. 391–398). New York: Springer.

Ghose, A., Ipeirotis, P., & Sundararajan, A. (2005). The dimensions of reputation in electronic markets (Tech-
nical Report 06-02). NYU CeDER Working Paper.

Hajjem, A., Bellavance, F., & Larocque, D. (2008). Mixed-effects regression trees for clustered data. Les
Cahiers du GERAD G-2008-57.

Hajjem, A., Bellavance, F., & Larocque, D. (2011). Mixed effects regression trees for clustered data. Statistics
and Probability Letters, 81, 451–459.

Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related
problems. Journal of the American Statistical Association, 72, 320–340.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: data mining, inference,
and prediction. New York: Springer.

Hsiao, W.-C., & Shih, Y.-S. (2007). Splitting variable selection for multivariate regression trees. Statistics
and Probability Letters, 77, 265–271.

Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974.
Larsen, D. R., & Speckman, P. L. (2004). Multivariate regression trees for analysis of abundance data. Bio-

metrics, 60, 543–549.



Mach Learn (2012) 86:169–207 207

Lee, S. K. (2005). On generalized multivariate decision tree by using GEE. Computational Statistics & Data
Analysis, 49, 1105–1119.

Lee, S. K. (2006). On classification and regression trees for multiple responses and its application. Journal of
Classification, 23, 123–141.

Lee, S. K., Kang, H.-C., Han, S.-T., & Kim, K.-H. (2005). Using generalized estimating equations to learn
decision trees with multivariate responses. Data Mining and Knowledge Discovery, 11, 273–293.

Liu, Z., & Bozdogan, H. (2004). Improving the performance of radial basis function (RBF) classification
using information criteria. In H. Bozdogan (Ed.), Statistical data mining and knowledge discovery
(pp. 193–216). Boca Raton: Chapman and Hall/CRC.

Liu, C., & Rubin, D. B. (1994). The ECME algorithm: a simple extension of EM and ECM with faster
monotone convergence. Biometrika, 81, 633–648.

Loh, W.-Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statistica
Sinica, 12, 361–386.

Milborrow, S. (2011). rpart.plot: plot rpart models. R package version 1.2-2.
Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal.

Biometrika, 58, 545–554.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & the R Core team (2009). nlme: linear and nonlinear mixed

effects models. R package version 3.1-93.
R Development Core Team (2009). R: a language and environment for statistical computing. Vienna: R Foun-

dation for Statistical Computing. ISBN 3-900051-07-0. URL http://www.R-project.org.
Ritschard, G., & Oris, M. (2005). Life course data in demography and social sciences: statistical and data

mining approaches. In R. Levy, P. Ghisletta, J.-M. Le Goff, D. Spini, & E. Widmer (Eds.), Towards
an interdisciplinary perspective on the life course, advances in life course research (pp. 289–320).
Amsterdam: Elsevier.

Ritschard, G., Gabadinho, A., Müller, N. S., & Studer, M. (2008). Mining event histories: a social science
perspective. International Journal of Data Mining, Modelling and Management, 1, 68–90.

Segal, M. R. (1992). Tree-structured models for longitudinal data. Journal of the American Statistical Asso-
ciation, 87, 407–418.

Sela, R. J., & Simonoff, J. S. (2009). RE-EM trees: a new data mining approach for longitudinal data. NYU
Stern Working Paper SOR-2009-03.

Simonoff, J. S. (2003). Analyzing categorical data. New York: Springer.
Therneau, T. M., & Atkinson, B. (2010). rpart: recursive partitioning. R port by Brian Ripley. R package

version 3.1-46.
Witten, I. H., & Frank, E. (2000). Data mining. New York: Morgan Kauffman.
Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York: Springer.
West, B. T., Welch, K. B., & Galecki, A. T. (2007). Linear mixed models: a practical guide using statistical

software. Boca Raton: Chapman and Hall/CRC.
Zhang, H. (1997). Multivariate adaptive splines for analysis of longitudinal data. Journal of Computational

and Graphical Statistics, 6, 74–91.
Zhang, H. (1998). Classification trees for multiple binary responses. Journal of the American Statistical

Association, 93, 180–193.

http://www.R-project.org

	RE-EM trees: a data mining approach for longitudinal and clustered data
	Abstract
	Introduction
	Previous applications of trees to numerical longitudinal data
	The RE-EM tree estimation method
	Longitudinal tree estimation
	Allowing for autocorrelation within individuals
	Out-of-sample prediction

	Applications to real data
	Transactions data
	Accident fatality data

	Simulated data sets
	Design of simulations
	Predictive performance
	Estimation of the underlying function and random effects
	Autoregression, unbalanced panels, and estimation methods
	Computation time for the RE-EM tree

	Conclusion and future work
	Acknowledgements
	References


