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Abstract In the multiarmed bandit problem the dilemma between exploration and exploita-
tion in reinforcement learning is expressed as a model of a gambler playing a slot machine
with multiple arms. A policy chooses an arm in each round so as to minimize the number
of times that arms with suboptimal expected rewards are pulled. We propose the minimum
empirical divergence (MED) policy and derive an upper bound on the finite-time regret
which meets the asymptotic bound for the case of finite support models. In a setting similar
to ours, Burnetas and Katehakis have already proposed an asymptotically optimal policy.
However, we do not assume any knowledge of the support except for its upper and lower
bounds. Furthermore, the criterion for choosing an arm, minimum empirical divergence, can
be computed easily by a convex optimization technique. We confirm by simulations that the
MED policy demonstrates good performance in finite time in comparison to other currently
popular policies.

Keywords Bandit problems · Finite-time regret · MED policy · Convex optimization

1 Introduction

The multiarmed bandit problem is a problem based on an analogy with playing a slot ma-
chine with more than one arm or lever. Each arm has a reward distribution and the objective
of a gambler is to maximize the collected sum of rewards by choosing an arm to pull for
each round. There is a dilemma between exploration and exploitation: the gambler cannot
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tell whether an arm is optimal unless he pulls it many times, but he also sustains a loss if he
pulls a suboptimal arm many times.

We consider an infinite-horizon K-armed bandit problem. There are K arms Π1, . . . ,ΠK

and the arms are pulled an infinite number of times. Arm Πj provides a reward with a
probability distribution Fj with expected value μj . The player receives a reward according
to Fj independently in each round. If the expected values are known, it is optimal to pull the
arm with the maximum expected value μ∗ = maxj μj every time. Πi is called suboptimal if
μi < μ∗. A policy is an algorithm to choose the next arm to pull based on the results of past
rounds.

This problem was first considered by Robbins (1952), and since then, many studies have
been undertaken (Agrawal 1995b; Even-Dar et al. 2002; Meuleau and Bourgine 1999; Strens
2000; Vermorel and Mohri 2005; Yakowitz and Lowe 1991). There are also many extensions
of the problem. For example, Auer et al. (2002b) removed the assumption that rewards are
stochastic. In the stochastic setting, the cases of non-stationary distributions (Gittins 1989;
Ishikida and Varaiya 1994; Katehakis and Veinott 1987), or an infinite (possibly uncount-
able) number of arms (Agrawal 1995a; Kleinberg 2005) have been considered.

In our setting, Lai and Robbins (1985) established a theoretical framework for determin-
ing optimal policies, and Burnetas and Katehakis (1996) extended their result to multiparam-
eter or non-parametric models. Consider a model F , that is, a generic family of distributions.
The player knows F and that each Fj is an element of F . Let Tj (n) denote the number of
times that Πj has been pulled over the first n rounds. A policy is consistent on model F if
E[Ti(n)] = o(na) for all suboptimal arms Πi and all a > 0.

Burnetas and Katehakis (1996) proved the following lower bound for any suboptimal
arm Πi under a consistent policy. With probability tending to one,

Ti(n) ≥
(

1

infG∈F :E(G)>μ∗ D(Fi‖G)
+ o(1)

)
logn, (1)

where E(G) is the expected value of distribution G and D(·‖·) denotes the Kullback-Leibler
divergence. Under mild regularity conditions on F ,

inf
G∈F :E(G)>μ

D(F‖G) = inf
G∈F :E(G)≥μ

D(F‖G)

and we define

Dmin(F,μ) = inf
G∈F :E(G)≥μ

D(F‖G).

We sometimes write Dmin(F,μ, F ) for Dmin(F,μ) when we want to specify the feasible
region explicitly.

A policy is asymptotically optimal if the expected value of Tj (n) achieves the right-
hand side of (1) as n → ∞. In Lai and Robbins (1985) and Burnetas and Katehakis (1996),
policies achieving the above bound are proposed. These policies are based on the notion of
an upper confidence bound, which can be interpreted as the upper confidence limit for the
expectation of each arm with significance level 1/n.

Although policies based on the upper confidence bound are optimal, they are often hard to
compute in practice. Thus, Auer et al. (2002a) proposed some policies, called UCB policies,
which estimate the expectation of each arm in a similar way to the upper confidence bound.
UCB policies are practical because of their simple form and fine performance. In particular,
“UCB-tuned” is widely used because of its excellent simulation results. However, UCB-
tuned has not been analyzed theoretically and the consistency of the policy is unknown.
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Theoretical analyses of other UCB policies have been given, but the coefficients of their
logarithmic terms do not necessarily achieve the bound (1).

In this paper we propose the minimum empirical divergence (MED) policy. We derive a
finite-time regret for this policy which achieves the asymptotic bound when F is the fam-
ily of all distributions with finite support included in some fixed interval, say [0,1]. This is
larger than the model used in Burnetas and Katehakis (1996) where the supports of distribu-
tions come from a common finite set known to the player. The optimality of the MED policy
is stronger than that of the policy proposed by Burnetas and Katehakis (1996) because the
MED policy achieves the same asymptotic bound in spite of weaker knowledge about the
distributions of rewards (see Remark 2 for details). We also show some simulation results
for the MED policy. These results are comparable to those of UCB policies.

Our MED policy is motivated by an observation following from (1). When a policy
achieving (1) is used, a suboptimal arm Πi waits roughly exp(niDmin(Fi,μ

∗)) rounds to
be pulled after the ni -th play of Πi . Thus, we expect that a policy pulling Πi with proba-
bility proportional to exp(−niDmin(Fi,μ

∗)) will achieve the bound in (1). The MED policy
is obtained by plugging F̂i , μ̂

∗ into Fi,μ
∗ in Dmin, where F̂i is the empirical distribution of

rewards from Πi and μ̂∗ is the current best sample mean.
The MED policy has a strong connection with the DMED policy in Honda and Takemura

(2010), which is a modification of the MED policy with a deterministic algorithm. The
DMED policy is asymptotically optimal for the model of bounded support distributions,
which is a more general setting than the finite support model assumed for the MED policy.
However, the evaluation of the regret for the DMED policy is completely dependent on
asymptotic arguments and the finite-time regret is unknown. We derive a bound for the
finite-time regret for the MED policy by using the finiteness of the support.

The MED policy requires the computation of Dmin(F̂i , μ̂
∗) = minG∈F :E(G)≥μ̂∗ D(F̂i‖G)

at each round whereas the upper confidence bound by Burnetas and Katehakis (1996) re-
quires the computation of

max
G∈F :Dmin(F̂i‖G)≤ logn

ni

E(G). (2)

Dmin and the expression in (2) are quantities that are dual to each other but the former has two
advantages in practical implementation. First, Dmin(F̂i , μ̂

∗) is smooth in μ̂∗ which converges
to μ∗. Therefore, the value in the previous round can be used as a good approximation of
Dmin for the current round. On the other hand (2) continues to increase with n and it has
to be computed many times. Second, as shown in Theorem 3 below, Dmin can be expressed
as a univariate convex optimization problem for our model. Although (2) is also a convex
optimization problem, the nonlinear constraint D(F̂i‖G) ≤ logn

ni
is harder to handle.

The MED policy is categorized as a probability matching method (see, e.g., Vermorel
and Mohri 2005 for classification of policies). In this method each arm is pulled according
to a probability reflecting how likely the arm is to be optimal. For example, Wyatt (1997)
proposed probability matching policies for Boolean and Gaussian models using a Bayesian
approach with prior/posterior distributions. In our approach the probability assigned to each
arm is determined by the (normalized) maximum likelihood instead of the posterior proba-
bility.

This paper is organized as follows. In Sect. 2 we give the definitions used throughout this
paper and introduce the asymptotic bound by Burnetas and Katehakis (1996) that is satisfied
by any consistent policy. In Sect. 3 we describe the MED policy and prove its asymptotic
optimality for finite support models. We also discuss practical implementation issues for the
minimization problem involved in the MED policy. In Sect. 4 some simulation results are
shown. We conclude the paper with some remarks in Sect. 5.
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2 Preliminaries

In this section, we introduce the notation used in this paper and present the asymptotic bound
for a generic model, which was established by Burnetas and Katehakis (1996).

Let F be a generic family of probability distributions on R and let Fj ∈ F be the dis-
tribution of Πj , for j = 1, . . . ,K . PF [·] and EF [·] denote the probability and the expec-
tation under F ∈ F , respectively. When we write, for example, PF [X ∈ A] (A ⊂ R) or
EF [θ(X)] (θ(·) is a function R → R), X denotes a random variable with distribution F . We
define F(A) ≡ PF [X ∈ A] and E(F ) ≡ EF [X]. The expected value of Πj is denoted by
μj ≡ E(Fj ). We denote the optimal expected value by μ∗ ≡ maxj μj .

A set of probability distributions for K arms is denoted by F ≡ (F1, . . . ,FK) ∈ F K ≡∏K

j=1 F . The joint probability and the expected value under F are denoted by PF [·], EF [·],
respectively.

Let Jn be the arm chosen in the n-th round. Then

Tj (n) =
n∑

m=1

I[Jm = j ],

where I[·] denotes the indicator function. Regret after the n-th round is given by

Regret(n) =
K∑

j=1

ΔjTj (n) (3)

where Δj ≡ μ∗ − μj . For notational convenience we write T ′
j (n) ≡ Tj (n − 1), which is the

number of times that Πj has been pulled prior to the n-th round.
Let F̂j,t and μ̂j,t ≡ E(F̂j,t ) be the empirical distribution and the mean of the first

t rewards from Πj , respectively. Similarly, let F̂j (n) ≡ F̂j,T ′
j
(n) and μ̂j (n) ≡ μ̂j,T ′

j
(n) be

the empirical distribution and the mean of Πj after the first n − 1 rounds, respectively.
μ̂∗(n) ≡ maxj μ̂j (n) denotes the highest empirical mean after n − 1 rounds. We call Πj a
current best if μ̂j (n) = μ̂∗(n).

For an event A, the complement of A is denoted by Ac . The joint probability of two
events A and B under F is written as PF [A ∩ B]. For notational simplicity we often write,
e.g., PF [Jn = j ∩ T ′

j (n) = t] instead of the more precise PF [{Jn = j} ∩ {T ′
j (n) = t}].

Finally we define an index for F ∈ F and μ ∈ R

Dinf(F,μ, F ) ≡ inf
G∈F :E(G)>μ

D(F‖G),

where the Kullback-Leibler divergence or relative entropy D(F‖G) is given by

D(F‖G) ≡
{

EF

[
log dF

dG

]
dF
dG

exists,

+∞ otherwise.

Dinf represents how distinguishable F is from distributions having expectations larger
than μ. If {G ∈ F : E(G) > μ} is empty, we define Dinf(F,μ, F ) = +∞.

Theorem 2 of Lai and Robbins (1985) gave a lower bound for E[Ti(n)] for any subop-
timal Πi when a consistent policy is adopted. However their result was hard to apply for
multiparameter models and more general non-parametric models. Later Burnetas and Kate-
hakis (1996) extended the bound to general non-parametric models. Their bound is given by
the following theorem.
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Theorem 1 (Proposition 1 of Burnetas and Katehakis 1996) Fix a consistent policy and
F ∈ F K . If E(Fi) < μ∗ and 0 < Dinf(Fi,μ

∗, F ) < ∞, then for any ε > 0

lim
N→∞

PF

[
Ti(N) ≥ (1 − ε) logN

Dinf(Fi,μ∗, F )

]
= 1. (4)

Consequently,

lim inf
N→∞

EF [Ti(N)]
logN

≥ 1

Dinf(Fi,μ∗, F )
. (5)

Note that by Markov’s inequality

EF [Ti(N)] ≥ (1 − ε) logN

Dinf(Fi,μ∗, F )
PF

[
Ti(N) ≥ (1 − ε) logN

Dinf(Fi,μ∗, F )

]
(6)

and (5) follows straightforwardly from (4) and (6), by dividing both sides of (6) by logN ,
letting N → ∞ and finally letting ε ↓ 0.

3 Asymptotically optimal policy for finite support models

Let A ≡ {F : |supp(F )| < ∞, supp(F ) ⊂ [a, b]} be a family of distributions with a finite
bounded support, where supp(F ) is the support of distribution F , and a and b are con-
stants known to the player. We assume a = 0 and b = 1 without loss of generality. We write
supp′(F ) ≡ {1}∪ supp(F ) and AX ≡ {F ∈ A : supp(F ) ⊂ X } where X is an arbitrary subset
of [0, 1].

We consider A as a model F , and in this section, we propose a policy that we call the
minimum empirical divergence (MED) policy. We prove in Theorem 2 that the proposed
policy achieves the bound given in Theorem 1. Then, we describe a univariate convex opti-
mization technique to compute the value of Dmin used in the policy.

Remark 1 The finiteness of the support can not be determined from finite samples and every
policy for A is also applicable to {F : supp(F ) ⊂ [a, b]}. However, our proof of the opti-
mality in this paper is for the above A. The advantage of assuming finiteness is that we can
employ the method of types in the large deviation technique (see Appendix A). This enables
us to consider all empirical distributions obtained from each arm.

In our model it is convenient to use

Dmin(F,μ, A) ≡ inf
G∈A:E(G)≥μ

D(F‖G)

instead of Dinf(F,μ, A) ≡ infG∈A:E(G)>μ D(F‖G). We write “Dmin” since we will show
through the proof of Theorem 3 that a minimizer G∗ exists.

Lemma 1 Dmin(F,μ, A) = Dinf(F,μ, A) holds for all F ∈ A and μ < 1.

Proof Let ε > 0 be arbitrary. Then

inf
G∈A:E(G)≥μ

D(F‖G) ≤ inf
G∈A:E(G)>μ

D(F‖G) ≤ inf
G∈A:E(G)≥μ+ε

D(F‖G)
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or equivalently

Dmin(F,μ, A) ≤ Dinf(F,μ, A) ≤ Dmin(F,μ + ε, A).

Since ε > 0 is arbitrary, we obtain

Dinf(F,μ, A) ≤ lim inf
ε↓0

Dmin(F,μ + ε, A). (7)

We will prove in Lemma 6 that Dmin(F,μ + ε, A) ≤ Dmin(F,μ, A) + ε/(1 − μ − ε) for
ε < 1 − μ. Therefore, the right-hand side of (7) equals Dmin(F,μ, A). �

3.1 Optimality of the minimum empirical divergence policy

We now introduce our MED policy. In the MED policy an arm is chosen randomly in the
following way:

[Minimum Empirical Divergence Policy]
Initialization. Pull each arm once.
Loop. For the nth round,

1. For each j compute D̂j (n) ≡ Dmin(F̂j (n), μ̂∗(n), A).
2. Choose arm Πj according to the probability

pj (n) ≡ exp(−T ′
j (n)D̂j (n))∑K

i=1 exp(−T ′
i (n)D̂i(n))

.

Note that

1

K
≤ pj (n) ≤ 1 (8)

for any currently best Πj since D̂j (n) = 0. As a result, it holds for all j that

1

K
exp(−T ′

j (n)D̂j (n)) ≤ pj (n) ≤ exp(−T ′
j (n)D̂j (n)). (9)

Intuitively, pj (n) for a currently not best arm Πj corresponds to the maximum likelihood
that Πj is actually the best arm. Therefore, in the MED policy an arm Πj is pulled with a
probability proportional to this likelihood.

Note that our policy is a randomized policy. Therefore, probability statements below
for the MED policy also involve this randomization. However, for simplicity we do not
explicitly show this randomization in the notation.

Now we present the main theorem of this paper.

Theorem 2 Fix F ∈ AK for which there exists a single arm Πj such that μj = μ∗ and
μi < μ∗ for all i �= j . Under the MED policy, the expected regret after the N th round is
bounded as

EF [Regret(N)] ≤
∑
i �=j

Δi(1 + ε) logN

Dmin(Fi,μ∗, A)
+ c(ε,F ) (10)

where ε > 0 is arbitrary and c(ε,F ) is a constant independent of N and is specifically given
in (36).
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We obtain the tightest bound by taking the infimum over ε. Also, note that we obtain

lim sup
N→∞

EF [Regret(N)]
logN

≤
∑
i �=j

Δi

Dmin(Fi,μ∗, A)
,

by dividing both sides by logN , letting N → ∞ and finally letting ε ↓ 0. In view of (3) and
(5) we see that the MED policy is asymptotically optimal. We give a proof of Theorem 2 in
Sect. 3.3.2.

Remark 2 The optimality of the MED policy in Theorem 2 is stronger than the optimality of
the policy proposed by Burnetas and Katehakis (1996). Let X ⊂ [0, 1] be an arbitrary known
finite subset of [0, 1] such that 1 ∈ X . Then AX = {F ∈ A : supp(F ) ⊂ X } is the model used
by Burnetas and Katehakis (1996). Since AX ⊂ A, Dmin(F,μ, A) ≤ Dmin(F,μ, AX ) holds
and there is a possibility that EF [Ti(n)] for F ∈ AK

X achieved by an asymptotically optimal
policy for A may be worse than that achieved by an asymptotically optimal policy for AX .
However, it is easily checked using Lemma 2 below that Dmin(F,μ, A) = Dmin(F,μ, AX )

for F ∈ AX . Therefore, the MED policy achieves the same asymptotic bound as that by
Burnetas and Katehakis (1996) for F ∈ AK

X in spite of the weaker knowledge about the
distributions.

3.2 Computation of Dmin and its properties

For implementing the MED policy it is essential to compute the minimum empirical diver-
gence Dmin(F̂j (n), μ̂∗(n), A) for each round efficiently. In addition, for proofs of Lemma 1
and Theorem 2, we need to understand the behavior of Dmin(F,μ, A) as a function of μ. In
this subsection, we clarify the nature of the convex optimization involved in the computation
of Dmin(F̂j (n), μ̂∗(n), A) and show how the minimum can be computed efficiently.

First we prove that it is sufficient to consider Asupp′(F ) (recall that supp′(F ) = supp(F ) ∪
{1}) for the computation of Dmin(F,μ, A):

Lemma 2 Dmin(F,μ, A) = Dmin(F,μ, Asupp′(F )) holds for any F ∈ A.

Proof Take an arbitrary G ∈ A \ Asupp′(F ) such that E(G) ≥ μ, D(F‖G) < +∞ and
G(supp′(F )) = p < 1. Define G′ ∈ Asupp′(F ) as

G′({x}) ≡

⎧⎪⎨
⎪⎩

G({1}) + (1 − p) x = 1

G({x}) x �= 1, x ∈ supp(F )

0 otherwise.

E(G) and D(F‖G) are bounded by

E(G) ≤ 1 · G({1}) +
∑

x∈supp(G)∩ supp(F )\{1}
xG({x}) +

∑
x∈supp(G)\(supp(F )∪{1})

1 · G({x})

= (
G′({1}) − (1 − p)

)+
∑

x∈supp(G)∩ supp(F )\{1}
xG′({x}) + (1 − p)

=
∑

x∈supp′(G)∩ supp′(F )

xG′({x})

= E(G′) (as supp(G′) ⊂ (supp′(G) ∩ supp′(F )))
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and

D(F‖G) =
∑

x∈supp(F )

F ({x}) log
F({x})
G({x})

≥
∑

x∈supp(F )

F ({x}) log
F({x})

G({x}) + (1 − p)I[x = 1]
= D(F‖G′),

respectively. Therefore, we obtain

inf
G∈A:E(G)≥μ

D(F‖G) ≥ inf
G′∈Asupp′(F ):E(G′)≥μ

D(F‖G′).

The converse inequality is obvious from Asupp′(F ) ⊂ A. �

In view of this lemma, we simply write Dmin(F,μ) instead of Dmin(F,μ, A) = Dmin(F,

μ, Asupp′(F )) for the rest of this paper.
Let M ≡ |supp′(F )| and denote the finite symbols in supp′(F ) by x1, . . . , xM : i.e., {1} ∪

supp(F ) = {x1, . . . , xM}. We assume x1 = 1 and xi < 1 for i > 1 without loss of generality
and write fi ≡ F({xi}).

Now the computation of Dmin(F,μ) can be formulated as the following convex opti-
mization problem for G = (g1, . . . , gM) using Lemma 2:

minimize
M∑

i=1

fi log
fi

gi

subject to gi ≥ 0, ∀i,

M∑
i=1

xigi ≥ μ,

M∑
i=1

gi = 1, (11)

where we define 0 log 0 ≡ 0, and 0 log 0
0 ≡ 0.

It is obvious that G = F is the optimal solution with the optimal value 0 when 1 ≥
E(F ) ≥ μ. Also G = δ1, the unit point mass at 1, is the unique feasible solution if μ = 1.
For μ > 1 the problem is infeasible. Since these cases are trivial, we consider the case
E(F ) < μ < 1 in the following.

Define a function h(ν;F,μ) on ν with parameters F,μ by

h(ν;F,μ) ≡ EF [log(1 − (X − μ)ν)] =
M∑
i=1

fi log(1 − (xi − μ)ν), (12)

where we define logx ≡ −∞ for x ≤ 0. Then, wherever h(ν;F,μ) is finite, the derivatives
h′, h′′ on ν exist and

h′(ν;F,μ) = ∂

∂ν
h(ν;F,μ) = −

M∑
i=1

fi(xi − μ)

1 − (xi − μ)ν
, (13)

h′′(ν;F,μ) = ∂2

∂ν2
h(ν;F,μ) = −

M∑
i=1

fi(xi − μ)2

(1 − (xi − μ)ν)2
. (14)
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We write h(ν),h′(ν), h′′(ν) when F,μ are obvious from the context. Now we show in The-
orem 3 that the computation of Dmin can be expressed as the maximization of h(ν). Since
h(ν) is concave, this is a univariate convex optimization problem. Therefore, Dmin can be
computed easily by iterative methods such as Newton’s method (see, e.g., Boyd and Van-
denberghe (2004) for general methods of convex programming).

Theorem 3 Define EF [(1 − μ)/(1 − X)] = ∞ for the case F({1}) = f1 > 0. Then the
following three properties hold for E(F ) < μ < 1:

(i) Dmin(F,μ) can be written as

Dmin(F,μ) = max
0≤ν≤ 1

1−μ

h(ν) (15)

and the optimal solution ν∗ ≡ argmax0≤ν≤ 1
1−μ

h(ν) is unique.

In particular for the case E[(1 −μ)/(1 −X)] ≤ 1, we have ν∗ = 1/(1 −μ) and (15) can
be simply written as

Dmin(F,μ) = h

(
1

1 − μ

)
=

M∑
i=2

fi log

(
1 − xi

1 − μ

)
. (16)

(ii) ν∗ satisfies

ν∗ ≥ μ − E(F )

μ(1 − μ)
.

(iii) Dmin(F,μ) is differentiable in μ ∈ (E(F ),1) and

∂

∂μ
Dmin(F,μ) = ν∗.

Note that

lim
ν↑ 1

1−μ

h′(ν) = (1 − μ)

(
1 − EF

[
1 − μ

1 − X

])
(17)

including the case that EF [(1 − μ)/(1 − X)] = +∞ for F({1}) > 0. Intuitively, the special
case EF [(1−μ)/(1−X)] ≤ 1 in Theorem 3 (i) arises because h′(ν) ≥ limν↑1/(1−μ) h

′(ν) ≥ 0,
i.e., h(ν) is monotonically increasing in ν ∈ [0,1/(1 − μ)] for this case.

We sometimes write ν∗(F,μ) instead of ν∗ when we need to emphasize that ν∗ depends
on F and μ. We give a proof of Theorem 3 in Sect. 3.3.1.

Remark 3 Parts (ii) and (iii) of the theorem are useful not only for proofs but also for a
practical implementation: (ii) can be used for obtaining the lower bound of the optimal
solution ν∗, and (iii) can be used for linear approximation if the variation of μ is small.

3.3 Proofs of Theorems 2 and 3

In this section we give proofs of Theorems 2 and 3. First we prove Theorem 3; then we
prove Theorem 2 using Theorem 3.
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3.3.1 A proof of Theorem 3

(i) Equality h′′(ν) = h′′(ν;F,μ) = 0 holds only for the degenerate case that fi = 1 at xi = μ,
and this case does not satisfy the assumption E(F ) < μ. Therefore, h′′(ν) < 0 wherever
h(ν) > −∞ and h(ν) is strictly concave. The uniqueness of ν∗(F,μ) follows from the strict
concavity.

Now we derive results (15) and (16) by the technique of Lagrange multipliers (see The-
orem 4 in Appendix B). Note that the problem (11) is a convex optimization problem, and
therefore, a local minimizing point is a global minimizing point.

The Lagrangian function for (11) is

L({gi}, {λi}, ν, ξ) =
M∑
i=1

fi log
fi

gi

−
M∑
i=1

λigi + ν

(
μ −

M∑
i=1

xigi

)
+ ξ

(
1 −

M∑
i=1

gi

)

and condition (a) in Theorem 4 is

λ∗
i g

∗
i = 0, λ∗

i ≥ 0, g∗
i ≥ 0, i = 1, . . . ,M,

ν∗
(

μ −
M∑
i=1

xig
∗
i

)
= 0, ν∗ ≥ 0,

M∑
i=1

xig
∗
i ≥ μ,

M∑
i=1

g∗
i = 1,

− fi

g∗
i

− λ∗
i − ν∗xi − ξ ∗ = 0, i = 1, . . . ,M,

For condition (b) in Theorem 4, extracting (B.1) and (B.2), it suffices to show

M∑
i=1

z2
i

fi

(g∗
i )

2
> 0 for all z = (z1, . . . , zM) �= 0 such that

M∑
i=1

zi = 0, (18)

where fi/(g
∗
i )

2 ≡ 0 for fi = 0.
First we consider the case EF [(1 − μ)/(1 − X)] ≤ 1. We show

g∗
i =

⎧⎨
⎩

fi
1−μ

1−xi
i �= 1

1 −∑M

j=2 fj
1−μ

1−xj
i = 1,

(19)

λ∗
i = 0, ν∗ = 1/(1 − μ) and ξ ∗ = −1/(1 − μ) satisfy the second-order sufficient conditions

for a strict local minimizing point in Theorem 4. Note that EF [(1−μ)/(1−X)] ≤ 1 implies
f1 = 0 and therefore

M∑
i=1

xig
∗
i =

⎛
⎝1 −

M∑
j=2

fj

1 − μ

1 − xj

⎞
⎠+

M∑
i=2

xifi

1 − μ

1 − xi

= 1 −
M∑

j=2

fj (1 − xj )
1 − μ

1 − xj

= μ
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and

g∗
1 = 1 −

M∑
j=2

fj

1 − μ

1 − xj

= 1 − EF

[
1 − μ

1 − X

]
≥ 0.

The other conditions in (a) are easily checked. By (18), condition (b) is checked in the
following way. The conditions z �= 0 and

∑M

i=1 zi = 0 imply that zi �= 0 holds for more than
one i. On the other hand, fi/(g

∗
i )

2 > 0 holds for all i �= 1. Therefore, z2
i fi/(g

∗
i )

2 > 0 holds
for at least one i and (18) is satisfied. From this we obtain (16) and then (15) follows from
the concavity of h(ν) and h′(1/(1 − μ)) ≥ 0 by (17).

Now we consider the remaining case, EF [(1 − μ)/(1 − X)] > 1. Since h′(0) > 0 and
limν↑1/(1−μ) h

′(ν) < 0 by (17), ν∗ = argmax0≤ν≤1/(1−μ) h(ν) satisfies

−h′(ν∗) =
M∑

i=1

fi

xi − μ

1 − (xi − μ)ν∗ = 0.

Therefore, we obtain

M∑
i=1

fi

1 − (xi − μ)ν∗ =
M∑
i=1

fi

1 − (xi − μ)ν∗

1 − (xi − μ)ν∗ + ν∗
M∑

i=1

fi

xi − μ

1 − (xi − μ)ν∗ = 1 (20)

and

M∑
i=1

fixi

1 − (xi − μ)ν∗ =
M∑
i=1

fi

xi − μ

1 − (xi − μ)ν∗ + μ

M∑
i=1

fi

1 − (xi − μ)ν∗ = μ. (21)

It can be checked using (20) and (21) that

g∗
i = fi

1 − (xi − μ)ν∗ , (22)

λ∗
i =

{
0 fi > 0

1 − (xi − μ)ν∗ fi = 0,

ξ ∗ = 1 + μν∗ and ν∗ satisfy the second-order sufficient conditions (a). Condition (b) is
checked in the same way as for the case EF [(1 − μ)/(1 − X)] ≤ 1, and (15) is obtained.

Remark 4 From the existence of ν∗ = argmax0≤ν≤1/(1−μ) h(ν), {g∗
i } in (19) and (22) al-

ways exists. Furthermore, it is assured from the second-order conditions that {g∗
i } is a min-

imizer for Dmin(F,μ). As a result, Dmin(F,μ) ≡ infG∈A:E(G)≥μ D(F‖G) can be written as
Dmin(F,μ) = minG∈A:E(G)≥μ D(F‖G).

(ii) The claim is obviously true for the case EF [(1 − μ)/(1 − X)] ≤ 1 and we consider
the case EF [(1 − μ)/(1 − X)] > 1. Note that we can assume E(F ) > 0 for this case since
E(F ) = 0 implies F({0}) = 1 and EF [(1 − μ)/(1 − X)] = 1 − μ < 1. Define a function
w(x, ν) on [0,1] × [0,1/(1 − μ)) as

w(x, ν) ≡ x − μ

1 − (x − μ)ν
.
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Since

∂2w(x, ν)

∂x2
= 2ν

(1 − (x − μ)ν)3
≥ 0,

w(x, ν) is convex in x ∈ [0,1] for any fixed ν ∈ [0,1/(1 − μ)). Therefore,

h′(ν) = −
M∑

i=1

fiw(xi, ν)

≥ −
M∑

i=1

fi

(
(1 − xi)w(0, ν) + xiw(1, ν)

)

= (E(F ) − 1)w(0, ν) − E(F )w(1, ν)

= μ(1 − E(F ))

1 + μν
− E(F )(1 − μ)

1 − (1 − μ)ν
. (23)

The right-hand side of (23) is 0 for ν = (μ − E(F ))/(μ(1 − μ)) ∈ [0,1/(1 − μ)) and so

h′
(

μ − E(F )

μ(1 − μ)

)
≥ 0.

Since h′(ν) is monotonically decreasing from the concavity of h(ν), the inequality ν∗ ≥
(μ − E(F ))/(μ(1 − μ)) is proved.

(iii) It is obvious that ∂
∂μ

Dmin(F, ν) = 1/(1 − μ) = ν∗ for EF [(1 − μ)/(1 − X)] < 1 and

lim
ε↓0

Dmin(F,μ + ε) − Dmin(F,μ)

ε
= 1

1 − μ

for EF [(1 − μ)/(1 − X)] = 1.
Now consider the case EF [(1 − μ)/(1 − X)] ≥ 1. Define an unconstrained optimization

problem D′
min(F,μ) ≡ maxν h(ν;F,μ) = maxν h(ν) with parameter μ. Since h′(0) ≥ 0 and

limν↑1/(1−μ) h
′(ν) ≤ 0, D′

min(F,μ) = max0≤ν≤1/(1−μ) h(ν) = Dmin(F,μ) for this case. Now
we apply Theorem 5 in Appendix B to D′

min(F,μ) = −minν(−h(ν)). For the unconstrained
optimization problem, the second-order sufficient condition that ν∗ is a strict local minimiza-
tion point of −h(ν) is simply written as −h′(ν∗) = 0 and −h′′(ν∗) > 0, which correspond
to conditions (a) and (b), respectively. We can check them easily and we obtain from Theo-
rem 5 that D′

min(F,μ) is differentiable in μ with

∂

∂μ
D′

min(F,μ) = ∂

∂μ
h(ν;F,μ)

∣∣∣∣
ν=ν∗(F,μ)

= ν∗(F,μ).

Therefore, we obtain

∂

∂μ
Dmin(F,μ) = ∂

∂μ
D′

min(F, ν) = ν∗(F,μ)

for EF [(1 − μ)/(1 − X)] > 1 and
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lim
ε↓0

Dmin(F,μ − ε) − Dmin(F,μ)

−ε
= lim

ε↓0

D′
min(F,μ − ε) − D′

min(F,μ)

−ε

= ν∗(F,μ) = 1

1 − μ

for EF [(1 − μ)/(1 − X)] = 1.

3.3.2 A proof of Theorem 2

For the proof of Theorem 2, it is necessary to measure the distance between a distribution
Fi and the corresponding empirical distribution F̂i . We adopt the variational distance

‖F − G‖ ≡ 1

2

∑
x∈supp(F )∪ supp(G)

|F({x}) − G({x})|

for the distance between two distributions F,G ∈ A. Although variational distance is almost
meaningless when Fi has a continuous support, it does allow us to use the following two
lemmas that are helpful in our finite support model for deriving a bound on the finite-time
regret.

Lemma 3 (Lemma 11.6.1 of Cover and Thomas 2006) For arbitrary F,G ∈ A

2‖F − G‖2 ≤ D(F‖G).

This inequality is sometimes called Pinsker’s inequality.

Lemma 4 Let F,G ∈ A and θ : [0,1] → R be arbitrary. Then

∣∣EF [θ(X)] − EG[θ(X)]∣∣ ≤
(

max
x

θ(x) − min
x

θ(x)
)

‖F − G‖.

Proof Let θ̄ = maxx θ(x), θ = minx θ(x) and θ0 = (θ̄ + θ)/2. Note that EF [θ(X)] −
EG[θ(X)] = EF [θ(X) − θ0] − EG[θ(X) − θ0]. Then we obtain

∣∣EF [θ(X)] − EG[θ(X)]∣∣=
∣∣∣∣∣∣

∑
x∈supp(F )∪ supp(G)

(θ(x) − θ0)(F ({x}) − G({x}))
∣∣∣∣∣∣

≤ 1

2

∑
x∈supp(F )∪ supp(G)

(θ̄ − θ) · |F({x}) − G({x})|

= (θ̄ − θ)‖F − G‖,
where the inequality follows from the fact that |θ(x) − θ0| ≤ (θ̄ − θ)/2 for all x. �

We now give three lemmas on properties of Dmin.

Lemma 5 Dmin(F,μ) is monotonically increasing in μ.

This result follows immediately from the definition Dmin(F,μ) ≡ infG∈A:E(G)≥μ D(F‖G).
We use this monotonicity implicitly in the proof of Theorem 2.
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Lemma 6 For μ′ ≤ μ < 1

Dmin(F,μ) − Dmin(F,μ′) ≤ μ − μ′

1 − μ
. (24)

Furthermore, if μ′ > E(F ) then

Dmin(F,μ) − Dmin(F,μ′) ≥ (μ − μ′)2

2
. (25)

Proof First we show (24) holds for μ′ ≤ E(F ). Since Dmin(F,μ′) = 0 for μ′ ≤ E(F ), we
obtain (24) by

Dmin(F,μ) − Dmin(F,μ′) = Dmin(F,μ)

≤ h(0) + h′(0)
1

1 − μ
(by (15) and the concavity of h(ν))

= μ − E(F )

1 − μ

≤ μ − μ′

1 − μ
.

Next we show (24) and (25) hold for μ′ > E(F ). Dmin(F,u) is differentiable in u > E(F )

from Theorem 3 (iii) and

Dmin(F,μ) − Dmin(F,μ′) =
∫ μ

μ′

∂

∂u
Dmin(F,u)du =

∫ μ

μ′
ν∗(F,u)du.

Note that

ν∗(F,u) ≤ 1

1 − u
≤ 1

1 − μ
(26)

holds from the definition of ν∗(F,u) and

ν∗(F,u) ≥ u − E(F )

u(1 − u)
≥ u − μ′ (27)

holds from Theorem 3 (ii). We obtain (24) and (25) by integrating the right-hand sides of
(26) and (27) over u ∈ [μ′,μ]. �

Lemma 7 Define d(τ ;F,μ) for τ > 0 by

d(τ ;F,μ) ≡
⎧⎨
⎩

τ2(1−μ)

4Dmin(F,μ)
ν∗(F,μ) = 1

1−μ

τ(1−(1−μ)ν∗(F,μ))

ν∗(F,μ)
ν∗(F,μ) < 1

1−μ
.

(28)

Then

Dmin(F
′,μ) ≥ Dmin(F,μ) − τ. (29)

holds for all F ′ ∈ A satisfying ‖F ′ − F‖ < d(τ ;F,μ).
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Note that lim infF ′→F Dmin(F
′,μ) ≥ Dmin(F,μ) follows immediately from this lemma,

which means that Dmin(F,μ) is lower-semicontinuous in F .

Proof Let F ′ ∈ A satisfy ‖F ′ −F‖ < d(τ ;F,μ). First we show for arbitrary ν ∈ [0,1/(1 −
μ)) that

Dmin(F
′,μ) ≥ EF [log(1 − (X − μ)ν)] − ν d(τ ;F,μ)

1 − (1 − μ)ν
. (30)

Since, for ν ∈ [0,1/(1 − μ)) and x ∈ [0,1], we have

log(1 − (1 − μ)ν) ≤ log(1 − (x − μ)ν) ≤ log(1 − (0 − μ)ν),

it holds that

EF [log(1 − (X − μ)ν)] − EF ′ [log(1 − (X − μ)ν)]
≤ d(τ ;F,μ)

(
log(1 − (0 − μ)ν) − log(1 − (1 − μ)ν)

)
(by Lemma 4)

= d(τ ;F,μ) log

(
1 + ν

1 − (1 − μ)ν

)

≤ d(τ ;F,μ)
ν

1 − (1 − μ)ν
. (31)

Now we have (30) since

Dmin(F
′,μ) = max

0≤ν′≤ 1
1−μ

EF ′ [log(1 − (X − μ)ν ′)]

≥ EF ′ [log(1 − (X − μ)ν)]

≥ EF [log(1 − (X − μ)ν)] − ν d(τ ;F,μ)

1 − (1 − μ)ν
(by (31)).

We obtain (29) for the case ν∗(F,μ) < 1/(1 − μ) by letting ν := ν∗(F,μ).
Now we consider the case ν∗(F,μ) = 1/(1 − μ). Since h(ν) = EF [log(1 − (X − μ)ν)]

is concave in ν, h(ν) is bounded from below for ν ∈ [0,1/(1 − μ)):

EF [log(1 − (X − μ)ν)] = h(ν) ≥
1

1−μ
− ν

1
1−μ

h(0) + ν
1

1−μ

h

(
1

1 − μ

)

= ν(1 − μ)Dmin(F,μ) (32)

as h(0) = 0 and h(1/(1 − μ)) = Dmin(F,μ). Therefore, for arbitrary ν ∈ [0,1/(1 − μ)), we
obtain

Dmin(F
′,μ) ≥ ν(1 − μ)Dmin(F,μ) − ν

1 − (1 − μ)ν

τ 2(1 − μ)

4Dmin(F,μ)

from (28), (30) and (32). By letting

ν :=
⎧⎨
⎩

1
1−μ

(
1 − τ

2Dmin(F,μ)

)
τ ≤ 2Dmin(F,μ)

0 τ > 2Dmin(F,μ),
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we obtain

Dmin(F
′,μ) ≥

⎧⎨
⎩

Dmin(F,μ) − τ + τ2

4Dmin(F,μ)
τ ≤ 2Dmin(F,μ)

0 τ > 2Dmin(F,μ)

≥ Dmin(F,μ) − τ. �

We now give a proof of Theorem 2.

Proof of Theorem 2 Without loss of generality, we assume that j =1 and μ2=maxi=2,...,K μi ,
that is, Π1 is the optimal and Π2 is the second optimal arm. Then μ1 = μ2 + Δ2 > μ2 ≥ μi

for i = 2, . . . ,K . For notational convenience we denote the event that Πi is pulled at the n-
th round by Jn(i) ≡ {Jn = i}. Expectations and probabilities under F and the randomization
in the policy are simply written as E[·] and P [·].

We define events An(i), Bn, Cn, Dn as follows.

An(i) ≡
{
D̂i(n) ≥ Dmin(Fi,μ1)

1 + ε

}
, i = 2, . . . ,K

Bn ≡ {μ̂1(n) ≥ μ1 − δ}
Cn ≡

{
μ̂1(n) < μ1 − δ ∩ max

i=2,...,K
μ̂i(n) < μ1 − δ

}

Dn ≡
{
μ̂1(n) < μ1 − δ ∩ max

i=2,...,K
μ̂i(n) ≥ μ1 − δ

}
,

where δ > 0 is a constant satisfying

δ < min

{
Δ2,

ε(1 − μ1)

1 + ε
min
i �=1

{Dmin(Fi,μ1)}
}

. (33)

Now the regret can be written as

Regret(N) =
N∑

n=1

K∑
i=2

ΔiI[Jn(i)]

=
N∑

n=1

(
K∑

i=2

ΔiI[Jn(i) ∩ Bn] +
K∑

i=2

ΔiI[Jn(i) ∩ Bc
n]
)

,

where each term is bounded from above by

K∑
i=2

ΔiI[Jn(i) ∩ Bn] ≤
K∑

i=2

Δi

(
I[Jn(i) ∩ An(i)] + I[Jn(i) ∩ Ac

n(i) ∩ Bn]
)

(34)

and

K∑
i=2

ΔiI[Jn(i) ∩ Bc
n] ≤

(
max

i
Δi

) K∑
i=2

I[Jn(i) ∩ Bc
n]

≤
(

max
i

Δi

)
I[Bc

n]
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≤
(

max
i

Δi

)
(I[Cn] + I[Dn]) (as Bc

n = Cn ∪ Dn). (35)

In Lemmas 8–11, which follow this proof, we bound the expected values of sums of the
four terms on the right-hand sides of (34) and (35). From these lemmas we obtain

EF [Regret(N)] ≤
K∑

i=2

Δi(1 + ε) logN

Dmin(Fi,μ1)
+

K∑
i=2

Δi (1 + γ (|supp(Fi)|, ηi(ε, δ)))

+
(

max
i

Δi

)(
Kγ

(
|supp(F1)|, δ2

2

)
+ K2

1 − exp(−2(Δ2 − δ)2)

)
(36)

where γ (x, y) (x, y > 0) is given by

γ (x, y) ≡
∞∑
t=1

(t + 1)x exp(−yt)

and ηi(ε, δ) is defined by (37) in Lemma 9 below. We complete the proof by defining c(ε,F )

in Theorem 2 as the infimum over δ of the sum of the second and third terms of the right-
hand side of (36). �

Remark 5 We assumed in Theorem 2 that there exists a single optimal arm. For the case
of more than one optimal arms, optimality can be proved in a similar way by substituting
μ̂1(n) in Bn, Cn with maxj :μj =μ∗ μ̂j (n). However, this makes the proofs even longer and so
we do not give them in this paper.

Lemma 8 For i = 2, . . . ,K it holds that

E

[
N∑

n=1

I[Jn(i) ∩ An(i)]
]

≤ 1 + ε

Dmin(Fi,μ1)
logN + 1

Lemma 9 Define

ηi(ε, δ) ≡ 2

(
d

(
ε

1 + ε
Dmin(Fi,μ1) − δ

1 − μ1
;Fi,μ1

))2

, (37)

where d(·; ·, ·) is given in (28). Then it holds for i = 2, . . . ,K that

E

[
N∑

n=1

I[Jn(i) ∩ Ac
n(i) ∩ Bn]

]
≤ γ (|supp(Fi)|, ηi(ε, δ)).

Lemma 10

E

[
N∑

n=1

I[Cn]
]

≤ Kγ

(
|supp(F1)|, δ2

2

)
.

Lemma 11

E

[
N∑

n=1

I[Dn]
]

≤ K2

1 − exp(−2(Δ2 − δ)2)
.
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Before proving these lemmas, we give intuitive interpretations for the four indicator func-
tions in Lemmas 8–11.

An(i) represents the event that the estimator D̂i(n) = Dmin(F̂i(n), μ̂∗(n)) of Dmin(Fi,μ
∗)

is already close to Dmin(Fi,μ
∗) and Πi is pulled with a small probability. After sufficiently

many rounds An(i) occurs with probability close to 1 and the term
∑N

n=1 I[Jn(i) ∩ An(i)] is
the main term for the regret.

The other terms represent events that each estimator is not yet close to the true value. The
term involving Cn is essential for the consistency of the MED policy.

Ac
n(i) ∩ Bn represents the event that D̂i(n) has not converged because F̂i (n) is not close

to Fi although μ̂∗(n) is already close to μ1. In this event Πi is pulled and F̂i(n) is updated
more frequently. As a result, Ac

n(i) ∩ Bn happens only for a few n.
Similarly, Dn represents the event that μ̂i happens to be large for some i �= 1. In this

event F̂i (n) is updated more frequently and Dn also happens only for a few n.
On the other hand, Cn represents the event that μ̂1 is not yet close to μ1. It requires many

rounds for Π1 to be pulled since Π1 seems to be suboptimal in this event. Therefore, Cn

may happen for many n.

Proof of Lemma 8 By partitioning I[Jn(i) ∩ An(i)] according to the number of occurrences
of the event Jm(i) ∩ Am(i) before the n-th round (i.e.,

∑n−1
m=1 I[Jm(i) ∩ Am(i)]), we have

N∑
n=1

I[Jn(i) ∩ An(i)]

≤ (1 + ε) logN

Dmin(Fi,μ1)
+

N∑
n=1

I

[
Jn(i) ∩ An(i) ∩

{
n−1∑
m=1

I[Jm(i) ∩ Am(i)] >
(1 + ε) logN

Dmin(Fi,μ1)

}]
.

Since
∑n−1

m=1 I[Jm(i) ∩ Am(i)] ≤∑n−1
m=1 I[Jm(i)] = T ′

i (n), we obtain

N∑
n=1

I[Jn(i) ∩ An(i)] ≤ (1 + ε) logN

Dmin(Fi,μ1)
+

N∑
n=1

I

[
Jn(i) ∩ An(i) ∩ T ′

i (n) >
(1 + ε) logN

Dmin(Fi,μ1)

]
.

Taking the expected value, we have

E

[
N∑

n=1

I[Jn(i) ∩ An(i)]
]

≤ (1 + ε) logN

Dmin(Fi,μ1)
+

N∑
n=1

P

[
Jn(i) ∩ An(i) ∩ T ′(n) >

(1 + ε) logN

Dmin(Fi,μ1)

]

≤ (1 + ε) logN

Dmin(Fi,μ1)
+

N∑
n=1

P

[
Jn(i)

∣∣∣∣An(i) ∩ T ′
i (n) >

(1 + ε) logN

Dmin(Fi,μ1)

]

≤ (1 + ε) logN

Dmin(Fi,μ1)
+ N exp

(
− (1 + ε) logN

Dmin(Fi,μ1)

Dmin(Fi,μ1)

1 + ε

)
(by (9))

= (1 + ε) logN

Dmin(Fi,μ1)
+ 1. �
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Proof of Lemma 9 Assume that Ac
n(i) ∩ Bn holds. Then

Dmin(Fi,μ1)

1 + ε
> Dmin(F̂i(n), μ̂∗(n))

≥ Dmin(F̂i(n),μ1 − δ)

≥ Dmin(F̂i(n),μ1) − δ

1 − μ1
(by (24))

or equivalently

Dmin(F̂i(n),μ1) − Dmin(Fi,μ1) < −
(

ε

1 + ε
Dmin(Fi,μ1) − δ

1 − μ1

)
. (38)

From (33), the right-hand side of (38) is negative and

D(F̂i(n)‖Fi) ≥ 2‖F̂i(n) − Fi‖2 (by Lemma 3)

≥ 2

(
d

(
ε

1 + ε
Dmin(Fi,μ1) − δ

1 − μ1
;Fi,μ1

))2

= ηi(ε, δ),

where the last inequality follows since Lemma 7 implies that if Dmin(F
′,μ) −

Dmin(F,μ) < −τ , then ‖F ′ − F‖ ≥ d(τ ;F,μ). Now we evaluate I[Jn(i) ∩ Ac
n(i) ∩ Bn]

as

N∑
n=1

I[Jn(i) ∩ Ac
n(i) ∩ Bn] ≤

∞∑
t=1

∞∑
n=1

I[Jn(i) ∩ T ′
i (n) = t ∩ Ac

n(i) ∩ Bn]

≤
∞∑
t=1

∞∑
n=1

I[Jn(i) ∩ T ′
i (n) = t ∩ D(F̂i,t‖Fi) ≥ ηi(ε, δ)]

≤
∞∑
t=1

I[D(F̂i,t‖Fi) ≥ ηi(ε, δ)], (39)

where (39) follows because there is at most one n such that Jn(i) ∩ T ′
i (n) = t . Finally, we

obtain

E

[
N∑

n=1

I[Jn(i) ∩ Ac
n(i) ∩ Bn]

]
≤

∞∑
t=1

PFi
[D(F̂i,t‖Fi) ≥ ηi(ε, δ)]

≤
∞∑
t=1

(t + 1)|supp(Fi )| exp(−t ηi(ε, δ))

(by Lemmas 13 and 14 in Appendix A)

= γ (|supp(Fi)|, ηi(ε, δ)). �

Proof of Lemma 10 From Lemma 14 in Appendix A it holds for any type Q ∈ Lt ⊂ A that

PF1 [F̂1,t = Q] ≤ exp(−tD(Q‖F1)) ≤ exp(−tDmin(Q,μ1)). (40)
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Let R1 < · · · < Rm be the smallest m integers in {n : T ′
1(n) = t ∩ Cn}. (R1, . . . ,Rm) is

well defined on the event m ≤∑∞
n=1 I[T ′

1(n) = t ∩ Cn]. Note that

{ ∞∑
n=1

I[T ′
1(n) = t ∩ Cn] ≥ m

}
⊂ {

T ′
1(R1) = · · · = T ′

1(Rm)
}

⊂
m−1⋂
l=1

{JRl
�= 1} (41)

since JRl
= 1 implies T ′

1(Rl) + 1 = T ′
1(Rl + 1) ≤ T ′

1(Rl+1). Let (r1, . . . , rm−1) ∈ N
m−1 be a

realization of (R1, . . . ,Rm−1). (Recall that we write an event as, e.g., “Jrk �= 1 ∩ Rk = rk”
instead of “{Jrk �= 1} ∩ {Rk = rk}”.) Then we obtain for any (r1, . . . , rm−1) that

P

[{ ∞∑
n=1

I[T ′
1(n) = t ∩ Cn] ≥ m

}
∩ (R1, . . . ,Rm−1) = (r1, . . . , rm−1) ∩ F̂1,t = Q

]

≤ P

[{
m−1⋂
l=1

{Jrl �= 1}
}

∩ (R1, . . . ,Rm−1) = (r1, . . . , rm−1) ∩ F̂1,t = Q

]

= PF1 [F̂1,t = Q]
m−1∏
l=1

(
P

[
Rl = rl

∣∣∣
l−1⋂
k=1

{Jrk �= 1 ∩ Rk = rk} ∩ F̂1,t = Q

]

× P

[
Jrl �= 1

∣∣∣ Rl = rl ∩
l−1⋂
k=1

{Jrk �= 1 ∩ Rk = rk} ∩ F̂1,t = Q

])

≤ PF1 [F̂1,t = Q]
m−1∏
l=1

(
P

[
Rl = rl

∣∣∣
l−1⋂
k=1

{Jrk �= 1 ∩ Rk = rk} ∩ F̂1,t = Q

]

×
(

1 − 1

K
exp(−tDmin(Q, μ1 − δ))

))
(by (9) and μ̂∗(Rl) < μ1 − δ)

= PF1 [F̂1,t = Q]
(

1 − 1

K
exp(−tDmin(Q, μ1 − δ))

)m−1

×
m−1∏
l=1

P

[
Rl = rl

∣∣∣
l−1⋂
k=1

{Jrk �= 1 ∩ Rk = rl} ∩ F̂1,t = Q

]
.

By taking the disjoint union of (r1, . . . , rm−1) ∈ N
m−1, we have

P

[{ ∞∑
n=1

I[T ′
1(n) = t ∩ Cn] ≥ m

}
∩ F̂1,t = Q

]

≤ PF1 [F̂1,t = Q]
(

1 − 1

K
exp(−tDmin(Q, μ1 − δ))

)m−1

. (42)
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Note that E[X] = ∑∞
m=1 P [X ≥ m] for any nonnegative integer random variable X. Then

we have

E

[ ∞∑
n=1

I[T ′
1(n) = t ∩ Cn]

]

=
∑

Q∈Lt :E(Q)<μ1−δ

∞∑
m=1

P

[{ ∞∑
n=1

I[T ′
1(n) = t ∩ Cn] ≥ m

}
∩ F̂1,t = Q

]

≤
∑

Q∈Lt :E(Q)<μ1−δ

∞∑
m=1

exp(−tDmin(Q,μ1))

(
1 − 1

K
exp(−tDmin(Q, μ1 − δ))

)m−1

(by (40) and (42))

= K
∑

Q∈Lt :E(Q)<μ1−δ

exp
(

− t
(
Dmin(Q,μ1) − Dmin(Q, μ1 − δ)

))

≤ K
∑

Q∈Lt :E(Q)<μ1−δ

exp

(
− tδ2

2

)
(by (25))

≤ K(t + 1)|supp(F1)| exp

(
− tδ2

2

)
(by Lemma 13 in Appendix A). (43)

We complete the proof by

E

[
N∑

n=1

I[Cn]
]

≤ E

[ ∞∑
t=1

∞∑
n=1

I[T ′
1(n) = t ∩ Cn]

]

≤
∞∑
t=1

K(t + 1)|supp(F1)| exp

(
− tδ2

2

)
(by (43))

= Kγ

(
|supp(F1)|, δ2

2

)
. �

Finally we prove Lemma 11 using Hoeffding’s inequality (see, e.g,. Appendix B of Pol-
lard 1984).

Lemma 12 (Hoeffding’s Inequality) Let X1, . . . ,Xn be i.i.d. random variables with sup-
ports in [0,1]. Then it holds for all a > 0 that

Pr

[
1

n

n∑
t=1

Xt − E[X1] ≥ a

]
≤ exp(−2na2).

Proof of Lemma 11 Since Dn ⊂⋃K

i=2{μ̂i(n) = μ̂∗(n) > μ1 − δ}, it holds that
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∞∑
n=1

I[Dn] ≤
K∑

i=2

∞∑
n=1

I[μ̂i(n) = μ̂∗(n) > μ1 − δ]

=
K∑

i=2

∞∑
t=1

∞∑
n=1

I[T ′
i (n) = t ∩ μ̂i,t = μ̂∗(n) > μ1 − δ]. (44)

Now we use a reasoning similar to that used to derive (42). Let R1 < · · · < Rm be the
smallest m integers in {n : T ′

i (n) = t ∩ μ̂i,t = μ̂∗(n) > μ1 − δ}. (R1, . . . ,Rm) is well defined
on the event m ≤∑∞

n=1 I[T ′
i (n) = t ∩ μ̂i,t = μ̂∗(n) > μ1 − δ]. Note that

{ ∞∑
n=1

I[T ′
i (n) = t ∩ μ̂i,t = μ̂∗(n) > μ1 − δ] ≥ m

}
⊂

m−1⋂
l=1

{
JRl

�= i
}

by the same argument as (41). Then we have

P

[ ∞∑
n=1

I[T ′
i (n) = t ∩ μ̂i,t = μ̂∗(n) > μ1 − δ] ≥ m

]

= PFi
[μ̂i,t > μ1 − δ]

× P

[ ∞∑
n=1

I[T ′
i (n) = t ∩ μ̂i,t = μ̂∗(n) > μ1 − δ] ≥ m

∣∣∣∣∣μ̂i,t > μ1 − δ

]

≤ PFi
[μ̂i,t > μ1 − δ]P

[
m−1⋂
l=1

{
JRl

�= i
} ∣∣∣∣∣ μ̂i,t > μ1 − δ

]

≤ PFi
[μ̂i,t > μ1 − δ]

(
1 − 1

K

)m−1

(by μ̂i(Rl) = μ̂∗(Rl) and (8)). (45)

Therefore,

E

[ ∞∑
n=1

I[T ′
i (n) = t ∩ μ̂i,t = μ̂∗(n) > μ1 − δ]

]

=
∞∑

m=1

P

[ ∞∑
n=1

I[T ′
i (n) = t ∩ μ̂i,t = μ̂∗(n) > μ1 − δ] ≥ m

]

≤ K PFi
[μ̂i,t > μ1 − δ] (by (45))

≤ K PFi
[μ̂i,t > μi + Δ2 − δ] (by μ1 = μ2 + Δ2 ≥ μi + Δ2)

≤ K exp(−2t (Δ2 − δ)2) (by Hoeffding’s inequality and Δ2 − δ > 0 from (33)). (46)

From (44) and (46) we obtain

E

[
N∑

n=1

I[Dn]
]

≤
K∑

i=2

∞∑
t=1

K exp(−2t (Δ2 − δ)2)

≤ K2

1 − exp(−2(Δ2 − δ)2)
. �
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4 Experiments

In this section, we present some simulation results for our MED policy and the UCB policies
of Auer et al. (2002a).

First we give an algorithm for computing Dmin(F,μ) and ν∗ with parameters ν0, r , which
we denote by Dmin(F,μ;ν0, r). Here ν0 is an initial value of ν for the optimization in Theo-
rem 3 and r is a stopping criterion for iterations. Recall that h,h′ and h′′ are defined in (12),
(13) and (14).
[Computation of Dmin(F,μ;ν0, r)]
Require: r > 0, ν0 ≥ 0;

if f1 = 0 and
∑

i �=1 fi
1−μ

1−xi
≤ 1 then

return
(
h
(

1
1−μ

)
, 1

1−μ

)
;

end if
ν, ν := μ−E(F )

μ(1−μ)
; ν := 1

1−μ
; νprev := ∞;

if ν0 ∈ (ν, ν) then
ν := ν0;

end if
while |ν − νprev| > r do

if h′(ν) > 0 then
ν := ν;

else
ν := ν;

end if
νprev := ν; ν := ν − h′(ν)/h′′(ν);
if ν /∈ (ν, ν) then

ν := ν+ν

2 ;
end if

end while
return

(
maxν′∈{ν,ν,ν} h(ν ′), argmaxν′∈{ν,ν,ν} h(ν ′)

)
;

In this algorithm, a lower and an upper bound of ν∗ are given by ν and ν, respectively. In
each step, the next point is determined based on Newton’s method by ν := ν −h′(ν)/h′′(ν).
When ν does not improve the bounds ν, ν, the next point is determined by the bisection
method, ν := (ν + ν)/2. The iteration stops if the current ν is close to the previous value
of ν, given by νprev.

The computations of h,h′ and h′′ in the while loop are summations over |supp(F )| terms
and are the main contributors to the complexity of this algorithm. In particular, they require
O(Ti(n)) (≈ O(logn)) computations for a continuous support model since |supp(F̂i,t )| ≤ t .
On the other hand, Dmin(F,μ) is differentiable with respect to μ (with slope ν∗) and the
argument μ converges to μ∗ after sufficiently many rounds. Therefore, it is reasonable to
approximate Dmin(F,μ) by the previous value of Dmin(F,μ;ν0, r) until the variation of μ

is small. From this point of view, we implemented our MED policy for our simulations in
the following way:

[Linearly Approximated MED policy]
Parameter: Real r, s > 0.
Initialization:

1. Pull each arm once.
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2. Set (D̂i, νi) := Dmin(F̂i,1, μ̂∗(K + 1);0, r) and mi := μ̂∗(K + 1) for each i =
1, . . . ,K .

Loop: For the n-th round,

1. Update variables for each i:

– If Jn−1 �= i and |μ̂∗(n) − mi | < s then D̂i := D̂i + νi(μ̂
∗(n) − mi).

– Otherwise (D̂i, νi) := Dmin(F̂i(n), μ̂∗(n);νi, r) and mi := μ̂∗(n).

2. Choose arm Πj according to the probability

pj (n) ≡ exp(−T ′
j (n)D̂j )∑K

i=1 exp(−T ′
i (n)D̂i)

.

In this algorithm, D̂i is an approximation of the current Dmin(F̂i(n), μ̂∗(n)), and mi, νi are
the values of μ̂∗, ν∗ at the last round in which D̂i is computed by the algorithm Dmin(·, · ; ·, ·).
D̂i is computed (without iteration) by the linear approximation using the derivative in The-
orem 3 (iii) when the current μ∗(n) is close to mi . Parameter s is the criterion for the ap-
proximation.

Now we describe the setting of our experiments. We used the (linearly approximated)
MED, UCB-tuned and UCB2 policies. Each plot is an average over 1,000 different runs.
The parameter α for UCB2 is set to 0.001; however, the choice of α does not have an
important impact on the performance (see Auer et al. 2002a). First we check the effect of
the choice of the parameters r and s. Then the MED and UCB policies are compared.

Table 1 gives the list of distributions used in the experiments. They cover various situa-
tions that affect the computation of Dmin and change how distinguishable the optimal arm
is. Distributions 1–4 are examples of 2-armed bandit problems.

In Distribution 1, ν∗ ≥ (μ − E(F ))/(μ(1 − μ)) in Theorem 3 always holds with
equality because supp(Fi) ⊂ {0,1}. Therefore the exact solution can be obtained by
Dmin(F,μ; ν0, r) regardless of ν0 and r . Also, in Distribution 2 Dmin(F,μ;ν, r) does not
require iteration after sufficiently many rounds since EF2 [(1 − μ1)/(1 − X)] < 1. On the
other hand, in Distribution 3 Dmin has to be computed numerically in almost all rounds
since EF2 [(1 − μ1)/(1 − X)] > 1. As a result, for Distributions 1–3, the behavior of the
Linearly Approximated MED policy is closest to the ideal MED policy in Distribution 1 and
furthest from it in Distribution 3.

Distribution 4 is an example of a difficult problem where the optimal arm is hard to
distinguish since the suboptimal arm appears to be optimal at first with high probability.
Distributions 5 and 6 are examples of more general problems where the numbers of arms
K and the support sizes are large. Be(α,β) (α,β > 0) in Distribution 6 denotes the beta
distribution which has the density function

xα−1(1 − x)β−1

B(α,β)
for x ∈ [0,1]

where B(α,β) is the beta function. Note that beta distributions have continuous support and
are not included in A and, therefore, the performance of the MED policy is not assured
theoretically. However, the MED policy is still formally applicable since the supports are
bounded.

In Figs. 1–7 the label “regret” denotes
∑

i:μi<μ∗ ΔiTi(n), which is the loss due to choos-
ing suboptimal arms, while “regret per round” denotes (1/n) ·∑i:μi<μ∗ ΔiTi(n), which is
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Table 1 Distributions for experiments

Distribution 1:

F1({0}) = 0.45, F1({1}) = 0.55 E(F1) = 0.55

F2({0}) = 0.55, F2({1}) = 0.45 E(F2) = 0.45

Distribution 2:

F1({0.4}) = 0.5, F1({0.8}) = 0.5 E(F1) = 0.6

F2({0.2}) = 0.5, F2({0.6}) = 0.5 E(F2) = 0.4

Distribution 3:

F1({x}) = 0.08 for x = 0, 0.1, . . . ,0.9, F1({1}) = 0.2 E(F2) = 0.56

F2({x}) = 1
11 for x = 0, 0.1, . . . ,0.9, 1 E(F2) = 0.5

Distribution 4:

F1({0}) = 0.99, F1({1}) = 0.01 E(F1) = 0.01

F2({0.008}) = 0.5, F2({0.009}) = 0.5 E(F2) = 0.0085

Distribution 5:

F1({x}) = 0.08 for x = 0, 0.1, . . . ,0.9, F1({1}) = 0.2 E(F1) = 0.56

Fi({x}) = 1
11 for x = 0, 0.1, . . . ,0.9, 1 E(Fi) = 0.5

for i = 2,3,4,5

Distribution 6:

F1 = Be(0.9,0.1) E(F1) = 0.9

F2 = Be(7,3) E(F2) = 0.7

F3 = Be(0.5,0.5) E(F3) = 0.5

F4 = Be(3,7) E(F4) = 0.3

F5 = Be(0.1,0.9) E(F5) = 0.1

Fig. 1 Comparison of results for different parameters in the MED policy

suitable for observations of the regret at small rounds. The label “number of iterations”
denotes the number of iterations of the while loop executed in Dmin(F̂i(n), μ̂∗(n);νi, r)

at each round. The number is 0 when Di is computed by the linear approximation. “Dmin”
stands for the asymptotic bound for a consistent policy,

∑
i:μi<μ∗ Δi logn/Dmin(Fi,μ

∗). The
asymptotic slope of the regret (in the semi-logarithmic plot) of a consistent policy is greater
than or equal to that of “Dmin”.
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Fig. 2 Simulation results for Distribution 1 (Bernoulli distributions)

Fig. 3 Simulation results for Distribution 2 (uniform distributions with different supports)

Fig. 4 Simulation results for Distribution 3 (distributions where Dmin is computed by the while loop in the
algorithm “Computation of Dmin(F,μ;ν0, r)”)
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Fig. 5 Simulation results for Distribution 4 (very confusing distributions)

Fig. 6 Simulation results for Distribution 5 (5 arms with a wide support)

Fig. 7 Simulation results for Distribution 6 (beta distributions)
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Table 2 Comparison of
theoretical upper bounds for
expected regrets

Distribution MOSS UCB1 UCB2 MED

1 1800 737 2.2 × 1013 1.4 × 1013

2 1219 369 1.1 × 1013 3.3 × 109

3 2216 1228 3.7 × 1013 2.9 × 1062

4 6930 49121 1.5 × 1015 1.5 × 1019

5 10957 4913 1.5 × 1014 9.7 × 1062

6 8571 776 2.3 × 1013 –

Figure 1 shows an experiment investigating the effects of the choice of the parameters
r and s in the MED policy for Distribution 3. The Linearly Approximated MED policy
approaches the ideal MED policy as r, s → 0. However, we see from the left figure that the
regret is not sensitive to the choice of r or s. In view of the computational complexity, the
linear approximation with the criterion s seems to be effective (see the right-hand figure).
On the other hand, the effect of varying r seems to be small compared to changing s. This
may be because the initial value νi in Dmin(F̂i(n), μ̂∗(n);νi, r) is already sufficiently close
to the optimal solution and the computation is usually completed in one iteration regardless
of r . Based on these results, we use s = 0.01 and r = 0.001 in the remaining experiments.

Now we summarize the remaining experiments which compare the different policies
(Figs. 2–7).

– The MED policy always seems to achieve the asymptotic bound even for continuous
support distributions, since the asymptotic slope of the regret is close to that of “Dmin”.

– The UCB-tuned works best in most cases when n is small.
– The MED policy eventually performs best, except for Distribution 1 where it performs

worst. However, consistency is not proved for the UCB-tuned unlike for the MED and
UCB2 policies. It appears that the UCB-tuned policy might not be consistent, because
the asymptotic slope of the regret seems to be smaller than that of “Dmin”. Note that the
theoretical logarithmic terms of the regret are very close for the MED and UCB2 policies
with Distribution 1 (4.983 logn and 5.025 logn, respectively). Therefore, this result can
be interpreted as follows: the MED policy achieves the asymptotic bound but needs some
improvement in the constant term of the regret compared to the UCB2 policy.

Finally, we mention that the upper bound of the expected regret given by (10) and (36) is
very inaccurate because of the constant term c(ε,F ). Table 2 denotes the theoretical upper
bound of the expected regrets after the 10000th round of MOSS (Audibert and Bubeck
2009), UCB1 (Auer et al. 2002a), UCB2 and MED. The parameter α in UCB2 is set
α = 0.001, which is the same as in the simulations. The bound for MED is the infimum
of (10) over ε. We see from the table that the theoretical upper bound of MED is quite
large compared to the other policies, especially for the case that support size |supp(F )| is
large. On the other hand, UCB1 and MOSS assure relatively reasonable regrets, although
the coefficients of the logarithmic terms are larger than that of MED and UCB2.

From the simulation results in Figs. 2–6, we can conjecture that the expected regret of
MED does not have such a huge value. Therefore, it is still important to derive a realistic
finite-time regret for the MED policy.
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5 Concluding remarks

We have proposed the minimum empirical divergence (MED) policy, and proved that it
achieves the asymptotic bound for finite support models. We also showed that our policy
can be implemented efficiently by a convex optimization technique.

In the theoretical analysis of this paper, we assumed the finiteness of the support al-
though the MED policy also worked well in the simulations for distributions with continu-
ous bounded support. We conjecture that the optimality of the MED policy holds also for
the continuous bounded support model as it does for the DMED policy in Honda and Take-
mura (2010). In addition, there are many models for which Dmin can be computed explicitly,
such as the normal distribution model with unknown mean and variance. We expect that our
MED policy can be extended to these models.

It is important to consider a finite-time regret for the finite horizon case. Although we
derived a finite-time regret for the MED policy, it is still very inaccurate. Therefore, it is
important to derive a better method for evaluating regret. Furthermore, the MED policy
itself should be improved for the special setting of a finite horizon in which the number of
rounds is given in advance. In this setting, the value of “exploration” becomes smaller and
a current best arm should be pulled more often as the number of remaining rounds becomes
smaller.

Acknowledgements We thank the reviewers for helpful comments, which have led to improvements in
both our results and presentation. Junya Honda gratefully acknowledges support of JSPS Research Fellow-
ships for Young Scientists. Akimichi Takemura acknowledges support of Aihara Project, the FIRST program
from JSPS.

Appendix A: Method of types

Let X ⊂ R be an arbitrary finite set and let F be an arbitrary probability distribution on X ,
i.e., supp(F ) ⊂ X . An empirical distribution F̂n of n independent samples from F is called
a type. The set of all possible types from n samples is denoted by Ln.

Lemma 13 (Theorem 11.1.1 of Cover and Thomas 2006) |Ln| ≤ (n + 1)|X |.

Lemma 14 (Theorem 11.1.4 of Cover and Thomas 2006) For any type Q ∈ Ln,

(n + 1)−|X | exp(−nD(Q‖F)) ≤ PF [F̂n = Q] ≤ exp(−nD(Q‖F)).

Appendix B: Nonlinear optimization and sensitivity analysis

Consider an optimization problem

minimize f (x)

subject to gi(x) ≥ 0, i = 1, . . . ,m

hj (x) = 0, j = 1, . . . , p

for variable x ∈ R
n.
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Theorem 4 (Lemma 3.2.1 of Fiacco 1983) Assume that f,g and h are twice continuously
differentiable in a neighborhood of x∗. Then x∗ is a strict local minimizing point of the prob-
lem if there exist Lagrange multiplier vectors u∗ ∈ R

m and w∗ ∈ R
p satisfying the second-

order sufficient conditions for a strict local minimizing point, given by (a) and (b) below.

(a) First-order KKT conditions:

u∗
i gi(x

∗) = 0, u∗
i ≥ 0, gi(x

∗) ≥ 0, i = 1, . . . ,m,

hj (x
∗) = 0, j = 1, . . . , p,

∇xL(x∗,u∗,w∗) = 0,

where the Lagrangian function is given by

L(x,u,w) ≡ f (x) −
m∑

i=1

uigi(x) +
p∑

j=1

wjhj (x).

(b)

zT ∇2
xL(x∗,u∗,w∗)z > 0 for all z �= 0 such that (B.1)

∇xgi(x
∗)z ≥ 0 for all i, where gi(x

∗) = 0,

∇xgi(x
∗)z = 0 for all i, where u∗

i > 0,

∇xhj (x
∗)z = 0 for all j. (B.2)

Now we regard f (x) as f (x, ε) and consider an unconstrained minimization problem
P(ε) with the optimal value f ∗(ε) = minx f (x, ε) for parameter ε ∈ R

k .

Theorem 5 (Sensitivity analysis for unconstrained problem, Corollary 3.4.3 of Fiacco 1983)
Assume that f (x, ε) is twice continuously differentiable in (x, ε) in a neighborhood of
(x∗,0). If x∗ satisfies the above second-order sufficient conditions for problem P(0) then, in
a neighborhood of ε = 0, f ∗(ε) is differentiable with respect to ε and

∇εf
∗(ε) = ∇εf (x, ε)

∣∣
x=x∗ .
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