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Abstract This work studies an optimization scheme for computing sparse approximate so-
lutions of over-determined linear systems. Sparse Conjugate Directions Pursuit (SCDP)
aims to construct a solution using only a small number of nonzero (i.e. nonsparse) co-
efficients. Motivations of this work can be found in a setting of machine learning where
sparse models typically exhibit better generalization performance, lead to fast evaluations,
and might be exploited to define scalable algorithms. The main idea is to build up itera-
tively a conjugate set of vectors of increasing cardinality, in each iteration solving a small
linear subsystem. By exploiting the structure of this conjugate basis, an algorithm is found
(i) converging in at most D iterations for D-dimensional systems, (ii) with computational
complexity close to the classical conjugate gradient algorithm, and (iii) which is especially
efficient when a few iterations suffice to produce a good approximation. As an example, the
application of SCDP to Fixed-Size Least Squares Support Vector Machines (FS-LSSVM)
is discussed resulting in a scheme which efficiently finds a good model size for the FS-
LSSVM setting, and is scalable to large-scale machine learning tasks. The algorithm is
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empirically verified in a classification context. Further discussion includes algorithmic is-
sues such as component selection criteria, computational analysis, influence of additional
hyper-parameters, and determination of a suitable stopping criterion.

Keywords Sparse approximation · Greedy heuristic · Matching pursuit · Linear system ·
Kernel methods

1 Introduction

Consider a task of determining a vector of parameters w ∈ R
D such that

Xw = y, (1)

where y ∈ R
N , and the matrix X ∈ R

N×D which typically contains N measurements of size
D. As illustrated in Fig. 1, three problem cases can be distinguished:

– Uniquely-determined linear system (N = D): When X is of full rank and N = D, a single
unique solution exists.

– Over-determined linear system (N > D): When X is of full rank and D < N , no solution
exist.

– Under-determined linear system (D > N ): When X is of full rank and D > N , infinitely
many solutions exist.

The case that N equals D is not treated in this work. The other cases in general either
have no or infinitely many solutions. This gives the opportunity to choose one that satisfies
an appropriate criterion. Although this work focuses on over-determined systems, first an
example of under-determined systems originating from the signal processing community is
given.

In signal processing only recently a new area of sparse modeling of signals and images
emerged (Bruckstein et al. 2009). Consider a data compression example. Here, one tries
to transform raw data vectors to be represented in a new coordinate system. The reason
why people are interested in this change of coordinate system is a potential sparse repre-
sentation (i.e. the solution is expressed as a linear combination of the features using only a
few nonzero coefficients) of the original inputs. In case of data compression the goal is to
find the sparsest representation (which might be stored only using a small number of bits)
given the new coordinate basis. This typically leads to under-determined systems which
have infinitely many solutions. To narrow down the choice, one can include the requirement
to additionally minimize the non-sparsity using the L0-norm (which counts the number of
nonzero elements). This gives

w0,∗ = arg min
w

‖w‖0 such that Xw = y, (2)

where X ∈ R
N×D with N � D whose columns are the elements of the different bases to

be used in the representation, y the vector of signal values to be represented, and w the
coefficients in the coordinate system defined by X to represent y.

Often the exact constraint Xw = y is relaxed to tolerate a slight discrepancy between
Xw and y. In case the L2 norm is used for evaluating the error, the approximation of the
optimization problem in the under-determined setting becomes

w0,∗ = arg min
w

‖w‖0 such that ‖Xw − y‖2
2 ≤ δ. (3)
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Fig. 1 Schematical representation of (a) an uniquely defined system of linear equations; (b) an over-deter-
mined system of linear equations; (c) an under-determined system of linear equations

This work focuses on solving over-determined systems originating from least squares
estimation problems with sparse solutions. As will be explained next, this goal can be for-
mulated such as given in (3). Since over-determined systems in general cannot be exactly
solved, one typically prefers the solution solving the system (1) with minimal least squares
residuals r = Xw − y, or

w∗ = arg min
w

1

2
‖Xw − y‖2

2, (4)

which is equivalent to solving the normal equations defined as

Aw = b, (5)

if A is invertible and where we define A = XT X ∈ R
D×D and b = XT y ∈ R

D . Several
methods have been developed for solving such sets of linear equations. See the reference
works Press et al. (1993) and citations. One of the most successful iterative algorithm for
solving such large linear systems is the Conjugate Gradient (CG) algorithm. The CG method
for linear systems was first proposed by Hestenes and Stiefel (1952) in the 1950s as an
iterative method for solving linear systems with positive definite matrices. Later on, the
same ideas were used for solving non-convex optimization problems, notably in a context
of artificial neural networks (Möller 1993).

Solving (4) will not result in a sparse solution. The goal of this work is to devise an algo-
rithm which approximately solves (5) resulting in a sparse solution for w. Our motivations
to obtain a sparse approximative solution to (4) are:

– When dealing with estimation problems, sparse coefficients can be interpreted typically
as a form of feature selection.

– When working in the context of machine learning, sparse predictor rules lead typically to
improved generalization (Floyd and Warmuth 1995; Vapnik 1998).

– Sparseness can often be exploited to yield more computation and memory-efficient nu-
merical techniques, e.g. for evaluating the estimated model.

– Sparseness in the solution might be exploited when scaling algorithms up to handle large
data sets.

In order to obtain a sparse solution for w in (4), one may again search for the minimal
L0-norm of a solution approximatively solving (4). In that case, the objective reduces again
to (3), and we might as such handle the over-determined case by similar tools as those used
for the under-determined case. The aim of the present work is to devise a computationally
efficient algorithm which gives a sparse approximate solution of such a (possibly large-
scale) system. For this purpose CG is adapted such that the iteratively constructed conjugate
basis yields solutions of increasing cardinality. In case the algorithm can be terminated in
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less than D steps a sparse solutions is obtained. The resulting algorithm will be called Sparse
Conjugate Directions Pursuit (SCDP).

A second focus of the paper is to apply SCDP in the context of Least Squares Support
Vector Machines (LS-SVMs) (Suykens et al. 2002b). Compared to Support Vector Machines
(SVMs) (Vapnik 1998), LS-SVMs are based on solving a system of linear equations instead
of solving a Quadratic Program (QP) problem. Although learning can be performed using
a simpler optimization strategy, the LS-SVM solution is not sparse as opposed to SVM. In
order to obtain faster model evaluation, in Suykens et al. (2000, 2002a) the authors proposed
a pruning mechanism based on sorting the absolute values of the elements of the solution
of LS-SVM. A more sophisticated pruning scheme is explained in de Kruif and de Vries
(2003) for function estimation and in Zeng and Chen (2005) a Sequential Minimization
Optimization (SMO) based pruning method is proposed. However, in case of large-scale
problems these methods are not feasible since they all solve a large linear system which is
iteratively shrunken.

The proposed algorithm iteratively constructs a model with increasing cardinality and, if
stopped early (number of iterations smaller than the dimension of the training examples),
provides a sparse solution. For this purpose the primal formulation of the LS-SVM problem
is first approximated using the ideas described in Suykens et al. (2002b), De Brabanter
et al. (2010) to formulate a method called Fixed-Size LS-SVM (FS-LSSVM). This gives
an over-determined linear system which might be solved using SCDP. We will discuss the
connections to other methods found in the literature such as Kernel Matching Pursuit (KMP)
(Vincent and Bengio 2002), Sparse Greedy Gaussian Process (SGGP) (Smola and Bartlett
2001), Orthogonal Least Squares (OLS) regression (Chen et al. 2009), other sparse LS-SVM
versions (Cawley and Talbot 2002; Jiao et al. 2007).

The main contributions of this work can be summarized as follows:

– An integration of the conjugate gradient algorithm with matching pursuit (Mallat 1999).
– The use of SCDP for estimating fixed-size kernel models.
– A detailed description of all components of the model selection process including algo-

rithmic parameters, and Cross-Validation (CV). As a result of this process a “good” model
size is automatically obtained.

– An empirical comparison with other methods in terms of training complexity, classifica-
tion performance, and sparseness.

Different approaches to solve (3) found in the literature are discussed in Sect. 2. Then
details about, and relations to, existing alternatives of SCDP are given in Sect. 3. The ap-
plication of the resulting algorithm to the LS-SVM framework is given in Sect. 4. The final
algorithm is validated on several publicly available data sets as reported in Sect. 5 and con-
clusions are drawn in Sect. 6.

2 Heuristics to obtain a sparse approximation

In this section, methods to tackle the optimization described in (3) are briefly summarized
without making a distinction whether or not the method originates from an under-determined
or over-determined setting.

Since the problem defined in (3) is NP-hard in general (Natarajan 1995), the most effi-
cient known algorithms use heuristics to accomplish results. One such heuristic is backward
Stepwise Regression (BSR) (Hastie et al. 2001). Starting from a model obtained using all
components, BSR sequentially deletes components from the solution. However, since one
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of the goals of this work is to tackle large scale problems for which solving the full problem
(as required for BSR) might be unfeasible, backward selection techniques are disregarded.
Instead methods applicable to large scale data are considered. A good survey of such meth-
ods is given in Bruckstein et al. (2009). We now proceed by briefly summarizing the key
methods, and their relations.

2.1 Greedy heuristic

A first approach is to handle the problem heuristically as defined in (3) by greedy, stepwise
algorithms. A greedy strategy avoids an exhaustive search for solving (3) in favor of a series
of locally optimal single-term updates. In general, the approximation error is reduced in each
iteration as much as possible given the starting approximation and the constraint that only
one term can be selected at a single iteration. This explains the name “greedy”. Examples
include:

– A simple version in this class is called forward stepwise regression (FSR) in the statis-
tics community. This is equivalent to Matching Pursuit (MP) in the signal processing
and wavelet community (Mallat 1999). A principal scheme is shown in Algorithm 1. MP
(FSR) decomposes any y (e.g. signal) into a linear expansion of components (columns of
X) that are selected from X. Consider the normal equation in (5). The algorithm starts
with an empty active set (which is a set of indices associated to selected components) and
an approximate solution1 vector w(1) = 0D , 0D = (0, . . . ,0)T ∈ R

D and then iteratively
increments the cardinality of w(k). Given a collection of possible components, the one
having the largest absolute correlation with the residuals,2 c(k) = Aw(k) − b = XT r(k), is
selected, and denoted as3 (c(k))j . The corresponding element in the parameter vector (w)j

is then updated such that (c(k+1))j = 0. After calculating c(k+1) the process is repeated.
The algorithm is stopped when an appropriate stopping criterion is reached, possibly re-
sulting in a sparse parameter vector w(k).

– Because in the previous mentioned greedy algorithms only a single element of w(k) is
updated in each iteration, in case of MP (FSR) the set of components selected in each
iteration (k ≥ 2) is suboptimal in least squares sense and so are the corresponding ele-
ments of w(k). This can be corrected in each step using back-fitting (i.e. solving the linear
system using the components selected so far), which is known as Orthogonal Matching
Pursuit (OMP) (Pati et al. 1993). This is slightly different from Orthogonal Least Squares
(OLS) (Chen et al. 1989) which has a different component selection strategy. While being
computationally more demanding per iteration, often more accurate results are obtained
compared to MP.

– MP (FSR) is a greedy fitting technique that can be overly greedy, perhaps eliminating at
the next step useful components that happen to be correlated with the already selected
components. Forward Stagewise Regression (FStR) is a more cautious version of FSR,
which follows the same algorithm except that it only takes a fraction (using a shrink-
age factor) of the FSR step (i.e. the update rules in Algorithm 1 for w and c change to
(w(k+1))j = (w(k))j − sεβ and c(k+1) = c(k) + sεajβ with sε the shrinkage factor). This
results in smaller steps which may increase the computation time.

1To indicate a dependency on the iteration number k, variables are marked by a superscript (k).
2In case we mention residuals we indicate the residues from a linear system which in this work can be
r = Xw − y or c = Aw − b. Which linear system is considered should be clear from the context.
3Notation (x)j selects the j -th element of vector x.
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– Since greedy strategies add only a single component at each iteration to the active set, they
require at least as many iterations as there are nonzero elements in the solution vector w.
A recently proposed promising variant of OMP is called stagewise OMP (Donoho et al.
2006) which selects more than one component at each iteration using a thresholding pro-
cedure. Such approach can result in reducing the final number of iterations, but requires
slightly more work in each iteration.

Algorithm 1 Matching Pursuit

Define: Normal equations Aw = b originating from minw ‖Xw − y‖2
2

Final Estimate: w(k)

Initialize: w(1) = 0D , A = (a1, . . . , aN)T , c(1) = Aw(1) − b = −b, A = ∅, k := 1
repeat

j = arg maxi (|(c(k))i |), A := A ∪ {j}
β = (c(k))j /(aj )j

(w(k+1))j = (w(k))j − β

c(k+1) = c(k) + ajβ

k := k + 1
until Stopping criterion is reached

2.2 L1-norm heuristic

Another approach is to relax the zero norm ‖ · ‖0 to the convex ‖ · ‖1, resulting in the class
of L1-regularized algorithms. Here, one solves the problem

w∗,1 = arg min
w

‖w‖1 such that ‖Xw − y‖2
2 ≤ δ, (6)

which is equivalent to the optimization problem

min
w,t

1

2
‖Xw − y‖2

2 + λ‖w‖1, (7)

with λ > 0. This type of relaxation is used in for instance the LASSO (Tibshirani 1996),4

for the purpose of model selection in statistics or Basis Pursuit (BP) (Chen et al. 1999)
with applications such as compressed sensing (Candès 2006; Donoho 2006) and sparse sig-
nal recovery in signal processing (Donoho and Tsaig 2006). Because of the characteristics
of these constraints, the formulation tends to produce coefficients which are exactly zero.
Several special purpose solvers can be utilized to solve (7) such as

– Iteratively re-weighted Least Squares (IRLS) algorithms: by defining an appropriate Lan-
grangian, (7) can be stated as an unconstrained minimization problem which can be solved
by IRLS in case we write ‖w‖1 ≡ wT W †w where W = diag(|w|), and † denotes a pseudo-
inverse (Daubechies et al. 2008). Given a current approximate solution of w(k), compute
W(k) = diag(|w(k)|) and iteratively solve objective minw 0.5‖Xw − y‖2

2 + λwT W(k)†w.

4LASSO was mainly developed in the over-determined case.



Mach Learn (2011) 85:109–148 115

– Iterative shrinkage methods: for large scale problems an approximate strategy is more re-
alistic. Iterative shrinkage methods iteratively use a simple one dimensional operation that
set small entries to zeros and shrinking the other entries towards zero. Assume a square
unitary matrix X. As a first step find an intermediate solution w̃ = XT y, which hopefully
has only a few large entries exceeding many small noisy ones. Secondly, apply shrinkage
function f ((w)i;λt ) = sign((w)i)(|(w)i | − λt )+5 for i = 1, . . . ,D. In the general case
where X is not unitary this idea is applied iteratively. These methods can compete with
greedy methods both in simplicity and efficiency but are not yet as mature as the greedy
alternatives see Bruckstein et al. (2009) and the reference therein for a discussion.

– Stepwise algorithms: are heuristic methods, inspired by L1 solvers, which iteratively add
or remove components from the active set. Examples are (Least Angle RegreSsion) LARS
(Efron et al. 2004) and the homotopy method (Osborne et al. 2000). Consider the problem
(7). It was observed in Efron et al. (2004), and Osborne et al. (2000) that the regularization
path (i.e. the sequence of solutions, as λ varies from 0 to ∞) is piecewise linear, changing
only at critical values of λ. Each vertex on this regularization path indicates a different
sparse solution, i.e. vectors having nonzero elements only on a subset of the potential
components. At each vertex the active set is updated through the addition and removal of
components. Based on this observation a heuristic algorithm was developed that, starting
from an empty active set, iteratively adds and removes components. Note the difference
with the greedy approaches which can only increase the number of indices in the active
set. Once a component is in the active set it remains there.

– Dedicated solvers: by exploiting the structure of the resulting quadratic program, effi-
cient dedicated solvers are described, see e.g. Kim et al. (2007) which uses a specialized
interior-point algorithm, or Figueiredo et al. (2007) where the authors propose to use an
efficient gradient projection algorithm.

Remark 1 Using an L1 penalty introduces a bias which is often undesirable. As a conse-
quence (i) the intermediate solutions are not exactly equal to the least squares estimates (ii)
component selection is based on a biased estimator. To overcome the former, a de-bias step
can be performed (Moghaddam et al. 2006; Figueiredo et al. 2007). After finding an approx-
imate solution, the de-biased solution is found by fixing the sparsity pattern, and solving for
the remaining coefficients using an ordinary least squares method. Put in other words, hav-
ing selected the components, a reduced linear system is solved in these components alone.
Greedy techniques are also biased in their component selection strategy but provide the
intermediate least squares estimates directly.

2.3 Relations

In Efron et al. (2004) the LARS algorithm was proposed. LARS is a less greedy algorithm
than OMP (FSR with back-fitting), it uses a similar strategy but only uses as much of a
component as it “deserves”:

– Consider the normal equations defined in (5) and let the index set of currently selected
components be A = {s1, . . . , sNA

}, the set of not yet selected components Ā, selection
matrix �A = (es1 , . . . , esNA

),�A ∈ R
D×NA where ei ∈ R

D the i-th unit vector of size D,
and a submatrix AA = �T

AA�A of A.

5Operator (·)+ sets negative values to zero while positives remain unchanged.
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Fig. 2 Overview of different approaches to tackle (3)

– Start by selecting the j ∗-th column of X which correlates the most with Xw(1) − y or
j ∗ = arg maxj |bj | (since w(1) = 0).

– The parameter vector w(2) is changed6 according to the direction defined by the joint
least squares solution of the currently selected components AA�T

Aw(2) − �T
Ab = 0 un-

til a competitor j ∈ Ā has as much correlation with the current least squares residuals
(|AA�T

Aw(2) − �T
Ab|)i = |eT

j A�A�T
Aw(2) − eT

j b| for i ∈ {1, . . . ,NA}.
– Then this new component is inserted in A and removed from Ā, and the process is con-

tinued.

The following observations bridged the gap between L1-minimization and greedy OMP
(Donoho and Tsaig 2006; Efron et al. 2004):

– Only a simple modification to LARS (when a nonzero coefficient hits zero, drop it from
A and recompute the current joint least squares direction to LARS) is needed to make
LARS exactly reproduce the LASSO regularization path (the resulting algorithm is very
similar to the homotopy method described in Osborne et al. 2000).

– LARS and OMP are based on the same fundamental principle, which solves a sequence
of least-squares problems on an increasingly larger subspace, defined by the active set.

This helps explaining the similarity of both approaches in several theoretical and nu-
merical studies (Tropp 2004; Bruckstein et al. 2009). Since its simplicity and the fact that
OMP has similar behavior as the more sophisticated L1-norm based optimization methods,
we now proceed by defining an efficient algorithm for (greedy) OMP and present in the ex-
perimental section that it can outperform an L1 related alternative in terms of speed while
having comparable accuracy. Figure 2 schematically summarizes the different approaches
to tackle (3).

3 Greedy heuristic: sparse conjugate directions

This section describes a new approach to solve (3) which belongs to the category of greedy
heuristics.

6In Efron et al. (2004) the authors observed that both LASSO and FStR behaved very similar. In an attempt to
reduce the number of iterations of FStR, the authors defined LARS which “optimizes” the small FStR steps
to larger steps, but smaller than the FSR stepsize, which greatly reduces the computer processing time.



Mach Learn (2011) 85:109–148 117

Similar to the ideas in Lutz and Bühlmann (2006), Blumensath and Davies (2008) this
work adapts CG such that the iteratively constructed conjugate basis yields solutions of
increasing cardinality. In case the algorithm can be terminated in less than D steps a sparse
solution is obtained. Adapting CG in this way results in an efficient implementation of OMP,
which is a greedy based heuristic to solve (3) as pointed out in the previous section. Although
the focus in this work is on over-determined linear systems, notice that OMP is usually
applied in the under-determined case.

3.1 Conjugate gradient method

We now briefly review the CG algorithm, further details can be found in Nocedal and Wright
(2006). Consider a linear system Aw = b with a symmetric positive definite matrix, such
as in (5). Given a starting point w(1) ∈ R

D one can solve the linear system by iteratively
minimizing over a set of conjugate directions p by setting

w(k+1) = w(k) + η(k)p(k), (8)

where k is the iteration number and η(k) the minimizer along the direction w(k) + η(k)p(k).
One of the remarkable properties of the conjugate gradient method is its ability to gener-

ate very cheaply the set of conjugate directions. This is achieved by incrementally construct-
ing the conjugate basis set according to the highest remaining gradient of the optimization
problem. Computation is performed in a clever memory-friendly way, by using the property
that a conjugate vector p(k+1) can be computed based on the previous conjugate vector p(k)

only. Therefore, one can write p(k+1) = −c(k+1) + ξ (k+1)p(k), where ξ (k+1) is some appropri-
ate scalar. The new search direction is determined by a linear combination of the steepest
descent (negative gradient) direction and the previous search direction. An outline of CG is
shown in Appendix A.

In case some conditions are met (Nocedal and Wright 2006), can approximate using a
significantly smaller number of iterations than D. In case this property is preserved while
using a sparse conjugate directions basis, a sparse (approximate) solution can be obtained.

3.2 Modified CG using sparse conjugate directions

As mentioned previously our goal is to formulate an algorithm which approximately solves
the constrained minimization problem in (3). The idea is to adapt CG such that it can produce
sparse solutions by using a set of sparse conjugate vectors. The algorithm goes as follows:

– We iteratively construct a conjugate basis consisting of basis vectors of incremental car-
dinality, starting with w(1) = 0.

– The algorithm performs a globally optimal optimization according to each conjugate di-
rection.

– The sequence of conjugate basis vectors is designed such that we can terminate the pro-
cedure after a small number of iterations, leading to a sparse solution.

We call this algorithm Sparse Conjugate Directions Pursuit (SCDP).
Figure 3 displays the convergence plots for steepest descent, conjugate gradient and

sparse conjugate gradient executed on a 2-dimensional quadratic objective function asso-
ciated with a linear system Aw = b. It is seen that the first direction of SCDP is sparse (only
parameter (w)1 is nonzero) and that similar to CG only 2 iterations are needed to converge
to the global optimum. Steepest descent needs more iterations to converge as is seen by the
dotted line in Fig. 3.
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Fig. 3 Given the quadratic objective function associated with a linear system Aw = b of size 2 × 2, the
solutions in different iterations of steepest descent (given an appropriate step size), conjugate gradient and
sparse conjugate gradient are plotted. It is seen that the first direction of SCDP is sparse, only parameter (w)1
is nonzero, and that similar to CG only 2 iterations are needed to converge to the global optimum. Steepest
descent needs 9 iterations to converge

We now give a simple example indicating that SCDP for a specific problem outperforms
LASSO. Given a matrix X ∈ R

20×15 and a vector y ∈ R
20 both randomly sampled from a

normal distribution with zero mean and unit standard deviation. Given a model size l we try
to minimize the following objective minw ‖Xw −y‖2

2 such that ‖w‖ = l, hence aiming to be
as close as possible to the Pareto front. The latter is created by performing an enumerative
exhaustive search (which rapidly becomes impractical when D increases) for finding the
optimal subset of components given a cardinality. Hence, solving the problem defined in
(3) exactly. This curve sets a lower bound on the Mean Squared Error (MSE), ‖Xw − y‖2

2.
Next SCDP, LASSO, and a de-biased LASSO are applied to (XT X + εI)w = XT y with
ε = 10−9 to ensure numerical stability. Each curve is averaged over 100 randomizations.
In Fig. 4 MSE values are plotted as a function of the cardinality for each of the methods.
It is clearly observed that SCDP is closest to the Pareto front. The LASSO deviates more
from the Pareto front since it introduces an undesirable bias due to adding an additional
L1 penalization term to the optimization objective. SCDP does not have such bias. For the
LASSO it is therefore advised to use a second de-biasing step (Figueiredo et al. 2007) based
on a least square estimate with the obtained sparsity pattern. As seen in Fig. 4 adding a
de-bias step improves performance. Note that for (de-biased) LASSO, different values of λ

might give the same sparsity pattern. In Fig. 4 only that sparsity pattern providing the least
MSE value is plotted.

Although the focus of this paper is on solving over-determined linear systems, we now
consider a compressed sensing example (using the same setup as in Figueiredo et al. 2007)
to indicating that SCDP can work in the under-determined case. Consider a signal w ∈ R

4096

consisting of 160 spikes with amplitude ±1 drawn at the top in Fig. 5. The measurement
matrix X ∈ R

1024×4096 is created by first filling it with independent samples of a standard
Gaussian distribution and then orthonormalizing the rows. The observation vector y is gen-
erated using y = Xw + n, where n is noise drawn from a Gaussian distribution with zero
mean and a variance of σ 2. The middle of Fig. 5 presents the estimated signal wSCDP which
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Fig. 4 Comparison of the optimal MSE achieved for a given cardinality of the solution, obtained by SCDP,
the LASSO, de-biased LASSO and a Pareto front (the exact solution of the combinatorial problem (3)) is
made based on a small randomly generated linear system of size 20× 15. Results are averaged over 100 runs.
The MSE of the linear system is plotted as a function of the number of nonzero components of w. Note that
in case of the (de-biased) LASSO, multiple MSE values are available per model size. For visibility only the
minimum values are plotted. In this example SCDP is closer to the Pareto front than its alternatives

is obtained using SCDP with a given measurement matrix X, and measurements y. Although
N the number of measurements is far less than D the number of unknowns, SCDP success-
fully reconstructs the original sparse signal w. At the bottom of Fig. 5 the non-sparse least
squares solution is given. Figure 6 presents the percentage of recovered signals for different
variances. Per variance the results are averaged over 100 runs. In each run the initial fill-
ing of X and the non-zero positions in w are randomly chosen. A signal is recovered when
the non-zero position (after appropriate thresholding) in the true signal w match those in
the estimated signal wSCDP . The experiment is performed using both SCDP and LASSO.
The regularization parameter λ (used for LASSO) was set as suggested by Figueiredo et al.
(2007). For small variances both methods are able to recover the original signal exactly. For
larger variances a similar decrease in percentage of recovered signals is observed for both
methods.

Algorithm 2 gives the pseudo-code of the basic version of SCDP (a more detailed version
is described later). The outline of the algorithm resembles closely that of CG in Algorithm 5
in Appendix A, while an important difference lies in the construction of the conjugate basis
vectors. Unfortunately, it is in general not possible to construct a new conjugate direction
based on the previous solution only, as was the case for CG. As a consequence, the sparse
conjugate directions pursuit algorithm has to store all previous directions.

We proceed by explaining how to exploit the sparse structure of the conjugate basis in
order to efficiently compute p(k+1). Let π : {1, . . . ,D} → {1, . . . ,D} be a permutation which
denotes the order in which the components of A are selected in the algorithm. The next
section will discuss how to select the components, but for now we assume a given π . Define
a matrix P ∈ R

D×D which might contain all search directions, or P = (p(1), . . . , p(D))T .
The conjugate vectors are chosen such that the cardinality of each conjugate vector equals
the iteration number. When we select k columns of P according to π via selection matrix



120 Mach Learn (2011) 85:109–148

Fig. 5 Compressed sensing example. At the top the original signal sparse signal w is plotted. The middle
presents the estimated signal wSCDP which is obtained using SCDP with a given measurement matrix X,
and measurements y. Although N the number of measurements is far less than D, the number of unknowns,
SCDP successfully reconstructs the original sparse signal w given at the top. The bottom gives the least
squares solution

Fig. 6 Compressed sensing
example. For a set of variances
for the Gaussian distributed noise
which is added to y, a percentage
of recovered signals is computed
over 100 runs. Both LASSO and
SCDP were ran

�(k) ∈ R
D×k;�(k) = (eπ(1) . . . eπ(k)), the matrix structure is defined as follows

P (k+1) = �(k)T P�(k+1) =

⎛
⎜⎜⎜⎝

(p(1))π(1) 0 0
(p(2))π(1) (p(2))π(2) 0 0

...
...

. . .
. . .

...

(p(k))π(1) . . . (p(k))π(k) 0

⎞
⎟⎟⎟⎠ . (9)
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Algorithm 2 Sparse Conjugate Directions Pursuit for solving Aw = b

Define: A = AT  0, A ∈ R
D×D , A(k) = �(k)T A�(k),A(k) ∈ R

k×k and a
(k)
i is the i-th row

vector of A(k).
Final Estimate: w(k)

Initialize: w(1) = 0D , a permutation π : {1, . . . ,D} → {1, . . . ,D},
k := 1, p(1) = eπ(1), c

(1) = −b, �(1) = eπ(1); p(1), c(1), eπ(1) ∈ R
D .

repeat
η(k) = − c(k)T p(k)

p(k)T Ap(k)

w(k+1) = w(k) + η(k)p(k)

c(k+1) = c(k) + ηAp(k)

�(k+1) = [�(k) eπ(k)]

find p(k+1) such that

⎧⎪⎨
⎪⎩

‖p(k+1)‖0 = k + 1

p(i)T �(k+1)A(k+1)�(k+1)T p(k+1) = 0,∀i ∈ {1,2, . . . , k}
�(k+1)T Ap(k+1) ∈ span{a(k+1)

1 , . . . , a
(k+1)

k+1 }
k := k + 1

until Stopping criterion is met

Now suppose the k first conjugate vectors of P are available then a vector p(k+1) is conjugate
to this set with respect to A when the following equation is satisfied

�(k)T PAp(k+1) = 0. (10)

Since the set of vectors in P possesses a certain sparsity pattern, (10) can be written as
P (k+1)A(k+1)(�(k+1)T p(k+1)) = 0 where A(k+1) = �(k+1)T A�(k+1). In order to obtain the de-
sired sparse pattern for p(k+1), i.e. a cardinality that equals the iteration number, additional
constraints are added. Hence, the new sparse conjugate direction p(k+1) must then satisfy
the following

P (k+1)A(k+1)
(
�(k+1)T p(k+1)

) = 0,

such that

{
�(k+1)T Ap(k+1) ∈ span{a(k+1)

1 , . . . , a
(k+1)

k+1 }, ∀k,

‖p(k+1)‖0 = k + 1
(11)

where the span of a set of vectors in a vector space is the intersection of all subspaces
containing that set, and a

(k+1)
i is the i-th row or column vector of A(k+1). The first constraint

determines which components of pk+1 may be updated, i.e. those that correspond to the
selected columns and rows in A. The second ensures that the cardinality of the solution
equals the iteration number. As such, given a permutation π , one can compute a sequence of
search directions by solving iteratively for p(k+1). Let us define B(k+1) = P (k+1)A(k+1), then



122 Mach Learn (2011) 85:109–148

Proposition 1 The matrix B(k+1) has7 an upper triangular matrix structure defined as fol-
lows

B(k+1) =

⎛
⎜⎜⎜⎜⎜⎝

b
(k+1)

11 b
(k+1)

12 . . . b
(k+1)

1k b
(k+1)

1(k+1)

0 b
(k+1)

22

...
...

. . .
. . .

0 . . . 0 b
(k+1)
kk b

(k+1)

k(k+1)

⎞
⎟⎟⎟⎟⎟⎠

. (12)

Proof Given a symmetric positive definite matrix A, we proof by induction over k that the
following equations hold

�(k+1)T p(i)T a
(k+1)
j = 0 for i = 2, . . . , k + 1 and ∀j = 1, . . . , i − 1. (13)

According to (10) for k = 1 we have p(1)T Ap(2) = 0. Since p(1) contains only one nonzero
entry this can be written as za

(2)T

1 p(2) = 0 were z is an arbitrary constant or

a
(2)T

1 p(2) = 0. (14)

In case k = 1 equation p(2)T a
(2)

1 = 0 holds due to (14). For k = n we have
{

p(n+1)T �(n+1)a
(n+1)
j = 0 for ∀j = 1, . . . , n − 1,

p(n)T �(n+1)T a
(n+1)
j = 0 for i = 2, . . . , n and ∀j = 1, . . . , i − 1.

(15)

According to (10) the first set of equations hold in (15). Since p(n) has only n nonzeros
at entries corresponding with the first n selected components of A, the following holds
�(n+1)T p(n)T a

(n+1)
j = �(n)T p(n)T a

(n)
j . Hence using the induction hypothesis we have that

the second set of equations in (15) are true. Since the equations in 3.2 hold, matrix B(k+1)

has an upper triangular structure. �

Remark that the first direction p(1) can be chosen arbitrarily (with the constraint that
‖p(1)‖0 = 1) at the start of SCDP.

Given (10) the linear system (18) can be rewritten as

B(k+1)

⎛
⎜⎝

(p(k+1))π(1)

...

(p(k+1))π(k+1)

⎞
⎟⎠ = 0, (16)

where the first and second constraint in (11) are met. Since this is an under-determined
system with k + 1 parameters and k equations we choose the parameter value (p(k+1))π(k+1)

to be 1 in each iteration without loss of generality. If we define

U(k+1) =

⎛
⎜⎜⎜⎜⎝

b
(k+1)

11 b
(k+1)

12 . . . b
(k+1)

1k

0 b
(k+1)

22

...
...

. . .

0 . . . 0 b
(k+1)
kk

⎞
⎟⎟⎟⎟⎠

, (17)

7bij denotes the ij -th element of matrix B .
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the following linear system can be written

U(k+1)

⎛
⎜⎝

(p(k+1))π(1)

...

(p(k+1))π(k)

⎞
⎟⎠ = −

⎛
⎜⎝

b
(k+1)

1(k+1)

...

b
(k+1)

k(k+1)

⎞
⎟⎠ . (18)

Because U is an upper triangular matrix (Proposition 1) this linear system can be easily
solved by backward substitution (Press et al. 1993).

Remark 2 Note that SCDP is always started using w(1) = 0D . In this way the cardinality of
w(k) equals k for k = 1, . . . ,D.

3.3 On the choice of the next component

A very important step in the algorithm is the determination of the next search direction in
which the matrix �(k) selects the components of A. In relaxation techniques such as Gauss-
Seidel (GS) (Young 2003) one iteratively sets one residual in each iteration to zero and hopes
that this results in turning the new tentative solution closer to the correct solution. In order
to ameliorate the convergence speed one can use an ordering scheme in which the individual
residuals of c(k) = Aw(k) − b are set to zero according to Southwell iteration (Young 2003)
which means that the components of the largest residuals are selected first.

In SCDP we use the same idea. In each iteration we add a component of A which has the
largest absolute residual

s(k+1) = arg max
i /∈A

|(c(k))i |, (19)

where A is the set of previously selected indices. In each iteration the largest residual c(k)

will be set to zero, which might result in a rapidly decreasing objective.

3.4 Computational complexity

In Algorithm 3 a detailed version of SCDP is shown. As with CG the most expensive op-
eration is the matrix vector product Ap(k). Because in SCDP we have that ‖p(k)‖0 = k, this
product has complexity term O(kD). Unlike CG there is no simple update rule for determin-
ing a new conjugate vector. SCDP therefore needs to determine a new conjugate direction
based on all previous ones. The most expensive operation regarding the conjugate basis
is the computation of matrix B(k+1). Fortunately, it is not needed to recompute it in each
iteration. At iteration k + 1 we can incrementally update B(k+1) as follows

B(k+1) =
(

B(k) P
′(k)T a

(k)

s(k)(
0T

k−1 p(k)T a
(k)

s(k−1)

)
p(k)T a

(k)

s(k)

)
, (20)

where P
′(k) equals P (k) without the last 2 columns and 0k is a vector containing k zeros. This

means that B(k+1) can be updated iteratively at a cost of O(k2). This gives an overall com-
putational complexity of O(kD + k2) per iteration k compared to O(D2) for standard CG.
For large linear systems, SCDP will be much faster than CG in case only a small number
of iterations are needed. In terms of memory usage of the algorithm (without incorporating
the storage of A) we have that CG just needs to store the single previous direction, resid-
uals and parameter values which gives O(3D). SCDP needs to store the residuals c(k), the
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Table 1 Comparisons of SCDP
and CG in terms memory
requirement, training cost in
iteration k and the cardinality of
the parameter vector w (number
of nonzero elements)

SCDP CG

Memory O(D + 2k + k2) O(3D)

Computation O(kD + k2) O(D2)

Cardinality k D

nonzero elements of p(k) and w(k) and matrix B(k) which then gives O(D + 2k + k2). In
iteration k of SCDP the cardinality of the parameter vector w(k) is k compared to (most
likely) D in case of CG. The results are summarized in Table 1. Remark that the number of
iterations necessary to converge typically is much smaller than the data set size. This can be
observed in Sect. 5 in e.g. Table 3 where average model sizes (see column #PV ) obtained
using SCDP (applied to kernel models) on a number of data sets are presented. Since for
SCDP in iteration k the model size equals k it can be seen that the number of iterations to
converge is usually much smaller than the number of examples.

Algorithm 3 Detailed Sparse Conjugate Directions Pursuit

Define: A = AT  0, A(k) = �(k)T A�(k),A(k) ∈ R
k×k

Final Estimate: w(k)

Initialize: w(1) = 0D , c(1) = −b,
s(1) = arg maxi (|(c(1))i |), A = {s(1)}
p(1) = es(1) ,�(1) = es(1) , P = p(k), B(1) = ∅, k := 1
repeat

t = Ap(k)

η(k) = − c(k)T p(k)

p(k)T t

w(k+1) = w(k) + η(k)p(k)

c(k+1) = c(k) + η(k)t

s(k+1) = arg maxi /∈A(|(c(k))i |), A := A ∪ {s(k+1)}
�(k+1) = [

�(k) es(k+1)

]
B(k+1) = P T �(k+1)A(k+1)

p
(k+1)

s(k+1) = 1

(p(k+1))s(k) = −B
(k+1)
k(k+1)

B
(k+1)
kk

(p(k+1))s(i) = (−B
(k+1)
i(k+1)

−∑k
j=i+1 B

(k+1)
ij

p
(k+1)

s(j)
)

B
(k+1)
ii

, i = k − 1, k − 2, . . . ,1

P = [P p(k+1)]
k := k + 1

until Stopping criterion is met

3.5 Computational issues

3.5.1 Stopping criterion

Defining a stopping criterion is to some extent dependent on the application. In the sig-
nal processing related literature algorithms are typically stopped when ‖r(k)‖2

2 drops below
some predefined threshold. In machine learning, model selection is usually performed using
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the error estimated on independent validation sets. Since the application in the next section
resides in the latter context where the aim is to have a low misclassification rate on the train-
ing set and high generalization performance on unseen data, we shall rather choose the CV
error to decide when to stop. In case the algorithm can be stopped early at iteration k < D we
have a model with a cardinality of k. In fact the CV as used to obtain the hyper-parameters
is employed to determine the sparsity of the model as will be explained in Sect. 4.5.

3.5.2 Probabilistic speed-up

In order to decrease the computational complexity, algorithms similar to SCDP often only
use a subsample of components to choose from. In case of large scale systems the main com-
putational bottleneck of SCDP is to update c(k) (assuming that the algorithm can be stopped
long before reaching D). In case c(k) is not used as a stopping criterion it is only used to add
a new component to the active set (s(k+1) = arg maxi /∈A(|(c(k))i |)). Instead of using the full
search space ((c(k))i , i = 1, . . . ,D − k), for determining the novel nonsparse component in
an iteration, of dimension D −k only a random subset of size ρ might be employed. This re-
duces the computation time. The resulting algorithm is called SCDP Probabilistic (SCDPP).
In SCDPP there is no need to compute Ap(k) entirely, but instead only A(k)�(k)T p(k) has
to be computed and c∗(k) = �∗T A�(k)�(k)T w(k) − �∗T b where �∗ ∈ R

D×ρ is a randomly
drawn selection matrix for the purpose of selecting ρ components of A. Note that in case the
probabilistic speed up is used, the update rule c(k+1) = c(k) + η(k)t (see Algorithm 3) cannot
be used anymore since not all residuals are computed in each SCDP iteration.

In order to obtain a residual with a probability of 0.95 among the 5% largest residuals, we
only need a random subset of size ρ = 59 (Smola and Bartlett 2001; Popovici et al. 2005).
This means that in each iteration we only compute 59 residuals and select from within that
set the largest residual and corresponding component of A. In case the A is available in
memory, the training complexity can now approximately be written as O(ρk + k2). The
total memory used by the algorithm is now O(ρ + 2k + k2).

Note that repeating SCDP on a certain problem gives identical solutions. However, using
the described speed-up affects reproducibility of the results since each run of the algorithm
might give a different solution. As will be shown in the experimental section in some cases
the results may deviate strongly from those of standard SCDP, resulting in less accurate
predictions.

A more cleaver way of reducing computations might be to apply shrinking techniques
such as used in the SVM literature (Joachims 1999). Leaving out examples (rows of X) with
small corresponding r(k) (examples that are fitted correctly) in the computation of c(k) is not
likely to harm the process of selection a new candidate. Therefor, it might be interesting
to first select a set of examples with corresponding large r(k) values. Then do a number
of iterations using lightweight updates only operating on the reduced set (ρ equals size of
reduced set). Once in a while r(k) can be fully computed to change the reduced set.

4 Application: using SCDP for sparse reduced LS-SVMs

In this section a kernel-based learning method derived within the LS-SVM setting, is given.
We will proceed as follows:

1. First the kernel-based LS-SVM primal-dual context is briefly reviewed.
2. Since this work aims at large-scale systems with N � D, it is more advantageous to

solve in the primal space.
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3. In case of using kernels other than the linear one, the feature map in the primal formula-
tion is not explicitly known. Therefore, an approximation is needed which in this work
is obtained using the Nyström approximation (see Sect. 4.2).

4. As a result an over-determined linear system is obtained which may be solved using
SCDP to get sparser models.

4.1 Least squares support vector machines

An overview of Least Squares Support Vector Machine (LS-SVM) models has been given
in Suykens and Vandewalle (1999). Although the LS-SVM framework is studied in many
other contexts as well, we will only consider it here in case of classification problems which
is directly related to the regression case. Given a training set, the convex primal problem of
the LS-SVM classifier can be formulated as

min
w,e′

i
,b0

1

2
wT w + γ

2

N∑
i=1

e′2
i such that yif (xi) = 1 − e′

i , i = 1, . . . ,N, (21)

where a quadratic loss is used (instead of the hinge loss function typically employed in
SVMs) where f (x) = wT ϕ(x) + b0. Another difference is the use of equality constraints
instead of inequality constraints. The e′

i are slack variables allowing deviation form the
target labels yi . The formulation can be considered as a regression on the labels yi and is
equivalent to

min
w,ei ,b0

1

2
wT w + γ

2

N∑
i=1

e2
i such that f (xi) = yi − ei, i = 1, . . . ,N, (22)

where e′
i = yiei . Given a positive definite kernel function K : R

D × R
D → R

+ with
K(x,x ′) = ϕ(x)T ϕ(x ′) and a regularization constant γ ∈ R

+
0 , the solution to (22) is given

by the following dual problem (according to Suykens et al. 2002b):

⎛
⎜⎝

� + 1
γ
I 1N

1T
N 0

⎞
⎟⎠

⎛
⎜⎝

α

b0

⎞
⎟⎠ =

⎛
⎜⎝

y

0

⎞
⎟⎠ , (23)

where 1N = (1, . . . ,1)T ∈ R
N , y = (y1, . . . , yN)T , α = (α1, . . . , αN)T , �ij = K(xi, xj ) and

the identity matrix I = diag(1, . . . ,1) ∈ R
N×N . Note that this dual problem was also studied

in Saunders et al. (1998) without the use of a bias term. Efficient CG based solvers exist to
compute (23) (Chu et al. 2005).

4.2 Fixed-size method: Nyström approximation and estimation in the primal

Suppose one takes a finite dimensional feature map (e.g. a linear kernel K(x,x ′) = xT x ′).
Then one can equally well solve the primal (22) as the dual (23) problem. In fact solving the
primal problem might be more advantageous for larger data sets where the dimension of the
parameters w ∈ R

D is smaller compared to that of α ∈ R
N . In order to work in the primal

space using a kernel function other than the linear one, it is required to compute an explicit
approximation of the nonlinear mapping ϕ̂ : R

D → R
N , such that �ij ≈ ϕ̂(xi)

T ϕ̂(xj ).
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Based on Williams and Seeger (2001), the Nyström method is used to compute the ap-
proximated feature map ϕ̂i : R

D → R, i = 1, . . . ,N for a training point, or for any new point
x∗, with ϕ̂ = (ϕ̂1, . . . , ϕ̂N )T , is given as

ϕ̂i(x
∗) = 1√

λs
i

N∑
j=1

(ui)jK(xj , x
∗), (24)

where λs
i and ui are respectively the eigenvalues and eigenvectors of the kernel matrix � ∈

R
N×N,�ij = K(xi, xj ), xi and xj ∈ XTR with XTR the set of training examples.

Instead of using ϕ̂ ∈ R
N , in Williams and Seeger (2001) it was motivated to use a sub-

sample of size M � N to compute an approximate feature map of size M . The M vectors
are called Prototype Vectors (PVs) which might, but do not necessarily, coincidence with
training examples.

Let M be the size of the PV set, U = (u1, . . . , uM) the square matrix of eigenvectors of
�, ui = ((ui)1, . . . , (ui)M)T , and � = diag(λs

1, . . . , λ
s
N) a diagonal matrix of nonnegative

eigenvalues in decreasing order, �′ ∈ R
N×M,�′

ij = K(xi, xj ), xi ∈ XTR, xj ∈ XPV with XPV

the set of selected PVs. Then, the computation of the features in matrix notation can be
written as

�̂ = �′US, (25)

with matrix �̂ ∈ R
N×M defined as

�̂ =
⎛
⎜⎝

ϕ̂1(x1) . . . ϕ̂M(x1)
...

. . .
...

ϕ̂1(xN) . . . ϕ̂M(xN)

⎞
⎟⎠ , (26)

and S = �− 1
2 .

Given M � N , the goal is to find an approximate solution for the over-determined system
(�̂|1N)(wT |b)T = y. Solving (22) with an approximate feature map �̂ (i.e. the FS-LSSVM
training) boils down to solving the following linear system (De Brabanter et al. 2010),

⎛
⎜⎝

�̂T �̂ + 1
γ
I �̂T 1N

1T
N�̂ 1T

N 1N

⎞
⎟⎠

⎛
⎜⎝

w

b0

⎞
⎟⎠ =

⎛
⎜⎝

�̂T y

1T
Ny

⎞
⎟⎠ , (27)

where �̂ ∈ R
N×M is defined according to (26), w ∈ R

M are the model parameters and y ∈
R

N the class labels in case of classification. Solving the primal as in (27) leads to a sparse
representation.

Given an unseen data point x∗, the final classifier can be written as

ŷ∗ = sign(wT ϕ̂(x∗) + b0). (28)

Given a value M , PV selection concerns the process of selecting a set of PVs which
represent the training data distribution well. This set of PVs is then used to calculate the
approximate feature map ϕ̂. One approach might be to randomly select a subsample of the
training set. Other techniques approach this selection using an appropriate selection crite-
rion: (i) In Suykens et al. (2002b), De Brabanter et al. (2010) this is performed using a Rényi
entropy based selection method; (ii) In Zhang et al. (2008) the observation is made that the
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Fig. 7 Given a (tuned)
hyper-parameter set, a boxplot of
the 10-fold CV misclassification
score is plotted for the ripley
data set using different sizes for
M (the number of PVs). The PVs
are selected using k-center
clustering. The boxes have lines
at the lower quartile, median, and
upper quartile values. The
whiskers are lines extending from
each end of the boxes to show the
extent of the performances

Nyström low-rank approximation depends crucially on the quantization error induced by
encoding the sample set with landmark points. This suggests that one can simply use the
clusters obtained with a k-center (such as k-means) algorithm, which finds a local mini-
mum of the quantization error (note that using this technique the PVs do not necessarily
coincidence with the training data). A simple and fast greedy algorithm which approximates
the k-center clustering problem is proposed in Gonzalez (1985) and called farthest-point
clustering.

According to Suykens et al. (2002b), De Brabanter et al. (2010) the CV prediction error
of FS-LSSVM decreases with respect to the number of selected Prototype Vectors (PV) (or
put in other words, cardinality of the model) until it does not change much anymore. In
Suykens et al. (2002b), De Brabanter et al. (2010) empirical evidences indicates that this
point of “saturation” might be obtained for values M � N . In Fig. 7 this is illustrated for
the ripley data set (see Appendix B for more details about this data set). It is seen that the
10-fold cross-validation misclassification score does not improve much when more than 11
PVs are added.

Remark 3 Note that also in classical Radial Basis Function (RBF) network learning, meth-
ods have been developed where one separates the training of the centers from the training of
the output weights. In RBF networks the centers are often determined by means of cluster-
ing (Chen et al. 1991,1992) or using a vector quantization method eventually in combination
with self-organizing maps (Kohonen 1990) to visualize the input space of the network.

4.3 Sparse conjugate directions pursuit applied to fixed-size models

In FS-LSSVM the PV selection is performed prior to the actual model training (as a pre-
processing step). This has the advantage that given a certain value for M a model can be
obtained very quickly. However, in case PV selection is linked to the actual learning goal
one might expect better results (e.g. sparser solutions).

In this work the PV selection process is partially performed as a preprocessing and par-
tially controlled by the model training. Motivated by the fact that (a) according to e.g. Vin-
cent and Bengio (2002), Keerthi et al. (2006), Cawley and Talbot (2002), De Brabanter et
al. (2010), Chen et al. (2009), Suykens et al. (2002b) the number of prototype vectors (or in
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related algorithms, support vectors) can be much smaller than the total number of training
examples (b) and our observations, when using FS-LSSVM, that at a certain value for M

(M � N ) increasing the cardinality of the model does not change the prediction error much
(as was seen in Fig. 7), one might first select a set of PVs with M selected according to a
criterion. An example of such criterion might be: choose M such that �′ ∈ R

N×M still fits
in memory. Having selected M PVs, the learning boils down to solving an over-determined
linear system as given in (27). This linear system may be solved using SCDP which then
greedily selects the PVs (and calculates the model parameters) and, if stopped early, results
in a model cardinality smaller than M . This early stopping (or the definition of an appropri-
ate stopping criterion) is explained in Sect. 4.5.

Since �̂ is computed based on an eigenvalue decomposition (EVD), �̂ need to be re-
computed in case an additional dimension (or an additional PV in this context) is added.
This causes problems when implementing SCDP. In order to apply SCDP to (27) we first
rearrange the FS-LSSVM system such that the parameters w are solved up to a linear trans-
formation resulting in the same predictions as the original formulation without the use of
an EVD. This transformation does not require the computation of the approximate features
�̂ explicitly. Therefore, it can be straightforwardly solved using the previously explained
SCDP algorithm. This transformation is explained in Theorem 1.

Theorem 1 The linear system (27) is equivalent to

⎛
⎜⎝

�′T �′ + 1
γ
� �′T 1N

1T
N�′ 1T

N 1N

⎞
⎟⎠

⎛
⎜⎝

w̃

b0

⎞
⎟⎠ =

⎛
⎜⎝

�′T y

1T
Ny

⎞
⎟⎠ , (29)

where �ij = K(xi, xj ) with xi, xj ∈ XPV and XPV the set of selected PVs, � ∈ R
M×M ; �′ ∈

R
N×M with �′

ij = K(xi, xj ), xi ∈ Xtr, and xj ∈ XPV with Xtr the set of training vectors;

�U = U�; w̃ = USw with S = �− 1
2 . � is assumed to be a diagonal matrix containing

strictly positive eigenvalues.

Proof Recall that the computation of the approximate feature map ϕ̂ is based on the eigen-
vectors and values of a reduced kernel matrix �U = U�, � ∈ R

M×M resulting in

�̂ = �′US, (30)

where �′ ∈ R
N×M,�′

ij = K(xi, xj ), xi ∈ Xtr, xj ∈ XPV with XPV the set of selected PVs and

Xtr the set of training vectors and S = �− 1
2 (where we assume that the eigenvalues in � are

strictly positive). Combining (30) and (27) gives

(
SUT �′T �′US + 1

γ
I SUT �′T 1N

1T
N�′US 1T

N 1N

)(
w

b0

)
=

(
SUT �′y

1T
Ny

)

⇒
(

�′T �′US + 1
γ
(SUT )−1 �′T 1N

1T
N�′US 1T

N 1N

)(
w

b0

)
=

(
�′y
1T

Ny

)

⇒
(

�′T �′ + 1
γ
US−2UT �′T 1N

1T
N�′ 1T

N 1N

)(
w̃

b0

)
=

(
�′y
1T

Ny

)
, (31)
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where

w̃ = USw. (32)

Since � = S−2, �U = U� and UT U = I we can write US−2UT = �. If we substitute this
result in the latter linear system we get (29). �

The classifier ŷ∗ = sign(wT ϕ̂(x∗) + b0) can be written as ŷ∗ = sign(�∗USw + b0) ac-
cording to (30) where �∗ ∈ R

1×M,�∗
1i = K(x∗, xi). Combining the latter and (32) we have

ŷ∗ = sign(�∗w̃ + b0). This gives

ŷ∗ = sign(wT ϕ̂(x∗) + b0)

= sign

(
M∑

i=1

w̃iK(x∗, xi) + b0

)
. (33)

In order to ensure positive definiteness of the matrix in (29) we add a L2 penalization term
on the intercept term b0 controlled by a small predefined positive regularization constant ν

(in our experiments set to 10−8). Theorem 2 indicates the positive definite characteristic of
the matrix in the considered linear system.

Theorem 2 For ν > 0 and γ > 0, the matrix

⎛
⎜⎝

�′T �′ + 1
γ
� �′T 1N

1T
N�′ 1T

N 1N + ν

⎞
⎟⎠ , (34)

is positive definite.

Proof An N × N real symmetric matrix A is positive semi-definite if pT Ap ≥ 0 for all
nonzero vectors p ∈ R

M with real entries. By applying such multiplication to (2) we can
write8

h =
(

dT c

)
⎛
⎜⎜⎝

�′T �′ + 1
γ
� �′T 1N

1T
N�′ 1T

N 1N + ν

⎞
⎟⎟⎠

⎛
⎜⎜⎝

d

c

⎞
⎟⎟⎠ ,

which can be written as

h = (1c)T 1c + νc2 + 2
(
(1c)T �′d

) + (�′d)T �′d + 1

γ
dT �d

= (1c + �′d)T (1c + �′d) + 1

γ
dT �d + νc2.

Since the kernel matrix � by definition is positive semi-definite the product dT �d is greater
or equal than zero and hence because γ > 0, ν > 0, we have h > 0. Thus, the matrix (2) is
positive definite. �

8For clarity note that �′ ∈ R
N×M , � ∈ R

M×M , 1 ∈ R
N , c ∈ R, and d ∈ R

M .
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Remark 4 In case the probabilistic speed-up is used (see Sect. 3.5.2), only a small fraction of
the kernel matrix �′ need to be available. However, in each iteration kernel evaluations need
to be recalculated. Keeping a cache of kernel evaluations to exclude or reduce the number
of kernel recalculations will increase training time. Although intelligent caching methods
(see the remark about shrinking in Sect. 3.5.2) could be defined, we simply choose an initial
set of PVs, from which the SCDP algorithm can choose from, such that the corresponding
entire �′ matrix fits in memory.

Remark 5 Note that our setup allows to select PVs other than those in the training set alone
using e.g. k-center clustering.

4.4 Model selection

In order to assess the hyper-parameters such as the regularization constant γ in (29) and the
RBF-kernel bandwidth parameter σ 2, a v-fold CV based method is used. In the v-th itera-
tion, a hyper-parameter pair is given a score according to some model selection criterion.
A typical criterion expresses the number of misclassifications. However, we prefer a contin-
uous function that is more amenable to numerical optimization routines. Therefore in this
work the press statistic (Allan 1974) is used, to compute the v-fold CV error fcv, which is
defined as

fcv = 1

Nv

Nv∑
v=1

(
1T

Nv
(y(Sv) − ŷv(Sv))

2
)
, (35)

where the indices of the CV subsample sets (Nv the number of sets (folds)) are denoted as
Sv, v = 1, . . . ,Nv , S1 ∩ · · · ∩ SNv = ∅, and ŷv = (f̂v(x1), . . . , f̂v(xN))T with f̂v the model
which was trained in the v-th CV iteration. In Cawley (2006) the use of this press statistic
for classification problems was empirically found to give good results.

To calculate a fast v-fold CV score, this work opts to use the simple approach given in
De Brabanter et al. (2010) to calculate a fast v-fold CV (see De Brabanter et al. 2010 for
references to other alternatives). The technique is described in Algorithm 4. Consider the
shorthand notation Afw̃ = bf for the full linear system defined in (29). Consider a certain
iteration in CV and let the matrix Atr be the matrix based on a subset of the training sam-
ples (all folds except one). Instead of computing A

(v)
tr (and corresponding b

(v)
tr ) from scratch

in each v-th CV iteration, the following was proposed. At first the following results are
computed: �′ ∈ R

N×M , � ∈ R
M×M with M the number of PVs (which do not have to coin-

cidence with the training set), Af, and bf. Then based on the fact that we can use the same
PVs for each of the folds we can compute A

(v)
tr and b

(v)
tr for CV iteration v as follows

A
(v)
tr = Af −

(
�′(v)T �′(v) �′(v)T 1N(v)

1T

N(v)�
′(v) N(v)

)
, (36)

with N(v) the number of examples of the v-th fold and �′(v) is the selection of rows of �′
corresponding with the samples in the v-th fold. A similar approach is used for b

(v)
tr

b
(v)
tr = bf −

(
�′(v)y(v)

1T

N(v)y
(v)

)
, (37)

where y(v) are the labels corresponding to the v-th fold.
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Remark 6 The matrices �′ and � for different kernel parameters can be computed more
efficiently depending on which kernel function is used. For example consider the RBF kernel
which is defined as K(x,x ′) = exp(n/σ 2) where n = −‖x − x ′‖2

2. Instead of recomputing
each kernel function from scratch one can proceed as follows: (i) compute n only once; (ii)
compute RBF kernel evaluations using n with different values for σ 2.

Algorithm 4 Fast v-fold cross-validation for SCDP-FSLSSVM

1: Calculate the matrices �′, �, Af =
(

�′T �′ + 1
γ
� �′T 1

1T
N�′ 1T

N 1N + ν

)
,

bf =
(

�′y
1T

Ny

)
.

2: Randomly split the data into v disjoint sets of nearly equal size.
3: for v = 1, . . . ,Nv do
4: Compute A

(v)
tr and b

(v)
tr using respectively (36) and (37).

5: Solve linear system A
(v)
tr w̃(v) = b

(v)
tr using SCDP and compute validation score per

model size using an appropriate loss function.
6: end for

The actual hyper-parameter search process is a non-convex task which typically is tack-
led via a simple grid-search based procedure. The model selection score is evaluated at a set
of points, forming a regular grid with even logarithmic spacing. An alternative strategy is
using Nelder-Mead simplex optimization (Nelder and Mead 1965). This procedure can be
used as long as the number of hyper-parameters is relatively small (in this work we tune two
parameters, γ and a kernel bandwidth σ 2). In order to determine good initial start values
for this simplex method we use the method of Coupled Simulated Annealing with variance
control (CSA) (Xavier de Souza et al. 2010) whose working principle was inspired by the
effect of coupling in Coupled Local Minimizers (CLM) (Suykens et al. 2001) compared to
the uncoupled case i.e. multi-start based methods. CSA is an extension to the well known
Simulated Annealing (SA) algorithm (Rajasekaran 2000). The CSA method used in this pa-
per is designed to easily escape from local optima and thus improves the quality of solution
without compromising too much the speed of convergence. One of the largest differences
with SA is that CSA features a new form of acceptance probabilities functions that can be
applied to an ensemble of optimizers. This approach considers several current states which
are coupled together by their energies in their acceptance function. Also, in contrast with
classical SA techniques, parallelism is an inherent characteristic of this class of methods. In
cases where a relative high number of hyper-parameters need to be tuned at once gradient-
based methods are likely to be more efficient.

Remark 7 Note that to avoid the effects of the randomness in creating different CV partitions
on the determination of the hyper-parameters, a fixed CV partition is chosen to minimize the
model selection criterion.

4.5 Determining the final model cardinality

Let us first remark that in case the initial set of PVs equals the full training set, our method
will approach the LS-SVM solution when the final model size is large. The same is true for
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the standard FS-LSSVM formulation. However, we are interested in having the cardinality
of the final model as small as possible.

Since in iteration k of the SCDP algorithm the number of nonzero model parameters is k,
it is seen that the stopping criterion is directly related to the final model size. As mentioned
earlier in machine learning, the aim is to have a model with a low misclassification rate on
the training set and good generalization performance on unseen data. We therefore advocate
the use of a validation error for deciding when to stop. For this purpose we can use the
cross-validation performance as discussed in previous section. To save computer resources
we keep track of the validation score as a function of k (cardinality) and stop in case this
function does not change much anymore. Hence, in case stopped early (k < M + 1, with M

the size of the set of PVs) the learning problem is never solved using all PVs.
We proceed as follows. First an appropriate value for km, is chosen according to an ap-

propriate criterion (e.g. maximum model size to be able to do real-time processing). For
a given choice of hyper-parameters, the SCDP-FSLSSVM method is then applied on each
separate CV fold using the following stopping criterion: run the algorithm until the number
of iterations reaches km or the validation score remains nearly the same. Combining the re-
sults for each fold gives an estimate of the v-fold CV error for each model size ranging from
1 to at most km. After combination of the results of the different folds, we select the final
model size such that the CV criterion is the smallest value within one tenth of the standard
deviation of the best cross-validation score (standard deviation was calculated from the dif-
ferent estimates computed using CV). In Hastie et al. (2001) (Sect. 7.10, page 216) a similar
approach, referred to as the “one-standard-error”, is given. This procedure can be repeated
for different hyper-parameter values.

Remark 8 Note that in case the probabilistic speed-up is used, the random selection of can-
didate directions is fixed in order to exclude undesirable influence of the random effects
in this tuning process. Thus, at iteration k, the different SCDP runs (using different values
for the hyper-parameters) will choose the same random sets from which a new PV can be
selected.

Remark 9 We found empirically that an adequate stopping rule is

| 1
�k

∑�k

i=1 f (k−i)
cv − f (k)

cv |
|f (k)

cv | < ε, (38)

where f (k)
cv defined as in (35) (where an extra superscript (k) denotes the iteration depen-

dency), and �k is a fixed integer which determines the window size from which an average
validation performance is calculated.

4.6 Algorithmic parameters

As illustrated in the previous section, four parameters: M , ρ, ε and km control the processor
and memory use of the algorithm and can have impact on the prediction accuracy of the final
model. We therefore briefly summarize the effect of the different parameters in Table 2.

4.7 Comparison of computational complexity

Assuming an initial set of PVs of size M , the two most computational expensive operations
in SCDP-FSLSSVM are: (i) the computation of �′T � in (29) with an approximate com-
putational cost of O(NM2) and (ii) solving the system using SCDP with an approximate
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Table 2 This table surveys the influence of the parameters M , ρ, ε and km on the SCDP(P) algorithm

Parameter Influence

M Controls the initial size of the matrix in (29). We can set M = N and select all training
data as initial PVs or can, according to some criterion, determine M PVs which represent
the training set. The proposed framework allows the incorporation of PVs which do not
coincidence with the training data.

ρ The size of the random subset out of which the PVs are selected in the probabilistic speed-
up case (SCDPP). The smaller ρ the less c(k) need to be computed in each iteration.
However, this means that different solution vectors with certain cardinality are possible
for a given linear system while for SCDP always the same solution is found. The larger ρ

is, the more the solution will be similar to that of SCDP.

ε Stopping criterion parameter as defined in (38). At a certain point the addition of extra
PVs to the model has almost no effect on the validation performance. In this case the
algorithm can be stopped early which saves computer resources. In case enough resources
are available, probably the safest option is to set this parameter to −∞. Afterwards the
cross-validation scores will be used to select the best cardinality.

km Sets a maximum on the model size and training time.

cost of O(
∑M

k=1(kN + k2)), or using O(
∑M

k=1(kρ + k2)) operations in case the probabilistic
speed up (with ρ = 59 in our experiments).

Assuming a “good” fixed set of PVs of size M , the cost of computing a classical FS-
LSSVM model is dominated by three parts: (i) the computation of �̂ (which includes
an eigenvalue decomposition of the reduced kernel matrix �) with an associated cost of
O(M3 +M2N), (ii) the computation of �̂T �̂ in (27) with a computational cost of O(NM2)

and (iii) solving the linear system using for instance CG (in case the intercept term is regu-
larized) with a cost O(k1M

2) (k1 the number of iterations to converge).

4.8 Relation to other methods

4.8.1 Relation to CDBoost

In context of boosting, the Conjugate Direction Boosting (CDBoost) algorithm is proposed
in Lutz and Bühlmann (2006). Using a similar idea of sparse conjugate vectors the authors
extended the L2-boosting method (Bühlmann and Yu 2003) and focus on linear regression
(but also mention a classification example in the experimental section). They also showed
that the CDBoost algorithm can be improved in terms of prediction accuracy by only taking
a small fraction of the optimal step (shrinkage) along the conjugate direction, similar to the
idea in FStR.9 Since this results in a higher computational cost (and extra tuning parameter)
we did not consider this in this work. They also indicated that their framework could be
generalized to the use of any base learner. Our work is different in the following areas:

– Our work specializes the SCDP idea to the kernel-based FS-LSSVM framework. Com-
pared to Lutz and Bühlmann (2006), this work approaches the machine learning problem

9Due to the small stepsizes, the corresponding subspaces of the matrix in the linear system are no longer
solved in a least squares sense. Thus, it may happen that a component already included in the model is
rechosen. In this case no new conjugate directions can be found since there are only k conjugate directions
in a k-dimensional subspace. In Lutz and Bühlmann (2006) the authors propose to restart the algorithm. The
actual ŵ(k−1) is set as the starting ŵ(1) , all information about previous directions is deleted and the algorithm
is started again.
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from a kernel-based context, use a ridge penalty (i.e. ‖w‖2
2) in a L2-based objective and

incorporate a separate intercept (b0) term into the model.
– CDBoost is not suited for large scale data sets. This work studies extensions to handle

large scale data.
– Opposed to CDBoost, SCDP-FSLSSVM is presented with an efficient and complete

model selection framework with a clear stopping criterion to automatically select the
hyper-parameters, and final model size.

4.8.2 Relation to other kernel-based methods

In the literature there are several kernel-based methods which employ a greedy approach
such as in SCDP-FSLSSVM in order to increase the model complexity during the training
process. Some examples, which also work in the context of a L2 loss function, include

– In Cawley and Talbot (2002) the primal LS-SVM objective (as in (21)) is approximated
using a sparse approximate kernel expansion where only a relatively small number M <

N of vectors contribute

w =
∑

xi∈Xpv

βiϕ(xi). (39)

Eliminating in (22) the error variables ei by substituting the constraint in the objective
and combining with (22), the same linear system is obtained as in (29). However, our
approach is based on the FS-LSSVM method which gives additional insight in how to
initially select PVs. Consequently, the underlying algorithm is different. Note that in the
context of SVMs the same sparse approximate kernel expansion is proposed in Keerthi et
al. (2006) resulting in a scheme which iteratively solves (29).

– Instead of approximating the primal using a sparse model, in Jiao et al. (2007) the authors
directly approximate the dual LS-SVM formulation (23) and obtain a sparse model. Al-
though, such a setup does not require the additional computation of a (numerical unstable)
kernel matrix product �′T �′, we conclude from preliminary experiments10 that it requires
more iterations to converge, resulting in a less sparse model and it requires comparable or
even longer training times than SCDP-FSLSSVM (note that the authors in Jiao et al. 2007
made the same observation when comparing to Kernel Matching Pursuit (KMP) (Vincent
and Bengio 2002)). In Jiao et al. (2007) the authors further elaborate on the comparison
of this technique, Kernel Matching Pursuit (KMP), and Sparse Greedy Gaussian Process
(SGGP) (Smola and Bartlett 2001).

– The idea of KMP is mainly to select basis functions in a greedy manner for non-
regularized kernel least-squares problems. The authors describe 3 versions of KMP of
which the back-fitting procedure is very similar to SCDP-FSLSSVM. Besides the absence
of a regularization term and an intercept term, the order selection criterion is also different
to that of SCDP-FSLSSVM. In case of KMP this is s = arg maxi /∈A |(r)i |, r = �w − y

while for SCDP-FSLSSVM this is s = arg maxi /∈A |(c)i |, c = �T (�w − y).
– In Chen et al. (2009) the authors propose a general kernel learning framework based on

Orthogonal Least Squares (OLS) regression. Given an orthogonal decomposition of the
full kernel matrix � ∈ R

N×N,� = QR where Q is the matrix with orthonormal columns,

10One such experiment was performed on the image data set (see Appendix B) were N = 1,300, and D =
18. Given a tuned set of hyper-parameters, applying SCDP directly on the dual (23) gave a model size of 961
while applying it on (29) gave a model size of 321. Both methods had comparable accuracies.
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the authors proceed by writing �w = b as QRw = b or Qg = b and solving for g = Rw

instead of w (which is possible since the space spanned by the columns of � is identical to
those spanned by columns in Q). Using the fact that QT Q = I , an efficient computation
of g and Leave-One-Out (LOO) scores can be obtained. Opposed to back-fitting (used by
SCDP), OLS uses a pre-fitting scheme. This has impact on the PV selection procedure
which is explained as follows. A new component is selected based on the LOO scores of
all combinations of the not yet selected components with the current selected components.
However, this pre-fitting requires the projection of all not yet selected columns to the
subspace spanned by the selected components which is computationally more demanding
than that of SCDP and not suitable for large-scale data sets.

5 Experiments

All SCDP-FSLSSVM experiments in this section are carried out in MATLAB. We em-
pirically tested some of the algorithmic parameters for the SCDP-FSLSSVM algorithm
discussed in the previous paragraphs and compare to state-of-the-art classification meth-
ods. The hyper-parameter ν which controls the regularization for the intercept term alone is
set to 10−8 for all experiments. The other hyper-parameters are tuned using 10-fold cross-
validation. For each experiment tuning was performed using the optimization procedure
described in Sect. 4.4. For each experiment data is standardized to have zero mean and unit
standard deviation. Details about the publicly available data sets used in the experiments are
given in Appendix B. The SCDP-FSLSSVM MATLAB software can be downloaded from
http://www.esat.kuleuven.be/sista/lssvmlab/SCDP/SCDP_FSLSSVM.zip. The SVM exper-
iments are performed using the LIBSVM toolbox (Chang and Lin 2001).

5.1 Prototype vector selection

In order to illustrate the location of the selected PVs using SCDP-FSLSSVM, an experiment
on the ripley data set is carried out. The SCDP-FSLSSVM method is initialized using a
set of potential PVs containing all training data points. The binary decision boundary of
the model obtained using SCDP-FSLSSVM (with tuned hyper-parameters) on the two-class
ripley data set is presented in Fig. 8. The RBF kernel was used. The circles display the
selected prototype vectors. It is seen that these are distributed over all parts of the data.
Hence, selecting an approximately uniformly distributed (over the training set) set of data
points with size M < N in order to speed-up the training process, might be a good choice.

5.2 Small scale problems

We first assess the performance of SCDP-FSLSSVM on thirteen public domain benchmark
data sets as used in the study by Mika et al. (2000). The 100 random partitions of the data
(20 in the case of the image and splice benchmarks) to form training and test sets as was
used in that study, are also used here. Model selection is performed independently for each
realization of the data set. The RBF kernel (K(x,x ′) = exp(−‖x − x ′‖2

2/σ
2)) was used for

all kernel methods. In Table 3 some misclassification rates and corresponding model cardi-
nalities are shown. The column corresponding to SCDP-FSLSSVM reflects results when all
training data points are used as initial PVs and no probabilistic speed-up is used. The column
with acronym SCDP-FSLSSVMPV first selects 0.3N PVs using the farthest-point clustering
algorithm (Gonzalez 1985) (we call this k-center clustering) from which the final model

http://www.esat.kuleuven.be/sista/lssvmlab/SCDP/SCDP_FSLSSVM.zip
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Fig. 8 The figure presents the
binary decision boundary of the
model obtained using
SCDP-FSLSSVM (with tuned
hyper-parameters) on the
two-class ripley data set. The
RBF kernel was used. The circles
display the selected prototype
vectors

PVs are chosen, and no probabilistic speed-up was used. Note that Sect. 4.2 explains why
k-center clustering is used for this purpose. In case of the third column, SCDPP-FSLSSVM
training is performed using the probabilistic speed-up with a random subset of size ρ = 59.
The SCDP variants are compared to LS-SVM, SVM, and a sparse SVM (spSVM) (Keerthi et
al. 2006)11 version. No preprocessing was done except standardization of the input samples
to zero mean and unit variance. We endeavored making the framework for tuning the hyper-
parameter as much identical as possible. The same optimization procedures were used. In
case of SVM and spSVM, misclassification rate (opposed to the press statistic) was used as
the CV cost criterion. Both the SCDP variants and spSVM employed the same procedure to
select the final model size (see Sect. 4.5).

Table 3 and Table 4 respectively give misclassification errors and computational cost
(training time) for each data set. Note that making a direct comparison of running times
is difficult here since SVM is implemented in C++ while the other alternatives are pro-
grammed in MATLAB. In LS-SVM the main computational load (i.e. solving a linear sys-
tem) is handled using an optimized LAPACK source while for SCDP and spSVM the main
computational load is in MATLAB. The test are performed using a computer with an In-
tel(R) Core(TM)2 Quad 2.66 GHz processor. To keep timing experiments as fair as possible
all experiments were carried out single threaded.

It is seen that the sparse SCDP variants give comparable performance compared to
the state-of-the-art methods: (non-sparse) LS-SVM, SVM and spSVM. When considering
model sizes, all share comparable model complexities except for LS-SVM and SVM. By
definition LS-SVM is non-sparse and SVM models have much larger cardinalities. Note
that for SVM the model size indicates the number of nonzero dual variables while for the
other alternatives the number of non-zero values in the primal model is meant. Notice that in
case of SCDP-LSSVMPV in each run a different initialization of the k-center clustering al-
gorithm is used. When comparing the misclassification scores to those of SCDP-FSLSSVM
we can observe similar means and standard deviations indicating that the initial PV selec-
tion (selecting an initial PV pool having less than half the size of training set) including the
initialization stage in k-center clustering has no significant effect on the misclassification
rate.

Table 4 presents (averaged) training times in milliseconds. Since choice of hyper-
parameters affects training time and since the meaning of a “good” hyper-parameter set can

11From http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/primal/.

http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/primal/
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be different for each method, training times are measured using a tuned hyper-parameter set.
From Table 4 it is seen that, while giving state-of-the-art accuracies, SCDP-FSLSSVMPV in
general is the fastest method. SCDP-FSLSSVMPV decreases the training speed considerably
by selecting an initial PV set of size M = 0.3N . Compared to the SCDP variants in most
cases spSVM is much slower. Similar to the SCDP variants spSVM iteratively increases
the model size starting with size 1. A single iteration is more costly compared to the SCDP
variants since a piecewise quadratic function needs to be solved using Newton’s method.12

Remark that in case the subset size (ρ) is close to the number of data points, the probabilistic
speed-up (SCDPP-FSLSSVM) gives only a small or even negative gain compared to SCDP-
FSLSSVM. The advantage of using this probabilistic speed-up is seen more clearly in the
experiments given in Sect. 5.3.

In case the probabilistic speed-up is used (SCDPP-FSLSSVM with ρ = 59) the classifi-
cation accuracies for data sets ringnorm and titanic deviate strongly from those of the
other SCDP-FSLSSVM alternatives. The corresponding large standard deviations indicate
that models with nontypical performance (outliers) are present. The same phenomena can be
seen when plotting the Pareto fronts (see Fig. 9, and Fig. 10) for both SCDP- and SCDPP-
FSLSSVM given a single realization and tuned hyper-parameter set. SCDPP-FSLSSVM
was repeated 50 times to display the boxplots. The boxes have horizontal lines at the lower
quartile, median, and upper quartile values of the performances corresponding to the 50 ex-
periments.13 The dotted line is the SCDP-FSLSSVM Pareto front. It is seen that in most
cases SCDPP-FSLSSVM performs slightly worse or similar in terms of misclassification
rate compared to SCDP-FSLSSVM for different cardinalities. It is seen that for some data
sets using SCDPP-FSLSSVM can give significant differences in terms of misclassification
rate compared to the SCDP variant. In case ρ is increased the SCDPP-FSLSSVM models
converge towards those of SCDP-FSLSSVM but still, although less frequently, models with
nontypical performance might occur. Note that for spSVM, which also uses a probabilis-
tic speed-up (ρ = 59) this effect is only observed for the titanic data set. It is therefor
adviced to use this probabilistic speed-up with care.

5.3 Large scale problems

The algorithm was additionally tested on two larger binary classification tasks. The results
are shown in Table 5. The misclassification rates and corresponding model cardinalities are
averaged over 5 random partitions of the data sets (N/3 data points are used as test set and
2N/3 examples as training set). No preprocessing was performed except for standardization
of the input samples to zero mean and unit variance. Initially, 2,000 PVs were selected using
k-center clustering. From Table 5 again it is seen that compared to SVM, SCDP-FSLSSVM
and spSVM give similar performance while producing much sparser models.

These larger data sets are now used to illustrate the effect of the probabilistic speed-up on
training time. In Fig. 11 for both the adult and gamma telescope data sets the mis-
classification rate is plotted in function of the training time for four SCDP-FSLSSVM vari-
ants. Notice that all methods more or less end-up in the same minimum. The basic SCDP-
FSLSSVM scheme lags behind its alternatives since the complete kernel matrix � needs

12As the authors suggested in Keerthi et al. (2006) the Newton optimization is only performed from time to
time to save computer resources.
13Additionally the following markers are used in the boxplot. The whiskers are lines extending from each
end of the boxes to show the extent of the rest of the data. Outliers (+) are data with values beyond the ends
of the whiskers.
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Fig. 9 Given a partition in CV and (tuned) hyper-parameter set, Pareto fronts are plotted for both SCDP- and
SCDPP-FSLSSVM (ρ = 59) on data sets also used in Mika et al. (2000). SCDPP-FSLSSVM was repeated
50 times in order to make boxplots. The boxes have lines at the lower quartile, median, and upper quartile
values of the performances corresponding to the 50 different experiments. The whiskers are lines extending
from each end of the boxes to show the extent of the rest of the data. Outliers (+) are data with values beyond
the ends of the whiskers

to be computed in advance (since it is necessary in each iteration), before the SCDP part
of the algorithm is started. The probabilistic speed-up in SCDPP-FSLSSVM does not re-
quire the latter. Therefor the SCDP algorithm can start iterating faster. As a consequence the
misclassification rate decreases earlier. However, the course at which the misclassification
rate is decreasing is not as steep as that of SCDP-FSLSSVM because of suboptimal PV
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Fig. 10 Given a partition in CV and (tuned) hyper-parameter set, Pareto fronts are plotted for both SCDP-
and SCDPP-FSLSSVM (ρ = 59) on data sets also used in Mika et al. (2000). SCDPP-FSLSSVM was re-
peated 50 times in order to make boxplots. The boxes have lines at the lower quartile, median, and upper
quartile values of the performances corresponding to the 50 different experiments. The whiskers are lines
extending from each end of the boxes to show the extent of the rest of the data. Outliers (+) are data with
values beyond the ends of the whiskers

choices and more costly iterations.14 Since for SCDP-FSLSSVMPV only a reduced kernel
matrix (�′) needs to be precomputed, it starts faster with the SCDP part compared to SCDP-
FSLSSVM while having a similar course resulting in a faster conversion. When additionally

14Since for SCDPP-FSLSSVM no kernel matrix (�) is precomputed, small subsets of it need to be computed
in each separate iteration. This makes a separate iteration more computationally involved. However, if the
algorithm is terminated early at k � N then possibly computing only a part of the kernel matrix � was
sufficient. This might lead to important computational savings.
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Table 5 The misclassification
rates, corresponding model
cardinalities and training times
(given a tuned hyper-parameter
set) averaged over 5 random
partitions of the data sets (N/3
data points are used as test set
and 2N/3 examples as training
set) for SCDP-FSLSSVM,
spSVM as well as SVM are
given. No preprocessing was
performed except standardization
of the input samples to zero mean
and unit variance. Initially, 2,000
PVs were selected using k-center
clustering

Method adult gamma

telescope

SCDP-FSLSSVMPV

err (%) 14.55(±0.34) 13.9(±0.27)

# PV 166(±41.6) 778(±58.9)

ttr (s) 10.7(±2.6) 44.4(±1.6)

SVM

err (%) 14.53(±0.14) 13.3(±0.12)

# SV 10,494(±212) 4,211(±112)

ttr (s) 371.7(±178.7) 25.0(±4.4)

spSVM

err (%) 14.6(±0.41) 14.2(±0.31)

# PV 321(±50.1) 752(±49.7)

ttr (s) 124.1(±59.3) 438(±62.8)

Fig. 11 Given a set of tuned hyper-parameters, time curves for SCDP-FSLSSVM, SCDPP-FSLSSVM,
SCDP-FSLSSVMPV, SCDPP-FSLSSVMPV are given for the adult and gamma telescope data set

applying a probabilistic speed-up (SCDPP-FSLSSVMPV) no faster conversion is observed.
In case the number of initial PVs is increased SCDPP-FSLSSVMPV is more likely to be
faster than SCDP-FSLSSVMPV. Compared to SCDPP-FSLSSVM, SCDPP-FSLSSVMPV is
slightly more costly per iteration since 2 kernel matrices �′ and � need to get updated
instead of one. However, choosing ρ out of a reduced set, such as the case for SCDPP-
FSLSSVMPV, seems to pay off since faster convergence is observed compared to SCDPP-
FSLSSVM. Remark that the probabilistic speed-up versions need less memory compared to
the other alternatives.

As mentioned in the first part, other methods exist to tackle the optimization problem
(29) where a sparse model is desired. Examples include MP, LARS and LASSO. We have
applied these methods for solving (29) and compared them to SCDP. Using LASSO, LARS
and MP introduces a undesirable bias which is removed using an extra de-bias step. Hence,
the coefficients of the nonsparse entries are recomputed using ordinary least squares. As
such, we used the result of LASSO, LARS and MP only to select the PVs. This must be
contrasted to SCDP where such de-bias step is not required.
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Fig. 12 Given a set of tuned hyper-parameters, Pareto fronts and time curves of SCDP, LARS, LASSO and
MP applied to (29) are shown for the gamma telescope data set. The time curves show an average of 20
cumulative plots of the computation time for each of the alternatives per iteration

Fig. 13 Given a set of tuned hyper-parameters, Pareto fronts and time curves of SCDP, LARS, LASSO and
MP applied to (29) are shown for the adult data set. The time curves show an average of 20 cumulative
plots of the computation time for each of the alternatives per iteration

Given a set of (tuned) hyper-parameters, Pareto fronts are presented in Fig. 12(a) and
Fig. 13(a) for respectively the gamma telescope and adult data sets.15 For both data
sets the different Pareto fronts converge more or less to the same misclassification rate and
similar model sparsity while training using SCDP is 7 to 10 times faster compared to the
alternatives. This is mainly due to the fact SCDP does not require an additional de-bias step.
As was expected, MP needs many more iterations to converge (convergence is not plotted)
compared to its alternatives.

15Note that the LASSO in addition can also remove PV from the active set which means that for a certain
cardinality multiple misclassification rates can be obtained. In order to enhance the clarity of the figures we
only plotted the minimum misclassification rate per cardinality.
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6 Conclusion

In this manuscript we investigated a greedy heuristic, called Sparse Conjugate Directions
Pursuit, for finding a sparse approximation to an over-determined linear system. We first
discussed SCDP in relation to the literature of statistics, signal processing and machine
learning. Subsequently, a detailed description of the SCDP implementation has been given
and its computational complexity is discussed. Then it is explained how SCDP is applied
to the LS-SVM framework, resulting in a sparse solution. A main advantage is that a range
of model complexities (starting with a model that posses only one nonzero element in the
weight vector) can be efficiently computed. We carefully examined SCDP’s complexity in
terms of memory and computational requirements and compared this to other sparse kernel-
based methods. Finally, SCDP applied to FS-LSSVM was validated on a number of public
available benchmark data sets. This results into the following main conclusions:

– Per iteration SCDP directly gives least-squares estimates on subspaces of A. This must
be contrasted to other techniques such as LASSO which introduce an often undesirable
bias due to a L1 penalty. For such methods an extra de-biasing step might be employed to
improve results.

– Misclassification errors are similar to those of LS-SVM while training times are much
smaller and sparse models are obtained.

– Similar prediction accuracies as those of SVM were obtained, while SCDP usually pro-
duces much sparser models.

– SCDPP can improve upon the training speed but in case the size of the random subset was
set to ρ = 59, models with nontypical performance might occur.

– Compared to SVM and LS-SVM, SCDP-FSLSSVM is not a convex learning method. The
solution of SCDP-FSLSSVM depends on the set of PVs selected by k-center clustering.
However, for a given set of initial PVs (possibly all training data) and a zero solution
vector w(1) = 0D in iteration 1, SCDP-FSLSSVM gives a unique solution.

– k-center clustering as a preprocessing step to select the initial set of PVs is a valuable tool
to speed-up the training process. These PVs need not to be a member of the training set.

– We indicated that, when applying to FS-LSSVM, SCDP usually outperforms MP, LARS
and LASSO in terms of speed while having a comparable accuracy.
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Appendix A: Conjugate gradient algorithm

Since modifications to the standard conjugate gradient algorithm (Hestenes and Stiefel 1952)
are proposed in this work, it is added in appendix.
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Algorithm 5 The standard conjugate gradient algorithm for solving Aw = b.

1: Define: A = AT  0, b ∈ R
D

2: Final estimate: wk

3: Initialize: w(1) = 0D, c(1) := −b,p(1) = −c(1), k := 1
4: repeat
5: η(k) = − c(k)T p(k)

p(k)T Ap(k)

6: w(k+1) = w(k) + η(k)p(k)

7: c(k+1) = c(k) + η(k)Ap(k)

8: ξ (k+1) = c(k+1)T c(k+1)

c(k)T c(k)

9: p(k+1) = −c(k+1) + ξ (k+1)p(k)

10: k := k + 1
11: until Stopping criterion is met

Appendix B: Benchmark data sets

This appendix describes the characteristics for each of the data sets used in this work. These
are given in Table 6. The adult and gamma telescope data sets can be downloaded
from http://kdd.ics.uci.edu, and the ripley data set can be found as the synthetic two-class
problem at http://www.stats.ox.ac.uk/pub/PRNN/. Apart from those data sets, we also used
modified versions of UCI data sets available from http://ida.first.fraunhofer.de/~raetsch.
These data sets have a fixed number of partitions for each data set which makes compar-
ison with other references a lot easier. Note that for adult, gamma telescope no fixed
test set was given. During our experiments we chose to randomly divide all available data
into a training and testing partition at a ratio of respectively 2/3 and 1/3 for several runs.

Table 6 Characteristics of the
public domain data sets used in
this work. Where Ntr is the
number of training data, Nte the
number of test data, C the
number of classes and D the
number of dimensions (features)

data Ntr Nte C D

adult 30,148 15,074 2 14

banana 400 4,900 2 2

breast-cancer 200 77 2 9

diabetis 468 300 2 8

flare-solar 666 400 2 9

gamma telescope 12,680 6,340 2 10

german 700 300 2 20

heart 170 100 2 13

image 1,300 1,010 2 18

ringnorm 400 7,000 2 20

ripley 250 1,000 2 2

splice 1,000 2,175 2 60

thyroid 140 75 2 5

titanic 150 2,051 2 3

twonorm 400 7,000 2 20

waveform 400 4,600 2 21

http://kdd.ics.uci.edu
http://www.stats.ox.ac.uk/pub/PRNN/
http://ida.first.fraunhofer.de/~raetsch
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