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Abstract The field of reinforcement learning (RL) has been energized in the past few
decades by elegant theoretical results indicating under what conditions, and how quickly,
certain algorithms are guaranteed to converge to optimal policies. However, in practical
problems, these conditions are seldom met. When we cannot achieve optimality, the perfor-
mance of RL algorithms must be measured empirically. Consequently, in order to meaning-
fully differentiate learning methods, it becomes necessary to characterize their performance
on different problems, taking into account factors such as state estimation, exploration, func-
tion approximation, and constraints on computation and memory. To this end, we propose
parameterized learning problems, in which such factors can be controlled systematically and
their effects on learning methods characterized through targeted studies. Apart from provid-
ing very precise control of the parameters that affect learning, our parameterized learning
problems enable benchmarking against optimal behavior; their relatively small sizes facili-
tate extensive experimentation.

Based on a survey of existing RL applications, in this article, we focus our attention
on two predominant, “first order” factors: partial observability and function approximation.
We design an appropriate parameterized learning problem, through which we compare two
qualitatively distinct classes of algorithms: on-line value function-based methods and policy
search methods. Empirical comparisons among various methods within each of these classes
project Sarsa(λ) and Q-learning(λ) as winners among the former, and CMA-ES as the win-
ner in the latter. Comparing Sarsa(λ) and CMA-ES further on relevant problem instances,
our study highlights regions of the problem space favoring their contrasting approaches.
Short run-times for our experiments allow for an extensive search procedure that provides
additional insights on relationships between method-specific parameters—such as eligibility
traces, initial weights, and population sizes—and problem instances.
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1 Introduction

Sequential decision making from experience, or reinforcement learning (RL), is a well-
suited paradigm for agents seeking to optimize long-term gains as they carry out sensing,
decision and action in an unknown environment. RL tasks are commonly formulated as
Markov Decision Problems (MDPs). The solution of MDPs has benefited immensely from a
strong theoretical framework that has been developed over the years. The cornerstone of this
framework is the value function of the MDP (Bellman 1957), which encapsulates the long-
term utilities of decisions. Control policies can be suitably derived from value functions;
indeed several algorithms provably converge to optimal policies in finite MDPs (Watkins
and Dayan 1992; Singh et al. 2000). Also, near-optimal behavior can be achieved after
collecting a number of samples that is polynomial in the size of the state space (|S|) and the
number of actions (|A|) (Kearns and Singh 2002; Brafman and Tennenholtz 2003; Strehl
and Littman 2005), using a memory bounded in size by O(|S||A|) (Strehl et al. 2006).

Unfortunately a large section of the RL tasks we face in the real world cannot be modeled
and solved exactly as finite MDPs. Not only are the traditional objectives of convergence and
optimality thereby inapplicable to a predominant number of tasks occurring in practice, in
many of these tasks we cannot even ascertain the best performance that can be achieved,
or how much training is necessary to achieve given levels of performance. The objective of
learning in such practical tasks, which fall beyond the reach of current theoretical modeling,
has to be rescaled to realizing policies with “high” expected long-term reward in a “sample
efficient” manner, as determined empirically.

In a formal sense, the “No Free Lunch” theorems of Wolpert and Macready (1997) estab-
lish that for any optimization algorithm, an elevated performance in one class of problems is
offset by worse performance in some other class. Even so, the enterprise of machine learning
rests on the assumption that classes of problems encountered in practice tend to possess reg-
ularities, which can be actively characterized and exploited. Consequently, to the extent that
the relationships between problem instances and the performance properties of algorithms
are unclear, it becomes a worthwhile pursuit to uncover them. The need for such research
has long been advocated: in an early editorial in this journal, Langley (1988, see p. 7) writes:

“For instance, one might find that learning method A performs better than method
B in one environment, whereas B fares better than A in another. Alternatively, one
might find interactions between two components of a learning method or two domain
characteristics. We believe the most unexpected and interesting empirical results in
machine learning will take this form.”

The practice of supervised learning has benefitted from a number of empirical stud-
ies that seek to identify the strengths and weaknesses of learning methods. For example,
Caruana and Niculescu-Mizil (2006) undertake a detailed comparison involving a num-
ber of supervised learning methods, test problems, and evaluation metrics. Caruana et al.
(2008) present empirical results demonstrating that random forests (Breiman 2001) are typ-
ically more effective than several other classification methods on problems with high di-
mensionality (greater than 4000). Although the canonical boosting algorithm (Freund and
Schapire 1996) enjoys desirable theoretical properties and is predominantly effective in
practice, studies comparing it with other ensemble schemes such as bagging (Quinlan 1996;
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Bauer and Kohavi 1999) hint at its vulnerability in the presence of noisy training data. Banko
and Brill (2001) advance the case that for problems with very large data sets (for example,
natural language applications on the Internet), simple classifiers such as Winnow (Little-
stone 1987) can be the most effective, and that voting-based ensemble schemes do not retain
their attractiveness.

By associating problem characteristics with the strengths and weaknesses of supervised
learning methods, the studies listed above provide useful “rules of thumb” to a practitioner
who must choose a method to apply to a problem. Unfortunately the complex scope of the
RL problem leaves the practitioner of RL with few such guidelines. Faced with a sequential
decision making problem, not only does a designer need to pick a learning algorithm; he/she
has to address the related issues of state estimation, exploration, and function approximation,
while possibly satisfying computational and memory constraints. The broad motivation for
this article is the eventual development of a “field guide” for the practice of RL, which
would both inform the choices made by designers of RL solutions, and identify promising
directions for future research.

Ultimately, a field guide would be evaluated based on the extent to which it can expedite
the process of designing solutions for full-scale deployed applications. However, such ap-
plications are themselves too complex and constrained to provide reliable data from which
the principles for a field guide can be inferred. Rather, there is a need for simpler, more
transparent problems through which we, as designers, can systematically sort through the
complex space of interactions between RL problems and solution strategies. This article
joins a growing line of research in this direction (Moriarty et al. 1999; Gomez et al. 2008;
Heidrich-Meisner and Igel 2008a; Whiteson et al. 2010).

The primary thrust of existing work on the subject has been in comparing RL algorithms
on standard, benchmarking tasks, with possibly a small number of variations. By contrast,
we design a synthetic, parameterized learning problem1 with the explicit purpose of ascer-
taining the “working regions” of learning algorithms in a space that is carefully engineered
to span the dimensions of the task and the learning architecture. The approach we propose
enjoys the following merits:

1. The designed task and learning framework are easy to understand and can be controlled
precisely.

2. We may examine the effect of subsets of problem parameters while keeping others fixed.
3. We can benchmark learned policies against optimal behavior.
4. The learning process can be executed in a relatively short duration of time, thereby facil-

itating extensive experimentation.

While the careful design of a synthetic learning problem allows us these liberties, equally
it qualifies the extent to which our conclusions may generalize in practice. Thus, the results
from our study are to be taken as starting points for further empirical investigation, rather
than treated as well-grounded final products in themselves. In this sense, the methodology
we put forth enjoys a complementary relationship with the research strategy of evaluating
RL methods on more realistic problems. We proceed to demarcate the scope of our study.

1The term “parameterized learning problem” is quite generic; such problems have been used in the past both
in RL and in other fields. For some examples, see our discussion of related work in Sect. 6. By applying the
term here to describe our framework, we aim to underscore that problem parameters are its very crux; they
are not secondary as in related work.
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1.1 Scope of study

In order to develop a field guide for solving realistic RL problems, it is first necessary to char-
acterize such problems along the dimensions that distinguish them from well-understood
cases such as table-based learning in finite MDPs. Towards this purpose, we undertake a
survey of literature describing practical applications of RL. While surveying material from
relevant journals and conference proceedings, we apply the criterion that the task applica-
tion, rather than the learning method employed, be the primary focus of the publication.
Based on our findings, we focus our attention on two predominant, “first order” factors
that characterize a sizeable fraction of sequential decision making problems in practice: (a)
partial observability, which arises due to an agent’s inability to identify the system state,
and (b) function approximation, which is necessary for learning in large or continuous
state spaces. The ubiquity of these factors in applications is apparent from Table 1, which
summarizes our survey.2

A majority of the applications listed in Table 1 have to contend with partial observ-
ability of state. In complex systems such as stock markets (Nevmyvaka et al. 2006), com-
puter networks (Tesauro et al. 2007), and cellular tissue (Guez et al. 2008), available mea-
surements seldom suffice to capture all the information that can affect decision making.
Nearly every agent embedded in the real world (Kwok and Fox 2004; Ng et al. 2004;
Lee et al. 2006) receives noisy sensory information. The inadequacy of the sensory sig-
nal in identifying the underlying system state hinders the assumption of a Markovian in-
teraction between the agent and the environment, on which the theoretical guarantees as-
sociated with many learning methods rely. Whereas coping with partial observability in
a systematic manner is a well-studied problem, it is yet to scale to complex tasks with
large, high-dimensional, continuous state spaces (Chrisman 1992; Cassandra et al. 1994;
Bakker et al. 2003; Pineau et al. 2006).

Of the 25 applications listed in Table 1, 15 involve continuous state spaces, which ne-
cessitate the use of function approximation in order to generalize. Indeed among the ten
applications that have discrete state spaces, too, seven use some form of function approxi-
mation to represent the learned policy, as their state spaces are too large for enumeration, and
possibly even infinite. The use of function approximation negates the theoretical guarantees
of achieving optimal behavior. Often the function approximation scheme used is not capable
of representing an optimal policy for a task; even when it is, seldom can it be proven that a
learning algorithm will discover such a policy. Although there exist convergence guarantees
for certain algorithms that use linear function approximation schemes (Konda and Tsitsik-
lis 2003; Perkins and Precup 2003; Maei et al. 2010), they do not provide effective lower
bounds for the values of the learned policies. Further, convergence results rarely extend to
situations in which non-linear representations such as neural networks are used to approx-
imate the value function; yet non-linear representations are used commonly in practice, as
apparent from Table 1.

Our survey of RL applications suggests that the most common strategy adopted while
implementing sequential decision making in practice is to apply algorithms that come
with provable guarantees under more restrictive assumptions, and to empirically verify

2Other independently-compiled surveys of sequential decision making applications corroborate the observa-
tions we draw based on Table 1. Langley and Pendrith (1998) describe several RL applications presented
at a symposium organized around the topic; Szepesvári lists numerous applications from the control and
approximate dynamic programming literature at this URL: http://www.ualberta.ca/~szepesva/RESEARCH/
RLApplications.html.

http://www.ualberta.ca/~szepesva/RESEARCH/RLApplications.html
http://www.ualberta.ca/~szepesva/RESEARCH/RLApplications.html
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Table 1 Characterization of some popular applications of reinforcement learning. “Policy Representation”
describes the underlying representation from which the policy is derived. A “neural network” representation
is non-linear, incorporating at least one hidden layer of units. Under tile coding, the number of “features”
indicates the number of state variables, rather than the number of individual tiles

Task State State space Policy representation

observability (number of features)

Backgammon Complete Discrete Neural network

(Tesauro 1992) (198)

Job-shop scheduling Complete Discrete Neural network

(Zhang and Dietterich 1995) (20)

Tetris Complete Discrete Linear

(Bertsekas and Tsitsiklis 1996) (21)

Elevator dispatching Partial Continuous Neural network

(Crites and Barto 1996) (46)

Acrobot control Complete Continuous Tile coding

(Sutton 1996) (4)

Dynamic channel allocation Complete Discrete Linear

(Singh and Bertsekas 1997) (100’s)

Active guidance of finless rocket Partial Continuous Neural network

(Gomez and Miikkulainen 2003) (14)

Fast quadrupedal locomotion Partial Continuous Parameterized policy

(Kohl and Stone 2004) (12)

Robot sensing strategy Partial Continuous Linear

(Kwok and Fox 2004) (36)

Helicopter control Partial Continuous Neural network

(Ng et al. 2004) (10)

Dynamic bipedal locomotion Partial Continuous Feedback control policy

(Tedrake et al. 2004) (2)

Adaptive job routing/scheduling Partial Discrete Tabular

(Whiteson and Stone 2004) (4)

Robot soccer keepaway Partial Continuous Tile coding

(Stone et al. 2005) (13)

Robot obstacle negotiation Partial Continuous Linear

(Lee et al. 2006) (10)

Optimized trade execution Partial Discrete Tabular

(Nevmyvaka et al. 2006) (2–5)

Blimp control Partial Continuous Gaussian process

(Rottmann et al. 2007) (2)

9 × 9 Go Complete Discrete Linear

(Silver et al. 2007) (≈1.5 million)

Ms. Pac-Man Complete Discrete Rule List

(Szita and Lőrincz 2007) (10)

Autonomic resource allocation Partial Continuous Neural network

(Tesauro et al. 2007) (2)
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Table 1 (Continued)

Task State State space Policy representation

observability (number of features)

General game playing Complete Discrete Tabular

(Finnsson and Björnsson 2008) (over part of state space)

Soccer opponent “hassling” Partial Continuous Neural network

(Gabel et al. 2009) (9)

Adaptive epilepsy treatment Partial Continuous Extremely randomized trees

(Guez et al. 2008) (114)

Computer memory scheduling Complete Discrete Tile coding

(İpek et al. 2008) (6)

Motor skills Partial Continuous Motor primitive

(Peters and Schaal 2008) coefficients (100’s)

Combustion Control Partial Continuous Parameterized policy

(Hansen et al. 2009) (2–3)

that they remain effective when those assumptions are relaxed. Typically much manual
effort is expended in designing schemes to mitigate the adverse effects partial observ-
ability and inadequate function approximation. In addition recent lines of research have
focused on developing adaptive methods to cope with these factors (Pineau et al. 2006;
Whiteson and Stone 2006; Mahadevan 2009). While such methods can improve the per-
formance of RL algorithms in practice, their effectiveness is yet to be demonstrated on a
wide scale; it remains that even in the situations they apply, the undesirable effects of partial
observability and function approximation are only reduced, and not eliminated.

Adopting the view that in practice, partial observability and function approximation will
affect learning to varying degrees, we aim to examine the capabilities of learning methods
that operate in their presence. Specifically we design a framework in which these factors can
be systematically controlled to gauge their effect on different learning methods. While these
factors can be construed as aspects of an agent’s learning apparatus, our study also considers
task-specific characteristics such as the size of the state space and the stochasticity of actions.
Any fixed setting for the parameters that control these factors determines a learning problem,
on which different learning methods can be compared.

In our study, we compare learning methods from two contrasting classes of algorithms.
The first class corresponds to (model-free) on-line value function-based methods, which
learn by associating utilities with action choices from individual states. The second class of
algorithms we examine are policy search methods. Rather than learn a value function, policy
search methods seek to directly optimize the parameters representing a policy, treating the
expected long-term reward accrued as an objective function to maximize.

First we evaluate several methods within each of the above classes, and based on their
empirical performance, pick one method from each class to further compare across a suite
of problem instances. The representatives thus chosen are Sarsa(λ) (Rummery and Niranjan
1994; Sutton and Barto 1998) from the class of on-line value function-based methods, and
CMA-ES (Hansen 2009) from the class of policy search methods. In evaluating a method
on a problem instance, our experimental framework allows us to extensively search for the
method-specific parameters (such as learning rates, eligibility traces, and sample sizes for
fitness evaluation) that lead to the method’s best performance. Our experiments identify
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regions of the problem space that are better suited to on-line value function-based and policy
search methods, and yield insights about the effect of algorithm-specific parameters.

The remainder of this article is organized as follows. In Sect. 2, we describe the detailed
design of our parameterized learning problem. Section 3 provides brief descriptions of the
methods compared in the study. In Sect. 4, we present detailed results from our experiments,
which we follow with a discussion in Sect. 5. Related work is discussed in Sect. 6. We
summarize and conclude the article in Sect. 7.

2 A Parameterized sequential decision making problem

In this section, we describe the construction of our parameterized learning problem, which is
composed of a task MDP and an accompanying learning framework that incorporates partial
observability and function approximation.

2.1 Problem size and stochasticity

The class of tasks we design consists of simple square grids, each having a finite number
of states. An example of such a task is illustrated in Fig. 1. The size of the state space is
s2 − 1, where s, the side of the square, serves as a parameter to be varied. Each episode
begins with the agent placed in a start state chosen uniformly at random from among the
set of non-terminal states, as depicted in Fig. 1(a). The north and east sides of the grid are
lined with terminal states, of which there are 2(s − 1). From each state, the agent can take
either of two actions: North (N) and East (E). On taking N (E), the agent moves north (east)
with probability p and it moves east (north) with probability 1 − p. The variable p, which
essentially controls the stochasticity in the transitions, is also treated as a parameter of the
task MDP. Note that irrespective of the value of p, the agent always moves either north or
east on each transition before reaching a terminal state. Consequently episodes last at most
2s − 3 steps.

Through the course of each episode, the agent accrues rewards at the states it visits. Each
MDP is initialized with a fixed set of rewards drawn uniformly from [0,1], as illustrated
in Fig. 1(b). In general the rewards in an MDP can themselves be stochastic, but in our
tests, we find that the effect of stochastic rewards on our learning algorithms is qualitatively
similar to the effect of stochastic state transitions, which are controlled by the parameter p.
Thus, we keep the rewards deterministic. Figures 1(c) and 1(d) show the optimal values

Fig. 1 (a) Example of parameterized MDP example with s = 7; the number of non-terminal states is 36.
(b) Rewards obtained at “next states” of transitions. (c) Optimal action values from each state when p = 0.1.
(d) Corresponding optimal policy
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and the actions to which they correspond under the reward structure shown in Fig. 1(b)
(assuming p = 0.1). We do not discount rewards in the computation of values. Notice that
the variation in values along the north and east directions is gradual: this supports the scope
for generalization between neighboring cells. The values in Fig. 1(c) are obtained using
dynamic programming. Indeed it is also straightforward under this setup to learn the optimal
policy based on experience, for example by using a table of action values updated through
Q-learning. However, the objective of our study is to investigate situations in which table-
based approaches are not guaranteed to succeed. In the remainder of this section, we specify
the aspects of our learning problem that, in ways similar to real-world problems, render
table-based approaches infeasible.

2.2 Partial observability

In an MDP, the current system state and action completely determine the dynamics of the en-
suing transition. However, in a number of RL applications, perceptual aliasing (Whitehead
and Ballard 1991) and noisy sensors (Stone et al. 2005) deny an agent direct access to the un-
derlying system state. In principle the agent can keep a record of its past observations, and ef-
fectively use this memory as a means to reconstruct the system state (Lin and Mitchell 1993;
McCallum 1996). Indeed the seminal work of Åström (1965) demonstrates that by keeping a
“belief state” that is updated based on incoming observations, an agent can eventually disam-
biguate states perfectly. However, the complexity of doing so is forbidding even in the con-
text of planning (with known transition dynamics) (Cassandra et al. 1994), and is yet to scale
to large problems (Pineau et al. 2006). Using experience to disambiguate states in partially
observable environments is typically feasible only in very small problems (Chrisman 1992;
McCallum 1995; Bakker et al. 2003). In effect, learning agents in most RL applications have
to treat “observed states” as states, and their performance varies depending on the validity
of this assumption (Nevmyvaka et al. 2006).

Each cell in our task MDP corresponds to a state. In order to model partial observability,
we constrain the learner to use an observed state o, which, in general, can be different from
the true state s. Our scheme to pick o based on s is depicted in Fig. 2. Given s, we consider all
the cells that lie within dx from it along the x direction and within dy along the y direction:
from among these cells, we pick one uniformly at random to serve as the corresponding
observed state o. Controlling dx and dy allows us to vary the extent of partial observability.

Fig. 2 An implementation of partial observability in the example MDP from Fig. 1. (a) Variables dx and dy

(themselves generated randomly based on parameter σ ) define a rectangle with the true state at a corner; cells
within this rectangle are picked uniformly at random to constitute observed states. (b) A trajectory of true
states 1 through 9, and the set of all possible observed states that could be encountered during this trajectory
when dx = −2 and dy = 1. (c) For the same trajectory, the set of possible observed states when dx = 1 and
dy = 0
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Before starting a learning run, we fix dx and dy : each is sampled from a Gaussian distri-
bution with zero mean and a standard deviation equal to σ , and then rounded to the nearest
integer. Note that dx and dy can be positive, negative, or zero. Figures 2(b) and 2(c) show
an illustrative trajectory of states numbered 1 through 9. Under different settings of dx and
dy , the figures show the set of all possible observed states that could result while the agent
traces its trajectory. As is apparent from the figures, by keeping dx or dy fixed for the entire
course of a learning run (i.e., by not changing them from episode to episode), the state noise
encountered by the agent during its lifetime is systematic in nature. Informal experimenta-
tion with a number of schemes for implementing state noise suggests that biased noise tends
to affect learning more severely than zero-mean noise. The magnitude of the noise, imple-
mented through dx and dy , is controlled by the single free parameter σ , which we vary in
our experiments. Setting σ to 0 ensures complete observability of state. Progressively larger
values of σ lead to observed states that are farther apart from the agent’s true state, and
render the agent’s interaction with the environment non-Markovian.

2.3 Function approximation

The function approximation scheme in our learning problem is motivated by “CMAC” (Al-
bus 1981), a popular method that is used in a number of RL applications (Singh and Sutton
1996; Stone et al. 2005; İpek et al. 2008). At each decision making step, we provide the
learning agent a vector of nf features to describe its observed state. Each feature is a square
“tile”, with a binary activation: 1 within the boundary of the tile and 0 outside. Tiles have a
fixed width w, which serves as a parameter in our experiments that determines the extent of
generalization between states while learning. The centers of the tiles are chosen uniformly at
random among non-terminal cells in the MDP. Figure 3 continues the example from Fig. 1,
describing the architecture used for function approximation. In Fig. 3(a), nine tiles (num-
bered 1 through 9) are used by the function approximator. The tile width w is set to 3; for
illustration, four among the nine tiles are shown outlined.

Notice that every non-terminal cell in Fig. 3(a) is covered by at least one tile: i.e., ev-
ery cell has at least one feature that is active. Indeed we ensure that complete coverage is
always achieved, in order that non-trivial decisions can be made at every cell. Clearly, not

Fig. 3 Function approximation in example MDP from Fig. 1. (a) A randomly chosen subset of cells (num-
bered 1 through 9) are the centers of overlapping tiles (giving χ = 9

36 = 0.25). The tile width w is set to 3;
tiles 1, 2, 5, and 9 are shown outlined (and clipped at the boundaries of the non-terminal region). (b) Table
showing coefficients associated with each tile for actions N and E. (c) The activation value of each cell for an
action is the sum of the weights of the tiles to which it belongs. The figure shows the higher activation value
(among N and E) for each cell. (d) Arrows mark a policy that is greedy with respect to the activations: i.e., in
each cell, the action with a higher activation value is chosen. In general the agent will take the greedy action
from its observed state



214 Mach Learn (2011) 84:205–247

all the cells could be covered if the number of tiles (nf ) and the width of each tile (w) are
both small; in all our experiments, we set these parameters such that in conjunction they
can facilitate complete coverage of all non-terminal cells. The placement of the nf tiles is
performed randomly, but preserving the constraint that all non-terminal cells be covered. In
order to implement this constraint, we first place the tiles in regular positions that guarantee
complete coverage, and then repeatedly shift tiles, one at a time, to random positions while
still preserving complete coverage. Rather than treat nf directly as a parameter in our ex-
periments, we normalize it by dividing by the number of non-terminal cells: (s − 1)2. The
resulting quantity, χ = nf

(s−1)2 , lies in the interval (0,1], and is more appropriate for compar-
isons across different problem sizes. In Fig. 3(a), nf = 9 and s = 7, yielding χ = 0.25. We
treat χ as a parameter in our experiments. As we shortly describe, χ determines the resolu-
tion with which independent actions can be taken from neighboring cells. In this sense, χ

measures the “expressiveness” of the function approximation scheme.
Given the set of features for its observed state, the agent computes a separate linear

combination for each action, yielding a scalar “activation” for that action. For illustration,
consider Fig. 3(b), which shows a set of coefficients for each feature and action. It is these
coefficients (or “weights”) that the agent updates when it is learning. While learning, the
agent may take any action from the states it visits. However, while evaluating learned be-
havior, we constrain the agent to take the action with the higher activation, breaking ties
evenly. Figure 3(b) shows the higher of the resulting activations for the two possible actions
at each cell in our illustrative example; Fig. 3(d) shows the action with the higher activation.

In effect, the only free parameters for the learning agent to update are the sets of coeffi-
cients corresponding to each action. By keeping other aspects of the representation—such
as the features and policy—fixed, we facilitate a fair comparison between different learning
methods. In general, value function-based methods such as Sarsa(λ) seek to learn weights
that approximate the action value function. We expect that setting σ = 0 and χ = 1 would
favor them, as the optimal action value function can then be represented. While this is so
under any value of w, setting w = 1 replicates the case of table-based learning with no gen-
eralization. Higher settings of w enforce generalization. Increasing σ or reducing χ would
likely shift the balance in favor of policy search methods, under which activations of ac-
tions are merely treated as action preferences. As Baxter and Bartlett (2001) illustrate, even
in simple 2-state MDPs, with function approximation, it is possible that the optimal action
value function cannot be represented, even if an optimal policy can be represented.

In summary the design choices listed in this section are the end products of a process of
trial and error directed towards constructing a suite of instances that allow us to study trends
in learning algorithms, rather than constructing instances that are challenging in themselves.
Table 2 summarizes the parameters used in our framework. Parameters s, p, σ , χ , and w,
along with a random seed, fix a learning problem for our experiments. By averaging over

Table 2 Summary of learning problem parameters. The last column shows the ranges over which each
parameter is valid and meaningful to test

Parameter Property of Controls Range

s Task Size of state space {2,3, . . . ,∞}
p Task Stochasticity in transitions [0,0.5)

σ Agent/task interface Partial observability [0,∞)

χ Agent Expressiveness of func. approx. (0,1]
w Agent Generalization of func. approx. {1,3, . . . ,2s − 3}
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multiple runs with different random seeds, we estimate the mean performance achieved by
learning methods as a function of s, p, σ , χ , and w. Note that even if these parameters do
not perfectly replicate an instance of any specific sequential decision making in practice,
they are capable of being varied in a controlled manner to measure their effect on learning
algorithms.

It must be noted that the parameterized learning problem described above is limited
in several respects. While it enables the study of the most central problem parameters—
problem size, stochasticity, partial observability and function approximation—it does not
likewise isolate several other aspects influencing practical implementations of RL. Foremost
is the question of exploration, which is not very crucial in our setup due to the occurrence of
start states uniformly at random. The learning agent only has two actions; in practice large
or continuous action spaces are quite common. Understanding the effect of other aspects,
such as computational and memory constraints, the variation among action values from a
state, different types of state noise, the sparsity and spread of the rewards, and the average
episode length, would also be important for designing better algorithms in practice. We hope
that the experimental methodology introduced in this article will aid future investigation on
such subjects.

In the next section, we provide brief descriptions of the learning algorithms used in our
experiments; in Sect. 4, the algorithms are compared at a number of different parameter
settings drawn from the ranges provided in Table 2. Along with the parameterized learning
problem itself, the results of these experiments are an important contribution of our article.

3 Methods in study

As noted earlier, we compare two contrasting classes of learning methods in our study: on-
line value function-based (VF) methods, and policy search (PS) methods. With the aim of
comparing these classes themselves, we first evaluate various methods within each class to
pick a representative. In this section, we describe the learning methods thus considered, and
describe relevant implementation-specific details. Experiments follow in Sect. 4.

3.1 On-line value function-based (VF) methods

We compare three learning methods from the VF class: Sarsa(λ) (Rummery and Niranjan
1994; Rummery 1995), Q-learning(λ) (Watkins 1989; Watkins and Dayan 1992; Rummery
1995; Peng and Williams 1996; Sutton and Barto 1998), and Expected Sarsa(λ) (abbreviated
“ExpSarsa(λ)”) (Rummery 1995; van Seijen et al. 2009). These methods are closely related:
they all continually refine an approximation of the action value function, making a constant-
time update every time a new state is encountered. Yet the methods are distinguished by
subtle differences in their update rules. We include these methods in our study to examine
how their differences affect learning under function approximation and partial observability:
settings under which theoretical analysis is limited. We proceed to describe the methods
themselves.

Sarsa(λ) is a model-free value function-based method, which makes on-line, on-policy,
temporal difference (TD) learning updates. The learning agent maintains an estimate of an
action value function, Q, which is updated as it encounters sequences of states (s), actions
(a) and rewards (r). In particular assume that the agent encounters the following trajectory,
in which suffixes index decision steps:

st , at , rt+1, st+1, at+1, rt+2, st+2, at+2, rt+3, . . . .
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The agent updates Q(st , at ) by computing a target, QTarget(st , at ), and taking an incre-
mental step towards it as follows:

Q(st , at ) ← (1 − αt )Q(st , at ) + αtQTarget(st , at ),

where αt ∈ (0,1] is the learning rate for the update. Recall that in our architecture, Q is
represented as a linear function approximator; hence, the learning update is implemented
through gradient descent. Under Sarsa(0), the “fully bootstrapping” version of Sarsa, the
target is computed as follows:

Q
Sarsa(0)
Target (st , at ) = rt+1 + γQ(st+1, at+1),

where γ ∈ [0,1) is a discount factor.3 Note that the target does not count the actual rewards
accrued beyond time step t + 1; rather, the discounted sum of these “future” rewards is
substituted with its current estimate: Q(st+1, at+1). By contrast, a Monte Carlo method,
Sarsa(1) computes its estimates wholly from sample returns, as:

Q
Sarsa(1)
Target (st , at ) = rt+1 + γ

∞∑

k=1

γ k−1rt+1+k.

This target would not change depending on the actual states that the trajectory visited,
but only based on the sequence of rewards obtained. This makes Monte Carlo methods
less dependent on the state signal than fully bootstrapping methods. Both methods still try
to estimate state-action values, and therefore rely on being able to precisely detect st and
represent QSarsa

Target(st , at ). In general, intermediate methods that implement varying extents of
bootstrapping can be conceived by varying the “eligibility trace” parameter λ ∈ [0,1]. The
estimated target for Q(st , at ) used by Sarsa(λ) is:

Q
Sarsa(λ)
Target (st , at ) = rt + γ

{
(1 − λ)Q(st+1, at+1) + λQ

Sarsa(λ)
Target (st+1, at+1)

}
.

For the case of discrete MDPs, in which Q can be maintained as a table, Singh et al.
(2000) show that by following a policy that is “greedy in the limit” with respect to Q, and
which performs an infinite amount of exploration, Sarsa(0) will ultimately converge to the
optimal action value function Q∗, from which the optimal policy π∗ can be derived by acting
greedily. For linear function approximation schemes such as in our parameterized learning
problem, Perkins and Precup (2003) show that convergence to a fixed point can be achieved
by following a method similar to Sarsa(0).

We use a standard implementation of Sarsa(λ) with binary features, a linear representa-
tion, and replacing eligibility traces (see Sutton and Barto 1998, p. 212). While learning, the
agent follows an ε-greedy policy. We treat both the exploration strategy and the schedule
for annealing the learning rate as parameterizable processes. We follow an εu-greedy explo-
ration policy during episode u, keeping ε0 as a free parameter, and εU = 0.01, where U is
the total number of training episodes. Intermediate values of εu are set based on a harmonic
sequence going from ε0 to 0.01. We use such a schedule based on empirical evidence of its
effectiveness.

Interestingly, informal experimentation shows us that a similar annealing schedule is also
the most effective for the learning rate α; i.e., we keep α0 as a free parameter and anneal it

3It is legitimate to use γ = 1 in episodic tasks. We do so in our experiments (see Sect. 4).
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harmonically to 0.01 at the end of training. Since features are binary, we divide the mass of
each update equally among the features that are active under the state-action being updated.
It is worth noting that theoretically-motivated update rules exist for annealing the learning
rate. For example, Hutter and Legg (2008) derive a rule based on minimizing the squared
loss between estimated and true values. However, their approach is only viable with tabular
representations of Q, and further, only in continuing (rather than episodic) tasks.

Apart from λ, ε0, and α0, yet another parameter influencing Sarsa(λ) is the setting of the
initial weights (coefficients in the linear representation). In our experiments, we set all the
weights initially to θ0, which is our final method-specific parameter. Table 3 summarizes the
parameters defining Sarsa(λ). These parameters also apply to other methods in the VF class,
which we now describe.

Whereas Sarsa(λ) computes its target for time t based on the action to be taken at time
t + 1 − at+1 − ExpSarsa(λ) and Q-learning(λ) compute their targets (and make learning
updates) before at+1 is chosen. Once st+1 is reached, ExpSarsa(λ) computes its target based
on an expectation over the possible choices of at+1 while following the current ε-greedy
policy πt+1:

Q
ExpSarsa(λ)

Target (st , at ) = rt + γ

{
(1 − λ)Q(st+1, at+1)

+ λ
∑

a∈A

P{a|st+1,πt+1}QExpSarsa(λ)

Target (st+1, a)

}
.

This alteration leads to a reduced variance in the update, as a sampled action value is
now replaced with a smoothed-out estimate. It is shown by van Seijen et al. (2009) that like
Sarsa(0), ExpSarsa(0) can also be made to converge to the optimal policy in discrete, finite
MDPs. Q-learning(λ) differs from Sarsa and ExpSarsa in that it is an off-policy method:
rather than learning the action value function of the policy being followed, πt , Q-learning(λ)
seeks to directly learn the action values of the optimal policy π∗. This objective is achieved
by computing the target as follows:

Q
Q-learning(λ)

Target (st , at ) = rt + γ
{
(1 − λ)max

a∈A
Q(st+1, a) + λQ

Q-learning(λ)

Target (st+1, at+1)
}
.

Sutton and Barto (1998, see p. 184) refer to the update rule above as a “naïve” implemen-
tation of Q-learning with eligibility traces, because the rule lacks technical justification as a
proper TD learning update. By contrast, there are some sound variations of Q-learning with
eligibility traces (Watkins 1989; Peng and Williams 1996), under which updates additionally
have to account for whether chosen actions were greedy or non-greedy. We refer the reader
to the Ph.D. thesis of Rummery (1995, see Chap. 2) for an excellent presentation of various

Table 3 Summary of parameters used by methods within VF. The last column shows the ranges over which
we tune each parameter

Parameter Controls: Range

λ Eligibility traces [0,1]
α0 Initial learning rate [0.1,1]
ε0 Initial exploration rate [0.1,1]
θ0 Initial weights [−10.0,10.0]
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TD update rules. Note that Rummery refers to Sarsa as “modified Q-learning”, and to Ex-
pected Sarsa as “summation Q-learning”. It would exceed the scope of this article to under-
take an extensive study comparing all possible variants of TD update rules. Rather, a novel
contribution of our experiments is to consider three among them—Sarsa(λ), ExpSarsa(λ),
and (naïve) Q-learning(λ)—in the presence of function approximation and partial observ-
ability. Indeed our results show that under this setting, hitherto uncharacterized patterns in
performance emerge.

As with Sarsa(λ), we parameterize ExpSarsa(λ) and Q-learning(λ) to control their learn-
ing and exploration rates, as well as their initial weights. The corresponding parameters,
α0, ε0 and θ0, are summarized in Table 3. Henceforward we drop the “λ” from Sarsa(λ),
ExpSarsa(λ), and Q-learning(λ), and refer to these methods simply as Sarsa, ExpSarsa, and
Q-learning, respectively. We do so to highlight that these methods are no longer only pa-
rameterized by λ in our experiments—so are they by α0, ε0, and θ0.

Note that setting w > 1 in our parameterized learning problem introduces generalization,
and further, setting χ < 1 reduces the expressiveness of the function approximator. Thus, in
general, the approximate architectures used are incapable of representing the optimal action
value function Q∗. Even with full expressiveness (χ = 1), if using generalization (w >

1), methods from VF are not guaranteed to converge to the optimal action value function.
And even if these methods approximate the action value function well, as defined through
the Bellman error, greedy action selection might yet pick suboptimal actions in regions of
inaccurate approximation, resulting in low long-term returns (Kalyanakrishnan and Stone
2007).

A bulk of the research in RL with linear function approximation has been in the con-
text of prediction: estimating the value function of a fixed policy (without policy improve-
ment). An early result due to Sutton (1988) establishes that TD(0) with linear function
approximation converges when the features used are linearly independent; Dayan and Se-
jnowski (1994) extend this result to TD(λ), ∀λ ∈ [0,1], while Tsitsiklis and Van Roy (1997)
show convergence for the more realistic case of infinite state spaces and linearly depen-
dent features. Although most results for the convergence of linear TD learning are for es-
timating values of the policy that is used to gather experiences, the more general (and po-
tentially useful) case of off-policy learning has also been addressed (Precup et al. 2001;
Sutton et al. 2009).

The problems in learning approximate value functions on-line primarily arise due to the
nonstationarity and bias in the targets provided to the function approximator (Thrun and
Schwartz 1993). The best theoretical guarantees for learning control policies with approx-
imate schemes come with several restrictions. Most results are limited to linear function
approximation schemes; in addition some make demands such as Lipschitz continuity of
the policy being learned (Perkins and Precup 2003) and favorable initial conditions (Melo
et al. 2008). Results tend to guarantee convergence of certain updating schemes, but invari-
ably lack desirable guarantees about the long-term reward that will be accrued at conver-
gence (Sabes 1993; Perkins and Pendrith 2002; Perkins and Precup 2003).

In recent work, Maei et al. (2010) introduce the Greedy-GQ algorithm, which provably
converges while making off-policy learning updates to a linear function approximator. Un-
fortunately, Greedy-GQ requires that the policy followed while learning stay fixed, prevent-
ing the agent from actively exploring based on the experiences it gathers. Thus, ε-greedy
exploration, with ε < 1, violates the assumptions needed for Greedy-GQ to converge; our
informal experiments confirm that such a version of Greedy-GQ does not perform on par
with the other methods we consider within the VF class. Thus, we do not include Greedy-
GQ in our extensive comparisons.
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3.2 Policy search (PS) methods

We include three methods from the PS class in our study: the Cross-entropy method
(CEM) (de Boer et al. 2005), the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) (Hansen 2009), and a genetic algorithm (GA). In addition we implement random weight
guessing (RWG) to compare as a baseline.

CEM is a general optimization algorithm that has been used effectively as a policy search
method on RL problems (Szita and Lőrincz 2006). In our linear representation, the vector
of weights constitute the policy parameters to be adapted. The objective function, or “fit-
ness” function, to be maximized is the expected long-term reward accrued by following the
greedy policy that is derived from the weights. An iterative algorithm, CEM maintains and
updates a parameterized distribution over the multi-dimensional search space. On each it-
eration, a population of #pop points is sampled from the current distribution. Each point is
evaluated, and the μ points with the highest fitness values are used to determine the distri-
bution parameters for the next iteration. The update rule is such that with time the variance
of the distribution shrinks and its mean gravitates towards regions of the parameter space
with high fitness values. As is a common choice, in our experiments, we use a Gaussian dis-
tribution to generate sample points. We initialize the mean of this distribution to be the zero
vector; along each dimension the variance is set to 1 (with no covariance terms). The update
rule for Gaussian distributions is such that at every iteration, the updated distribution has as
its mean and variance the sample mean and variance of the μ selected points (independently
for each parameter). In general the update can also depend on the current distribution’s mean
and variance; further, noise can be added to the variance at each iteration to prevent prema-
ture convergence (Szita and Lőrincz 2006). We do not implement these variations in our
experiments as they do not appear to have a significant effect in our domain.

Like CEM, the CMA-ES method also employs the principle of updating a distribution
at each generation to maximize the likelihood of the μ points with the highest fitness val-
ues being generated. However, unlike CEM, CMA-ES tracks covariances across dimensions
and actively monitors the search path in the parameter space leading up to the current gen-
eration. Handling several aspects in the search procedure, CMA-ES is a fairly sophisticated
optimization technique; we refer the reader to descriptions from Hansen (2009) and Suttorp
et al. (2009) for details. Nevertheless, we find it surprisingly straightforward to implement
the algorithm based on existing code, which automatically sets most of the method-specific
parameters.4 We set the initial distribution identically to the one set under CEM.

We implement GA in a manner akin to CEM and CMA-ES. On each generation, we
spawn and evaluate #pop policies; of these, the μ with the highest fitness values are selected
to generate the next population. Specifically, pairs are chosen uniformly at random from
the selected μ and crossed over to produce two offspring each. Policies are real-valued
vectors over the space of parameters searched. Each parameter, restricted to the interval
[−1,1], is represented using a 32-bit Gray-coded string. To implement crossover between
two individuals, the bit strings corresponding to each parameter are cut at a random location
and matched across individuals, thereby yielding two offspring. To implement mutation,
individuals are picked from the population with a small probability (0.05), and once picked,
have each bit flipped with a small probability (0.1). Both under CEM and GA, we set μ,
the number of policies selected every generation to seed the next, to 15% of the population
size #pop. Experiments suggest that these methods are not very sensitive to μ values in

4See: http://www.lri.fr/~hansen/cmaes_inmatlab.html.

http://www.lri.fr/~hansen/cmaes_inmatlab.html
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this vicinity. CMA-ES uses a default value for μ depending on #pop and the number of
parameters searched.

In general, PS methods can work with a variety of representations. An illustrative exam-
ple is the PS framework implemented by Kohl and Stone (2004) to optimize the forward
walking speed of an Aibo robot. The gait they design has parameters describing trajectory
positions and timings, which are combined using manually designed sets of rules. Evolution-
ary computation has been a particularly popular choice for PS; in particular several neuro-
evolutionary techniques have been tested on control tasks (Gomez and Miikkulainen 1999;
Stanley 2004; Metzen et al. 2008). Typically the policy is represented using a neural net-
work, whose topology and weights are evolved to yield policies with higher values.

In order to maintain a fair comparison with the VF methods in this study, we enforce
that the methods chosen from PS employ the same representation, under which real-valued
parameters are to be optimized (Sect. 2.3). In principle numerous evolutionary and optimiza-
tion techniques apply to this problem: among others, amoeba, particle swarm optimization,
hill climbing, and several variants of genetic and “estimation of distribution” algorithms.
The reason we choose CEM and CMA-ES in our comparison is due to the several suc-
cesses they have achieved in recent times (Szita and Lőrincz 2006; Szita and Lőrincz 2007;
Hansen et al. 2009), which partly owes to their mathematically-principled derivation. We
implement GA on the grounds that although it optimizes exactly the same parameters, it
employs a bit string-based internal representation during its search, and thus is qualita-
tively different. Note that all the methods described above only use the ranks among fitness
values in a generation to determine the next. In this manner, these methods differ from
canonical policy gradient methods for RL (Sutton et al. 2000; Baxter and Bartlett 2001;
Kakade 2001), which rely on the of gradients with respect to the policy parameters to iden-
tify a direction in the parameter space for policy improvement. Our policy is not analytically
differentiable since it is deterministic.

The three PS methods described above take two parameters, listed in Table 4. Since
fitness is defined as the expected long-term reward accrued by a policy, we estimate it by
averaging the returns from #trials episodes. The other method-specific parameter, #gens,
is the number of generations undertaken during the learning period. As a consequence, note
that if the total number of training episodes is U , the population size in each generation
is given by U

#trials×#gens
. Under RWG, we repeatedly generate policies, evaluate each for

#trials episodes, and retain the policy with the highest fitness. Informal experimentation
shows that it is more effective to sample policies based on a Gaussian distribution for each
parameter, rather than a uniform distribution.

4 Experiments and results

In this section, we present experimental results. First, in Sect. 4.1, we describe our experi-
mental methodology. In Sect. 4.2, we perform comparisons within the VF and PS classes to

Table 4 Summary of parameters used by methods from PS. The last column shows the ranges over which
we tune each parameter. The range shown for #trials is used when the total number of episodes is 50,000,
as in a majority of our experiments (see Sect. 4). The range is scaled proportionately with the total number of
training episodes

Parameter Controls: Range

#trials Samples per fitness evaluation [25,250]
#gens Generations [5,50]
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pick representative methods from each. These representative methods are further compared
across a series of experiments in Sects. 4.3 through 4.7 to ascertain their interactions with
parameters of the learning problem.

4.1 Experimental methodology

As defined in Sect. 2, a learning problem is fixed by setting s, p, σ , χ , w, and a random
seed. Additionally, before conducting an experiment, we fix U , the total number of learn-
ing episodes conducted. Recall from Tables 3 and 4 that learning methods themselves have
parameters: λ, α0, ε0, θ0, #trials, and #gens. In some experiments, we study the learning
performance at fixed values of these method-specific parameters. However, note that even
for a fixed method (say Sarsa), its best performance at different problem settings will invari-
ably be achieved under different settings of its method-specific parameters (λ, α0, ε0, θ0). In
response we devise an automatic search procedure over the method-specific parameter space
(4-dimensional for Sarsa) to find a configuration yielding the highest learned performance
for a given problem instance and number of training episodes.

The search procedure—described schematically in Fig. 4 for a 2-dimensional param-
eter space—involves evaluating a number of randomly generated points in the space and
iteratively halving the search volume, always retaining the region with the highest perfor-
mance density. The procedure is necessarily inexact due to stochasticity in evaluations, and
since performance might not be “well-behaved” over the region searched. Yet in practice
we find that with sufficient averaging (2000 points per generation) and enough splits (5
times the number of dimensions searched), the procedure yields fairly consistent results. We
suffix the method-specific parameter configurations returned by the search “∗” to indicate
that they have been optimized for some task setting and number of training episodes. Thus,
Sarsa∗ refers to an instance of Sarsa identified through the search procedure, its parameters
being λ∗, α∗

0 , ε∗
0 , and θ∗

0 . Under Sarsa(λ)∗, λ is fixed, and only α0, ε0, and θ0 are optimized.
For clarity, we enumerate here the sequence of steps undertaken in each of our experi-

ments.

1. We fix learning problem parameters s, p, σ , χ , and w.
2. We fix the total number of training episodes U .

Fig. 4 Illustration of a search over two parameters, p1 and p2. Initial ranges for each parameter are speci-
fied as inputs to the search. To begin, points are sampled uniformly from within the specified ranges. At each
sampled point, a single learning run is conducted and its final performance recorded. Subsequently a split
is performed to halve the search volume, retaining an axis-aligned region with the highest density of perfor-
mance among all such regions. The process is repeated several times: with each split, attention is focused on
a smaller part of the search space empirically found to contain the most successful learning runs. Note that
at each stage, any parameter could lead to the best split (p2, p1, and p1 at stages 1, 2, 3, respectively, in the
illustration). At termination the midpoint of the surviving volume is returned
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3. Either we manually specify an instance of a learning method, or search for one, as
described above, to maximize performance for the problem parameters and training
episodes set in steps 1 and 2.

4. With the chosen method instance, we conduct at least 1,000 independent trials of learn-
ing runs. Each trial is fixed by setting a different random seed, which can generate addi-
tional seeds for the learning problem (to determine features and rewards) and the learning
method (to explore, sample, etc.).

5. Each learning trial above results in a fixed policy. We estimate the performance of this
policy through 1,000 Monte Carlo samples. (Although sometimes a policy can be evalu-
ated exactly through dynamic programming, the presence of function approximation and
partial observability make it necessary to estimate performance through sampling.) Note
that methods from VF and PS are both evaluated based on a greedy policy with respect
to the learned weights.

6. Since all the rewards in our parameterized learning problem are non-negative, we find
that problems with larger state spaces invariably lead to policies with higher absolute
rewards. To facilitate meaningful comparison across problems with different parameter
settings, we linearly scale the performance of a policy such that 0 corresponds to the
value, under the same settings, of a random policy, and 1 to that of an optimal policy. In
our graphs, we plot this normalized performance measure. Note that our careful design
of the task MDP allows us to compute the performance values of random and optimal
policies at each setting, even if the settings themselves preclude the learning of optimal
behavior by an agent. Policies that are “worse than random” have normalized perfor-
mance values less than zero.

7. We report the normalized performance achieved (over all trials), along with one standard
error (typically these are small and sometimes difficult to distinguish visually in our
graphs). Note that standard errors do not apply to the results of our parameter search,
such as to find λ∗ under some problem instance. For any task instance, the method-
specific parameter search is conducted exactly once.

In summary: the steps outlined above aim to provide each method the best chance of suc-
cess for a given problem instance and training time, and then to fairly evaluate and compare
competing methods. Having specified our methodology, we proceed to describe results from
our experiments.

4.2 Picking representative methods and setting the training period

The first phase in our experiments is to pick representative learning methods from the VF
and PS classes. We now present comparisons among methods from these classes. We also
describe how we set the number of training episodes for learning runs in our study.

4.2.1 Picking a representative method from VF

In comparing methods from the VF class, we observe that the method-specific parame-
ter with the most dominant effect on performance is the setting of initial weights, θ0. For
illustration consider Fig. 5. In the experiments reported therein, we compare Sarsa(0), Exp-
Sarsa(0), and Q-learning(0). For all these methods, we find that a broad range of the param-
eters α0 and ε0 yield policies with high performance; we manually pick favorable settings
from among these ranges. Q-learning(0) and Sarsa(0) use α0 = 0.8, ε0 = 0.8, while Exp-
Sarsa(0) uses α0 = 0.8, ε0 = 0.2. The total number of training episodes U is set to 50,000.
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The three methods show qualitatively similar patterns in performance as θ0 is varied. In
Fig. 5(a), we find that all of them achieve near-optimal behavior at large settings of θ0, di-
rectly reflecting the merits of optimistic initialization (Even-Dar and Mansour 2001). Action
values tend to lie in the range [0,20]; correspondingly we notice that “pessimistic” initial-
ization of weights to lower values leads to noticeable degradation in performance. Note that
the settings in Fig. 5(a) correspond to a fully expressive tabular representation with no gen-
eralization. As we introduce generalization by increasing w to 5 (Fig. 5(b)), we observe a
significant change in trend: both very high and very low initial weights lead to a marked
decrease in the final performance. This trend persists as the expressiveness χ is reduced
(Fig. 5(c)).

In Figs. 5(b) and 5(c), it is apparent that ExpSarsa(0) falls below Sarsa(0) and Q-
learning(0) at most settings of θ0. We posit that since it performs a weighted average over
all next state-action values, updates under ExpSarsa(0) are likely to propagate error from
state-actions that are encountered less frequently. For a perfect tabular representation, such
as in Fig. 5(a), van Seijen et al. (2009) prove that ExpSarsa(0) updates have the same bias,
but a lower variance, compared to updates under Sarsa(0). However, our results appear to
suggest that when generalization is present (as w is increased), and learning starts with a
stronger initial bias (by setting θ0 farther away from the true action values), ExpSarsa(0)
suffers more from the error in its updates. Extending this argument, we could expect Exp-
Sarsa to perform worse at high values of α0 and ε0 when generalization is used. Shortly we
present the evidence for such a phenomenon.

We design three problem instances to further investigate differences between Sarsa, Exp-
Sarsa, and Q-learning. Table 5 summarizes these problem instances. Instance I1 corresponds
to a fully-expressive tabular representation with no generalization, under which all three
methods enjoy provable convergence guarantees. Expressiveness is reduced and generaliza-

Fig. 5 [s = 10, p = 0.2, σ = 0.] Plots showing the effect of the initial weights θ0 on the performance of
on-line value function-based methods. Note the irregular spacing of points on the x axis. Plot (a) corresponds
to an exact tabular representation with no generalization. Generalization is introduced in (b) by increasing w;
additionally the expressiveness χ is reduced in (c)

Table 5 Parameter settings for illustrative problem instances I1, I2, and I3

Problem instance s p χ w σ

I1 10 0.2 1 1 0

I2 10 0.2 0.5 7 0

I3 10 0.2 1 1 4
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tion introduced in I2. While I1 and I2 are both devoid of state noise, I3 is identical to I1

except for its higher setting of σ .
Figure 6 plots the performance of Sarsa∗, ExpSarsa∗ and Q-learning∗ on I1, I2, and I3.

Notice that under I1, all the methods achieve near-optimal behavior at the end of 50,000
episodes of training. While optimal behavior is not to be expected under I2, it becomes ap-
parent that ExpSarsa∗ trails the other methods in this problem (p-value < 10−4). This finding
parallels the inference we draw from Fig. 5: generalization and function approximation ad-
versely affect ExpSarsa, as its learning updates propagate more bias than either Sarsa or
Q-learning.

Recall that I3 is identical to I1, except that it introduces state noise. Thus, when compared
with I1, we observe that all three methods suffer a significant drop in performance under I3.
Yet, the introduction of state noise does not appear to disadvantage any of the methods more
than the others. Table 6 reports the optimized method-specific parameters found by our
search strategy under the three problem instances. From the table, we see that the values of
λ∗ found for all three methods under I3 are significantly higher than the values found under
I1 and I2. We may infer that reducing the reliance on bootstrapped estimates (by setting
high values of λ) counteracts the error introduced in TD updates due to state noise. We also
observe from Table 6 that the θ∗

0 values found by our search strategy for each method and
problem are as one may expect based on Fig. 5. These results affirm the reliability of our
search strategy.

Predominantly we find that the VF methods compared above are not very sensitive to
the learning rate parameter α0 and the exploration parameter ε0 within the ranges in which
we optimize them: [0.1,1] for both parameters. The only significant exception, to which
we alluded earlier, is the case of ExpSarsa under I2, which strongly favors lower α0 and

Fig. 6 Comparison of the performance of different VF methods on the three problem instances from Table 5.
Under each instance, and for each of the methods—Sarsa, Q-learning, and ExpSarsa—a systematic search
(see Sect. 4.1) identifies the method-specific parameter settings (α0, ε0, θ0, and λ) yielding the highest perfor-
mance after 50,000 episodes of training. The methods are marked “∗” as they are run under these optimized
parameter settings

Table 6 For each of three methods—Sarsa, Q-learning, and ExpSarsa—the method-specific parameters
yielding the highest performance (at 50,000 episodes of training), under problem instances I1, I2 and I3.
Figures are rounded to one place of decimal

Problem Sarsa∗ Q-learning∗ ExpSarsa∗
instance λ α0 ε0 θ0 λ α0 ε0 θ0 λ α0 ε0 θ0

I1 0.3 0.6 0.6 7.0 0.2 0.3 0.7 8.7 0.2 0.5 0.7 6.7

I2 0.1 0.7 0.7 −1.0 0.2 0.7 0.8 0.8 0.1 0.9 0.2 0.8

I3 0.9 0.5 0.5 8.9 0.9 0.2 0.9 6.4 0.8 0.6 0.8 6.7
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ε0 settings. For reference, we provide graphs plotting the performance of VF methods as a
function of α0 and ε0 in Appendix A.

In summary: we find that Sarsa and Q-learning (albeit with a “naïve” implementation
of eligibility traces) perform equally well on all our experiments; both methods outperform
ExpSarsa on problems in which generalization is employed. We pick Sarsa as a representa-
tive method from the VF class for our subsequent experiments (Sects. 2.1 through 4.7).

4.2.2 Picking a representative method from PS

We reuse problem instances I1, I2, and I3 to compare methods from the PS class. As noted
in Sect. 3.2, two parameters have to be set for methods from this class: #trials and #gens.
Optimizing over these parameters, we plot the performance of CEM∗, CMA-ES∗, GA∗ and
RWG∗ in Fig. 7. Unlike with the VF class, the ordering among the methods from PS stays
consistent across the problem instances. In all cases, CEM∗ and CMA-ES∗ outperform GA∗
and RWG∗ (p-value < 10−4). However, CEM∗ and CMA-ES∗ themselves register virtually
identical performance: they cannot be separated with statistical significance on instances I1

and I3, although in I2, CMA-ES∗ emerges the winner (p-value < 0.02).
It is worth noting that whereas all the VF methods in our study achieve their highest

performance on instance I1, all the methods from PS achieve theirs on I2. 50,000 episodes
is a relatively short duration of training for PS methods, which do not make effective use
of individual transition samples, but rather, aggregate them in evaluating fitness. Greater
generalization across the state space (as in I2, where w = 5) enables them to learn more
quickly. In Sect. 4.6, we observe that if optimized for 500,000 episodes, PS methods do
perform better at w = 1.

The best parameter settings found for each PS method, under the three chosen prob-
lem instances, are listed in Table 7. Although we search over #trials and #gens, note that

Fig. 7 Comparison of the
performance of different PS
methods on the three problem
instances from Table 5. Methods
are marked “∗” to denote that
method-specific
parameters—#trials and #gens
(except for RWG)—have been
optimized for each task instance

Table 7 For policy search methods, the method-specific parameters yielding the highest performance (at
50,000 episodes of training) for problem instances I1, I2, and I3. Figures are rounded to the nearest integer.
Under CEM, CMA-ES, and GA, the parameters searched are #gens (“#g”) and #trials (“#t”). These param-
eters automatically fix the population size (“#p”), which is suffixed with “D” to denote that it is implicitly
derived. Under RWG, only #t is optimized; #g is implicitly derived. Derived parameters values are shown for
reference

Problem CEM∗ CMA-ES∗ GA∗ RWG∗
instance #g #t #pD #g #t #pD #g #t #pD #gD #t

I1 18 44 63 24 61 34 9 49 113 113 444

I2 15 64 52 20 111 23 22 17 134 327 153

I3 10 113 44 17 80 37 15 30 111 125 400
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thereby we implicitly set up a search over the population size #pop used in every generation.
This is a consequence of the relation that #trials × #gens × #pop = U , the total number
of training episodes. From the table, we observe that CMA-ES∗ typically employs a smaller
population size than CEM∗, while GA∗ maintains significantly larger population sizes.

Appendix B displays the performance of the various PS methods as a function of their
input parameters. We observe a noticeable variance in the performance of all the meth-
ods over the parameter ranges considered. While CMA-ES∗ and CEM∗ have comparable
performance on all three problem instances, it is apparent that CMA-ES is more robust to
parameter settings; i.e., it registers a higher performance over a wider range of settings. This
makes CMA-ES overall a slightly more favorable candidate than CEM from the class of PS
methods. Therefore, we select CMA-ES for our further experiments.

4.2.3 Setting the training period

Even if the problems in our experiments are themselves reasonably small, the extensive
search and evaluation processes incur a significant amount of time during each experiment.
One factor that plays a major role in determining the experimental running time is U , the
total number of training episodes in each run. Setting U = 50,000, as we have in the ex-
periments reported thus far, it takes us roughly 1–2 hours to complete a single search and
evaluation procedure, such as, for example, identifying Sarsa∗ and evaluating it under I2. In
this duration, we have roughly 200 processes running in parallel on a computing cluster with
2 GHz CPUs. In general we do not find it feasible to conduct extensive experimentation un-
der higher values of U (although we do undertake such investigation under some interesting
cases, such as in Sect. 4.6).

To gauge the implications of consistently setting U = 50,000 in our subsequent compar-
isons, we run a single suite of experiments at multiple settings of U . Figure 8 shows the
performance of Sarsa∗, Q-learning∗, ExpSarsa∗, CEM∗, and CMA-ES∗; under problem in-
stances I1, I2, and I3; optimized for various settings of U . As expected we find that all the
methods improve their performance with longer training periods. The gains from a longer
training period are more marked among the methods from PS, as in general, methods from
VF appear to plateau within a few thousands of episodes.

We observe from Fig. 8 that under all problem instances, the trend within methods in VF
remains roughly the same at all values of U : under I1, the methods all achieve comparable
performance; under I2, ExpSarsa∗ performs poorest; and under I3, Q-learning∗. Likewise, no
clear winner among CEM∗ and CMA-ES∗ emerges in any of the instances, for any setting
of U . Therefore, we may conclude that our choice of picking Sarsa∗ and CMA-ES∗ for
further comparisons is justified. However, the choice of U does affect comparisons between
Sarsa∗ and CMA-ES∗ themselves. Notice that up to 25,000 episodes, Sarsa∗ consistently
outperforms CMA-ES∗. Yet, from 50,000 episodes onward, CMA-ES∗ overtakes Sarsa∗ on
I2 (p-value < 10−3). Under I1 and I3, CMA-ES∗ narrows the margin with Sarsa∗ at U =
1,000,000, although it does not reach comparable performance.

The trends in Fig. 8 inform our interpretation of the results to follow in the remainder of
this section. In general we expect that Sarsa will not significantly improve its performance
beyond 50,000 episodes of training, whereas CMA-ES consistently improves at least up
to 1000,000 episodes. Even so, in several instances, we find that CMA-ES outperforms
Sarsa even at 50,000 episodes, validating this choice of U as a meaningful comparison point
between the methods.

In summary: our “within class” comparisons in VF and PS provide convincing evidence
that Sarsa and CMA-ES are respectively the best methods to represent these classes in our
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Fig. 8 Plots showing the
performance of different learning
methods as the number of
training episodes U is varied.
Each plot corresponds to a
problem instance from Table 5.
Note the irregular spacing of
points on the x axis. At each
point, the best performance
achieved by three learning
methods from VF (Sarsa∗ ,
Q-learning∗ , and ExpSarsa∗) and
two from PS (CEM∗, CMA-ES∗)
is shown

parameterized learning problem (except that Q-learning performs as well as Sarsa in VF).
We now proceed to compare these methods as relevant problem parameters are varied. In
each comparison (excepting cases in Sect. 4.6), the normalized performance of these meth-
ods after 50,000 episodes of training is considered while evaluating them.

4.3 Problem size and stochasticity

In our first set of “VF versus PS” experiments, we evaluate our learning methods as the size
of the state space and the stochasticity of transitions in the task MDP are varied. Conjunc-
tions of three settings of s (6, 10, 14) and three settings of p (0, 0.2, 0.4) are compared; re-
sults are plotted in Fig. 9. With complete expressiveness (χ = 1), no generalization (w = 1),
and full observability (σ = 0), all nine cases are akin to learning with a classical “tabular”
representation.

The most striking observation from the plots in Fig. 9 is the disparity in the learning
rates of Sarsa∗ and CMA-ES∗. In all nine cases, Sarsa∗ reaches near-optimal behavior, and
typically so within a few thousands of episodes. At 50,000 episodes of training, in none
of the problems does CMA-ES∗ match the performance of Sarsa∗ (p-value < 10−4). The
gap between the methods is to be expected, as by making learning updates based on every
transition, VF methods make more efficient use of experience for learning than PS methods
do. Note that Sarsa is still on-line and model-free; we expect model-based methods (Sutton
1990) and batch methods (Lin 1992; Lagoudakis and Parr 2003) to further improve sample
efficiency.

For both Sarsa∗ and CMA-ES∗, we notice a decrease in performance as s is increased.
This decrease is more marked for CMA-ES∗, as the dimensionality of the parameter space it
searches increases quadratically with s. The effect of the stochasticity parameter in widening
the gap between Sarsa∗ and CMA-ES∗ is also significant. The error bars plotted in the graphs
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Fig. 9 [χ = 1, w = 1, σ = 0.] Sarsa∗ and CMA-ES∗ (optimized for 50,000 episodes of training) compared
at different settings of s and p. Unlike other plots in the article, in these learning curves, we plot one standard
deviation in the performance (instead of one standard error)

show one standard deviation in performance (in all other graphs in the article, one standard
error is shown). We observe that for both methods, the variance in performance increases as
p is increased, and further, that for any given problem, CMA-ES∗ displays a slightly higher
variance than Sarsa∗. As described in Sect. 2, note that even at p = 0, there is stochasticity
in the task, as the start state for each episode is picked uniformly at random.

Recall that the method-specific parameters of Sarsa∗ and CMA-ES∗ have been optimized
for each problem and training period. While we do not note any significant patterns among
the method-specific parameters thereby found under Sarsa∗, we note that under CMA-ES∗,
#trials∗ gets consistently higher as p is increased. For example, at s = 10, the settings of
#trials∗ found by our search procedure are 38, 77, and 152 for p = 0, p = 0.2, and p = 0.4,
respectively. In other words, CMA-ES∗ benefits from more evaluation trials in evaluating fit-
ness values as the task stochasticity increases. Indeed recent research addresses the problem
of tuning #trials in an adaptive manner (Heidrich-Meisner and Igel 2009).

The primary inference from the set of experiments above is that Sarsa has significant ad-
vantages both in terms of the performance achieved and the variance in performance as prob-
lem size and stochasticity are increased. Not only is CMA-ES slower to learn, it demands
better tuning of #trials across different problem instances. To characterize the reasons un-
derlying these observations, we turn to Cobb (1992), who separates the inductive biases in
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a reinforcement learner into “language” and “procedural” biases. The former corresponds
to the representation used by the learner, which in this study, we have fixed to be the same
for the methods compared. VF and PS methods are essentially separated by their procedu-
ral bias: how they updates weights in the representation. The language bias in the problem
instances above—χ = 1, w = 1, σ = 0—strongly favors the procedural bias of Sarsa. How
would the methods fare if the language bias is changed? The experiments to follow examine
the effects of state noise, generalization, and expressiveness.

4.4 Partial observability

In our second set of experiments, we study the effect of partial observability by increasing σ .
We notice a conjunctive relationship between σ and w, the generalization width. In response
we conduct experiments with three settings of σ (0, 2, 4) and three settings of w (1, 5, 9).
Results are plotted in Fig. 10: in each graph therein the performance of Sarsa(λ)∗ is plotted
at six values of λ (0, 0.2, 0.4, 0.6, 0.8, 1). The performance of CMA-ES∗ (which does not
depend on λ) is also shown.

In general the best memoryless policies for Partially Observable MDPs (POMDPs) can
be stochastic (Singh et al. 1994). Perkins and Pendrith (2002) show that in order to converge
in POMDPs, it is necessary for methods such as Sarsa and Q-learning to follow policies that

Fig. 10 [s = 10, p = 0.2, χ = 1.] Sarsa(λ)∗ and CMA-ES∗ compared at different settings of σ and w. Under
each plot, six regularly spaced values of λ are chosen and the corresponding Sarsa(λ)∗ evaluated. CMA-ES∗
appears as a line, as it does not depend on λ
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are continuous in the action values, unlike the ε-greedy policies used by the VF methods
in our experiments. However, we do not observe any divergent behavior for Sarsa(λ) in the
experiments reported here.

We notice that when σ = 0 and w = 1, the effect of λ on the performance of Sarsa(λ)∗

is not very pronounced. As soon as either σ or w is increased, intermediate values of λ pre-
dominantly yield the highest performance for Sarsa(λ)∗. These results echo the findings of
Loch and Singh (1998), who demonstrate that deterministic policies learned using Sarsa(λ)
with ample exploration perform quite well on a suite of benchmark POMDPs. Key to their
success is the high values of λ used (between 0.8 and 0.975), which weight true returns from
actions much higher than estimated values.

As the generalization width w is increased, notice that there is no longer a single winner
between Sarsa∗ and CMA-ES∗: VF methods no longer dominate PS methods when observ-
ability of state is limited. An intriguing trend that becomes apparent from Fig. 10 is that
the performance of Sarsa(λ)∗ is not monotonic with respect to w: for most settings of σ

and λ, the highest performance is achieved at w = 1, followed by w = 9, with the lowest
performance at w = 5. In Sect. 4.6, we find further evidence of such anomalous patterns in
the performance of Sarsa as w is varied. Interestingly CMA-ES∗ registers its highest perfor-
mance, for any fixed σ , at w = 5 (w = 9 comes a close second). This trend arises as 50,000
episodes is a relatively short training duration for PS methods in this domain; generalization
promotes quick initial learning. Experiments in Sect. 4.6 confirm that with 500,000 training
episodes, CMA-ES performs best at w = 1.

A recent variant of Sarsa(λ) applied to POMDPs is SarsaLandmark (James and Singh
2009), in which λ is set to 0 (full bootstrapping) when special “landmark” states (which
are perfectly observable) are visited, but remains 1 at all other times (Monte Carlo). Sarsa-
Landmark is not directly applicable in our domain as the agent receives no special informa-
tion about landmark states. In recent work, Downey and Scanner (2010) propose a method
to adaptively tune λ while learning. Formally derived under a Bayesian framework, their
algorithm—Temporal Difference Bayesian Model Averaging (TD-BMA)—is shown to out-
perform Sarsa(λ) for any fixed value of λ on illustrative grid-world tasks. Our results high-
light that tuning λ is of particular relevance in problems with state noise and generalization;
our parameterized learning problem therefore becomes an ideal testbed for evaluating adap-
tive approaches.

In Table 8, we report the best initial weights, θ∗
0 , found for Sarsa(λ)∗, under various

settings of λ, σ , and w. The most noticeable pattern from the table is the favor for lower
settings of θ0 as w is increased. The best initial weights do not appear to change much as
state noise and eligibility traces are varied.

Table 8 [s = 10, p = 0.2, χ = 1.] θ∗
0 (initial weights under Sarsa(λ)∗) for different problem instances. Each

cell in the table corresponds to a setting of σ , w (problem parameters), and λ (Sarsa parameter); entries
correspond to the value of θ0 found by searching for Sarsa(λ)∗. Note that each search is only performed once

w λ = 0 λ = 0.4 λ = 1.0

σ = 0 σ = 2 σ = 4 σ = 0 σ = 2 σ = 4 σ = 0 σ = 2 σ = 4

1 8.7 7.4 5.0 8.0 7.9 7.8 7.8 7.5 9.6

5 0.5 0.0 −0.7 0.3 0.6 1.8 2.1 1.4 1.6

9 −0.3 −0.3 0.6 0.1 0.0 −0.6 0.1 0.5 −0.8
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4.5 Expressiveness of function approximator

Continuing our study, we conduct experiments to gauge the role of the expressiveness pa-
rameter χ in determining the performance of learning methods. Again, we find no single
winner among Sarsa∗ and CMA-ES∗ as χ is varied. The results shown in Fig. 11 are under
fixed settings: σ = 0 and w = 5. The qualitative nature of the results does not change as σ

and w are varied.
In the learning curve in Fig. 11(a), under χ = 1 (which allows the optimal action value

function to be represented), Sarsa∗ displays quick learning to reach a normalized perfor-
mance close to 0.9, whereas CMA-ES∗ fails to achieve comparable performance after 50,000
episodes. By contrast, at χ = 0.4 (Fig. 11(b)), we notice that Sarsa∗ suffers a dramatic drop
in performance, plateauing at a normalized performance value close to 0.7. At the same
setting of χ , CMA-ES∗ overtakes the learning curve of Sarsa∗ and reaches a significantly
higher performance at 50,000 episodes (p-value < 10−4).

As χ is decreased, the representation for the value function and policy becomes increas-
ingly handicapped. In Fig. 11(c), we observe that both under Sarsa and CMA-ES, perfor-
mance decreases monotonically as χ is reduced. However, of the two methods, Sarsa suffers
the more significant drop in performance as χ is reduced. Whereas Sarsa outperforms CMA-
ES for χ ≥ 0.7 (p-value < 10−4), the opposite is true when χ ≤ 0.5 (p-value < 10−4). We do
not observe any striking trends in the method-specific parameters of Sarsa∗ and CMA-ES∗

as χ is varied.
To the best of our knowledge, prior literature does not compare methods from VF and PS

while constraining them to use the same representation. Our finding that CMA-ES is able to
achieve good performance even under a representation that is extremely impoverished for
approximating the value function suggests that it is a promising candidate in a large num-
ber of real-world domains in which feature engineering and representations are deficient.
We posit that like the example constructed by Baxter and Bartlett (2001), many of the cases
with χ < 1 allow for the representation of high-reward policies, but only admit poor approx-
imations of the action value function. Notice that we do not have any irrelevant features in
our learning problem: in the future it would be useful to incorporate such a setting, which
is often encountered in practice. Non-linear function approximation would be an equally
important avenue to explore.

Fig. 11 [s = 10, p = 0.2, w = 5, σ = 0.] Plots (a) and (b) show learning curves of Sarsa(λ)∗ and CMA-ES∗
at different values of χ . Plot (c) shows the performance achieved after 50,000 episodes of training at different
values of χ
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4.6 Generalization of function approximator

In Sect. 2.2, we noted that the generalization parameter w plays a role in determining the
relative order between Sarsa and CMA-ES at different values of σ . In examining the effect of
w more closely, we notice that although its effect on CMA-ES is fairly regular, its interaction
with Sarsa is less predictable. Figure 12 shows the normalized performance of these methods
at settings of w varying from 1 (no generalization) to 15 (very broad generalization). In
Fig. 12(a), the total number of training episodes is set to 50,000, while in Fig. 12(b), it is set
to 500,000.

We observe that with 50,000 training episodes, CMA-ES∗ performs its best at w = 3,
but with 500,000 episodes, its best performance is at w = 1. We ascribe this effect to the
benefit of generalizing early during the search, which quickly identifies the most promising
actions in localized regions of the state space. With more time it becomes important to
further discriminate among individual states, which it is most possible with w = 1. It is not
surprising that for both methods, the performance begins to drop sharply for w > 9. Since in
this problem, s = 10, some non-terminal cells in the task MDP necessarily get activated by
all the tiles present if the tile width exceeds 9. Indeed beyond w = 19 (not shown in figure),
no two cells in the MDP remain distinguishable.

Interestingly Sarsa∗ presents a less regular pattern in performance as w is varied, as
evinced by Fig. 12(a). We find that Sarsa∗ is most effective at w = 1, but its performance
suffers a dip until w = 5; again a rise until w = 9; before monotonically decreasing again.
50,000 episodes is a fairly long duration by VF standards, as apparent from several learning
curves shown in the article (for instance, see Fig. 11(a)). It is clear that the irregular perfor-
mance pattern of Sarsa∗ is not an artefact of training time, as the pattern essentially persists
at 500,000 episodes of training (Fig. 12(b)). Also, notice the small error bars in both the
plots: the pattern is systematic.

We investigate whether the irregular pattern in the performance of Sarsa persists as the
problem size is increased beyond s = 10. Figure 13 (see top row) indeed affirms that at
s = 14 and s = 18, too, multiple local minima emerge in the performance as w is varied.
Curiously, under all three settings of s, we observe that as w is varied, a correlation exists—
up to w < s—between the performance of Sarsa∗ and λ∗, the eligibility trace parameter
optimized for each problem setting. The bottom row in Fig. 13 shows the values of λ∗ under
each setting. Observe that for w < s the local maxima and minima in λ∗ predominantly
coincide with those of the normalized performance (recall that for w ≥ s, states necessarily
become aliased).

At present we do not have a conclusive explanation for the phenomenon described above.
Since CMA-ES shows predictable variation with w, we surmise that the variation shown by
Sarsa ultimately arises from its on-line updates to the value function. We speculate that

Fig. 12 [s = 10, p = 0.2, χ = 1,
σ = 2.] Performance of Sarsa∗
and CMA-ES∗ at different values
of w, optimized in plot (a) for
50,000 training episodes, and in
plot (b) for 500,000 training
episodes
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Fig. 13 [p = 0.2, χ = 1, σ = 2.] Analysis of Sarsa∗ as s (columns) and w (x axis in each plot) are varied.
The top row shows the normalized performance achieved at each setting; correspondingly the bottom row
shows λ∗—the value of λ found by searching for Sarsa∗—for the same settings

“edge effects” in our tiling scheme, whereby states on the periphery of the grid have fewer
neighbors, might induce patterns in the trajectory taken by the value function. Nevertheless,
closer inspection would be necessary to fully explain such behavior.

In the context of kernel-based methods, Ormoneit and Sen (2002) discuss the “bias-
variance tradeoff” induced by generalization widths. Munos and Moore (2002), and Sher-
stov and Stone (2005), devise schemes for setting different generalization widths in different
parts of the state space. Our parameterized learning problem becomes a valuable testbed to
evaluate this line of work, which our results hint needs attention.

4.7 Sequencing Sarsa and CMA-ES

In all our experiments, we find that CMA-ES is significantly slower to learn than Sarsa. In
settings with high values of σ and low values of χ , CMA-ES outperforms Sarsa mainly be-
cause Sarsa reaches a lower asymptote, and not because CMA-ES has any steeper a learning
curve. In our last set of experiments, we examine whether CMA-ES can be given a boost
by initializing it with a policy learned by Sarsa. We abbreviate the resulting sequencing
algorithm “Seq”. Since in our experiments, Sarsa and CMA-ES are constrained to share a
common representation, a straightforward way to initialize CMA-ES with a policy learned
using Sarsa is to set its initial weights to those learned by Sarsa. Although a raw transfer
of weights is not always applicable across different representations, we conjecture that the
resulting technique can still offer insights about synthesizing the merits of VF and PS meth-
ods. Guestrin et al. (2002) adopt a similar scheme in a multiagent task to transfer weights
learned using LSPI to initialize a policy gradient method. In their experiments, the policy
implemented is “softmax” over the learned action values; in our experiments, CMA-ES in-
herits a greedy policy.

In principle the method-specific parameters of Seq include all of the method-specific
parameters of Sarsa (λ, α0, ε0, θ0) and CMA-ES (#trials, #gens), along with the number of
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episodes at which the transfer of weights is effected from Sarsa to CMA-ES. By definition,
then, Seq∗ would always perform at least as well as the better of Sarsa∗ and CMA-ES∗ (by
running Sarsa∗ for 50,000 or for 0 episodes, as appropriate). Rather than search for and
evaluate this best instance of Seq, we constrain Seq to (a) use Sarsa∗ and CMA-ES∗, each
optimized independently for 50,000 episodes, as its constituents; and (b) transfer weights
from Sarsa∗ to CMA-ES∗ after 2,500 episodes of training. Thus, Seq essentially amounts to
running CMA-ES∗, but starting from a potentially useful initialization. The initial variance
along each parameter to be optimized by CMA-ES∗ after the switch is set to the overall
variance of the weights themselves.

Figure 14 compares Seq with Sarsa∗ and CMA-ES∗ under problem settings in which σ

and χ are varied. Under all settings, we find that Seq performs at least as well as CMA-ES, if
not marginally better. Thorough “head-to-head” comparisons between the three methods are
plotted in Fig. 15. Each plot therein compares two of the methods. For specified settings of
σ and χ , the method registering higher performance is marked if the evidence is statistically
significant (p-value < 0.01). Figure 15(a) identifies regions of the problem space suiting
Sarsa∗ and CMA-ES∗. From Fig. 15(b), we observe that Seq marginally extends the territory

Fig. 14 [s = 10, p = 0.2, w = 5.] Sarsa∗, CMA-ES∗, and Seq compared at different settings of σ and
χ . Sarsa∗ and CMA-ES∗ are optimized independently at each problem setting; Seq combines the methods
thus tuned (with no further optimization), transferring weights from Sarsa to CMA-ES after 2,500 training
episodes

Fig. 15 [s = 10, p = 0.2, w = 5.] Three plots showing pairwise comparisons between Sarsa∗, CMA-ES∗,
and Seq at different settings of σ and χ . At each reported setting, one of the methods is indicated if with
statistical significance (p < 0.01), it achieves a higher performance than the other. At some settings, the
methods cannot be thus separated; note that in plot (c), CMA-ES does not outperform Seq at any of the
reported settings of σ and χ
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claimed by CMA-ES∗. Indeed Seq outperforms CMA-ES∗ in regions where σ is low and
χ is high, and performs at least as well in the remainder of the problem configurations
(Fig. 15(c)).

As discussed in Sect. 4.2, CMA-ES requires several times the training time of Sarsa to
achieve comparable performance. The experiments reported here suggest that when time
is constrained, and yet CMA-ES can outshine Sarsa, CMA-ES can be further improved
by seeding it with a policy learned by Sarsa. In related work (Kalyanakrishnan and Stone
2007), we demonstrate the effectiveness of Seq on Keepaway (Stone et al. 2005), a popular
RL benchmarking task. In Keepaway, the function approximator used is a neural network,
whose weights are initially learned using Sarsa(0), and then transferred to CEM (de Boer et
al. 2005). It indeed seems very relevant to extend the entire range of experiments we have
presented in this article to a complex domain such as Keepaway. The main challenge in such
an exercise would be the sheer time taken for running experiments. Nevertheless, we do
hope that future research will extend our current set of experiments into more complex and
realistic domains.

5 Discussion

The extensive suite of experiments reported in Sect. 4 uncover several interesting patterns
characterizing the interaction between problem parameters and method-specific parameters
in the context of sequential decision making from experience. In this section, we highlight
some of the main questions thereby brought to relevance.

Generalization Our results consistently indicate that generalization and function approx-
imation significantly alter the landscape while evaluating learning algorithms, in particular
those from VF. For instance, Sect. 4.2 presents conclusive evidence that ExpSarsa suffers
more severely due to the bias introduced by generalization than either Sarsa or Q-learning.
Section 4.6 brings into focus an irregular—yet systematic—pattern in the performance of
Sarsa as the tile width w is increased. Interestingly this pattern is correlated with the best
eligibility trace settings. To the best of our knowledge, generalization has not been given
explicit attention in the context of PS methods. Our results show that generalization can
benefit PS methods, too, when the training duration is short.

As motivated in Sect. 1, generalization is necessary in nearly every practical application
of RL. Thus, the importance of understanding its effects on algorithms cannot be under-
stated. In future work, we hope to use our experimental framework to probe more deeply
into this subject.

Optimistic initialization Of special significance among the ramifications of learning with
generalization is its effect on the common practice of optimistic initialization. Optimistic
initialization (of action values) has long been employed as a mechanism to promote ex-
ploration. In the context of finite MDPs, elegant proofs of convergence of VF methods
have been derived on the basis of optimistic initial values (Even-Dar and Mansour 2001;
Szita and Lőrincz 2008). Grześ and Kudenko (2009) provide experimental justification,
again on finite (or suitably discretized) MDPs, for schemes that refine the basic optimistic
initialization framework.

Our experiments in Sect. 4.2 convey that optimistic initialization is only effective in
the fully tabular case: for w > 1, the error introduced into TD updates by high action
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values invariably degrades the performance of VF methods. A question that arises in re-
sponse is how we may initialize action values when learning with generalization. Research
in this direction appears particularly relevant to algorithms that are guaranteed to reach fixed
points under linear function approximation (Perkins and Precup 2003; Sutton et al. 2009;
Maei et al. 2010). Which reasonable strategies for setting initial weights would profit such
methods the most?

Meta-learning and algorithm portfolio design The term “meta-learning” (Vilalta and
Drissi 2002) describes the enterprise of (a) characterizing the strengths and weaknesses of
learning methods vis-à-vis problem characteristics, with the intent of (b) designing adap-
tive schemes that, given a problem, apply the method best suited for it (Brodley 1995;
Pfahringer et al. 2000). Similarly, “algorithm portfolio” methods (Gomes and Selman 2001)
rely on applying several candidate algorithms to a problem (either in series or in parallel) be-
fore identifying the most effective choice or combination. While existing work in these areas
has largely been in the context of supervised learning and search (Leyton-Brown et al. 2003;
Xu et al. 2008), our article is motivated by the meta-learning problem within sequential
decision making.

Our experiments clearly show that there is a need for meta-learning within RL. For exam-
ple, Fig. 11(c) succinctly conveys that Sarsa outperforms CMA-ES when the expressiveness
of function approximation is above a certain threshold, but that the opposite is true below
the threshold. Indeed our experiments unearth several other strengths and weaknesses of
methods within the VF and PS classes. Additionally we provide a hybrid algorithm, Seq, as
a useful step towards combining the strengths of these methods. Our results are validated on
a parameterized learning problem that is specifically designed to implement a methodology
for meta-learning within RL. We believe that this methodology can support the eventual
development of effective algorithm portfolio designs for sequential decision making, which
currently appears a rather formidable undertaking.

Automatic parameter tuning While meta-learning operates at the macro scale of choosing
between methods, our experiments also underscore the gains obtained at a micro scale by
tuning method-specific parameters. In this work, we have employed a search technique to
optimize method-specific parameters such as learning rates and population sizes. In practice,
an agent would need to automatically tune these parameters while learning. In the context
of PS methods, it is worth repeating that we find existing code for CMA-ES quite adept in
automatically setting and tuning several internal parameters in the algorithm. For VF meth-
ods, techniques for tuning learning rates (Sutton and Singh 1994; George and Powell 2006;
Hutter and Legg 2008) and eligibility traces (Downey and Scanner 2010) have predomi-
nantly been derived and validated for the case of finite MDPs. Our parameterized learning
problem serves as an excellent mechanism for prototyping adaptive schemes at more general
settings involving function approximation and partial observability.

Learning and representation With the purpose of solely comparing the “learning” behav-
ior of VF and PS methods—how they adapt a set of weights—in this study, we have forced
them to share a fixed, common representation. In particular we adopt a linear function ap-
proximation scheme, whose expressiveness and generalization can be carefully controlled.
Our results show that VF and PS methods dominate at different settings of these problem
parameters.
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While this approach facilitates sound experimental methodology, it must be noted that
in general the greatest success can be achieved by adapting the representation itself while
learning (Whiteson and Stone 2006). Indeed Cobb and Bock (1994) argue that represen-
tations favoring an expert agent might be unfavorable for an agent beginning to learn. In-
tegrating learning with adaptive representation is yet another area of future work that our
parameterized learning problem enables. In pursuing such work, we would treat χ and w as
internal to the learning agent, rather than extraneous. The agent could potentially adapt these
representational aspects by applying methods from feature selection (Kolter and Ng 2009;
Petrik et al. 2010), structure learning (Degris et al. 2006; Diuk et al. 2009) and manifold
learning (Mahadevan 2009).

In taking steps toward the automated application of RL methods to problems, the issues
discussed above are all relevant to consider. We hope that future work will make progress
along all these directions by extending the ideas presented in this article.

6 Related work

In this section, we discuss related work in the context of parameterized learning problems
and empirical evaluations in RL.

In an early article, Cohen and Howe (1988) consider the strong coupling that exists in
many disciplines of AI between problem types and method instances. While formulating
guidelines for the evaluation of methodological contributions to the field, they argue the
need to precisely characterize the set of problems on which a method is expected to be
successful, and symmetrically, the approaches that are likely to succeed on a given class
of problems. As mentioned in Sect. 1, Langley (1988) makes a similar observation in the
specific context of machine learning.

Parameterized learning problems have been used in the literature to study the effects
of factors such as dimensionality and noise. For example, Spall (2003) extensively uses
the “Rosenbrock” function while comparing the performance of optimization algorithms in
his textbook. The “Sphere” function discussed by Beyer (2000) has served as a standard
benchmark for evolutionary algorithms.

The work within the RL literature that is philosophically closest to the contribution of
this article is the notion of “generalized environments” proposed by (Whiteson et al. 2011).
Here, too, the authors argue against “environment overfitting”, whereby methods tend to get
evaluated on problems that favor them, but the broader scope of their applicability, especially
their weaknesses, are not easy to gauge. A generalized environment represents a formally
defined distribution of environments: the objective is to develop methods that perform well
over the entire distribution. Whereas the motivation for generalized environments comes
from realistic tasks such as helicopter control and Tetris, the apparatus developed in this
article examines the performance of learning methods in a carefully-designed, controllable,
abstract setting. Our results underscore that qualitatively different learning methods excel
in different regions of the problem space, while teasing apart effects that method-specific
parameters introduce.

The empirical approach we adopt in this article to characterize the interactions between
learning problems and methods is complemented by theoretical formulations designed with
a similar objective. Littman (1993) characterizes agents and environments based on the
amount of memory they can use and the length of the horizon for which they seek to optimize
rewards. He then considers several interesting classes of problems—for example, those with
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nonstationary environments—that fit within this formalization. Ratitch and Precup (2003)
define environmental properties such as state transition entropy and forward controllability,
and investigate how these properties bear on the exploration strategy of a learning agent.
To the best of our knowledge, generalization and function approximation have not been
addressed through similar theoretical formulations.

The main difference between our comparative study and others in the RL literature is that
our parameterized learning problem enables us to evaluate the effects of individual parame-
ters while keeping others fixed. For example, in most related studies, methods typically use
different function approximation schemes, thereby introducing an additional qualification
for comparing them. Also, our formulation allows us to control problem parameters contin-
uously along a scale from “high” to “low”; in the studies we shortly list, comparisons are
typically between two or three distinct task settings. In this sense, our article answers the call
put forth by Togelius et al. (2009) for parameterizable benchmarks, and affirms their basic
conjectures on the strengths and weaknesses of “ontogenetic” (similar to VF) and “phylo-
genetic” (similar to PS) methods. In addition our results shed light on hitherto unexplored
questions such as the effects of optimistic initialization when used in conjunction with gen-
eralization. We proceed to briefly list a number of studies comparing RL algorithms.

Moriarty et al. (1999) apply a suite of “Evolutionary Algorithms for Reinforcement
Learning” (EARL) to a simple grid-world MDP, and compare results with Q-learning. Poli-
cies are represented using lists of rules or neural networks, which are evolved using standard
genetic operators. The main conclusion of their study is that EARL is more suited to tasks
with large state spaces (but represented compactly), tasks with incomplete state information,
and tasks with nonstationary returns. Whiteson et al. (2010) undertake a comparative study
between Sarsa(0) and NEAT (Stanley 2004), a policy search method. These methods are
compared on the benchmark tasks of Keepaway soccer (Stone et al. 2005) and Mountain
Car (Sutton and Barto 1998). Their findings are that sensor noise affects the final perfor-
mance of Sarsa(0) more than NEAT, and indeed that stochasticity has the opposite effect, as
policy evaluations under NEAT become more noisy.

Heidrich-Meisner and Igel (2008a) compare the natural actor-critic method with CMA-
ES on a pole-balancing task. Both methods are “variable metric”; i.e., they are insensitive to
linear transformations of the parameter space. The methods achieve comparable results, but
CMA-ES is found to be less sensitive to initial values for the policy, which has a small num-
ber of parameters. Similar results are registered in the noisy Mountain Car task (Heidrich-
Meisner and Igel 2008b). A more extensive suite of comparisons on single and double pole-
balancing tasks (with hidden state) is carried out by Gomez et al. (2008). The methods
compared are evolutionary algorithms such as CoSyNE, NEAT, ESP, and SANE, along with
Q-learning, Sarsa, recurrent policy gradient, random weight guessing, and “Value and Pol-
icy Search” (VAPS) (Baird and Moore 1999). The findings reinforce the expectation that
under partial observability, evolutionary algorithms dominate model-free value function-
based methods such as Q-learning and Sarsa. As with our Seq algorithm, a number of ap-
proaches, both empirical and theoretical, have been proposed to combine the strengths of
qualitatively different learning approaches (Guestrin et al. 2002; Konda and Tsitsiklis 2003;
Whiteson and Stone 2006).

7 Summary

A large number of reinforcement learning (RL) tasks we face in the real world cannot be
modeled and solved exactly as finite MDPs, which support theoretical guarantees such as
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convergence and optimality. The objective of learning in these tasks has to be rescaled to
realizing policies with “high” expected long-term reward in a “sample efficient” manner, as
determined empirically. Consequently it becomes necessary to characterize the performance
of different learning methods on different problems.

As a framework to conduct empirical studies in RL, we introduce parameterized learn-
ing problems, in which the factors influencing the performance of a learning algorithm can
be controlled systematically through targeted studies. The main merits of our experimental
methodology are that (a) the designed task and learning framework are easy to understand;
(b) we may examine the effect of subsets of problem parameters while keeping others fixed;
(c) we can benchmark learned policies against optimal behavior; and (d) the learning pro-
cess can be executed in a relatively short duration of time, thereby facilitating extensive
experimentation.

In particular we design a parameterized learning problem to evaluate the effects of partial
observability and function approximation, which characterize a sizeable fraction of realis-
tic RL tasks. On this problem, we evaluate various methods from the classes of on-line
value function-based (VF) methods and policy search (PS) methods. Through a series of
carefully-designed experiments, we obtain clear patterns separating the learning methods
considered. A novel aspect of our study is a search procedure that enables us to find the best
method-specific parameters (such as learning rates and population sizes) for a given prob-
lem instance. Largely made possible by the relative simplicity of our simulation, the search
procedure uncovers interesting patterns relating problem instances and method-specific pa-
rameters.

Within the VF class, we find that Sarsa and Q-learning perform better than Expected
Sarsa (ExpSarsa) when learning with generalization and function approximation. Within the
PS class, we find that CMA-ES and the cross-entropy method (CEM) achieve significantly
better performance than a genetic algorithm (GA); CMA-ES is more robust to its parame-
ter settings than CEM. Comparing Sarsa (from VF) and CMA-ES (from PS), we find that
the former enjoys a higher speed of learning, and also better asymptotic performance, when
the learner is provided an expressive representation. On the other hand, CMA-ES is sig-
nificantly more robust to severely deficient representations. Both methods suffer noticeably
when state noise is added; their relative performance is additionally determined by the width
of generalization in the representation.

Our experiments highlight several promising lines of inquiry involving generalization,
representation, meta-learning, initial weight settings, and parameter tuning. By contributing
a novel evaluation methodology and a preliminary set of results obtained using it, our article
is oriented towards ultimately constructing a field guide for the application of RL methods in
practice. The experiments we have reported in this article are part of an ongoing study, which
we plan to extend to other classes of methods, including model-based and batch methods,
actor-critic architectures, and policy gradient techniques.
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Appendix A: Effect of α0 and ε0 on methods in VF

The plots below show the effect of the initial learning rate α0 and exploration rate ε0 on the
learned performance of different methods in VF. Intensity ranges are indicated to the right of
each plot. Under I1, all the methods use θ0 = 10; under I2, they use θ0 = 0.5; under I3, they
use θ0 = 5. We observe that under instance I1, Sarsa(0), Q-learning(0), and ExpSarsa(0) all
achieve normalized performance values close to 1. Under I2, ExpSarsa(0) and ExpSarsa(1)
perform best at low values of α0 and ε0.
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Appendix B: Effect of #trials and #gens on Methods in PS

The plots below show the effect of #trials and #gens on the performance of different pol-
icy search methods. Intensity ranges are indicated to the right of each plot. Under RWG,
only #trials is varied (#gens = 50000

#trials ); the mean performance is plotted with one standard
error. The methods all show noticeable variance in performance over the ranges plotted, un-
derscoring the need for careful tuning. For all methods, the highest performance is under
problem instance I2. We see that CMA-ES performs better on average, over the parameter
ranges plotted, than both CEM and GA.
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Szita, I., & Lőrincz, A. (2006). Learning Tetris using the noisy cross-entropy method. Neural Computation,
18(12), 2936–2941.
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