Mach Learn (2011) 85:273-297
DOI 10.1007/s10994-011-5248-5

Construction and learnability of canonical Horn formulas

Marta Arias - José L. Balcazar

Received: 13 January 2010 / Accepted: 16 March 2011 / Published online: 3 June 2011
© The Author(s) 2011

Abstract We describe an alternative construction of an existing canonical representation
for definite Horn theories, the Guigues-Duquenne basis (or GD basis), which minimizes a
natural notion of implicational size. We extend the canonical representation to general Horn,
by providing a reduction from definite to general Horn CNF. Using these tools, we provide
a new, simpler validation of the classic Horn query learning algorithm of Angluin, Frazier,
and Pitt, and we prove that this algorithm always outputs the GD basis regardless of the
counterexamples it receives.

Keywords Query learning - Horn formulas - Canonical representation

1 Introduction

The research area of Query Learning studies problems of learning target concepts, often
modeled as Boolean functions, through learning algorithms that interact with the target con-
cept through a variety of protocols. Positive results consist usually in algorithms that learn
a given concept class, via a given protocol, within certain query or time resources.

The most successful protocol so far is via Membership and Equivalence queries. Three
major algorithms for this model are the L* algorithm for learning regular sets in terms of de-
terministic finite automata (Angluin 1987); the algorithm that learns monotone DNF (closely
related to its corresponding PAC version by Valiant 1984); and a sophisticated evolution of

Editor: Avrim Blum.

Work partially supported by MICINN projects SESAAME-BAR (TIN2008-06582-C03-01) and
FORMALISM (TIN2007-66523).

M. Arias (<)
LARCA Research Group, Departament LSI, Universitat Politecnica de Catalunya, Barcelona, Spain
e-mail: marias @lsi.upc.edu

J.L. Balcdzar
Departamento de Matemadticas, Estadistica y Computacion, Universidad de Cantabria, Santander, Spain
e-mail: joseluis.balcazar @unican.es

@ Springer

mailto:marias@lsi.upc.edu
mailto:joseluis.balcazar@unican.es

274 Mach Learn (2011) 85:273-297

the latter which allows for learning Horn formulas (Angluin et al. 1992) (the two variants of
the algorithm were named HORN and HORNI in Angluin et al. 1992 but most researchers
chose to call it “AFP algorithm” after the initials of the authors’ names).

Each of these has had a number of interesting applications. In particular, the AFP algo-
rithm turned out to be crucial for developments in other areas such as Knowledge Compila-
tion (Selman and Kautz 1996), Intuitionistic Logic Programming (Gaintzarain et al. 2005)
or even Databases (Hermo and Lavin 2002; Kivinen and Mannila 1995), and similar algo-
rithms exist for learning from entailment (Frazier and Pitt 1993) and for learning formulas
in certain description logics (Frazier and Pitt 1996). Related research questions, with an-
swers to a couple of them, are proposed in Balcdzar (2005) and Hermo and Lavin (2002);
one of these contributions is an alternative approach to proving the correctness of the AFP
algorithm.

A number of questions remain open regarding the AFP algorithm. For example, is it
optimal? We believe that it can be improved and simplified, and this is the main objective
driving this work: we want a better algorithm that is able to learn conjunctions of Horn
clauses, with provably better bounds (at least for certain subclasses of Horn CNF). This
question remains open, but in this work we are able to shed some light into the following
important fact about the dynamics of the AFP algorithm. Along a run of the algorithm,
queries made by the algorithm depend heavily upon the counterexamples selected as answers
to the previous queries. It is therefore natural to expect the outcome of the algorithm to
depend on the answers received along the run. However, attempts at providing an example
of such behavior consistently fail.

In this paper we prove that such attempts must in fact fail: we describe a canoni-
cal representation of Horn functions in terms of implications, and show that the AFP al-
gorithm (Angluin et al. 1992) always outputs this particular representation. It turns out
that this canonical representation (with minor differences) has been rediscovered in dif-
ferent fields in the past. To the best of our knowledge, the earliest description is due to
Maier (1980) who in 1980 studied minimality of covers of sets of functional dependen-
cies in the field of Theory of Databases. Later on in 1986, in the field of Formal Con-
cept Analysis, the Guigues-Duquenne basis or GD basis (Guigues and Duquenne 1986;
Wild 1994) was described. Finally, very recently, Bertet and Monjardet (2010) explores the
history of this and other aspects that we study in the paper.

In order to prove this fact about the output of the AFP algorithm (Angluin et al. 1992), we
provide first a new characterization of the GD basis, plus a number of properties related to
it; then we provide a new correctness proof of the AFP algorithm, for the particular case of
definite Horn targets. From the necessary invariants, we infer that, indeed, the algorithm is
constructing the GD basis. This proof (as well as the algorithm) has the additional property
that it can be translated into learning sublattices of an arbitrary lattice, so that it may apply to
other concept classes that exhibit lattice structure. However, we use Horn CNF here, since
this is more standard in the field of query learning theory; the translation to other lattice
structures is almost immediate.

Since the GD basis is defined for definite Horn formulas only, to study the original learn-
ing algorithm we must extend the notion of GD basis to general Horn formulas. We do it by
means of a reduction from general to definite Horn formulas. This reduction allows us to lift
the characterization of the output of AFP as the generalized GD basis.

Some of the technical lemmas and theorems in this paper are based on previous concepts
and results of Wild (1994), Guigues and Duquenne (1986), Maier (1980); we credit this
fact appropriately throughout this presentation. As a general overview, we have adopted the
following: the “bullet” operator (*) of Sect. 3.1 is directly taken from Wild (1994), the “star”

@ Springer

Mach Learn (2011) 85:273-297 275

operator (*) is standard in the field of study of Closure Spaces, and the GD basis comes from
the Formal Concept Analysis literature.

Most of the results in Sect. 4.1 were announced in Arias and Balcazar (2008); the re-
maining results are from Arias and Balcédzar (2009).

2 Preliminaries

We start by reviewing basic definitions and results from Horn logic. We work within the stan-
dard framework in propositional logic, where one is given an indexable set of propositional
variables of cardinality n, Boolean functions are subsets of the Boolean hypercube {0, 1}",
and these functions are represented by logical formulas over the variable set in the standard
way. Binary strings of length n assign a Boolean value for each variable, and are therefore
called assignments; given any Boolean function or formula H, the fact that assignment x
makes it true (or “satisfies” it) is denoted x = H. Following the standard overloading of the
operator, H = H' means that, for every assignment x, if x = H then x = H'. Assignments
are partially ordered bitwise according to 0 < 1 (the usual partial order of the hypercube);
the notation is x < y. We employ the standard notation O as a formula representing the
constant 0 (false) Boolean function; thus x [~ O for every x.

A literal is a variable or its negation. A conjunction of literals is a term, and if none of
the literals appears negated it is a positive term, also often referred to as a monotone term or
monotone conjunction. We often identify positive terms and mere sets of variables; in fact,
we switch back and forth between set-based notation and assignments. We denote terms, or
equivalently subsets of variables, with Greek letters (¢, 8, ...) and assignments with letters
from the end of the alphabet (x, y, z, ...). We may abuse notation at times and it should be
understood that if we use a subset @ when an assignment is expected, it is to be interpreted
as the assignment that sets to 1 exactly those variables in «. We denote this explicitly when
necessary by x = [«]. Similarly, if we use an assignment x where a subset of variables is
expected, it is to be understood that we mean the set of variables that are set to 1 in x. We
denote this explicitly by « = [x]. Clearly, we have a bijection between sets of propositional
variables and assignments, and x = [[x]] and o = [[«]] for all assignments x and variable
sets .

The following lemma is a direct consequence of the definition of satisfiability over posi-
tive conjunctions o:

Lemmal x o iffa C [x] iff [a] <x.
2.1 Horn logic

In this paper we are only concerned with Horn functions, and their representations using
conjunctive normal form (CNF). A Horn CNF formula is a conjunction of Horn clauses.
A clause is a disjunction of literals. A clause is definite Horn if it contains exactly one
positive literal, and it is negative if all its literals are negative. A clause is Horn if it is either
definite Horn or negative. Since in this paper we are dealing with Horn functions only, we
drop the “Horn” adjective frequently.

Horn clauses are generally viewed as implications where the negative literals form the
antecedent of the implication (a positive term), and the singleton consisting of the positive
literal, if it exists, forms the consequent of the clause. Note that both can be empty; if the
consequent is empty, then we are dealing with a negative Horn clause, denoted o — 0O.

@ Springer

276 Mach Learn (2011) 85:273-297

This is equivalent to having O as one more literal in every negative Horn clause, which
is harmless as the Boolean 0 is an identity element for disjunction, and then handling it
(somewhat artificially) as a positive literal.

We stick to the wording “Horn CNF” even though we take the term CNF in a rather
general meaning of “Boolean polynomial” or “conjunction of disjunctions”, not literally
the normal form of conjunction of maxterms; this widening of the term CNF is widespread
in Horn query learning literature, and will lead to no ambiguity. In fact, we extend it a
bit further by some degree of language abuse, as we allow our representations of Horn
CNF to deviate slightly from the standard in that we represent clauses sharing the same
antecedent together in one implication. Namely, an implication « — B, where both « and
B are possibly empty sets of propositional variables is to be interpreted as the conjunction
of definite Horn clauses /\be,s a — b if B # 0, and as the negative clause @ — O if 8 =@.!
A semantically equivalent interpretation is to see both sets of variables o and B as positive
terms; the Horn formula in its standard form is obtained by distributivity over the variables
of B. In analogy to the standard notation, we will continue to use the symbol O for an empty
set in the conclusion of an implication. Of course, any result that holds for Horn formulas in
implicational form with no other restrictions also holds for the clausal representation unless
it explicitly depends of the implications proper, such as counting the number of implications,
as we will do below.

Example 1 Let (—a Vv b) A (—a V ¢) A (—a Vv —b) be a standard representation of a Horn
function over the variable set {a, b, c}. In standard form this expression becomes (@ — b) A
(@ = ¢) A (ab — O). In our compact representation we write (a — bc) A (ab — 0O).
All these represent the same Boolean function. When clear from context, we drop the set
representation in our examples.

We refer to our generalized notion of conjunction of clauses sharing the antecedent as
implication as in the early paper by Guigues and Duquenne (1986). In their original pa-
per, Angluin et al. (1992) refer to implications as meta-clauses, although in their intuitive
description they hint at the additional condition that all clauses with the same antecedent
should be forced into a single implication. We do allow, in principle, several implications of
the same basis to share their antecedent. In our own previous work (Arias and Balcdzar
2008) we have used the term para-clauses; and other works (Arias and Khardon 2002;
Arias et al. 2007) refer to implications as multi-clauses. In fact, the term “implication” pre-
dates all these usages, except the earlier paper by Maier (1980) which, however, discussed
its contribution in terms of functional dependencies, which share many of their properties
with implications but are defined differently. The term clause retains its classical mean-
ing (namely, a disjunction of literals). Notice that an implication may not be a clause, e.g.
(a — bc) corresponds in classical notation to the formula —a Vv (b A ¢). Thus, (@ — bc),
(ab — ¢) and (ab — O) are Horn implications but only the latter two are Horn clauses.
Furthermore, we often use sets to denote conjunctions, as we do with positive terms, also
at other levels: a generic (implicational) CNF A, (a; — f;) is often denoted in this text by
{(a; — B;)};. Parentheses are mostly optional and generally used for ease of reading.

1A reviewer suggested to point out that this differs from an alternative, older interpretation (Wang 1960),
nowadays obsolete, in which @ — B represents the clause (—xj V ---V =x; V y; V --- V yr), where a =
{x1,...,x¢}and B ={y1, ..., yp}. Though identical in syntax, the semantics are different; in particular, ours
can only represent a conjunction of Horn clauses whereas the other represents a possibly non-Horn clause.

@ Springer

Mach Learn (2011) 85:273-297 271

An assignment x € {0, 1}" satisfies the implication « — B, denoted x =« — B, if it ei-
ther falsifies the antecedent or satisfies the consequent, that is, x = « or x |= B respectively,
where now we are interpreting both & and 8 as positive terms.

It is important to note that one has to be careful with the case g = : as indicated above,
we act as if O is present and handle it as a positive literal. Indeed, in this case the semantic
interpretation is as follows: x = o — @ if x & « (since x [~ O always by definition). Notice
that if we were to translate directly x = o — 0, if x }= « or x =0, we would get that this is
always true since, by Lemma 1, we have that x = ¢ for all x. This is why we prefer to stick
to the notation o — O for negative implications.

Not all Boolean functions are Horn. The following semantic characterization is a well-
known classic result of Horn (1956), McKinsey (1943), proved in the context of proposi-
tional Horn logic e.g. in Khardon and Roth (1996):

Theorem 1 A Boolean function admits a Horn CNF basis if and only if the set of assign-
ments that satisfy it is closed under bit-wise intersection.

A Horn function admits several syntactically different Horn CNF representations; in this
case, we say that these representations are equivalent. Such representations are also known
as theories or bases for the Boolean function they represent. The size of a Horn function is
the minimum number of clauses that a Horn CNF representing it must have. The implication
size of a Horn function is defined analogously, but allowing formulas to have implications
instead of clauses. Clearly, every clause is an implication, and thus the implication size of a
given Horn function is always at most that of its standard size as measured in the number of
clauses.

Horn CNF representations may as well include unnecessary implications. We will need
to take this into account: an implication in a Horn CNF H is redundant if it can be removed
from H without changing the Horn function represented. A Horn CNF is irredundant or ir-
reducible if it does not contain any redundant implication. Notice that an irredundant H may
still contain other sorts of redundancies, such as consequents larger than strictly necessary.
Such redundancies are not contemplated in this paper.

2.2 Definite Horn functions

We describe the well-known method of forward chaining for definite Horn functions (Chang
and Lee 1973). Notice that it directly extends to our compressed representation where
consequents of clauses can contain more than one variable. Given a definite Horn CNF
H = {a; — B;}; and a subset of propositional variables o, we construct chains of subsets of
propositional variables « = 2@ c a® C --- C «® = o*. Bach ¢ with i > 0 is obtained
from its predecessor a“~ in the following way: if [@“~"] satisfies all implications in H,
then the process can stop with a~" = @*. If, on the other hand, [a~P] violates some
implication o; — B; € H, then ¥ is set to =" U B;.

Similarly, one can construct an increasing chain of assignments x = x©@ < x® <... <
x® = x* using our bijection ¢ = [x] and x® = [«©®] for all i.

Example 2 Let H ={a — b,b — c,ad — e}. To compute a* we do forward chaining:
a C ab C abc = a*, since abc satisfies all clauses in H. Analogously, one could do this

using assignments instead of variable subsets: 10000 < 11000 < 11100 = 10000*.

See Chang and Lee (1973), Kleine Biining and Lettmann (1999) as a general reference
for the following well-known results. Theorem 3(1) in particular refers to the fact that the

@ Springer

278 Mach Learn (2011) 85:273-297

forward chaining procedure is a sound and complete deduction method for definite Horn
CNFE.

Theorem 2 The objects x* and o* are well-defined and computed by the forward chain-
ing procedure regardless of the order in which implications in H are chosen. The forward
chaining process can be implemented to run in linear time in |H | and n. Moreover, x* and o*
depend only on the underlying function being represented, and not on the particular choice
of representation H; and for each x¥ and o along the way, we have that (x©)* = x* and
(D) = a*.

Theorem 3 Let h be a definite Horn function, let o be an arbitrary variable subset, and x
an arbitrary assignment. Then,

1. h=a — bifand only if b € o,
2. x=x*ifand only if x = h, and
3. x*=A{lx <yandy E=h}.

Proof We do not prove the first part, as it is standard and appears in many places in the
literature, e.g. Chang and Lee (1973), Kleine Biining and Lettmann (1999).

For the second part, it suffices to observe that, by construction, x = x* if and only if it
does not violate any clause of /.

To prove the third part notice that, from the first part of the theorem, we know that
h = [x] — [x*], and thus y = [x] — [x*]. We get that y > x implies y > x*, for all
such y, concluding that A{y|x < yand y = h} > x*. It is not hard to see that x* satis-
fies the conditions x < x* and x* |= h, therefore x* € {y|x < y and y |= h}, and thus x* >
Af{y|x <y and y = h}. Both inequalities together imply the required equality.]

Closure operator and equivalence classes It is easy to see that the x operator is extensive
(that is, x < x* and @ € «*), monotonic (if x <y then x* < y*, and if « C g then o* C 8*)
and idempotent (x** = x*, and o** = «*) for all assignments x, y and variable sets «, 8; that
is, x is a closure operator (Arias and Balcdzar 2008). Thus, we refer to x* as the closure of
x w.r.t. a definite Horn function f.

It should be always clear from the text with respect to what definite Horn function we are
taking the closure, hence it is mostly omitted from the notation used. If we need to make this
explicit, we may use the notation x to denote the closure w.r.t. the definite Horn CNF H,
or x"* to denote the closure w.r.t. the definite Horn function 4. An assignment x is said to
be closed iff x* = x, and similarly for variable sets. By Theorem 3(2), closed assignments
satisfy all implications, and assignments that are not closed must falsify some implication.

This closure operator induces a partition over the set of assignments {0, 1}" in the fol-
lowing straightforward way: two assignments x and y belong to the same class if x* = y*.
This notion of equivalence class carries over as expected to the power set of propositional
variables: the subsets o and B belong to the same class if «* = 8*. It is worth noting that
each equivalence class consists of a possibly empty set of assignments that are not closed
and a single closed set, its representative.

Moreover, the notion of equivalence classes carries over to implications by identifying an
implication with its antecedent. Thus, two implications belong to the same class if their an-
tecedents have the same closure. Thus, the class of an implication « — B is, essentially, o*.

Example 3 This example is taken from Guigues and Duquenne (1986). Let H =
{e > d,bc > d,bd — c,cd — b,ad — bce, ce — ab}. Thus, the propositional variables

@ Springer

Mach Learn (2011) 85:273-297 279

are a, b, c,d, e, f. The following table illustrates the partition induced by the equivalence
classes on the implications of H. The first column is the implication identifier, the second
column is the implication itself, and the third column corresponds to the class of the implica-
tion. As one can see, there are three equivalence classes: one containing the first implication,
another one containing implications 2, 3, and 4; and a final one containing implications 5
and 6.

1 e—d ed

2 bc—d bed

3 bd—c bed

4 cd—b bced

5 ad— bce abcde
6 ce—ab abcde

3 The Guigues-Duquenne basis for definite Horn

In this section we characterize and show how to build a canonical basis for definite Horn
functions that is of minimum implication size. It turns out that this canonical form is, in
essence, the Guigues-Duquenne basis (the GD basis) which was introduced in Guigues and
Duquenne (1986). Here, we introduce it in a form that is, to our knowledge, novel, although
it is relatively close to the approaches of Maier (1980), Wild (1994).

Our construction is based on the notion of saturation, a notion that has been used already
in the context of propositional Horn functions (Arias and Balcazar 2008; Arias et al. 2000),
as well as in the context of Inductive Logic Programming (Rouveirol 1994). Informally,
by saturating a representation we mean adding all the information that is missing from the
representation but can be deduced from it. Let us define saturation more formally and then
prove several interesting properties that serve as the basis for our work.

Definition 1 Let B be a definite Horn CNF. We say that an implication o« — B is left-
saturated with respect to B if [¢] = B and « - o — B (or, equivalently, 8 € o). We say
that an implication o« — B is right-saturated with respect to B if 8 = o*, where the closure
is taken with respect to B. Finally, an implication is saturated w.r.t. B if it is left- and right-
saturated w.r.t. B.

Definition 2 Let B = {o; — f;}; be a definite Horn CNF. Then, B is left-saturated if every
implication «; — B; of B is left-saturated w.r.t. B \ {o; — B;}. This is equivalent to the
following conditions:

1. [e;] o — B, forall i
2. [eil =aj — B, forall i # j.

Notice that the case where B contains a single implication @ — B, the notion of left-
saturation is reduced to irredundancy or, equivalently, the fact that 8 & «.

Definition 3 Let B = {o; — B;}; be a definite Horn CNF. Then, B is right-saturated if

Bi =« forall i, i.e., all of its implications are right-saturated w.r.t. itself. Accordingly, we
denote right-saturated bases with {a; — o};.

@ Springer

280 Mach Learn (2011) 85:273-297

Definition 4 We say that a definite Horn CNF B is saturated if it is left- and right-saturated.

Example 4 Let H={a — b,b — c,ad — e}.

— H is not left-saturated: for example, the antecedent of ad — e is such that [ad] = a — b.
One can already see that by including b in the antecedent of the third clause, one avoids
this particular violation.

— H is not right-saturated because a* = abc and, for example, the implication a — b is
missing ac from its right-hand-side.

— The equivalent H' = {a — abc, b — bc, abcd — abcde} is saturated.

Lemma 2 [f B is left-saturated then B is irredundant.

Proof 1If |B| = 1 left-saturation reduces to irredundancy by definition. Otherwise, suppose
that B, where |B| > 2 is left-saturated but redundant, and so it contains a redundant im-
plication @ — B. By definition of left-saturation, we have that [¢] = @« — B and thus
[a] ¥ B, and that [«] = o' — B’ for implications o’ — S’ other than ¢ — B. There-
fore [¢] = B \ {(¢ — PB)}, contradicting the fact that « — B is redundant in B since
B # B\ {a — B}. O

Lemma 3 Let B = {o; — B;}; be an irredundant definite Horn CNF. Then, [o;] - o; — Bi
foralli.

Proof We are dealing with definite implications, therefore no f; can be empty. Moreover,
the fact that B is irredundant implies that some variable in 8; must be from outside «;,
otherwise the implication would be redundant. Thus we have that [¢;] = o; but [o;] b= B;
because the variable of ; outside of «; is set to 0 in [«;] by definition. O

Lemma 4 Let B = {a; — «}; be an irredundant and right-saturated definite Horn CNF.
Then, the following hold for all i # j

1. (X,'#O{j;
2. 0; Caj = o Caj.

Proof Follows simply from the fact that if o; = ; with i # j, then the implications o; — o

and o/; — o would, in fact, be the same implication, and thus B is redundant. The second
statement is a direct consequence of the first. D

Lemma s Let B = {a; — o}; be an irredundant, right-saturated definite Horn CNF. Then,
B is left-saturated if and only if the following implication is true for all i # j:

o Caj = o Caj.
Moreover, in that case a stronger statement holds:
a Caj = o Caj.
Proof Assume that the implication o; C @; = o C «; holds for all i # j. We show

that B must be left-saturated, namely, that the following equivalence must hold: i = j <
[oi] oy — a;. If i = j, Lemma 3 guarantees that [o;] = o; — o, since B is assumed to

@ Springer

Mach Learn (2011) 85:273-297 281

be irredundant. For the other direction, assume by way of contradiction that [e;] = a; —
o, for some i # j. This happens if [o;] = «; (namely, o; € o; by Lemma 1 and thus
a; C o; by Lemma 4) but [o;] = oz; (namely, Ol; < «;). But this contradicts the implication
o Coj = af Coj.

Conversely, assume that o; C «; for some i # j, and that B is left-saturated, which
implies by definition that [o;] = o — o then of € «; follows. Furthermore, as B is ir-
redundant, o; cannot be closed, but o is, so that they cannot coincide and the inclusion is
proper.]

The following Lemma is a variant of a result of Wild (1994) translated into our notation.
We include the proof which is, in fact, missing from Wild (1994).

Lemma 6 Let B = {o; — «}}; be a saturated definite Horn CNF. Then for all i and y it
holds that (y Co; and y* Caf) = y* Ca;.

Proof Let us assume that the conditions of the implication are true, namely, that y C o; and
y* C a;. We proceed by cases: if y is closed, then y* =y and the implication is trivially
true. Otherwise, y is not closed. Let y = y@ c y® c ... ¢ y® = y* be one of the pos-
sibly many series of elements constructed by the forward chaining procedure described in
Sect. 2.2. We argue that if y© C o; and y© C y*, then y ‘D C o, as well. By repeatedly
applying this fact to all the elements along the chain, we arrive at the desired conclusion,
namely, y* C ;. Let ¥ be such that y C o; and y© C y*. Let oy — o} be the impli-
cation of B that this chain triggers in order to get the next element y ‘* of the chain, that
is, Y = y® U o}. The following inequalities hold: oy € ¥ because y© p& ap — of,
y® C «; by assumption; hence o € o;. Using Lemma 5, and noticing the fact that, actually,
o C o; since ¥ C o; (otherwise we could not have y* C o), we conclude that o} C ;.
We have that o} C o; and y© C ; so that y *1) =y Ut C o; as required. a

The next result characterizes our version of the canonical basis based on saturation.
Theorem 4 Definite Horn functions have at most one saturated basis.

Proof Let By and B, be two equivalent and saturated bases. Let « — «* be an arbitrary im-
plication in B,. We show that « — o* € B, as well. By symmetry, this implies that B; = B;.

By Lemma 3, we have that [«¢] = B; and thus [«] must violate some implication 8 —
B* € B,. Hence, it must hold that 8 C«a but 8* Z a. If B = o, « — a* € B, as required. The
rest of the proof shows that other case 8 C « is not possible.

Let us assume then that 8 C « so that, by monotonicity, 8* € «*. If * C «*, then we can
use Lemma 6 with ¢; = @ and y = § and conclude that 8* C «, contradicting the fact that
[a] = B — B*. Thus, it should be that f* = «*. Now, consider 8 — a* € B,. Clearly B is
negative (otherwise, B = *, and then § — B* is redundant) and thus it must violate some
implication y — y* € By, namely, y C B but y* € 8. If y = §, then we have « — o* € B
and y — y* with y C @ and y* = * = o* contradicting the fact that B, is irredundant.
Thus, y C B and so y* C B*. If y* C B* then we use Lemma 6 as before but with o; = 8
and we conclude that y* C 8. Again, this means that § =y — y* contradicting the fact that
B violates this implication. So the only remaining case is y* = §* but this means that we
have the implications ¢« — o* € B; and y — y* € By with y C « but «* = y* which again
makes B; redundant. O

In fact, as we shall argue shortly, definite Horn functions have exactly one saturated basis.

@ Springer

282 Mach Learn (2011) 85:273-297

3.1 Constructing the GD basis

So far, our definition of saturation only tests whether a given basis is actually saturated; we
study now a saturation process to obtain the GD basis. New definitions are needed. Let H
be any definite Horn CNF, and « any variable subset. Let H (o) be those implications of H
whose antecedents fall in the same equivalence class as «, namely, H (¢) = {«; — Bi|a; —
Bi € H and o™ = o}

Given a definite Horn CNF H and a variable subset o, we introduce a new operator e
that we define as follows: «*® is the closure of o with respect to the subset of implications
H \ H(x). That is, in order to compute «* one does forward chaining starting with o but
one is not allowed to use implications in H («).

This operator has been used in the past in related contexts. As far as we know, the earliest
description of this operator can be found in the work of Maier (1980), where he calls it direct
determination and denotes it with — . Maier’s definition is, in fact, the closest definition
to our own; he uses this operator as part of a procedure for minimizing a certain type of
representation for functional dependencies in relational databases, which is closely related
to our own representation for definite Horn functions. A few years later, and independently,
Guigues and Duquenne (1986) uses this same operator in their work, which is used again in
Wild (1994) also in the context of simplifying definite Horn representations.

Example 5 Let H ={a — b,a — c¢,c — d}. Then, (ac)* = abcd but (ac)® = acd since
H(ac) = {a — b,a — ¢} and we are only allowed to use the implication ¢ — d when
computing (ac)®.

The following simple lemmas are going to be useful throughout the paper:

Lemma 7 Let H be any definite Horn CNF, and let H' C H. Then, for any variable b and
variable subset a with closure a* (w.r.t. H), it must hold that implications 8 — B’ involved
in derivations for H' = a — b are such that §* C o*.

Proof In order to apply 8 — B’, we need to get from « to a term that includes 8, so that
B Ca*, and B* C o* as well. O

Lemma 8 Let H be any definite Horn CNF. For any variable subsets a and 8 such that
B* C o, it must be that H\ H(x) =B — B*.

Proof Clearly, H = 8 — B*, since the closure is taken with respect to H. If in a forward
chain derivation of 8 — B* from H, an implication y — y’ such that y* = o* was used,
we would have that y* = o* C B*, contradicting the assumption that 8* C «*. Therefore, all
implications y — y’ from H involved in any derivation of 8 — B* from H must be such
that y* C «* and, hence, 8 — B* can also be derived from H \ H («) as required. |

Next, we prove that the bullet operator does not depend on the particular syntactic rep-
resentation used to compute it, but it is an operator that only depends on the underlying
Boolean function in a similar way that the star operator does not depend syntactically on the
representation used to compute the closures by forward chaining, but on the function being
represented.

@ Springer

Mach Learn (2011) 85:273-297 283

Theorem 5 Given a definite Horn function f represented by a definite Horn CNF H and a
variable subset o, the operator a® does not depend on the representation H, but only on the
underlying definite Horn function f represented by H .

Proof Given two equivalent definite Horn representations for f, H and G, we need to show
that the closure of « with respect to H' = H \ H(«) and with respect to G' = G \ G() is
the same. Essentially, we need to show that, for all variables b, it holds that H' =a — b
if and only if G’ =« — b. By symmetry, it is sufficient to show one of the directions.
Assume, then, that G’ =« — b, and take any forward chain derivation of @ — b from G’.
All implications involved in this derivation must be of the form 8§ — B’ € G’ such that g* C
a* (see Lemma 7). The case 8* = o* is not possible since it would imply 8 — 8’ € G(«)
and thus 8 — B’ ¢ G'. Therefore, all implications used in the derivation for G' =a — b
must have antecedents 8 such that 8* C o*. Let G” be the set of all the implications involved
in this derivation. Now, for all implications 8 — B’ € G” we have that H = 8 — B’ since
G" € G' € G = H. Moreover, Lemma 8 guarantees that H' = H \ H(x) =8 — B/, since
B* C a*. We conclude that H' = G” =« — b as required. |

The following presents several useful facts involving the star and bullet operators:

Lemma 9 Let H be any definite Horn CNF, and let o and B be arbitrary variable subsets.
The following facts hold:

l. a Ca®* Ca*r

2. =

3. B°Ca*= p*Ca*
4. f*=a*= B ="

Proof In the following, we use the fact that « is a closure operator.

1. Follows from the already stated fact that to get from « to «® we do forward chaining
with the implications in H \ H («), but to get to o* we are allowed to use all implications
in H.

2. From Property 1 of this lemma, we know that @ C «® C «*. Thus, by monotonicity and
idempotency of the star operator it holds that o* C o** C o™ = o* and the equality fol-
lows.

3. By monotonicity, we have that 8° C «® implies f** C «**. Using Property 2, we obtain
the desired fact 8* C a*.

4. Just apply Property 3 twice. O

Computing the GD basis of a definite Horn H The algorithm for constructing the GD ba-
sis of an arbitrary definite Horn CNF H is presented in Fig. 1 and works as follows. First,
saturate every implication C =« — B in H by replacing it with the implication «* — «a*.
Then, all that is left to do is to remove redundant implications. This can be done, for ex-
ample, by doing the following syntactic check over the saturated version of H: (1) remove
implications s.t. «® = o*, (2) remove duplicate implications, and (3) remove subsumed im-
plications, i.e., implications «®* — o* for which there is another implication 8* — B* s.t.
a* = f* but B* C .

Let us denote with GD(H) the implicational definite Horn CNF obtained by applying
this procedure to input H. Note that this algorithm is designed to work when given a definite
Horn CNF both in implicational or standard form. That is, if the input is in standard form,

@ Springer

284 Mach Learn (2011) 85:273-297

GD(H)

1 for every implication Ce H >/*C=a— 8 %

2 do B < o* > /* right-saturate C */
3 o<« > /* left-saturate C */
4 remove from H redundant implications

5 return H

Fig. 1 Constructing the GD basis for definite Horn CNF

the step in which the original clauses are right-saturated will convert these clauses into
implications. The redundancy removal step at the end of the process will make sure that
of the clauses that could be grouped together because they share an antecedent, only one
implication will survive.

Observe also that this algorithm never adds new implications, so that the size of GD(H)
(in number of implications) is at most that of H; and that the changes all along will always
preserve the semantics, so that, as functions, H = GD(H).

The procedure can be implemented to run in quadratic time, since finding the closures of
antecedent and consequent of each implication can be done in linear time w.r.t. the size of
the initial Horn CNF H, as well as detecting redundancy of a given implication.

Example 6 Following our previous example, let H = {a — b,a — c¢,c — d}. Then,
a® =a,a* =abcd, c* =c, and ¢* = cd. Thus our H after the for loop is {a — abcd,a —
abcd, c — cd}, and the final GD basis is GD(H) = {a — abcd, ¢ — cd}.

Example 7 Let H ={a — b,a — c,ad — e,ab — e¢}. First, we compute antecedents’
closures to compute the right-hand-sides of the implications and to figure out how clauses
partition into equivalence classes:

— a* =abce,
— (ad)* =abcde, and
— (ab)* = abce.

The resulting partition is illustrated in the following table. Horizontal lines correspond to
class boundaries (there are only two classes: abce and abcde); the first column is the impli-
cation index in H, the second column is the implication itself, and the third column contains
the closed class representative (that is, the antecedent’s closure w.r.t. H).

Clause Right-sat. («*) Class

1 a—b abce abce
2 a—c abce abce
4 ab—>e abce abce
3 ad—>e abcde abcde

Next, we compute the left-saturations of the implications. In order to compute H (a) we
need to select out of all the implications of H those that belong to the same equivalence class
of a*, namely abce. These implications are: H(a) = {a — b,a — ¢, ab — e}. Similarly, to
compute H (ad), we select those implications that fall into the equivalence class of (ad)* =
abcde, which only results in the single implication H (ad) = {ad — e}. Finally, to compute

@ Springer

Mach Learn (2011) 85:273-297 285

H (ab), we observe that ab and a belong to the same class (their closures coincide: a* =
(ab)* = abce), and therefore H (ab) = H (a). Thus,

— To compute a®, compute the closure of a with respect to H \ H(a) = {ad — e}; hence
a®=a.

— To compute (ad)*®, compute the closure of ad with respect to H \ H(ad) = {a — b,
a — c,ab — e}; hence ad® = abcde.

— To compute (ab)*®, compute the closure of ab with respect to H \ H(ab) = {ad — e};
hence ab® = ab.

The following table contains a summary of the saturation process done so far.

Original clause Right-sat. (a*) Left-sat. («*) Saturated implication (a® — o*)

1 a—b abce a a — abce

2 a—c abce a a — abce

4 ab—e abce ab ab — abce

3 ad—e abcde abcde abcde — abcede

After saturation of every implication in H, we obtain H' = {a — abce,a — abce,
abcde — abcde, ab — abce}. It becomes clear that we should only keep the first implica-
tion; the rest are either identical, trivial, or subsumed by it. Hence, GD(H) = {a — abce}.

In the remainder of this section we show that the given algorithm computes the unique
saturated representation of its input. First, we need a couple of simple lemmas:

Lemma 10 Let H be any definite Horn CNF. For any variable subsets o and 8, the follow-
ing holds: if B C «® but B* C o*, then B* C a®.

Proof By Lemma 8, we have that H \ H(x) = 8 — B*, Moreover, 8 C «® implies § —
B*Ea® — B* and thus H \ H(x) = o®* — B*. By definition of the bullet operator we also
have that H \ H (@) =« — «*, and concatenating the two we get that H \ H (&) = o — B*.
By construction, everything that can be derived from « using implications in H \ H (o) must
be included in «® and therefore, f* C «® as required. O

Lemma 11 The algorithm computing GD(H) outputs the GD basis of H for any definite
Horn formula H.

Proof Let H be the input to the algorithm, and let H' = GD(H) be its output. First we
observe that H' must be irredundant, since all redundant clauses have been removed in
step 4 of the GD(H) procedure (see Fig. 1).

Next, we show that H' must be saturated. Because of the initial saturation process of
implications of H in steps 1-3 of the procedure GD(H), implications of H' have the form
a® — o*. From Lemma 9(2) we know that «** = «*, and thus H’ must be right-saturated.

It remains to show that H’ is left-saturated. From Lemma 9(1) we know that o® C o*,
and the fact that H’ contains no redundant implications guarantees that a® C «*. Thus,
[a®] B~ a®* — o* so that Condition 1 of left-saturation is satisfied. Now let y* — y* be
any other implication in H’. We need to show that [«*] = y* — y*. Assume by way of
contradiction that this is not so, and [¢*] |= y* but [¢®] |~ y*. That is, y* C «® but y* £ °.

@ Springer

286 Mach Learn (2011) 85:273-297

By Lemma 9(4), y* = «® implies y* = «*, contradicting the fact that H’ is irredundant while
containing both implications. Thus, y* C «*®, and therefore using Lemma 9(3) y* € o* must
hold as well. If y* = o* then «® — «* is redundant in H’. Thus, it can only be that y* C «*®
and y* C o*. But in this case Lemma 10 (setting § = y*) guarantees that y* = y** C a®,
which contradicts our assumption that y* Z «°®. O

It is clear that GD(H) has at most as many implications as H. Thus, if H is of minimum
size, then so is GD(H). This, together with Theorem 4 stating that the GD basis is unique,
implies:

Theorem 6 (Guigues and Duquenne 1986) The GD basis of a definite Horn function is of
minimum implicational size.

4 The GD basis and query learning Horn CNF

As stated in the Introduction, we apply the results on the GD basis to better understand a
learning algorithm for Horn CNFs. The learning protocol is as follows: a learning algorithm
is allowed to interact with a Horn CNF target via membership and equivalence queries. In a
membership query, the learner submits an assignment, and receives as answer whether the
assignment satisfies the target; we refer to a positive or negative membership query accord-
ing to the answer. In an equivalence query, the learner submits a Horn CNF, and receives as
answer either an affirmative answer, meaning that the queried Horn CNF is equivalent to the
target and the learning process has succeeded and must stop, or a counterexample, that is, an
assignment that falsifies the target but satisfies the query (negative counterexample) or vice
versa (positive counterexample).

The classic query learning algorithm by Angluin et al. (1992) is able to learn Horn CNF
with membership and equivalence queries. It was proved in Angluin et al. (1992) that the
outcome of the algorithm is always equivalent to the target concept. However, the following
questions remain open: (1) which of the Horn CNF, among the many logically equivalent
candidates, is output? And (2) does this output depend on the specific counterexamples given
to the equivalence queries? Indeed, each query depends on the counterexamples received so
far, and intuitively the final outcome should depend on that as well.

Our main result from this section is that, contrary to our first intuition, the output is
always the same Horn CNF: namely, the GD basis of the target Horn function. This sec-
tion assumes that the target is definite Horn, further sections in the paper lift the “definite”
constraint.

4.1 The AFP algorithm for definite Horn CNF

We recall some aspects of the learning algorithm as described in Arias and Balcdzar (2008),
which bears only slight, inessential differences with the original in Angluin et al. (1992).
The algorithm maintains a set P of all the positive examples seen so far. The fact that the
target is definite Horn allows us to initialize P with the positive example 1”. The algorithm

maintains also a sequence N = (xy, ..., x;) of representative negative examples (these be-
come the antecedents of the clauses in the hypotheses). The argument of an equivalence
query is prepared from the list N = (xy, ..., x,) of negative examples combined with the set

P of positive examples. The query corresponds to the following intuitive bias: everything
is assumed positive unless some (negative) x; € N suggests otherwise, and everything that

@ Springer

Mach Learn (2011) 85:273-297 287

AFP()

I N<«<(> /* empty list */

2 P <«{1"} > /* top element */

3 t<0

4 while EQ(H(N, P)) = (“no”, y) > /*y is the counterexample */

5 doifylH(N, P)

6 then add y to P

7 else find the first i such that >/* N = (x1,...,x) ¥/

8 X; ANy < x;, and > /*thatis, x; £y */

9 Xx; Ay is negative > /* use membership query */
10 if found
11 then x; < x; Ny > /* replace x; by x; Ny in N ¥/
12 else t —t+1; x, < yr>/*append y to end of N */

13 return H(N, P)

Fig. 2 The AFP learning algorithm for definite Horn CNF

some x; suggests negative is assumed negative unless some positive example y € P suggests
otherwise. This is exactly the intuition in the hypothesis constructed by the AFP algorithm.

For the set of positive examples P, denote P, ={y € P | x < y}. The hypothesis to be
queried, given the set P and the list N = (x4, ..., x;), is denoted H (N, P) and is defined as
H(N, P) ={[x;] = [\ Pyllx; € N}.

Intuitively, the query is constructed by considering /\ P, as our current candidate to x*.
By Theorem 3(3), if P, does contain all the positive examples above x, then P, and x*
would coincide; however, this is not necessary in general, and P, may become equal to x*
much before.

A positive counterexample is treated just by adding it to P. A negative counterexample
y is used to either refine some x; into a smaller negative example, or to add x, to the list.
Specifically, let

i :=min({j } MQ(x; ANy)isnegative, and x; Ay <x;}U{t +1})

and then refine x; into x] = x; Ay, in case i <1, or else make x,4; =y, subsequently
increasing . The value of i is found through membership queries on all the x; A y for which
xj Ay < x; holds.

The AFP algorithm is described in Fig. 2. As is customary in the presence of equivalence
queries, the partial correctness is guaranteed: if it stops, then the output is indeed equiva-
lent to the target. We will prove termination of the algorithm by bounding the number ¢ of
negative examples x; in use. We will infer also from the necessary lemmas our claim that
its output is always the GD basis, namely, the unique saturated definite Horn formula that is
equivalent to the target. First, we discuss separately the following easy properties:

Lemma 12 Let P be a set of positive examples, and let x be a negative example for some
Horn function f. Consider the implication [x]1 — [/\ P:], and assume that y satisfies it and
that x <y. Then, x* <)\ P, <y, where the closure x* is taken with respect to f.

Proof We have stated in Theorem 3(3) that x* = A{y|h(y) = 1,x < y}. Clearly P, C

{ylh(y) = 1,x < y} which proves the first inequality. For the second, by assumption
y E[x]1— [A P.] whereas x <y means y = [x], thus y =[A P], thatis, A P, <y. O

@ Springer

288 Mach Learn (2011) 85:273-297

Iterating the same argument to the successive counterexamples received, we obtain:

Lemma 13 Along any run of the AFP algorithm, at the point of issuing the equivalence
query, for every x; and x; in N with i < j and x; < x;, it holds that x} < \ P,, < x;.

Proof Lemma 12 guarantees that x} < /\ P,,.To show A P,, < x;, consider the evolution of
x; and x; during an arbitrary execution of the algorithm. At the time x; is created, we know
it is a negative counterexample to the current hypothesis, for which it must be therefore
positive. That hypothesis includes the implication [x;] — [/ P,], and x; must satisfy it,
and then x; < x; implies /A Py, < x;. From that point on, further positive examples may
enlarge Py, and thus reduce /\ P;,, keeping the inequality. Further negative examples y may
reduce x;, again possibly enlarging P,, and keeping the inequality; or may reduce x; into
xj Ay. If x; £ x; Ay anymore, then there is nothing left to prove. Finally, if x; < x; Ay,
then x; <y, and y is again a negative counterexample that must satisfy the implication
[x;1 = [/\ Py,] as before, so that /\ P,, < x; A y also for the new value of x;. O

The essential intuition of our contributions in this section is captured in the following
lemma:

Lemma 14 Along the running of the AFP algorithm, at the point of issuing the equivalence
query, for every x; and xj in N withi < j there exists a positive example z such that x; Ax; <
Z S Xj .

Proof We argue inductively along the successive queries and refinements. We need to es-
tablish the fact at the time of creating a new element of N, that is, for each i < with respect
to x;41, and we need to argue that the refinements that take place at line 11 of the algorithm
maintain the fact stated. Both are argued similarly. If a positive counterexample is received,
no element of N changes; thus we only need to consider a negative counterexample y.

First note the easiest case whereby x; gets refined into x; = x; A y. This leaves x; un-
touched, and brings down x; A x; into x] Ax;; the same value of z will do: x; Ax; < x; Ax; <
7=Xxj.

Now consider the case in which x; is refined into x} =x; A'y. We assume as inductive
hypothesis that a corresponding z exists before the refinement: x; A x; <z < x;.

We establish first the following auxiliary claim: there is a positive example z’ for which
x; ANy <z <y. To find such 7/, observe that x; came before x; but was not chosen for
refinement; either x; A y is itself positive, and we can simply choose 7/ = x; A y, or x; < y.
In this case we use Lemma 12 as follows. Since y was a negative counterexample, it must
satisfy the query, which includes the clause [x;] — [/ Py,]; x; is a negative example, and
x; <y, hence Lemma 12 applies: x} <y, whence x; Ay <x; <x/ <y. We pick z’ = x/,
which is of course positive.

At this point, we have the already existing z fulfilling x; A x; <z < x;, and the z’ just
explained for which x; Ay <z < y. Observe the following: x; AX; =X; AxX; Ay =X AX; A
Xj Ay = (xi Axj) A (x; Ay). The first half of this last expression is bounded above by z, and
the second half is bounded above by 7/, therefore x; A x} <zAZ ZxjAy= x}. Moreover,
both z and 7’ being positive, and the target being closed under intersection (Theorem 1),
ensures that z A 7’ is positive.

The induction basis case of creation of x,; = y is handled in the same way: the positive
7' obtained in the same manner fulfills directly the condition x; A y <z’ <y, which is what
we need. g

@ Springer

Mach Learn (2011) 85:273-297 289

Our key lemma for our next main result is:

Lemma 15 All hypotheses H(N, P) output by the AFP learning algorithm in equivalence
queries are saturated.

Proof Recall that H(N, P) = {[x;] — [\ P, 1| x; € N}, where P, ={y € P | x; < y}. Let
a; =[x;]and B; =[/\ P, foralli so that H(N, P) = {a; > B; | 1 <i <1}.

First we show that H (N, P) is left-saturated. To see that x; = o; — B; it suffices to note
that x; < /\ P, since x; is negative but /\ P,, is positive by Theorem 1, being an intersection
of positive examples; thus, these two assignments must be different.

Now we show that x; =a; — B;, for all i # j. If x; = o}, then clearly x; =a; — B;.
Otherwise, x; = o and therefore x; < x;.If i < j, then by Lemma 14 we have that x; Ax; <
z < x; for some positive z. Then, x; A x; = x; < z < x;, so that x; = z, contradicting the
fact that x; is negative whereas z is positive. Otherwise, j < i. We apply Lemma 13: it must
hold that A P, < x;. Thus, in this case, x; = o; — B; as well because x; = f; = [A Pyl

It is only left to show that H (N, P) is right-saturated. Clearly, H (N, P) is consistent
with N and P, thatis, x = H(N, P) forall x € N and y = H(N, P) for all y € P. Take
any x € N contributing the implication [x] — [/\ P,] to H(N, P). We show that it is right-
saturated, i.e., /\ P, = x*, where the closure is taken with respect to H (N, P). We note first
that H(N, P) = [x] — ([x])* since the closure is taken w.r.t. implications in H (N, P). By
the construction of H(N, P), all examples y € P, must satisfy it, hence they must satisfy
the implication [x] — ([x])* as well. Therefore, since y = [x] we must have that y = ([x])*,
or equivalently, that x* < y. This is true for every such y in P, and thus x* < A P,. On the
other hand, it is obvious that /\ P, < x* since the implication [x] — [/\ P,] of H(N, P)
guarantees that all the variables in /\ P, are included in the forward chaining process in the
final x*. So we have x* < A\ P, < x* as required. O

Putting Theorem 4 and Lemma 15 together, we obtain that AFP, run on a definite Horn
target, if it stops, always outputs the GD basis of the target concept. It remains to show that
it does stop.

4.2 Termination

We explain now how the lemmas just proved guarantee that ¢, the cardinality of N, is
bounded by a parameter of the target. Essentially, the proof says that the elements of N,
together with their corresponding values of z considered pairwise as per Lemma 14, es-
tablish a lower bound on the number of implications of the target. The argument is as in
Angluin et al. (1992), somewhat adapted to our previous results.

Lemma 16 Let H be any definite Horn formula equivalent to the target, cast as a conjunc-
tion of implications. Consider two different negative examples x; and x; in N. Each of them
falsifies some implication in H, but it cannot be the same implication.

Proof Consider an implication o« — f € H such that x; = o — B and, likewise, x;
a — B, for i < j. Consider also the positive example z s.t. x; A x; <z < x; whose ex-
istence is guaranteed by Lemma 14. That is, [«] < x;, and [«] < x;, which implies that
[a] < x; A x; < z; however, z is a positive example, and must satisfy z = a — B. Then,
from [«] < z immediately follows [8] < z < x;, and therefore x; = o — B actually. O

@ Springer

290 Mach Learn (2011) 85:273-297

It is straightforward to implement in polynomial time the algorithm. Let the target be a
Boolean function on n variables, and let the GD basis of the target have m implications; by
Theorem 6, all definite Horn formulas equivalent to the target have at least m implications.
Each negative counterexample either increases the cardinality of N, which can happen at
most m times, or refines some x;, which can happen at most n times each, for a total of
at most n x m negative counterexamples. Likewise, each positive counterexample added
to P must change at least one of the implications in the query, by reducing A P,, which
again can happen at most n times for each x € N: this accounts for n x m equivalence
queries leading to positive counterexamples. Finally, between counterexamples, at most m
membership queries are asked, and termination is guaranteed. Therefore, we can state:

Theorem 7 (Angluin et al. 1992) AFP, run on a definite Horn target on n variables, and
whose GD basis has m implications, always outputs the GD basis of the target concept in
polynomial time, with at most 2nm + 1 equivalence and nm® membership queries, account-
ing for a total of O (nm?®) queries. All queries consist of at most m implications.

That is, O (nm?) queries are sufficient, also for the case of General Horn discussed be-
low. The combinatorial notion of certificate size has been used to prove lower bounds on
query complexity for many algorithms, including nonlearnability proofs (Hellerstein et al.
1996). Several analyses along this line are provided in Arias et al. (2006); for the particular
case of algorithms that do not query hypotheses essentially larger than the target, a refined
certificate size bound appears in Arias and Balcdzar (2008), which is related to the number
of implications as we employ here.

As a consequence, the following is known: in the case m < n, £2(m?) queries are neces-
sary. For m > n, only a weaker lower bound of §2(mn) exists. There is room for potential
improvements of either the query complexity of the algorithm or the certificate size lower
bound.

5 A canonical basis for general Horn

Naturally, we wish to extend the notion of saturation and GD basis to general Horn functions.
We do this via a a prediction-with-membership reduction (Angluin and Kharitonov 1995)
from general Horn to definite Horn, and use the corresponding intuitions to define a GD
basis for general Horn. We use this reduction to generalize our AFP algorithm to general
Horn CNF, and as a consequence one obtains that the generalized AFP always outputs a
saturated version of the target function. Indeed, for the generalized AFP it is also the case
that the output is only dependent on the target, and not on the counterexamples received
along the run.

5.1 Reducing general Horn CNF to definite Horn CNF

In this section we describe the intuition of the representation mapping, which we use in the
next section to obtain a canonical basis for general Horn functions.

For any general Horn CNF H over n propositional variables, e.g. X = {x;|1 <i <n}, we
construct a definite Horn H’ over the set of n 4 1 propositional variables X’ = X U{f}, where
f is a new “dummy” variable; in essence f represents the false (that is, empty) consequent
of the negative clauses in H. The relationship between the assignments for H and H' are as
follows: for assignments of n + 1 variables xb where x assigns to the variables in X and b

@ Springer

Mach Learn (2011) 85:273-297 291

is the truth value assigned to f, x0 = H' if and only if x = H, whereas x1 = H’ if and only
if x = 1". Define the implication C¢ as f — X'.

Lemma 17 For any general Horn CNF H over variables X, let X' = X U {f}, where f ¢ X
then the implication £ — X' is saturated.

Proof Right-saturation is because there is absolutely no variable left out of the right-hand
side. Left-saturation is due to the fact that no other implication from H can be applied to the
left-hand side. O

Let H,; be the set of definite Horn clauses in H, and H, = H \ H; the negative ones.
Define the mapping g as

g(H)=H,;U{—=C — X'|C € H,} U{Cy}.

That is, g(H) includes the definite clauses of H, the special implication Cg, and the
clauses C that are negative are made definite by forcing all the positive literals, including f,
into them. Clearly, the resulting g (H) is definite Horn. Observe that the new implication Cy
is saturated (see Lemma 17) and the ones coming from H, are right-saturated. Observe also
that g is injective: given g(H), we recover H by removing the implication Ct, and replacing
by O all the right-hand sides containing f. Clearly, g~!(g(H)) = H, since g~' is removing
all that g adds.

5.2 Constructing a GD-like basis for general Horn CNF
The notion of left-saturation translates directly into general Horn CNF:

Definition 5 Let B = {«o; — f;}; be a basis for some general Horn function. Notice that now
B; can possibly be empty (it is empty for the negative clauses). Then, B is left-saturated if
the following two conditions hold:

1. [o;] o — B, forall i
2. [aj]l =aj— Bj,foralli # j.

Notice that now in the second condition, if 8; = 0O, i.e., we are dealing with a negative
clause, then [o;] = o; — B; translates directly into [e;] = or; (equivalently, o; 2 o) since
it could never happen that [o;] = o but [o;] = O, where O is the (unsatisfiable) empty
clause. The conditions can be more explicitly stated as follows:

1. [o;] ¥ oy — Bi, for all i;
2. o] = aj — Bj, foralli # j such that 8; # 0O0;
3. oj Loy, forall i # j such that §; = 0.

The third condition guarantees that no negative clause is a subset of any other clause. If
this were not so, we clearly would have a redundant clause.

For a definite Horn CNF H, right-saturating a clause « — f essentially means that we
add to its consequent everything that is implied by its antecedent, namely «*. This can no
longer be done in the case of general Horn CNF, since we need to take special care of the
negative clauses. If § = O, we cannot set 8 to «* without changing the underlying Boolean
function being represented. The closure x* of an assignment x is defined as the closure with
respect to all definite clauses in the general Horn CNF. It is useful to continue to partition

@ Springer

292 Mach Learn (2011) 85:273-297

assignments x in the Boolean hypercube according to their closures x*; however, in the
general Horn case, we distinguish a new class (the negative class) of closed assignments
that are actually negative, that is, it is possible now that x* j= H. These assignments are
exactly those that satisfy all definite clauses of H but violate negative ones. Based on this,
the negative clauses (those with antecedent « such that [«*] = B) should be left unmodified,
and the definite clauses (those whose antecedents « are such that [o¢*] = B) should be right-
saturated. Thus, the definition is:

Definition 6 Let B = {o; — B;}; be a basis for some general Horn function. Then, B is
right-saturated if, for all i, B; =0 or §; = a}.

Observe that, clearly, ; = O corresponds exactly to those implications where o = B.
As for the definite case, “saturated” means that the general Horn CNF in question is both
left- and right-saturated. We must see that this is the “correct” definition in some sense:

Lemma 18 A basis H is saturated iff H = g~ (GD(g(H))).

Proof First let us note that the expression g~! (GD(g(H))) is well-defined. We can always
invert g on GD(g(H)), since saturating g(H) does not modify Cy (already saturated) and
it does not touch the positive literals of implications containing f since these are right-
saturated. Therefore, we can invert it since the parts added by g are left untouched by the
construction of GD(g(H)).

We prove first that if H is saturated then H = g~'(GD(g(H))). Assume, then, that H
is saturated but H # g~1(GD(g(H))). Applying g, which is injective, this can only happen
if GD(g(H)) # g(H), namely, g(H), as a definite Horn CNF, differs from its own GD
basis and, hence, it is not saturated: it must be because some implication other than Cy is
not saturated, since this last one is saturated by construction. Also the ones containing f in
their consequents are right-saturated, so no change happens in the right-hand-sides of these
implications when saturating g(H). This means that when saturating we must add a literal
different from f to the right-hand-side of an implication not containing f or to the left-hand-
side of an implication. In both cases, this means that the original H could not be saturated
either, contradicting our assumption.

It is only left to show that an H such that H = g~!'(GD(g(H))) is indeed saturated. By
way of contradiction, assume that H is not saturated but H = g~!(GD(g(H))). Applying
g to both sides, we must have that g(H) = GD(g(H)) so that g(H) is actually saturated.
Notice that the only difference between H and g(H) is in the implication Cy and the right-
hand-sides of negative clauses in H; g(H) being left-saturated means that so must be H
since the left-hand-sides of H and g(H) coincide exactly (ignoring Cy naturally). Therefore,
H is left-saturated as well. It must be that H is not right-saturated, that is, it is either missing
some variable in some non-empty consequent, or some clause that should be negative is not.
In the first case, then g(H) is missing it, too, and it cannot be saturated. In the second case,
then there is a redundant clause in H contradicting the fact that H is left-saturated (see
Lemma 2). In both cases we arrive at a contradiction, thus the lemma follows. O

Notice that this last lemma also gives us a way to compute the saturation (that is, the GD
basis) of a given general Horn CNF:

Theorem 8 General Horn functions have a unique saturated basis. This basis, which we
denote GD(H), can be computed by GD(H) = g~ (GD(g(H))).

@ Springer

Mach Learn (2011) 85:273-297 293

Proof If H is saturated then H = g~'(GD(g(H))). The uniqueness of such an H follows
from the following facts: first, g(H) and g(H’) are equivalent whenever H and H’ are
equivalent; second, GD(g(H)) is unique for the function represented by H (Theorem 4)
and third, g~ is uniquely defined since g is injective.]

Example 8 Let H be the general Horn CNF {a — b, a — ¢, abc — 0O}. Then,

- g(H)={a— b,a — c,abc — abcf,f — abcf};
— GD(g(H)) ={a — abct,t — abcft};
- GD(H) =g '(GD(g(H))) = {a — O}.

Similarly to the case of definite Horn functions, GD(H) does not increase the number of
new implications, and therefore if H is of minimum size, GD(H) must be of minimum size
as well. This, together with the uniqueness of saturated representation implies that:

Theorem 9 The GD basis of a general Horn function is of minimum implicational size.
5.3 The AFP algorithm for general Horn CNF

We study now the AFP algorithm operating on general Horn CNF, by following a detour:
we obtain it via reduction to the definite case.

We consider, therefore, an algorithm that, for target a general Horn function H, simulates
the version of AFP algorithm from Fig. 2 on its definite transformation g(H), where g is
the representation transformation from Sect. 5.1. It has to simulate the membership and
equivalence oracles for definite Horn CNF that the underlying algorithm expects, by using
the oracles that it has for general Horn.

Initially, we set P = {1"*'}, and N = (0"1) since we know that g(H) is definite and
must contain the implication f — X U {f} by construction. In essence, the positive assign-
ment 1"*! = f* and the negative assignment ("1 = f* guarantee that the implication Cy is
included in every hypothesis H (N, P) that the simulation outputs as an equivalence query.
The resulting algorithm for general Horn CNF is described in Fig. 4.

In order to deal with the queries, we use two transformations: we must map examples over
the n + 1 variables, asked as membership queries, into examples over the original example
space over n variables, although in some cases we are able to answer the query directly as we
shall see. Upon asking x0 as membership query for g(H), we pass on to H the membership
query about x. Membership queries of the form x1 are answered always negatively, except
for 1! which is answered positively (in fact query 1"*! never arises anyway, because
that example is in P from the beginning). Conversely, n-bit counterexamples x from the
equivalence query with H are transformed into x0. The equivalence queries themselves
are transformed according to g~!. It is readily checked that all equivalence queries belong
indeed to the image set of g since Cy € H(N, P).

All together, these functions constitute a prediction-with-membership (pwm) reduction
from general Horn to definite Horn, in the sense of Angluin and Kharitonov (1995).

It is interesting to note that if we unfold the simulation, we end up with the original
algorithm by Angluin et al. (1992) (obviously, with no explicit reference to our “dummy” f).
We include the algorithm from Angluin et al. (1992) in Fig. 3 so that readers can verify the
equivalence of our reduction and the original algorithm. In fact, the only difference between
our algorithm in Fig. 4 is in the construction of hypotheses: ours uses the reduction described
in Sect. 5.1 and the construct H (N, P), whereas the algorithm AFP of Angluin et al. (1992)

@ Springer

294 Mach Learn (2011) 85:273-297

ORIGINALAFP()

I N<«(> /* empty list ¥/

2 P<{} > /* set of positive counterexamples */

3 H<«{} > /* hypothesis */

4 while EQ(H) = (“no”, y) > /*y is the counterexample */

5 doifyltH

6 then P < P U {y}

7 else find the first i such that >/* N = (x1,...,x) ¥/

8 X; ANy < x;, and > /*thatis, x; £y */

9 Xx; Ay is negative > /* use membership query */
10 if found
11 then x; < x; Ny > /* replace x; by x; Ny in N ¥/
12 H < H \ clauses(x;) U clauses(x; A y)
13 else t —t+1; x, < y>/*append y to end of N */
14 H <« H Uclauses(y)
15 remove from H clauses violated by positive examples in P

16 return H

Fig. 3 The original AFP learning algorithm from Angluin et al. (1992) for general Horn CNF

GENAFP()
1 N« (0"
2 P« {1"h)
3 > /*simulate AFP %/
4 if AFP asks an equivalence query with H(N, P)
5 then pass g~ (H(N, P)) to our equivalence oracle
6 if answer is “Yes”
7 then return g~ (H (N, P)) and stop
8 elseif answer is “No” and x is counterexample received

9 then pass f(x) = x0 as a counterexample to AFP
10 elseif AFP asks a membership query M Q(x")
11 then if h(x') =0 > /* membership query transformation */
12 then answer the query with a “No”
13 elseif h(x') =1
14 then answer the query with a “Yes”
15 elseif h(x') =x €{0, 1}
16 then answer query using our own membership oracle on x

Fig. 4 The AFP learning algorithm for general Horn CNF

directly builds their hypotheses from the negative x; and positive examples received. These
negative examples, coincide exactly for both algorithms, as the mechanism that maintains
N is the same. Next, we show that, in fact, the hypotheses constructed by our reduction and
the original AFP (Angluin et al. 1992) are equivalent and almost syntactically identical (up
to very minor, irrelevant differences as we explain below).

AFP (Angluin et al. 1992) builds the hypotheses in the following way. Let X be the
set of propositional variables. Each x; € N generates a set of possible clause candidates

@ Springer

Mach Learn (2011) 85:273-297 295

clauses(x;) that is included in the hypothesis, where?
clauses(x;) = {[x;] = blb € X \ [x;]U {O}}.

Positive examples are used to remove from this set those clauses that are falsified by the
positive examples. If no positive counterexample y received is such that y > x;, then the
whole set clauses(x;) is included in the hypothesis, including the clause [x;] — O that is, in
fact, subsuming the rest of clauses(x;).

If a positive counterexample y is seen s.t. y > x;, then all clauses in the candidate
set clauses(x;) such that y (= [x;] — b are removed. This certainly removes [x;] — O. In
essence, the ones surviving are those [x;] — b, where b is set to O in x; but set to 1 in all
positive counterexamples y such that y > x;.

To see that H (N, P) contains the same implications, notice that if there is no y > x;, then
the implication included in H (N, P) in our version is [x;] — X U {f} (because 1"*! is used
to construct the right-hand-side). When constructing the inverse image g~' all the literals in
the consequent are removed and thus the corresponding clause is [x;] — O, which is logi-
cally equivalent to the set clauses(x;) generated by Angluin et al. (1992), since [x;] — O
subsumes all the others. On the other hand, if there are positive y s.t. y > x;, then our
algorithm constructs the implication [x;] — [/\ Py,]. Notice that since P, = {yly > x;,
y € P}, variables in [/\ Py,] are precisely those that are set to 1 in all y € P,,. Thus, the
only difference between our clauses and the ones in Angluin et al. (1992) is the fact that
ours are right-saturated (the ones in Angluin et al. 1992 are only missing the variables in
[x;] from their right-hand-sides).

Therefore, the outcome of AFP on a general Horn target H comes univocally determined
by the outcome of AFP on the corresponding definite Horn function g(H); combining this
fact with Theorems 7 and 8 leads to:

Theorem 10 The AFP algorithm always outputs the GD basis of the target concept.

6 Conclusions and future work

This paper makes several contributions towards a better understanding of learning Horn
formulas. On the canonical representation side, we were able to understand, interpret,
and adapt a result from the field of Formal Concept Analysis, namely the existence of
the Guigues-Duquenne basis for definite Horn theories (Guigues and Duquenne 1986;
Wild 1994). We were able to generalize this result to Horn theories in general, thus lift-
ing the restriction of definiteness. To the best of our knowledge, the existence of a canoni-
cal, minimum representation for general Horn theories is not well known at all in the field
of learning Boolean functions, and, in our opinion, it is of intrinsic interest. This paper
presents this canonical representation in such a form that, hopefully, researchers in our field
can understand and benefit from.

It is not unusual that learning algorithms exploit the fact that unique, minimum represen-
tations exist. For instance, this is the case for monotone DNF formulas, where the learning
algorithm directly exploits the fact that any monotone DNF has a unique, minimum rep-
resentation as the disjunction of its minterms, and the algorithm’s task is to discover these
minterms one at a time.

2The original paper (Angluin et al. 1992) uses F instead of O; here we prefer to stick to our notation for
consistency.

@ Springer

296 Mach Learn (2011) 85:273-297

The second contribution of this paper is to provide a new analysis of the classic algorithm
that learns conjunctions of Horn clauses (Angluin et al. 1992). Our proof is quite different
from the one provided in the original paper, and brings to the fore the tight relation of
the AFP algorithm and the canonical GD representation. In fact, we were able to prove
that AFP always outputs the GD representation of the target concept, regardless of which
counterexamples are received. We feel that we have greatly learned from doing this work,
and that this new knowledge will prove crucial to continue to progress in the understanding
of learning Horn functions; we still hope to obtain a new algorithm that improves on the one
by Angluin et al. (1992).

Acknowledgements We thank the reviewers for their thorough comments that greatly helped improve this
paper.

References

Angluin, D. (1987). Learning regular sets from queries and counterexamples. Information and Computation,
75(2), 87-106.

Angluin, D., & Kharitonov, M. (1995). When won’t membership queries help? Journal of Computer and
System Sciences, 50(2), 336-355.

Angluin, D., Frazier, M., & Pitt, L. (1992). Learning conjunctions of Horn clauses. Machine Learning, 9,
147-164.

Arias, M., & Balcdzar, J. L. (2008). Query learning and certificates in lattices. In LNAI: Vol. 5254. ALT 2008
(pp- 303-315).

Arias, M., & Balcazar, J. L. (2009). Canonical Horn representations and query learning. In LNAI: Vol. 5809.
ALT 2009 (pp. 156-170).

Arias, M., & Khardon, R. (2002). Learning closed Horn expressions. Information and Computation, 178(1),
214-240.

Arias, M., Feigelson, A., Khardon, R., & Servedio, R. A. (2006). Polynomial certificates for propositional
classes. Information and Computation, 204(5), 816-834.

Arias, M., Khardon, R., & Maloberti, J. (2007). Learning Horn expressions with LogAn-H. Journal of Ma-
chine Learning Research, 8, 587.

Balcézar, J. L. (2005). Query learning of Horn formulas revisited. In Computability in Europe conference.

Bertet, K., & Monjardet, B. (2010). The multiple facets of the canonical direct unit implicational basis.
Theoretical Computer Science, 411(22-24), 2155-2166.

Chang, C. L., & Lee, R. (1973). Symbolic logic and mechanical theorem proving. Orlando: Academic Press.

Frazier, M., & Pitt, L. (1993). Learning from entailment: an application to propositional Horn sentences. In
Proceedings of the international conference on machine learning (pp. 120-127), Amherst, MA. San Ma-
teo: Morgan Kaufmann.

Frazier, M., & Pitt, L. (1996). CLASSIC learning. Machine Learning, 25, 151-193.

Gaintzarain, J., Hermo, M., & Navarro, M. (2005). On learning conjunctions of Horn> clauses. In Com-
putability in Europe conference.

Guigues, J. L., & Duquenne, V. (1986). Familles minimales d’implications informatives resultants d’un
tableau de données binaires. Mathématiques Et Sciences Humaines, 95, 5-18.

Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V., & Wilkins, D. (1996). How many queries are needed to
learn? Journal of the ACM, 43(5), 840-862.

Hermo, M., & Lavin, V. (2002). Negative results on learning dependencies with queries. In International
symposium on artificial intelligence and mathematics.

Horn, A. (1956). On sentences which are true of direct unions of algebras. The Journal of Symbolic Logic,
16, 14-21.

Khardon, R., & Roth, D. (1996). Reasoning with models. Artificial Intelligence, 87(1-2), 187-213.

Kivinen, J., & Mannila, H. (1995). Approximate inference of functional dependencies from relations. Theo-
retical Computer Science, 149(1), 129-149.

Kleine Biining, H., & Lettmann, T. (1999). Propositional logic: deduction and algorithms. Cambridge: Cam-
bridge University Press.

Maier, D. (1980). Minimum covers in relational database model. Journal of the ACM, 27, 664—674.

McKinsey, J. C. C. (1943). The decision problem for some classes of sentences without quantifiers. The
Journal of Symbolic Logic, 8, 61-76.

@ Springer

Mach Learn (2011) 85:273-297 297

Rouveirol, C. (1994). Flattening and saturation: two representation changes for generalization. Machine
Learning, 14(1), 219-232.

Selman, B., & Kautz, H. (1996). Knowledge compilation and theory approximation. Journal of the ACM,
43(2), 193-224.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134-1142.

Wang, H. (1960). Toward mechanical mathematics. IBM Journal for Research and Development, 4, 2-22.

Wild, M. (1994). A theory of finite closure spaces based on implications. Advances in Mathematics, 108,
118-139.

@ Springer

	Construction and learnability of canonical Horn formulas
	Abstract
	Introduction
	Preliminaries
	Horn logic
	Definite Horn functions
	Closure operator and equivalence classes

	The Guigues-Duquenne basis for definite Horn
	Constructing the GD basis
	Computing the GD basis of a definite Horn H

	The GD basis and query learning Horn CNF
	The AFP algorithm for definite Horn CNF
	Termination

	A canonical basis for general Horn
	Reducing general Horn CNF to definite Horn CNF
	Constructing a GD-like basis for general Horn CNF
	The AFP algorithm for general Horn CNF

	Conclusions and future work
	Acknowledgements
	References

