Mach Learn (2012) 86:57-88
DOI 10.1007/s10994-011-5243-x

Bridging logic and kernel machines

Michelangelo Diligenti - Marco Gori - Marco Maggini -
Leonardo Rigutini

Received: 28 July 2010 / Accepted: 27 February 2011 / Published online: 10 May 2011
© The Author(s) 2011

Abstract We propose a general framework to incorporate first-order logic (FOL) clauses,
that are thought of as an abstract and partial representation of the environment, into ker-
nel machines that learn within a semi-supervised scheme. We rely on a multi-task learning
scheme where each task is associated with a unary predicate defined on the feature space,
while higher level abstract representations consist of FOL clauses made of those predicates.
We re-use the kernel machine mathematical apparatus to solve the problem as primal opti-
mization of a function composed of the loss on the supervised examples, the regularization
term, and a penalty term deriving from forcing real-valued constraints deriving from the
predicates. Unlike for classic kernel machines, however, depending on the logic clauses,
the overall function to be optimized is not convex anymore. An important contribution is
to show that while tackling the optimization by classic numerical schemes is likely to be
hopeless, a stage-based learning scheme, in which we start learning the supervised exam-
ples until convergence is reached, and then continue by forcing the logic clauses is a viable
direction to attack the problem. Some promising experimental results are given on artificial
learning tasks and on the automatic tagging of bibtex entries to emphasize the comparison
with plain kernel machines.

Keywords Kernel machines - First-order logic - Learning from constraints - Learning with
prior knowledge - Multi-task learning - Semantic-based regularization

Editors: Paolo Frasconi and Francesca Lisi.

M. Diligenti - M. Gori (B<) - M. Maggini - L. Rigutini
Dipartimento di Ingegneria dell’Informazione, Universita di Siena, Siena, Italy
e-mail: marco@dii.unisi.it

M. Diligenti
e-mail: michi @dii.unisi.it

M. Maggini
e-mail: maggini @dii.unisi.it

L. Rigutini
e-mail: rigutini @dii.unisi.it

@ Springer

mailto:marco@dii.unisi.it
mailto:michi@dii.unisi.it
mailto:maggini@dii.unisi.it
mailto:rigutini@dii.unisi.it

58 Mach Learn (2012) 86:57-88

1 Introduction

In this paper we propose a novel method to incorporate logic clauses, that are thought of as
abstract and partial representations of the environment and are expected to dictate constraints
on the development of an agent that learns from examples. We rely on a multi-task learning
scheme where each task is associated with a unary predicate defined in the feature space,
while higher level abstract representations consist of FOL clauses made of those task pred-
icates. A proper re-use of the kernel machine mathematical apparatus makes it possible to
cast the problem as primal optimization of a function composed of the loss on the supervised
examples, the regularization term, and a penalty term deriving from forcing the constraints.
This yields a coupling amongst the tasks that comes from the constraints, whereas in related
studies (Caponnetto et al. 2008), the dependencies are induced by the structure of multi-
task kernels. Based on these basic ideas, this paper proposes a fundamental re-thinking of
learning in kernel machines which nicely bridges classic logic formalisms for knowledge
representation so as to capture human cognitive abilities at the border between induction
and deduction. The main results can be stated as follows

(1) Learning from constraints in kernel machines
We extend the learning framework of kernel machines to accommodate the new notion
of constraint, and give a representer theorem which dictates the optimal solution of the
problem as a kernel expansion. The theory is based on the assumption of using unsu-
pervised data to assess the degree of satisfaction of the given constraints. Interestingly,
this is a natural assumption that fits perfectly into the mathematical apparatus of kernel
machines, since the sampling of the constraints corresponds somehow to the classic
transit from functional to empirical risk. In a sense, the notion of constraint unifies the
handling of supervised and unsupervised examples, and it gives rise to a methodology
that well fits the increasing trend of emphasizing the role of unsupervised examples,
that is common in relevant real-world problems.
(i1) Bridging logic and kernel machines
We use well-established results in the theory of T-norms for converting FOL logic
clauses into real-valued functions, thus ending-up into a constrained multi-task learning
problem. From one side, this natural incorporation of logic makes it possible to inject
symbolic knowledge, so as to express logic connections between the tasks. From the
other side, the machine operates inherently in the perceptual space with real numbers,
thus offering a very natural bridge between symbolic and sub-symbolic information.
As discussed in Sect. 2, this is remarkably different with respect to related approaches
in the literature.
(iii) Stage-based learning

Unlike for classic kernel machines, however, depending on the logic clauses, because
of the inherent complexity of the stated problem, the overall function to be optimized
is not convex anymore, that makes it hopeless the adoption of classic optimization ap-
proaches. Following inspirations coming from the principles of cognitive development,
that have been the subject of an in-depth analysis in children by Jean Piaget, we acquire
experimental evidence on the crucial role of stage-based learning sketched in (Gori
2009), and reinforce the importance of insights on teaching issues like those pointed
out by the notion of curriculum learning (Bengio 2009). In a first stage, the learning
procedure considers only the supervised examples until convergence is reached, while
the constraints defined by the logic clauses are incorporated in the second learning
phase. Because of the coherence of supervised examples and logic clauses, the first
stage facilitates significantly the minimization of the penalty term associated with the

@ Springer

Mach Learn (2012) 86:57-88 59

constraints, since classic gradient descent heuristics are more likely to start into the
basin of attraction of the global minimum than a random start.

(iv) Experimental evidence of improvements w.r.t. kernel machines
We show very promising experimental results to emphasize the comparison with plain
kernel machines. In particular, we report the results of a massive experimentation on
a set of artificial data based on a two-dimensional perceptual space. The performance
turns out to be systematically better even in a such a “small space” in which rela-
tively small collections of supervised examples are enough to attain remarkable perfor-
mance with plain kernel machines. Basically, our massive experimental comparisons
on artificial data has been carried out under disadvantaged conditions for the proposed
constrained-based solution so as to better assess the potential power of the proposal.
In order to show how a real-world problem can be properly approached by merging a
knowledge-based with training data, we selected a problem of multi-label text classifi-
cation for automated tag suggestion (Katakis et al. 2008) presented at the ECML/PKDD
2008 Discovery Challenge. We enriched the benchmark with a set of rules describing
the semantic relations between the tags, so as to create the expected learning environ-
ment for the proposed model. The experiments that we have carried out on tagging does
not only indicate improvements of the proposed model in the measure of precision, but
they also clearly indicate that the attached tags are significantly more consistent with
the knowledge base than in the case of plain kernel machines.

The paper is organized as follows: In the next section we discuss the related work, while
in Sect. 3 we introduce the notion of learning from constraints with kernel machines. In
Sect. 4 we present the basic idea of stage-based learning. The translation of FOL knowledge-
based partial descriptions of the environment into real-valued constraints is described in
Sect. 5, and some of our experimental results are reported in Sect. 6. Finally some conclu-
sions and are drawn.

2 Related works

The connections between logic and kernel machines have been the subject of many inves-
tigations in the last few years. They have been mostly carried out within the framework
of earlier studies on the relationships between symbolic and sub-symbolic models in Al
(Hitzler et al. 2004), which are still addressing open problems that need to be solved for
significant developments in both cognitive science and applied Al. Most emphasis has been
on hybrid models, where perceptual and logic information is mostly handled separately in
different modules, whereas a truly tight integration seems to be still hard to achieve because
of the barriers erected by the different mathematical models classically used to handle logic
reasoning and learning with real numbers. When restricting to kernel machines, a rich analy-
sis of the literature can be found in the quite comprehensive survey (Laurer and Bloch 2009),
while a broader coverage of the field with emphasis on the connections with inductive logic
programming is in (Raedt et al. 2008). A related approach to combining first-order logic and
probabilistic graphical models in a single representation has been proposed in (Richardson
and Domingos 2006), by the Markov logic networks, which have received a lot of attention
in the last few years.

The fundamental idea of convolution kernels in discrete structures (Haussler 1999) has
been one of the main sources of inspiration for exploring the connections of kernel machines
with logic. In (Cumby and Roth 2002, 2003), the Feature Description Logic (FDL) is intro-
duced to support learning in domains that are relational, but where the amount of data and

@ Springer

60 Mach Learn (2012) 86:57-88

size of representation learned are very large. The paradigm provides a natural solution to the
problem of learning and representing relational data and extends and unifies several lines
of works in machine learning. An interesting related work on statistical learning for query
answering is in (Fanizzi et al. 2008). In (Muggleton et al. 2005), support vector machines
with a kernel that is an inner product in the feature space spanned by a given set of first-
order hypothesized clauses is proposed, while in (Landwehr et al. 2006), the well-known
inductive logic programming system FOIL is combined with kernel methods, by leveraging
FOIL search for a set of relevant clauses. The model, referred to as kFOIL, implements a
dynamic propositionalization approach and allows one to perform both classification and
regression tasks. In (Landwehr et al. 2010), a general theoretical framework for statisti-
cal logical learning with kernels based on dynamic propositionalization is developed where
structure learning corresponds to inferring a suitable kernel on logical objects, and param-
eter learning corresponds to function learning in the resulting reproducing kernel Hilbert
space.

Quite a different approach, which is based on imposing constraints in the perceptual
space, has been introduced in (Fung et al. 2002). An efficient procedure is proposed for in-
corporating prior knowledge in the form of convex constraints in the input space into a linear
support vector machine classifier. A knowledge base in the form of propositional logic turns
out to be naturally representable by the modeled constraints and leads to remarkable re-
sults in the breast cancer prognosis. An extension to the case of nonlinear kernel classifiers
is given in (Fung et al. 2003), while in (Le et al. 2006) another extension is proposed, in
which the separator is no longer a hyperplane, but the union of a half-space and the poly-
hedra associated with the knowledge base. Beginning from the same idea, in (Maclin et al.
2007), a limitation of the use of prior knowledge is introduced which naturally allows one
to incorporate and refine incorrect knowledge.

While most of the reviewed papers have already proposed different frameworks for in-
corporating prior knowledge expressed by logic formalisms into kernel machines, one lim-
itation seems to be that the integration does not reveal very tight connections. The incor-
poration of structures expressed by different formalisms into kernels yields intriguing, yet
artificial, notions of similarities. The kernel, which is expected primarily to measure the
smoothness of the solution according to the Occam’s razor, is asked to play the additional
role of incorporating logic structures. While this is a very interesting idea, which enriches
significantly the role of the kernels, the remarkable residual degree of freedom on the way
the same logic structures can be incorporated suggests that we are only partially addressing
the inherent limitation of kernel methods and of most learning models, which do not fully
take into account the constraints of the problem at hand. The only direct attempt to deal with
the constraints of the environment, originated by the work in (Fung et al. 2002), focusses on
the perceptual space. So far, there is no attempt to explore the consequence of learning into
a multi-task environment, where the agent is expected to act consistently with a given set
of constraints representing the background knowledge. The studies on convex constraints
(Gori and Melacci 2010) and the coherent decisions of the classifiers acting on different
views of the same pattern (Melacci et al. 2009) follow this research guideline, while some
more tight connections come from the preliminary studies on FOL constraints and kernel
machines given in (Diligenti et al. 2010a, 2010b). The idea of centering the theory around
the general and unified notion of constraints turns out to be a very straightforward way of
bridging logic and kernels, since the adoption of T-norms makes it possible to express most
classic logic formalisms by constraints on real-valued functions. In a sense, the way we pro-
pose to bridge logic and kernel machines seems to be the most natural and straightforward
extension of the classic statistical framework of learning from examples, since they are just

@ Springer

Mach Learn (2012) 86:57-88 61

a special instance of constraints. The theory behind our agents is founded on the replace-
ment of supervised pairs with constraints, a notion which embraces logic descriptions. That
replacement along with the systematic construction of a theory of learning from logic con-
straints is the main distinguishing feature of this paper. This is related with the interpretation
given in (Gori 2009), where the classic concept of regularization, based on smoothness is-
sues, is enriched with constraints. This view leads to think of a more powerful approach of
facing the ill-position of learning from examples by semantic-based regularization, which
is not covered in this paper.

3 Learning with constraints

We consider a multitask learning problem in which the input is a tuple X = {x;|x; € D;,
Jj=1,...,n}, being D; the domain of the values for the jth attribute. A set of multivari-
ate functions {Tx (X j(1,6)s - > Xj)lk=1,..., T, xjq 1 € X, T € Tt} are computed, such
that each function is exploited to attach a specific feature to the tuple given a subset of its
attributes. The ordered set of the function arguments is defined by the map j (, k) that yields
the index j of the attribute in X" used as the /th argument of function &, being n; the number
of its arguments. Further, we assumed that each of the T task functions belongs to an as-
signed functional space 7;. For example a function depending on a single argument can de-
termine whether the input belongs to a class, whereas a function defined on two arguments
can predict if some given binary relationship holds between them. Some of the functions
T4 (Xj(1,k)» - - - » Xj(ny.k)) May be known a priori whereas others must be inferred from exam-
ples. In general, we assume that the attributes in each domain D;, j =1, ..., n are described
by a real valued vector of features that are relevant to solve the tasks at hand. Hence, it holds
that D; = RY% and 7 : RYiab x .. x R% b — R. For the sake of compactness, in the
following we will indicate by x; =[x} 4 .- X/, o] € R%, where dy =Y, djan,
the input vector for the kth task. As an example, consider a multi-view image recognition
system. In this case the input tuple is the set of different views acquired from the object and,
once a proper processing is applied to extract relevant visual features, each of them can be
represented by a real valued vector.

Further, we assume that the instances of the considered attributes x; are generated from
a probability distribution px(xy, ..., x,) that models the more general case in which there
are dependencies among these variables. For instance, if the attributes represent different
features extracted from the same object, like it happens for the single views in multi-view
object recognition, their values are mutually dependent. These dependencies are assumed
to be themselves an unknown property of the problem at hand that can be estimated from
the training examples. The unknown joint probability distribution py (xy, ..., x,) allows us
to model both the variabilities in the object space and the presence of noise in the feature
extraction process. The probability distribution can be marginalized to obtain the distribution
corresponding to a given subset of attributes. In particular in the following, we will denote
by px, (xx) the probability distribution of the arguments for the kth task function. If the at-
tributes collected into x; are mutually independent, then py, (xi) =]_[l=1,_”’nk Pxjan (xja.0)
holds, where py; (x;) is the distribution of the attribute x; in its domain D;.

‘We consider the case when the tasks functions 7; have to meet a set of constraints that
can be expressed by the functionals ¢, : 77 X --- x 7r — [0, +00) such that

on(ty,...,t7)=0 h=1,....H 1)

@ Springer

62 Mach Learn (2012) 86:57-88

must hold for any valid choice of 7, € 7, k =1, ..., T. In particular, in the next section we
will show how appropriate functionals can be defined to force the function values to meet a
set of first-order logic constraints.

In order to define the learning task, we suppose that each task function 7; can be approx-
imated by a function f; in an appropriate Reproducing Kernel Hilbert Space Hy. Therefore,
the learning procedure can be cast as a set of 7' optimization problems that aim at comput-
ing the optimal functions f; € H,, ..., fr € Hr, where fi : R400 x ... x RUob — R,
k=1,...,T. In the following, we will indicate by f =[fi,..., fr] the vector collecting
these functions. The function spaces H; are specific for each function since the function
domains are generally different from each other. Moreover, in general we may decide to
approximate each task function in a different space due to some a priori knowledge on its
properties (i.e. we may decide to exploit different kernels for the expansion).

We consider the classical learning formulation as a risk minimization problem. Assum-
ing that the correlation among the input features x; and the desired task function output
Y is modeled by a joint probability distribution p(x, y,)(Xt, ¥&), the risk associated to a
hypothesis f is measured as,

T
mnzzyajiﬂﬁmxnmmmubmdmwk ©)
k=1

where A[> 0 is the weight of the risk for the kth task and L (fi (xx), yx) is a loss function
that measures the fitting quality of f;(x;) with respect to the target y,. Common choices
for the loss function are the quadratic function especially for regression tasks, and the hinge
function for binary classification tasks. In the considered multitask problem a different loss
function can be exploited for each task function f;, especially in the case if both classifica-
tion and regression tasks are mixed together.

As for the regularization term, unlike the general setting of multi-task kernels (Capon-
netto et al. 2008), we simply consider scalar kernels that do not yield interactions amongst
the different tasks,! that is

T
NLFI=D 0 el 3

k=1

where A} > 0 can be used to weight of the regularization contribution for the kth task.

Clearly, if the tasks are uncorrelated, the optimization of the objective function R[f] +
N[f] with respect to the T functions f; € H; is equivalent to 7' stand-alone optimization
problems for each function with objectives A - Ry[fil + A} - || fx ||?Hk, k=1,...,T.However,
if we consider a problem for which some correlations among the tasks are known a priori and
coded as rules, we can enforce also these constraints in the learning procedure. Following
the classical penalty approach for constrained optimization, we can embed the constraints by
adding a term that penalizes their violation. Since the functionals ¢, (f) are strictly positive
when the related constraint is violated and zero otherwise, the overall degree of constraint
violation of the current hypothesis f can be measured as

H
VIL1=) M- dn(f), “

h=1

Ut is worth mending that this choice is simply dictated by simplicity and to emphasize the role of learning
under constraints. However, the essence of what is proposed could be directly extended to the general case of
multi-task kernels.

@ Springer

Mach Learn (2012) 86:57-88 63

where the parameters A; > 0 allow us to weight the contribution of each constraint. It should
be noticed that, differently from the previous terms considered in the optimization objec-
tive, the penalty term involves all the functions and, thus, explicitly introduces a correlation
among the tasks in the learning statement. Finally, we can add together all the contributions
yielding the objective E[f]= R[f]1+ N[f]1+ VI[f].

Since the distributions p(y, y,)(Xk,), k =1, ..., T needed to determine R[f] are usu-
ally not known and their estimation is equivalent to the learning task at hand, we apply the
common assumption to approximate them through their empirical realizations. This requires
to have a set of examples drawn from these unknown distributions. Basically, the learning
set will contain a set of labeled examples for each task k such as,

Co={(xi.y)li=1,....6))

The unsupervised examples are collected in U, = {x}'cli =1,...,u;}, while SF =
{xr|(xr, yr) € Ly} collects the sample points that are in the supervised set for the kth task.
The set of the supervised and unsupervised points for the kth task is Sy = SF U U.

In this formulation there is no a priori bias for the selection of the samples for the £; and
U, sets. Hence, given an input object we can assume that also a partial labeling can be pro-
vided, i.e. it is not required to specify the targets for all the considered tasks for each sample
corresponding to the ith instance X of the input tuple. Furthermore, the constraint penalty
term generally considers only those examples that are partially supervised or completely
unsupervised (i.e. samples derived from input tuples X that are not contained at least in one
of the supervised set £;). In fact, the completely supervised examples are likely to carry lit-
tle information since the task constraints are already expressed in the provided supervisions
that are supposed to be consistent with the given rules. However, the use of the completely
labeled examples in the set of points exploited to enforce the constraints may yield some
benefits when the labels are affected by noise, but the analysis of this effect is out the scope
of this paper. In the following we will refer to the unsupervised set U = {X7|3k : xi € Uy}

In general, the functionals ¢,(f) implementing the constraints involve all the values
computed by the functions in f on their whole domains and it may be complex to provide a
closed form that can be efficiently dealt with in the training process. Hence, as in the case of
the risk, we assume that these functionals can be conveniently approximated by considering
an appropriate sampling in the function domains. In particular, the exact constraint func-
tionals will be replaced by their approximations d;h (U, f) that exploit only the values of the
unknown functions f computed for the points in ¢/. In the next section, we will address
the benefits and limitations of this approximation in the case of logic constraints. Therefore,
on(f) =g, f).

Thus, the given learning problem is cast in a semi-supervised framework where it is
assumed that a set of (partially) labeled examples is exploited together with an usually larger
set of unlabeled examples. In particular, the choice of the unsupervised examples can be
optimized in order to maximize the information available in the joint knowledge of the a
priori rules and the labeled examples. Given the available supervised examples in £; and an
unsupervised sample U, k =1, ..., T, the objective function considering the empirical risk
and the empirical penalty is,

T T . . r H ~
Ealll=Y 20 2 Li (feDo3d) + D3 Wl + X2 @). (6)

(i) = =

The solution to the optimization task defined by the objective function of (6) can be
computed by considering the following extension of the Representer Theorem.

@ Springer

64 Mach Learn (2012) 86:57-88

Theorem 1 Given a multitask learning problem for which the task functions f1, ..., fr, fi:
R% >R, k=1,...,T, are assumed to belong to the Reproducing Kernel Hilbert Spaces
Hi, ..., Hr, respectively, and the problem is formulated as

[f1*5'~~7f]>‘k]: al‘gmin Eemp[flsnwa]

fieH ... freHT

where E.nplfi, ..., frl is defined as in (6), then each function f;* in the solution can be
expressed as

fiGe) = Z wi K (x, xp)

x;\ESk

where Ky (x, xi) is the reproducing kernel associated to the space Hy, and Sy = SkL U Uy
is the set of the available samples for the kth task function.

Proof The proof follows the same scheme as the one of the classic Representer Theorem
(Scholkopf and Smola 2001). In fact each function f; € H; can be decomposed into two
components: the projection of f; in the space spanned by the functions Ky (xf{, X)), x;c S
and the component v, (x) € H; orthogonal to the previous space, that is (K (x}'(, D, () =
0, Vx;; € 8. Using the reproducing property of the kernel Ky (x}, xi), the value of the func-
tion in a training point x,{ € Sk can be computed as

fee) =(D weiKi(xp,) + v (). Ki(xf, -)>
xLeSk
= > wi i (Ke(xf,), Ke(xl,) = Y wei Ki(x, x),
x;;GSk x;;GSk

showing that the value of the function computed on the training points depends only on the
first component and is independent on vy (-). Hence the terms in the cost function E,,,[f]
of (6), corresponding to the empirical risk and constraint contributions, that exploit only the
values of the functions f; computed in the training points x; € Sk, do not depend on the
components v (-). Thus the only term affected by these functions is the regularization term
whose elements can be written as,

2

1fel3y, = oo fid HZwk,mxk,-) + o5,
Hi

where we exploited the fact that the two components are orthogonal. Hence the only term
in the function E.,,[f] that depends on the components v (-) is || vk (-) ||$_t n which is clearly
minimized by the constant function v, (-) = 0. O

4 Stage-based learning
The optimization of the overall error function is performed in the primal space using gradient
descent (Chapelle 2007). However, the objective function E,,[f] is non-convex in most

interesting problems due to the constraint term, whereas, in case of positive kernel, the
strict convexity is guaranteed when restricting the learning to the supervised examples only.

@ Springer

Mach Learn (2012) 86:57-88 65

In order to face the problems connected with the emergence of sub-optimal solutions, we
propose a solution that is based the following two stages:

1. Piagetian initialization: During this phase, we only enforce a regularized fitting of the su-
pervised examples, by setting A} =0,h=1,..., H,and Af =A", A, =A" k=1,..., T,
where A7 and 1" are positive constants. This phase terminates according to standard stop-
ping criteria adopted for plain kernel machines.

2. Abstraction: During this phase, we start enforcing the constraints by setting A, = A", h =
1,..., H, where A" is a positive constant, whereas A* and A" are left unchanged.

Interestingly enough, the two stages herein proposed turn out to be a viable way for tackling
complexity issues and suggest a gradual process in which the higher abstraction required
to incorporate constraints must follow the classic induction step based on supervised ex-
amples. This solution is somewhat related to issues of developmental psychology, since it
is well-known that many animals and, especially humans, experiment stage-based learning.
According to Piaget (Inhelder and Piaget 1958; Piaget 1961), we can identify four major
stages or “periods of development” in child learning, where each stage is self-contained
and builds upon the preceding stage. In addition, children seem to proceed through these
stages in a universal, fixed order. Even though the four stages described for humans are
collapsed to two different stages only, there is an intriguing analogy that mainly involves
the distinction between sub-symbolic and symbolic processes. When restricting the learn-
ing protocol to examples, simple teaching plans have been proposed (see e.g. Gorse et al.
2004, 1997). Recently, the research in deep learning has shifted the attention on teach-
ing plans in a more systematic way (see e.g. Bengio 2009). However, the two stages in-
volve the structural difference between examples, that involve sub-symbolic learning, and
predicates, that are related to symbolic processing and, therefore, to more abstract repre-
sentations. The notion of developmental intelligent agents has been also the subject of re-
cent explorations in cognitive science (see e.g. Guerin and McKenzie 2008; Guerin 2008;
Sloman 2009), where some interesting philosophic foundations have been emerging that
could be of interest for further improvement of the simple proposed stage-based develop-
mental scheme. The current solution that has been massively used in our experiments is
based on carrying out the global optimization of function (6) using gradient descent. The
stage-based solution consists of starting with the first two terms of the function and, later
on, to continue by incorporating the penalty term associated with the constraints only after
having reached a satisfactory learning performance on the basis of supervised examples only.
The idea was preliminarily suggested in (Gori 2009), where parsimonious agents capable of
dealing with constraints were introduced using arguments from variational calculus.

Interestingly, the switch from the first to the second stage need not to take place abruptly;
alternatively one could use numerical solutions based on continuation methods (Allgower
and Georg 2003) that transform the objective function gradually from the initial one to
the final target function to be optimized. Of course, the study of the role of the ordering,
that in this paper is limited to supervised examples and logic constraints only, is likely to
disclose interesting issues on the importance of the ordering of different constraints. Another
relevant issue is the purposely selected unsupervised examples for checking the degree of
satisfaction of the constraints. All the collection of unsupervised data is used to construct the
penalty term, but in real-world problem one might benefit from a careful gradual selection
of unsupervised examples. This requires somehow to perform active learning, by selecting
those unsupervised examples that are more useful to incorporate the constraints.

While one might provide plenty of arguments from developmental psychology to support
stage-based learning by pointing out the inspiration from biology, the most sound analyses

@ Springer

66 Mach Learn (2012) 86:57-88

to motivate the scheme proposed come from optimization and complexity issues. As already
put forward, unlike classic kernel machines, the overall function to be optimized (6) is not
convex anymore. In a sense, the first stage, that is based on learning from supervised exam-
ples only, with the correspondent guarantee of convergence to an optimal solution, makes
it possible to approach the global basin of attraction, while the second stage, in which the
constraints are involved, performs a refinement of learning beginning from a good initializa-
tion. It is worth mentioning that the constructive interaction between the two learning stages
is made possible by the coherence of the supervised pairs with the knowledge represented
by the constraints. This qualitative complexity issue suggests that stage-based learning, as
discussed in developmental psychology, might not be the outcome of biology, but it could
be instead the consequence of optimization principles and complexity issues that hold re-
gardless of the body.

5 Translation of first-order logic clauses into real-valued constraints

When a partial description of the environment is given in terms of logic constraints, in order
to follow the approach of learning from constraints of the previous section, one needs to
devise a conversion process to translate logic formalisms into real-valued functions. We
focus the attention on knowledge-based descriptions given by first-order logic (FOL-KB).
The formulas in a KB can be implicitly conjoined, and thus a KB can be viewed as a single
large formula. In the following, we indicate by V = {v, ..., vy} the set of the variables used
in the KB, with v; € D;. Given the set of predicates used in the KB

P ={pelpr : Dy iy X -+ X Dy iy — {true, false}, k=1,...,T},
the clauses will be built from the set of atoms

A= {pk(i)(vx(l,k(:‘))a e Us(u k) =1 cooomy pray € Py sk € V},

where the ith atom is an instance of the k(i)th predicate for which the jth argument is
assigned to the variable vy(j ki) € Dy(j iy - In the following, for the sake of compactness,
we will indicate by vy, = [Vs1,kG))» - - - » Vs gy k(i) the argument list of the atom a; € A.

Any FOL clause has an equivalent version in Prenex Normal form (PNF), that has all
the quantifiers (V, 3) and their associated quantified variables at the beginning of the clause.
Standard methods exist to convert a generic FOL clause into its corresponding PNF and
the conversion can be easily automated. Therefore, with no loss of generality, we restrict
our attention to FOL clauses in the PNF form. The quantifier-free part of the expression is
equivalent to an assertion in propositional logic for any given assignment of the quantified
variables. Since any propositional expression can be written in Conjunctive Normal Form
(CNF), we can assume that the given PNF-CNF FOL expression is available in the following
canonical form

Quantifier-free CNF expression EO(VEO,P)

Quantified Portion

Yalvey --- [Vl /\ (\/ [ﬁ]ai@,d)(va,w))) @)
d7

c=1,...,C =1,..., D,

where a;4) € A is an atom and the variables vy €V, ¢ =1, ..., Q constitute the set
of the quantified variables. The quantifier-free expression Eq(vg,, P) depends on the list

@ Springer

Mach Learn (2012) 86:57-88 67

of arguments vg, = [Vs1,Ey), - - -» Vs £y Eg] corresponding to the variables used in all the
atoms d;(cq), 1.€. Vy(j) € {vy € V|3c,d v, € args(a;(.qa))} where args(a;(,q4)) is the set of
the variables v, ,, used as arguments in the atom a;..q). When all the variables appearing
in vg, are quantified, the resulting expression is a constant that must evaluate to true.

We assume that the task functions f; are exploited to implement the predicates in P
and that the variables in V correspond to the attributes defining the tuple X on which the
functions f; are defined. The mapping between V and the attributes in X is defined such that
vy —> Xj(s) and when the same attribute is referred to by different variables the corresponding
instances are assumed to be independent on each other. In this framework, the predicates
yield a continuous real value that can be interpreted as a truth degree. As we will show in
the following, the output values of the functions f; can be mapped into the interval [0, 1],
such that the value O is associated with false and 1 with true.

The FOL-KB will contain a set of clauses corresponding to expressions with no free
variables (i.e. all the variables appearing in the expression are quantified) that are assumed
to be true in the considered domain. These clauses can be converted into a set of constraints
as in (1) that can be enforced during the kernel based learning process. The conversion
process of a clause into a constraint functional consists of the following three steps:

(I) Predicate substitution: substitution in (7) of the predicates with their continuous im-
plementation realized by the functions f composed with a squash function, mapping
the output values into the interval [0, 1]. In particular, the atom a;(v,,) is mapped
t0 o (fri)(vg)), where o : R — [0, 1] is a monotonically increasing squashing func-
tion. A natural choice for the squash function is the piecewise linear mapping o (y) =
min(1, max(y, 0)), this is indeed the function that was employed in the experimental
setting.

(I) Conversion of the Propositional Expression: conversion of the quantifier-free expres-
sion using 7-norms as detailed in Sect. 5.1.

(II) Quantifier conversion: conversion of the universal and existential quantifiers as shown
in Sect. 5.2.

5.1 Logic expressions and their T-norm representation

Any quantifier-free expression defined over the set of atoms .4 is equivalent to a sentence in
propositional logic, once its variables are assigned to some given value. The expression can
be mapped to a function processing real values by relying on the classic association from
Boolean expressions to real-valued functions as defined by the ¢-norms (triangular norms)
(Klement et al. 2000), commonly used in fuzzy logic (Klir and Yuan 1995).

A t-norm is a function T : [0, 1] x [0, 1] — R, that is commutative (i.e. T(x,y) =
T(y,x)), associative (i.e. T(x,T(y,z)) = T(T(x,y),z)), monotonic (ie. y <z =
T(x,y) <T(x,z)), and featuring a neutral element 1 (i.e. T(x, 1) = x). A t-norm fuzzy
logic is defined by its -norm T (x, y) that models the logic AND, while the negation of a
variable —x is computed as 1 — x. The 7-conorm, modeling the logical OR, is defined as
1—-T((1—x),(1—1y)),as a generalization of the De Morgan’s law (x V y = —(—x A —y)).
A t-norm is continuous if 7 (x, y) is continuous. Many different #-norm logics have been
proposed in the literature. In the following we will mainly focus on the product t-norm
T (x,y)=x -y, for which the 7-conorm is computed as 1 — (1 —x)(1 —y) =x +y — xy.
Another commonly used 7-norm is the minimum t-norm defined as T (x, y) = min(x, y). In
this case, the r-conorm corresponds to the function max(x, y). It is clear from their defini-
tions that both the product and minimum #-norms are continuous. Once defined the 7-norm
functions corresponding to the logical AND, OR and NOT, these functions can be composed

@ Springer

68 Mach Learn (2012) 86:57-88

to convert any arbitrary logic proposition. Please note that when using a continuous #-norm,
any proposition is converted into a continuous function.

Since any proposition can be transformed into an equivalent CNF form, with no loss of
generality, this section will detail the conversion of a clause written in its CNF form. A CNF
formula is a collection of maxterms connected by conjunctions (AND). Each maxterm is
composed of a set of terms connected by disjunctions (OR). The terms in the maxterms are
the predicates appearing either asserted or negated. We will show the conversion using a
product ¢-norm, but it is trivial to derive a similar result for the other #-norms.

Given the disjunction of a set of atomic terms appearing in the mth maxterm of the
quantifier-free proposition Ey(vg,, P) of a clause in the KB, it is possible to express the
maxterm as

\/ aq(vaq)v \/ _'ar(var)=_' /\ _'aq(vaq)/\ /\ ar(var) s

+ - + -
4Py Eg) ’EP(m,EO) 4€P i Eg) ’EP(m,EO)

where P(;_ £y and P, ., are the sets of the indexes of the asserted and negated literals
(atoms in A) that appear in this maxterm of the clause. Using the product z-norm, this
expression is converted into the function

ton k) Wi g)=1— [] o(fin@a))- [] (1 =0 (fiwr(a))).

reP +

(m,Eq) 4€Pn £

where the squashing function o must be introduced in the computations since #-norms are
only defined for input variables in [0, 1], whereas the functions f; can yield any real value.
The resulting expression depends on all the variables appearing as arguments in the atoms
used in the expression, i.e. Vi ny) = [UX(l,t(m,E(,))v .. where Us(stim,) €
{v; €VI3g € P, 1)U Py iy Us € a1gs(ag (v,))).

The conjunction of the maxterms forming the entire CNF proposition is obtained by
multiplying the associated #-norm expressions,

o vx(n(m.E())J(m,EU))]’

tE()(le ’ f) = t(m,E())(vt(,mE) f)s
0 0

m:l,.“,MEO

where Mg, is the number of maxterms in the CNF expression Ey(vg,, P) and v, £ is the
argument list containing all the variables in the argument lists Vi gy M=o e Mp,. Please
note that if we require 1 — g, (v, £y f) =0, then each term of the conjunction must be equal
to 1 (i.e. the corresponding maxterm needs to be true).

Once the logic quantifier-free expression is written using a f-norm, the constraint
1— tEO(v;'EO, f) = 0 expresses the fact that the expression must be verified for a given in-
put variable configuration v;EO. Hence, a generic CNF logic clause can be enforced by the

correspondent functional constraint g, (vj'EO, f) defined as

or, (Wl)= (1= 15, .) =0. ®)

When the constraint is not verified g, is strictly positive and it can be interpreted as the
degree of not satisfaction of the clause of the KB for the given variable configuration v;EO.

Finally, it is worth mentioning that each constraint can be satisfied for different con-
figurations of the predicate values that make true the corresponding logic proposition. For

@ Springer

Mach Learn (2012) 86:57-88 69

instance, if we consider the proposition a A b = ¢, that is always true except for the con-
figuration (a = true, b = true, c = false), its implementation using the product 7-norm is
1 —ab(1 — ¢) and the corresponding constraint is abc — ab > 0. This constraint is satisfied,
whena =0,b,ce€[0,1]orb=0,a,ce[0,1]orc=1,a,be[0,1].

T-norms allow the mapping of any arbitrary quantifier-free expression E(vg,P) to a
functional constraint ¢g (vg, f) = 0, depending on all the variables collected in the argu-
ment list vz = [Vs1,E), - - -, Vs(ng,)] and on the predicates implemented by the functions f.

5.2 Quantifier conversion

The quantified portion of the expression is processed recursively by moving backward from
the inner quantifier in the PNF expansion.

Let us consider the universal quantifier first. The universal quantifier expresses the fact
that the expression must hold for any realization of the quantified variable v,. When con-
sidering the real-valued mapping of the original boolean expression, the universal quantifier
can be naturally converted measuring the degree of non-satisfaction of the expression over
the domain D; 4 where the feature vector x(,), corresponding to the variable v,, ranges.
This measure can be implemented by computing the overall distance of ¢g(vg, f), that is
the degree of violation associated to the quantified expression, from the constant function
equal to O (this is the only value for which the constraint is always verified), over the domain
Dj (- Measuring the distance using the infinity norm yields

Vv, E(ve, P) = loe(e, flloo

<=

= lim (/ lpe (e, FIP pxj(q)(vq)dvq> = sup |lpe(e, /), (9
P \JueDj) v4€Dj(q)

where the resulting expression depends on all the variables in vz except v,. Hence, the
result of the conversion applied to the expression E, (v Eg P) =Vv, E(vg,P) is a func-
tional vr,(VE,, f), assuming values in [0, 1] and depending on the set of variables Vg, =
[vs(l,Eq)7 e, vAY(,,Eq,Eq)], such that ng, =Ng — 1 and Us(j,Eq) € {v, eV|Tiv, = Us(i,E)s Ur *
v, }. The variables in v, need to be quantified or assigned a specific value in order to obtain
a constraint functional depending only on the functions f.

Theorem 2 Let E(v,P) be an FOL expression with no quantifiers depending on the
variable v. Let tg (v, f) be the t-norm representation of E, obtained using a continu-
ous t-norm, where f; corresponds to py, k=1,...,T. If f, € C°, k=1,...,T, then
I —te(v, O, =0iff Vv E(v, P) is true.

Proof =.tg(v, f) € CY, since it is obtained by composing continuous functions. ¢z (v, f) is
also non-negative being a r-norm. Now, suppose that |1 —fg (v, f)Il, = 0 but it does not hold
that Vv E (v, P) is true. If Vv E (v, P) is false than its negation must be true: =Vv E(v, P) =
Jv —E (v, P). This means that it must exist at least one instance v’ such that E (v', P) is false.
If EQv', P) is false then tz (v, f) = 0. Since tz (v, f) € C°, for any € such that 0 < € < 1, it
is possible to finda § > O suchthat VAv: ||Av| <6, 1 —tg(v'+ Av, f) > 1—€ > 0. Since
tg is non-negative, this implies that, when computing the distance of the constraint from the
target constant value 0 using any p-norm, ||1 — tz(v, f)ll, > 22(8, p)(1 — €) > 0, where
£2(8, p) is a positive value depending on the measure of the region where the constraint is
violated. Hence, the assumption leads to a contradiction.

@ Springer

70 Mach Learn (2012) 86:57-88

<. If Vv E(v,P) holds, tg(v, f) is a constant function equal to 1 for each v, and
11 —t£ (v, £)]l =0 holds for any functional norm. O

Theorem 2 shows that there is a duality between an universally quantified expression
and its continuous generalization. It is therefore possible to test whether the expression
holds by checking the value of the converted expression. If we consider the conversion of
the PNF representing a FOL constraint without free variables, the variables are recursively
quantified until the set of the free variables is empty. In the case of the universal quantifier we
apply again the mapping described previously. The existential quantifier can be realized by
enforcing the De Morgan law to hold also in the continuous mapped domain. The De Morgan
law states that

v, E(vg, P) &= —Vv, ~E(vg, P).

Using the conversion of the universal quantifier defined in (9), we obtain the following
conversion for the existential quantifier

vy E(vg, P) — infyep;,, 9e(VE, f).

Example 1 Leta(-), b(-) be two unary predicates, implemented by the functions f,(-), f,(-).
The clause Yv; Yv, a(vy) V b(v,) is converted in three steps as follows.

1. Conversion of the atoms a(v,) and a(b,).

a(v) = o (fa(v1)), b(vy) = o (fp(v2)).

II. Conversion of the quantifier free expression Eo([vi, v2], {a(-), b()}) = a(vy) V b(vy)
using T-norms.

1y ([vr, v2], [fas fo]) = 0 (fa(w1) + 0 (fa(v2)) — o (fa(w))o (f5(v2)).

III. Conversion of the universal quantifiers for the variables v; and v,. First the quantifier
free expression Ey([vy, v2], {a(-), b(-)}) is converted into the distance measure

v ([vi, v2], e, o) =1 =0 (fa(v) — 0 (fa(v2)) + 0 (fa(w1))o (f5(v2).

Then, the two universal quantifiers are converted using the infinity norm, yielding the
constraint

@e (1, [fas fol) = sup sup (1 =0 (fa(v1) =0 (fa(v2)) + 0 (fu(v1))a (fy(v2))) =0.

v1€D] 1eD)

Using the same procedure it is easy to show that the clause Yv; v, a(vy) Vv b(v,) is
mapped to the constraint

sup inf (1 —o(fu(v1)) — o (fp(v2) +0(fav))o(f5(v2))) =0.

v eDy V2612

Example 2 We consider the case when the same predicate is used in different atoms. Let us
consider the clause

Yo Yuy r(v1, v2) = (a(vy) Aa(vy)) V (—a(v) A —a(vy)),

@ Springer

Mach Learn (2012) 86:57-88 71

that states that when the relationship r(v;, v;) holds between two items, then the predicate
a(v) should yield the same value for both of them. In this case P = {r(-,-),a(-)} and A =
{r(v1, v2), a(vy), a(vy)}. The first conversion step yields

a(vy) — o(fa(v1)), a(vz) = o (fa(v1), r(vi, v2) = o (f; (v, v2)).

The quantifier free expression Eo([vy, v2], {a(-), r (-, -)}) corresponds to the T-norm function

tg,([vr, va2l, [fas £;D) =1 =0 (f, (v, v2))(A — o (fa(vi))o (fa(v2)))
x (0 (fa(v1) + 0 (fa(v2)) — 0 (fa(v1))o (fa(v2))).

Finally the quantification of the two variables v and v, ranging in the same domain D yields
the constraint

sup sup (o (f,(v1, v2))(1 — o (fa(vi))o (fa(v2)))

v1€D 1eD

x (0 (fa(1)) +0(fa(v2)) — o (fa())o (fa(v2)))) =0.

Unfortunately, it is generally complex to compute the exact expression for the functionals
since the conversion of the quantifiers requires to extend the computation on the whole
domain of the quantified variables, considering the feature distributions Px; (x;). Hence,
we assume that the computation can be approximated by exploiting the available empirical
realizations of the feature vectors. If we consider the examples available for training, both
supervised and unsupervised, we can extract the empirical distribution Sy, for the feature x;
by considering all the instances of the tuples X’. Hence, the universal quantifier exploiting
the infinity norm is approximated as

Vo, EpP)— max |gs(ve, £

Y1€9%j(q)
Similarly, for the existential quantifier it holds

v, E(vg, P) — n;in lee(ve, I

Y4 €% j(g)

It is interesting to note that the || - ||, norm in the empirical case defines the universal
quantifier as the Minimum T-norm representation of the conjunction of the values of the
loss of the expression evaluated over each point of the sample set. The existential quantifier
instead corresponds to the Minimum T-norm representation of the disjunction of the loss of
the expression evaluated over each point of the sample set.

Table 1 highlights the conversion rules that allow the mapping of any FOL clause into a
continuous constraint.

It is also possible to select a different functional norm to convert the universal quantifier.
However, these alternative norms are not consistent with the DeMorgan law even if they
feature nice averaging properties, which make them a preferable choice when the resulting
constraint must be integrated into a cost function to be optimized (e.g. soft enforcing of the

constraint). For example, when using the || - ||; norm, the universal quantifier is implemented
as
Vo, E(vr, P) = llgg (e,)l = / e e,)] Py) duy. (10)
%4€Dj(g)

@ Springer

72 Mach Learn (2012) 86:57-88

Table 1 Rules for the three step conversion of a PNF clause. After the conversion of atoms in step I, the
rules of step II are applied recursively to convert a quantifier free expression Eg(vE,, P) into its T-norm
implementation 7, (v, f). Finally, the rules in step III allow the recursive definition of the final constraint
or((1, f) =0, where pg ([], f) is the functional obtained after the quantification of all the variables in the
argument list v g,

Step Expression Mapping

I a;j(va;) o (fri)(vg;))

I —~E(vg,P) l—tg(g,)
E1(vg,P) N Er(vE,, P) g, (g,) 1E,(WE,, f)
Ei(vg,,P)V Ex(vEg,, P) 1= —1g, (g, U —tg,(VE,, f))
Ei(vg,, P)= E2(vE,, P) l—tg, (g, A —tg,(vE,,)

I Eo(vgy, P) PE,(VEy f)=1—1g,(VEy, [))
Eq(vg,. P)=Vvg E1(vg, P) vE, (VE,.)= MaXy, Sy, PE1 (V> D
Eq(vg,.P)=3Tv, E1 (v, P) vE, (g,)= MMy, €Sy, () PE1 (g,)

Using the empirical distribution for the feature x;, the integral can be approximated as a
sum over the set S,;, yielding the conversion rule

Vv, E(vg, P) —

B > leee. .

Xj@) Vg €Sx4
Please note that g ([], f) will always reduce to the following form, when computed for
an empirical distribution of data for any selected functional norm,

wE([]! f) = Ovm)est

sy T O”"(Qﬁs*.f(x(g)) teg (Ve f), (1)

where O,, Siiig) specifies the aggregation operator to be computed on the sample set Sy,
for each quantified variable v,. In the case of the infinity norm, O”qesx/m is either the
minimum or maximum operator over the set S, . Therefore, the presented conversion pro-
cedure implements the logical constraint depending on the realizations of the functions over
the data point samples. For this class of constraints, Theorem 1 holds and the optimal solu-
tion can be expressed as a kernel expansion over the data points. In fact, since the constraint
is represented by ¢ ([1, f) = 0 in the definition of the learning objective function of (6) we
can substitute qAb(Z/l, H=eel,).

When using the minimum and/or maximum operators for defining ¢A>(Z/{ , f), the result-
ing objective function is continuous with respect to the parameters wy ; defining the RKHS
expansion, since it is obtained by combining continuous functions. However, in general, its
derivatives are no more continuous. In practice, this is not a problem for gradient descent
based optimization algorithms once appropriate stopping criteria are applied. In particular,
the optimal minima can be located also in configurations corresponding to discontinuities in
the gradient values, i.e. when a maximum or minimum operator switches its choice among
two different points in the dataset. Given the current configuration of the parameters wy ;
in order to compute the gradient, first the variable configuration [v;*(]), e v;*(Q)] is com-
puted for the minimum/maximum operators by using the current estimate for the functions
f. Then, using this configuration the gradient of oW, f) is computed by considering the
function 7, ([V5), - - -, Vi g)], £)-

@ Springer

Mach Learn (2012) 86:57-88 73

5.3 Complexity issues

The computation of the functional implementing a FOL clause needs to perform a linear
scan over all the realizations of each variable. Since the variables are nested, all possible
combinations of the variables must be generated. Let b; be the number of realizations of the
ith variable, the total number of combinations that are generated to evaluate the satisfaction
of a constraint is equal to []_, b;, where n is the number of variables in the FOL clause.
It is clear that this process can quickly become intractable, as soon as a clause involves a
significant number of input variables or the samples are large. This is a direct effect of the
fact that FOL does not assume any a-priori correlation among the variables, and this forces
to verify a clause over all the possible combinations of the inputs.

However, there are cases where the some of the variables are correlated and this is mod-
eled by the unknown joint distribution p~(xy, ..., x,). Hence, there exist some configura-
tions of the quantified variables that are not allowed or are very unlikely to appear. The
complexity could be significantly reduced by exploiting the correlations in the evaluation
of the operators associated to the quantifiers. In FOL, this happens when a clause is in the
following form

Yusty -+ YU Y05t 1) - - - [V g0y 7 (V1) -+ 0 Vsmy) = E(VE, P), (12)

where r(-) is a given (not to be estimated) predicate modeling the strength of the correlation
among a subset of universally quantified variables and E(vg, P) is a generic quantifier-free
logic expression. If 7z (vg, f) is the T-norm representation of E(vg, P), the expression is
converted into

max ... max [max min]...[max min] 7, (Vsq), - . ., Vsem)) (1 — te(VEg, f)),
Us(1) Us(m) Vs(m+1) Vs(Q)
where T, (Vs(1y, . .., Usgny) 1S the task function used to implement the predicate r(-). When

the relation does not hold for a given configuration of the variables, 7, (-) is equal to zero
and it gives no contribution to the expression. Therefore, only the variable configurations for
which the relation holds, i.e. 7, (vs(1), - .., Vsgny) > 0, can be considered and the converted
expression can be evaluated as

max [max min]...[max min] . (Vs1y, . . ., Vs(0)) (1 — te(VE, f)),
(s () s Vsem) IER vy U5(0)

where R is an observed sample from the distribution of the variable configuration for which
the relation r(-) holds. In this special case, the computation is efficient as only the configu-
rations for which the relation holds are considered instead of all the possible combinations
of the values for all the input variables.

Indeed, when the clause is in the form of (12), it is possible to trivially exploit the fact
that the variables are not independent as in the most general setting. Since, the correlation
among the variables is expressed by the relation, it becomes possible to sample from the joint
distribution instead from the single distributions of the variables. This keeps the complexity
linear in the size of the sample for the set of variables [vyq), ..., Usen)] involved in the
relation.

6 Experimental results

The experimental analysis has been carried out on artificial benchmarks properly created
to emphasize the comparisons with plain kernel machines. The generated training datasets

@ Springer

74 Mach Learn (2012) 86:57-88

contain a set of partially labeled examples, a set of unsupervised examples and a test set
with 100 patterns per class. For each task, some prior knowledge in the form of FOL logic
clauses is assumed to be available to partially describe the classification problem. In the ex-
periments the targets {1, 0} were used to represent the {true, false} values for the supervised
examples. This setting biases the solution towards the false value since the regularization
term, that depends on the RKHS function norm, tends to favor a constant solution equal to
0. This may be an useful property for those cases in which the negative class is not well
described by the given examples, as it happens for instance in verification tasks. However,
it is straightforward to redefine the task in an unbiased setting by mapping the logic values
to {—1, 1} as it is usually done in classification tasks.

6.1 Benchmark 1

The dataset used in the first synthetic experiment is composed by patterns in R? and be-
longing to three classes, A, B, C, where the patterns of class A, B, C are uniformly dis-
tributed over the rectangles {(x,y) : x € [0,2],y € [0, 1]}, {(x,y) : x € [1,3],y € [0, 1]},
{(x,y):x €[1,2],y €[0, 2]}, respectively. For such a task, we suppose that the following
clauses are known to hold a-priori:

— CLAUSE 1 states that the intersection between the classes A and B is contained into the
boundaries of class C. This statement can be written in FOL as Vx a(x) A b(x) = c(x),
where a(x), b(x), c(x) are three predicates indicating whether the pattern x belongs to the
classes A, B, C, respectively.

— CLAUSE 2 expresses the fact that any pattern must belong to at least one class, i.e.
Vx—a(x) A b(X) = c(X) =a(X) vV b(X) V c(X).

Using and not-using prior knowledge in learning This experiment compares the classifica-
tion accuracy obtained when integrating or not integrating the logic clauses into the learning
process.

The parameters A", A" and A" have been set to 0.25, 1 and 1.5, respectively. We exploited
a Gaussian kernel with variance equal to 0.1. The values for these parameters have been
determined via exhaustive search during a validation procedure. During different runs, the
training set size has been increased from 6 to 132 examples. Similarly, the unsupervised
data was varied between 0 and 300 patterns.

Figure 1 reports the classification accuracy, averaged over 5 random generations of the
train and test patterns. The improvement is particularly significant when the constraints are
enforced also on the unsupervised data, since the additional points allow a more precise
definition of the class (see the plots in Fig. 2). However, we can notice a performance in-
crease even when applying the constraints only on the partially labeled examples, i.e. no
completely unsupervised examples are used. A one-tailed t-test showed that the gains are
statistically significant (at least 95% confidence).

Adding more prior knowledge This experiment investigates the effect of adding additional
prior knowledge. Starting from the same setting of the previous experiment, we considered
two additional clauses:

— CLAUSE 3 states that any pattern of class A and C belongs to class B, i.e. VX a(x) A
c(x) = b(x) =Vx ~a(x) V b(x) V —c(X).

— CLAUSE 4 states that any pattern of class B and C belongs to class A, i.e. VX b(X) A
c(X) = axX) =VVxa(x) VvV -b(x) VvV —c(x).

@ Springer

Mach Learn (2012) 86:57-88 75

- T .

095 PR
09

0.85F -

0.8 _ K =

> C .]

8 s Yy]

50751 / -

o1 T /]

< Elos]

0.7 ll; /7 ']

C ,/ / G—=© No Constraints]

C . []— - €] Using Constraints 0 Unsupervised]

0.65 — & — = Using Constraints 10 Unsupervised]

E A« + «A Using Constraints 50 Unsupervised]

0.6 — w—=/ Using Constraints 300 Unsupervised —

0.55 ¢ 3

L. | | | | | | 7

20 40 60 80 100 120
Number of Supervised Patterns

Fig. 1 Benchmark 1. Classification accuracy for different labeled and unlabeled datasets when using or not
using the constraints in training

35 . 35

3 3

25 25

2 ' 2

Class A 15 ' 15
1 ! 1

0.5 g 0.5

0 0

-05 -0. -05

05 0 05 1 15 2 25 3 35 05 0 05 1 15 2 25 3 35

35 1.2
3 1
2.2 0.8
06
Class B 1'? 0.4
05 { 0.2
0 - 0
05 -0.2

05 0 05 1 15 2 25 3 35 05 0 05 1 15 2 25 3 35

12
1
0.8
0.6
0.4
0.2
0
-0.2

05 0 05 1 15 2 25 3 35 05 0 05 1 15 2 25 3 35

(a) (b)

Class C

-05

Fig. 2 Benchmark 1. Activation maps for classes A, B, C when (a) no constraints, and (b) 100 unsupervised
patterns are used. The classifier was trained using 25 supervised patterns

@ Springer

76 Mach Learn (2012) 86:57-88

I T] T]
0.95F I — _ﬁ_ B———— —
g T + T]
09F _ _ —
0.85F- 1 =
0.8 T =
g075F 1 =
E cy !+ _HF--mmmmmm H----""""]
Q — -
< 0.7 C o]
0.65F + .
0.6 i (G—=>© 2 constraints, 10 supervised j

C [3 — £] 4 constraints, 10 supervised]

0.55 F {——= 2 constraints, 25 supervised =

’ r /A—4A\ 4 constraints, 25 supervised]

0.5 i <3—=<] 2 constraints, 100 supervised j
“E [>— - B> 4 constraints, 100 supervised]
0.45E \ \ L \ L1

|
0 20 40 60 80 100 120
Number of Unsupervised Patterns

Fig.3 Benchmark 1. Accuracy of the classifier for different numbers of supervised and unsupervised patterns
when using CLAUSE 1,2 0r 1,2,3,4

Figure 3 reports the accuracy values for different numbers of supervised and unsuper-
vised patterns, obtained by integrating only CLAUSE 1 and 2 in the training process or all
the available prior knowledge (CLAUSE 1, 2, 3 and 4). The reported results are an average
over 5 random generations of the train and test patterns and show that the classification per-
formances increase when more a priori knowledge is added. A one-tailed t-test showed that
the gains are statistically significant with over 95% probability.

Adding an existential quantified clause This experiment aims at testing the effect of ex-
istentially quantified clauses. The setting is the same of the previous experiments with the
addition of the following FOL constraint (CLAUSE 5):

VX a(x) Ab(x) = Jy r(x,y) Ac(y),

where r (X, y) is a known relationship between x and y, such that 7 (x,y) = TRUE < y =
x + [0, 1]'. This rule describes the fact that for each pattern x laying in the intersection of
the classes A and B, a pattern y exists which is related to x according to r (X, y) and which
belongs to the class C. This rule can be used by itself or added to a KB including other
clauses. In particular, we tested the effect of the rule together with CLAUSE 1 and 2 as
defined in the previous settings. Please note that CLAUSE 1 and 5 together allow to perfectly
determine the boundaries for class C, provided that a sufficient number of examples of class
A and B is provided. Therefore, unlike in the previous experiments, no supervised examples
for class C have been provided to emphasize the effect of the rules.
Figure 4 shows the accuracy that can be obtained by adding CLAUSE 5.

Using a polynomial kernel The previous experiments have been carried out using a Gaus-
sian kernel. This experiment is based on the same experimental dataset and setting as the
previous experiments but focuses on the effect of the constraints when a polynomial kernel

@ Springer

Mach Learn (2012) 86:57-88 77

[I]

0.85 Y]

L - :

L - . e

L ~ .]

0.8 - O]

L - e i

L - Lo i

075 -

> L 1
Q

8 L i

5 0.7 —

2 L i
Q

< B i

0.65 -

N G—6 No Constraints]

L [- - - {J Universal Constraint - 10 Unsupervised i

0.6 - Universal + Existential Constraints - 10 Unsupervised |

- A— - A\ Universal Constraint - 50 Unsupervised R

L 7— - - 57 Universal + Existential Constraints - 50 Unsupervised]

0.55 —]

C | | | T I N NI NI NI TR ST B

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of Supervised Patterns

Fig. 4 Benchmark 1. Accuracy when using or not using the existentially quantified rule 5 together with the
universally quantified clauses 1 and 2

Table 2 Classification accuracy

on the benchmark 1 when usinga ~ Supervised Polynomial
polynomial kernel Unsupervised
No 50 300 1000
50 0.899 0.9 0.905 0.909
100 0.909 0.912 0.92 0.926
300 0.935 0.936 0.942 0.949
1000 0.955 0.953 0.953 0.954

is selected. Table 2 shows the classification accuracy, confirming that the accuracy is pos-
itively affected by the embedding of the constraints. The gains are particularly significant
when a small number of supervised examples is used. As a general trend, the accuracy tends
to increase as more unsupervised data is used in learning.

Increasing the input space dimensionality This experiment studies how the dimensionality
of the input feature space affects the classification performances. A set of artificial datasets
was created by using the same data distributions as in the previous experiments but adding
a variable number of new dimensions, according to the following geometry:

A={x:10<x<2,0<x<2,0<x<1,...,0<x, <1}
B={x:1<x<30<x<20<x<1,...,05x, <1}
C={x:1<x<2,0<x<20=<x3<1,...,0<x,<1}

In particular, the patterns have been generated in R'?, R® and R'®. Given an uniform
sampling over the hyper-rectangles, a higher dimensional input space corresponds to sparser

@ Springer

78 Mach Learn (2012) 86:57-88

Table 3 Classification accuracy for benchmark 1 for patterns in R0, R0 and R190 and using Gaussian
(left) and polynomial (right) kernels. In bold the cases reporting statistically significant improvements

Dim. Supervised Gaussian Polynomial
Unsupervised Unsupervised
No 50 300 1000 No 50 300 1000
R0 50 0.884 0.897 0.903 0.91 0.829 0.84 0.844 0.851
100 091 0.92 0.928 0.934 0.864 0.871 0.882 0.881
300 0.958 0.955 0.956 0.956 0.931 0.922 0.925 0.927
1000 0.975 0.97 0.969 0.971 0.954 0.944 0.945 0.946
R 50 0.5 0559 0512 0517 07 0732 0.73 0.756
100 0.501 0.675 0.634 0.637 0.75 0.76 0.776 0.78
300 0.727 0.834 0.817 0.789 0.8 0.819 0.82 0.818
1000 0.887 0.884 0.879 0.868 0.86 0.888 0.883 0.89
R100 50 0.504 0.703 0.675 0.681 0.72 0.786 0.784 0.772
100 0.598 0.806 0.805 0.787 0.76 0.813 0.803 0.8
300 0.848 0.876 0.875 0.86 0.843 0.859 0.867 0.865
1000 0.925 0.916 0.914 0.912 0.923 0.922 0.926 0.924

training data for a fixed number of labeled patterns. This is an effect of the well known curse-
of-dimensionality, making generalization more difficult in high dimensional input spaces.

The classification accuracy has been evaluated when employing either a Gaussian or a
polynomial kernel. Table 3 reports the obtained results, averaged over 5 different instances
of the supervised, unsupervised and test sets. The table shows that the joint employment
of the constraints and the unlabeled data improves the classification accuracy in all the set-
tings for both kernels. However, the accuracy gains for the Gaussian kernel are in general
more significant than when a polynomial kernel is used. This is due to the fact that a kernel
with limited support (as the Gaussian) requires a large number of points to create appropri-
ate decision boundaries in high dimensional spaces. It can therefore benefit more from the
availability of a large sample of unsupervised data.

6.2 Benchmark 2: 7 classes, 4 clauses

This experiment validates the effectiveness of the two-stage learning process to opti-
mize the cost function. The multi-task classification problem is based on 7 different
classes (A, B,C, D, E, F,G), whose indicator functions are realized by the predicates
a(x), b(x), c(x), d(x), e(x), f(x), g(x). The classes are known to be arranged according to a
hierarchy defined by the following clauses: Vx a(x) A b(X) = c(x), VX d(X) A e(x) = f(X),
Vx c(xX) A f(X) = g(x) and Vx a(x) Vb(X) Vc(X) Vd(X) Ve(x)V f(X)V g(x). The patterns
for each class are uniformly distributed over the following rectangles:

A={(x,y):0<x<2,0<y<2}
B={(x,y):1=x=<3,0<y<2}
C={(x,y):1<x<2,0<y=<2}
D={x,9:0<x<20<y<1}

@ Springer

Mach Learn (2012) 86:57-88 79

09 ===]
n = LA]
- - - i

-
- 9. i
[- —
0.85 - ~ //.’E] [F— E No Constraints E
r - o (3 =0 2 Stages with Constraints - No Unsupervised Patterns -
C /2 " {>—<> 2 Stages with Constraints - 140 Unsupervised Patterns]
0.8 — // >— 1 Stage with Constraints - No Unsupervised Patterns]
L vl /A—A\ 1 Stage with Constraints - 140 Unsupervised Patterns |
- /20 i
§ N 7, _ T]
£ 075 Z -
3 L /a4]
< - i
07F ! .
T ' L4 —
n '/ - i
- /4 . i
0650/ _ =
o /]
0.6 [1 —
o5t b e 1T

25 50 75 100 125 150 175 200
Number of Supervised Patterns

Fig. 5 Benchmark 2. The effect of the two-stage training process

E={(x,y:1<x<3,0<y<l}
F={(xy:1<x<20<y<l}
G={(x,y:1=x=<2,0<y=<1}

The training set size has been increased from 14 to 203 examples during different runs of
the experiment. Similarly, the unsupervised data was varied between O and 140 patterns.
A Gaussian kernel with variance equal to 0.16 has been used in this experiment.

In a first set of trials, the kernel machine weights are optimized using a cost function
including the constraint part (A" > 0) since the first iteration. In a second set of trials, the
learning process takes place in two phases: a Piagetian initialization stage, where the cost
function does not include the constraint part, and the subsequent abstraction phase where
constraints are taken into account. In order to factor out the sampling noise, the accuracy
numbers have been averaged over 20 different samples of the supervised, unsupervised and
test patterns. Figure 5 compares the classification accuracy obtained in the two sets of exper-
iments. The two-stage training process significantly improves the one-stage training. Indeed,
the cost function resulting from the introduction of the constraints is plagued by many local
minima and the good starting point provided by the Piagetian initialization phase is funda-
mental to discover a close-to-optimal solution.

6.3 Benchmark 3: 11 classes and 45 clauses

This synthetic experiment tackles a more difficult multi-task classification problem, where
both the number of classes and of FOL clauses is higher. In particular, we assume that there
are 11 different classes: A, B,C,D,E,F,G, H,I,L, M. Each class is associated to an in-
dicator function (predicate), which is indicated with the corresponding lower-case letter. The
patterns for each class are assumed to be uniformly distributed on a rectangle, as shown in
Table 4.

@ Springer

80 Mach Learn (2012) 86:57-88

Accuracy

G—© No Constraints
[# 1 Using Constraints - 220 Unsupervised Patterns

&— Using Constraints - 660 Unsupervised Patterns

AR R RN RN RN RN RN AR RN RN AR RN RN RR RN RARR AR R AR
[) L LAY RARRL RELR L) LR EREN LR L LU LU L

B b v v b b b b b by

50 100 150 200 250 300 350 400

Number of Supervised Patterns

Fig. 6 Benchmark 3. Classification accuracy for different labeled and unlabeled datasets when using or not
using the constraints in training

Let us assume to have available some a-priori knowledge, expressing some geometrical
properties of the class regions. In particular,

— 27 clauses model the disjunction of the areas covered by pairs of classes. Two examples
of clauses belonging to this category are: Vx —a(x) V —g(x) and Vx —b(x) V —g(X).

— Another set of 17 clauses models the complete inclusion of the area covered by one class
within the areas covered by the union of a set of other classes, e.g.: Vxg(x) = c¢(x) Vd(x)
(the union of C and D contains G), VX g(X) = c(x) Ve(x), Vxa(x) = f(X) VA(x) VI(x),
etc.

— the closed-world assumption clause was added to state that each pattern must belong to at
least one class: Vx a(x) Vb(X) Vce(x) Vd(x) VeX)V f(X) VgXx) VAX) Vi(x)VIX)V
m(x).

The two-stage learning algorithm described in Sect. 3 is exploited in this experiment.
Figure 6 reports the obtained results, averaged over 10 different generations of the training
and test sets. The introduction of the constraints is beneficial with an improvement in the
classification accuracy between 2% and 5%. This experiment confirms the importance of the
unsupervised data in the learning process: increasing the amount of available unsupervised
patterns also significantly increases the classification accuracy.

6.4 Manifold regularization in a logic setting

In this benchmark, we assume to have patterns laying in a R? feature space and belonging to
two classes A, B, according to the well-known two moon-like shaped distributions. Figure 7
shows a random sample of patterns from the two distributions, where points represented as
crosses correspond to patterns of class A and circles correspond to patterns of class B. The
unknown predicate f must be learned to approximate the indicator function of class A. This
predicate should output a TRUE value (1) for all patterns if class A and FALSE for all

@ Springer

Mach Learn (2012) 86:57-88 81

Fig.7 A sample of the input R T EL
patterns for class A and B used 6 7
in the manifold regularization = 4
experiment 5 * Class A Pattern -

Q Class B Pattern

41 -
3 —|
2 - —
1 e o
0 f— -

l 1 1]

Table 4 Benchmark 3.
Rectangles in R2 over which the
patterns for each class are
uniformly distributed

{(x,»):0<x<6,4<y<6}
{(x,y):0<x<6,3<y=<5

x,y):0<x<6,2<y<4

}
1
(x,y):0<x<6,1<y<3}
1
1

x,y):0<x<2,3<y<6
(x,):0=x=<2,0<y<3}
(x,y):12<x<4,3<y=<6}
{(x,y):2<x<40=<y=<3}
{(x,y):4<x<6,3<y=<6}
={(x,y):4<x<6,0<y<3}

T QMmO O w >
Il

{(
{
{(x,»):0<x<6,0<y<2
{(
{
{

\
Iy

N

patterns of class B. We assume to be assigned a binary predicate which models a similarity
relation r(X,y) between a pair of patterns (X, y). The semantic meaning of the relation r
can differ in different applications. For example, it could be used to represent the hyperlink
connections between documents in Web retrieval tasks, or the co-citations among authors,
etc. In this experiment, we assume that » models the geometric proximity of the patterns in
the feature space.

The following FOL clause is used to express the knowledge that any pair of patterns
which are similar according to the relation should yield the same predicate output:

Xy r(x,y) = (S A fE)V (f) A=f). 13)

This is a reformulation of the well known assumption made in manifold regularization
(Belkin et al. 2006) in a continuous logic setting. This assumption expresses the fact that
the input patterns are distributed along a manifold, over which the functions to be learned
should be smooth, e.g. connected inputs on the manifold should tend to correspond to sim-
ilar function outputs. Please note that this assumption is very general and it can be applied
wherever the input patterns lay in a metric space.

@ Springer

o0
S

Mach Learn (2012) 86:57-88

1.2

8.6

@ B N W A g~

Fig. 8 Manifold Regularization: predicate output when using 16 labeled examples and using or not using
the FOL clause on the left and right sides, respectively

Table 5 Moon benchmark: classification accuracy on the test set obtained with and without using the mani-
fold regularization expressed in FOL form. Boldface values indicate gains that are statistically significant

Num labeled patterns

4 8 12
With FOL knowledge 59.6% 68.5% 72.3%
Without FOL knowledge 40.4% 53.5% 71.2%

The FOL clause in (13) is equivalent to, VXVy —=(r (X, y) A= (f(X) A f(¥)) A—=(—=f(X) A
—f(y))). As described in Sect. 5.3, this FOL clause has a continuous equivalent which
can be efficiently computed. In particular, using the product #-norm and the mapping to a
continuous cost function as explained in Sect. 3, we obtain the following constraint term for
the cost function,

V()= Z rx A= fE A -0 = fE)A = fF¥)).

(x,y):x,ye8,r(x,y)#0

In our experimental setting, each pattern x is connected to the 5 closest patterns with a
continuous strength of the relation computed as 7 (x, y) = e~ *~¥I/% where o, = 2/3. The
constraint part is then plugged into the cost function and optimized by gradient descent us-
ing the two-stage learning process. Figure 8 plots the output map of the learned indicator
function f. The prior knowledge expressed by the FOL clause smoothes the predicate out-
put value over the supervised and unsupervised data. This allows the estimated indicator
function to cover regions where scarce labeled data is available. Indeed, the activation map
perfectly reconstructs the boundaries of the regions where the input patterns are distributed
for the two classes.

Table 5 reports the classification accuracy for different numbers of the labeled patterns,
averaged over 10 different random generations of the training and test data. 100 unlabeled
patterns have been also used when learning using the FOL prior knowledge. The accuracy
gain is very significant when little labeled data is available. A one-tailed t-test confirms that,
when learning from 4 and 8 labeled patterns, the accuracy improvements are statistically
significant with over 95% confidence.

@ Springer

Mach Learn (2012) 86:57-88 83

Table 6 A sample of the

semantic rules used in training
the kernel machines in the bibtex Vx chemistry(x) = science(x)
tagging experiment

Vx phase(x) A transition(x) = physics(x)

Vx immunoelectrode(x) = physics(x) V biology(x)

Vx semantic(x) A web20(x) = knowledgemanagement(x)
Vx rdf(x) = semanticweb(x)

Vx software(x) A visualization(x) = engineering(x)

Vx folksonomy(x) = social(x)

Vx mining(x) A web(x) = informationretrieval(x)

Vx mining(x) A information(x) = datamining(x)

Vx computer(x) A science(x) = engineering(x)

6.5 Automatic tagging of bibtex entries

Text tagging associates a document with a set of tags, which usually summarize the se-
mantic content of the text. Text tagging is often manually performed in the context of so-
cial networks, or directories organizing Web resources. Having the documents tagged with
high consistency and precision would allow us to develop more sophisticated information
retrieval mechanisms that the ones typically provided in search-by-keyword applications.
However, a manual collective tagging process has many limitations. First, it is not suited
for very large collection of documents (like the Web) or very highly dynamic collections,
where the response time is crucial. Furthermore, the collective tagging process does not
provide any guarantee of consistency of the tags across documents, creating many issues
for the subsequent consumption of the tags. Automatic text tagging is regarded as a way to
address, at least partially, these limitations. Text tagging can be typically seen as a classical
text categorization task (Sebastiani 2002), where each tag corresponds with a different cate-
gory. Differently to many categorization tasks explored in the literature, the number of tags
is typically in the order of hundreds to thousands, and the tags are not mutually exclusive,
thus yielding a multi label classification task.

In this section, we consider a dataset collecting 7395 bibtex entries that have been tagged
by users of a social network? using 159 tags. This dataset has been used in previous literature
like (Katakis et al. 2008). Each bibtex entry contains a small set of textual elements repre-
senting the author, the title, and the conference or journal name. The text is represented as a
bag-of-words, thus yielding a feature space with dimensionality equal to 1836. The training
set was obtained by sampling 10% of the entries, leaving the remaining for the test set. Pre-
vious studies in the literature employed the F1 score to establish the prediction accuracy of
the employed classifier on this task.

The performed experiments tested the prediction capabilities of the classifiers, when con-
sidering the 25 and 100 most popular tags in the dataset as output categories. A knowledge
base containing a set of 115 rules, expressed by FOL, has been collected by the authors as
to express semantic relationships between the categories. Table 6 shows some of the rules
inserted in the knowledge base. The rules correlate the tags and, after their conversion into
the continuous form, they have been used to train the kernel machines according to the
procedure described in the previous sections.

Figures 9 and 10 display the loss on the labeled data and on the constraints for the test
set (generalization) at the different iterations of the training for the 25 and 100 tag classi-
fiers, respectively. The training of the classifiers with no constraints was performed until the

2The dataset can be downloaded from http://mulan.sourceforge.net/datasets.html.

@ Springer

http://mulan.sourceforge.net/datasets.html

84

Mach Learn (2012) 86:57-88

(o))
(=
S

wn

S

S
I

(G—>© With Constraints —|

[+ — — E1 No Constraints

I

(=)

[=)
I

Loss for labeled data
=
S
I

O50 100 150 200 250
Iterations

(9.1) 25 tags - Loss for labeled data

50 ‘ T ‘

401 .
301 .
=
8 L .
P
°20- N
S+ G—>© With Constraints 7

10 = [+ — —EJ No Constraints

= \ \
0 50 100 150 200 250

Iterations

(9.2) 25 tags - Constraint error

Fig. 9 Loss term on labeled data and on constraints deriving from the rules over the 25 tag test set

gradient reached a threshold chosen so as to get close to the global minimum. Then, the
constraints were introduced in the overall cost function. The figures show how the introduc-
tion of the constraints does not change significantly the loss on the labeled data, whereas the
constraint loss is strongly reduced, that leading to a solution that fits much better the prior
knowledge on the task.

It turned out that enforcing the constraints during learning also led to improve the accu-
racy of the prediction of the tags with respect to a kernel machine learning only from labeled
data. In particular, the macro and micro F1 scores of the 100 tag predictor, computed over
the test set, were increased from 0.042 to 0.055 and from 0.140 to 0.155, respectively.

7 Conclusions and future work

In this paper we propose a solution for bridging logic and kernel machines by extending the
general framework of regularization to learning from constraints. Like for kernel machines,
we introduce parsimonious agents that find simple explanations of data coming from the
environment. However, while kernel machines restrict the communication protocol to deal
with pairs of supervised examples, in this paper we deal with a general multi-task environ-
ment in which a rich collection of constraints on the image of the functions may reduce

@ Springer

Mach Learn (2012) 86:57-88 85

600 =

500 — —
G—=© With Constraints
& — — E1 No Constraints

N

(=3

(=)
T

Loss for Labeled data
=
S
I

200 —
100 —
0 \ \ \ \ [L.
0 50 100 150 200 250 300 350
Iterations
(10.1) 100 tags - Loss for labeled data
250 —

Loss of constraints
-
wn
S
I

L G—=>6 With Constraints i
[+ — — E] No Constraints :

C \ \ \ L \ .
50 100 150 200 250 300 350
Iterations

(10.2) 100 tags - Constraint error

Fig. 10 Loss term on labeled data and on constraints deriving from the rules over the 100 tag test set

significantly the hypothesis space. It is proven that once the constraint satisfaction is relaxed
to hold on a finite sample of examples, a representation theorem holds which dictates the
optimal solution of the problem as a kernel expansion.

This makes it possible to use a semi-supervised scheme in which the unsupervised ex-
amples play a crucial role for the incorporation of the constraints. While the optimization
of the error functions deriving from the proposed formulation is typically hopeless because
of the presence of local minima, we claim that a proper introduction of stage-based learn-
ing, somehow inspired to developmental psychology, offers a viable solution to tackle the
problem. This reinforces the related belief on the importance of the gradual presentation of
examples (Bengio 2009), and might contribute to a systematic treatment of emerging fields
like developmental robotics (Weng 2004). While the methodology proposed in the paper
holds in general for learning from constraints, the focus is on the case of constraints given
in terms of first-order logic, that are properly compiled into real-valued constraints required
by the proposed kernel-based approach. The theory is validated by a number of artificial
experiments that clearly show the improvements with respect to plain kernel machines, even
in problems of low dimension in which they already achieve top level performance. A re-
markable improvement has also been found from experiments on a problem of multi-label
text classification for automated tag suggestion, where in addition to the better classification

@ Springer

86 Mach Learn (2012) 86:57-88

results with respect to plain kernel machines, there is also clear evidence that the attached
tags are significantly more consistent with the knowledge base.

When comparing with most of the related studies, we can early realize that the distin-
guishing feature of the proposed approach consists of centering the studies on logic and
learning around the unifying notion of constraint. While this direction had already been fol-
lowed (see e.g. Fung et al. 2002, 2003; Le et al. 2006; Maclin et al. 2007), with remarkable
results, this paper goes beyond the idea of imposing constraints into the perceptual space
by considering multi-task environments. In so doing the background knowledge involves
abstract categories more than the identification of input sets. Most interestingly, the way
the constraints are processed naturally extends the notion of functional risk for supervised
learning by introducing the sampling on the unsupervised set that is somehow dual with
respect to the sampling which gives rise to the empirical risk. It is the well-established con-
nection with T-norms that makes the model very well suited for connections with logic. This
paper contains the basic results that might open the doors to a new distinctive approach to
kernel machines, in which the empirical risk is replaced by a penalty coming from a set of
constraints. Interestingly, while in classic statistical learning theory, there is only access to a
limited set of supervised examples, the construction of penalties only requires unsupervised
data. The focus on constraints also suggests the adoption of prior knowledge that does not
necessarily come from formal logic. In addition, even the representer theorem given in this
paper, which comes from the assumption of sampling the constraints, might be extended
S0 as to incorporate the truly nature of specific constraints. A parsimonious agent could be
devised which exhibits a smooth behavior and is consistent with the constraints. When in-
volving abstract categories and quantifiers, it become very important also to model strong
consistency with the constraints. Hence, one might want to go beyond the softness which
has been inherently associated with the penalty term in this paper and impose the hard ful-
fillment of some clauses. Interestingly, in principle, the constraints can either be softly or
hardly imposed, and in the first case one might also take advantage from some knowledge
on their membership function. Hence, in general we can deal with fuzzy constraints, while
the results found in (Poggio and Girosi 1989) clearly suggests also the probabilistic interpre-
tation of the learned tasks. We are currently investigating the construction of a unified theory
of learning from constraints using the well developed mathematical apparatus of constrained
variational calculus (Giaquinta and Hildebrand 1996a,1996b), that makes it possible to study
parsimonious agents, whose behavior needs to be somehow consistent with the environmen-
tal constraints. We are also systematically studying how the primary role of constraints can
extend the classic regularization theory to a sort of semantic-based regularization machines,
where the kernels turns out to be dependent on smoothness requirements as well as on the
given constraints.

Acknowledgements We thank Volha Bryl, Ernesto De Vito, Luciano Serafini and Alessandro Verri for
insightful discussions and comments on a earlier draft of this paper.

References

Allgower, E., & Georg, K. (2003). Introduction to numerical continuation methods. In Society for industrial
mathematics (p. 2003).

Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: a geometric framework for learning
from labeled and unlabeled examples. The Journal of Machine Learning Research, 7, 2434.

Bengio, Y. (2009). Curriculum learning. In Proceedings of the 26th annual international conference on ma-
chine learning (pp. 41-48).

@ Springer

Mach Learn (2012) 86:57-88 87

Caponnetto, A., Micchelli, C., Pontil, M., & Ying, Y. (2008). Universal kernels for multi-task learning. Jour-
nal of Machine Learning Research.

Chapelle, O. (2007). Training a support vector machine in the primal. Neural Computation, 19(5), 1155—
1178.

Cumby, C., & Roth, D. (2002). Learning with feature description logics. In Proceedings of the 12th interna-
tional conference on inductive logic programming.

Cumby, C., & Roth, D. (2003). On kernel methods for relational learning. In Proceedings of the twentieth
international conference on machine learning (ICML-2003), Washington DC, 2003.

Diligenti, M., Gori, M., Maggini, M., & Rigutini, L. (2010a). Multitask kernel-based learning with first-order
logic constraints. In The 20th international conference on inductive logic programming.

Diligenti, M., Gori, M., Maggini, M., & Rigutini, L. (2010b). Multitask kernel-based learning with logic
constraints. In The 19th European conference on artificial intelligence.

Fanizzi, N., D’Amato, C., & Esposito, F. (2008). Statistical learning for inductive query answering on owl
ontologies. In THE SEMANTIC WEB—ISWC (pp. 195-212).

Fung, G., Mangasarian, O., & Shavlik, J. (2002). Knowledgebased support vector machine classifiers. In Pro-
ceedings of sixteenth conference on neural information processing systems (NIPS), Vancouver, Canada.

Fung, G., Mangasarian, O., & Shavlik, J. (2003). Knowledgebased nonlinear kernel classifiers. In Interna-
tional conference on learning theory—COLT, Washington D.C.

Giaquinta, M., & Hildebrand, S. (1996a). Calculus of variations I (Vol. 1). Berlin: Springer.

Giaquinta, M., & Hildebrand, S. (1996b). Calculus of variations II (Vol. 2). Berlin: Springer.

Gori, M. (2009). Semantic-based regularization and Piaget’s cognitive stages. Neural Networks, 22(7), 1035—
1036.

Gori, M., & Melacci, S. (2010). Learning with convex constraints. In 20th International conference on artifi-
cial neural networks.

Gorse, D., Shepherd, A. J., & Taylor, J. (1997). The new era in supervised learning. Neural Networks, 10(2),
343-352.

Gorse, D., Sherpard, A. J., & Taylor, J. (2004). A classical algorithm for avoiding local minima. In Proceed-
ings of WCCI-2004.

Guerin, F. (2008). Constructivism in ai: Prospects, progress and challenges. In Proceedings of the AISB con-
vention 2008, Aberdeen, Scotland, 1-4 April, 2008, (pp. 20-27).

Guerin, F., & McKenzie, D. (2008). A Piagetian model of early sensorimotor development. In Proceedings
of the eighth international conference on epigenetic robotics, University of Sussex, 30-31 July 2008.

Haussler, D. (1999). Convolution kernels on discrete structures, Tech. rep., Department of Computer Science,
University of California at Santa Cruz.

Hitzler, P., Holldobler, S., & Sedab, A. K. (2004). Logic programs and connectionist networks. Journal of
Applied Logic, 2(3), 245-272.

Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York:
Basic Books.

Katakis, I., Tsoumakas, G., & Vlahavas, I. (2008). Multilabel text classification for automated tag suggestion.
ECML PKDD Discovery Challenge, 75.

Klement, E., Mesiar, R., & Pap, E. (2000). Triangular norms. Norwell: Kluwer Academic.

Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications. New York: Prentice Hall.

Landwehr, N., Passerini, A., Raedt, L. D., & Frasconi, P. (2006). Kfoil: learning simple relational kernels. In
Proceeding of the AAAI-2006.

Landwehr, N., Passerini, A., Raedt, L., & Frasconi, P. (2010). Fast learning of relational kernels. Machine
Learning.

Laurer, F., & Bloch, G. (2009). Incorporating prior knowledge in support vector machines for classification:
a review. Neurocomputing, 71(7-9), 1578-1594.

Le, Q., Smola, A., & Gartner, T. (2006). Simpler knowledge-based support vector machines. In Proceedings
of the 23rd international conference on machine learning.

Maclin, R., Wild, E., Shavlik, J., Torrey, L., & Walker, T. (2007). Refining rules incorporated into knowledge-
based support vector learners via successive linear programming. In A. Press (Ed.), AAAI conference on
artificial intelligence, Vancouver, British Columbia, Canada, pp. 584-589.

Melacci, S., Maggini, M., & Gori, M. (2009). Semi-supervised learning with constraints for multi-view object
recognition. In Proceedings of the 19th international conference on artificial neural networks (pp. 653—
662). Berlin: Springer.

Muggleton, S.L.H., Amini, A., & Sternberg, M., (2005). In A. Hoffmann, H. Motoda, & T. Scheffer (Eds.),
Support vector inductive logic programming (pp. 163—175). San Mateo: Kaufmann.

Piaget, J. (1961). La psychologie de !’intelligence. Paris: Armand Colin.

Poggio, T., & Girosi, F. (1989). A theory of networks for approximation and learning. Tech. rep., MIT, 1989.

@ Springer

88 Mach Learn (2012) 86:57-88

Raedt, L. D., Frasconi, P., Kersting, K., & Muggleton, S. (Eds.). (2008). Probabilistic inductive logic pro-
gramming (Vol. 4911). Lecture notes in artificial intelligence. Berlin: Springer.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1-2), 107-136.

Scholkopf, B., & Smola, A. J. (2001). Learning with Kernels. Cambridge: MIT Press.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys (CSUR),
34(1), 1-47.

Sloman, A. (2009). Ontologies for baby animals and robots, Tech. rep., Talks 68.

Weng, J. (2004). Developmental robotics: Theory and experiments. International Journal of Humanoid
Robotics, 1, 199-236.

@ Springer

	Bridging logic and kernel machines
	Abstract
	Introduction
	Related works
	Learning with constraints
	Stage-based learning
	Translation of first-order logic clauses into real-valued constraints
	Logic expressions and their T-norm representation
	Quantifier conversion
	Complexity issues

	Experimental results
	Benchmark 1
	Using and not-using prior knowledge in learning
	Adding more prior knowledge
	Adding an existential quantified clause
	Using a polynomial kernel
	Increasing the input space dimensionality

	Benchmark 2: 7 classes, 4 clauses
	Benchmark 3: 11 classes and 45 clauses
	Manifold regularization in a logic setting
	Automatic tagging of bibtex entries

	Conclusions and future work
	Acknowledgements
	References

