Mach Learn (2011) 84:249-289
DOI 10.1007/s10994-010-5233-4

Creating non-minimal triangulations for use in inference
in mixed stochastic/deterministic graphical models

Chris D. Bartels - Jeff A. Bilmes

Received: 1 November 2008 / Revised: 21 April 2010 / Accepted: 14 September 2010 /
Published online: 8 February 2011
© The Author(s) 2011

Abstract We demonstrate that certain large-clique graph triangulations can be useful for re-
ducing computational requirements when making queries on mixed stochastic/deterministic
graphical models. This is counter to the conventional wisdom that triangulations that mini-
mize clique size are always most desirable for use in computing queries on graphical models.
Many of these large-clique triangulations are non-minimal and are thus unattainable via the
popular elimination algorithm. We introduce ancestral pairs as the basis for novel triangu-
lation heuristics and prove that no more than the addition of edges between ancestral pairs
needs to be considered when searching for state space optimal triangulations in such graphs.
Empirical results on random and real world graphs are given. We also present an algorithm
and correctness proof for determining if a triangulation can be obtained via elimination, and
we show that the decision problem associated with finding optimal state space triangulations
in this mixed setting is NP-complete.

Keywords Triangulation - Inference - Graphical models - Graph theory

1 Introduction

Probabilistic graphical models are a powerful tool for modeling factorized multivariate
distributions. Factorizations are advantageous because they can constrain the parameters
needed to represent these distributions. When factorization also leads to conditional inde-
pendence, the time and memory needed to perform probabilistic computations can drop
exponentially.

Graphical models often contain variables that have deterministic relationships with other
variables in the graph. In particular, Bayesian networks can include variables whose value

Editor: Lise Getoor.

C.D. Bartels () - J.A. Bilmes
Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
e-mail: bartels @ee.washington.edu

J.A. Bilmes
e-mail: bilmes @ee.washington.edu

@ Springer

mailto:bartels@ee.washington.edu
mailto:bilmes@ee.washington.edu

250 Mach Learn (2011) 84:249-289

is a function of its parents. Such variables can be used to provide hard or soft constraints
(Dechter 2003), or they can be used to factor a dense probability table into a product of
smaller tables. Even when the graph designer does not specify any deterministic variables,
methods have been developed to discover these factorizations (Vomlel 2002). Section 7.3
will describe how deterministic variables are used in a real-world automatic speech recogni-
tion system. In that example, the deterministic variables are used to constrain the allowable
sequences of states in a dynamic Bayesian network.

The utility of deterministic variables has prompted a body of research on efficient calcu-
lations in mixed deterministic/stochastic graphs (Jensen and Andersen 1990; Dechter and
Larkin 2001; Larkin and Dechter 2003; Bacchus et al. 2003a, 2003b; Dechter and Ma-
teescu 2004). Computing probabilistic quantities can be done using a junction tree (Lau-
ritzen and Spiegelhalter 1988; Pearl 1988), as a search procedure (Bacchus et al. 2003a,
2003b; Dechter and Mateescu 2004), or using a hybrid scheme (Dechter 2003). Search
methods have been growing in popularity as they appear to be more effective at dealing with
determinism and performing time/memory trade-offs (Bacchus et al. 2003a, 2003b; Sang et
al. 2005; Chavira and Darwiche 2008). Junction trees can have advantages over search when
a breadth first search is more desirable than a depth first search. An example of this is when
dealing with sequential data in the context of hidden Markov models and other dynamic
Bayesian networks (DBNs). The work we present here applies to any inference method that
requires a junction tree. Of particular interest are hybrid schemes where a junction tree is
formed, but rather than standard summations over tables, search methods are used for pro-
jecting clique potentials onto the separators. This scheme was given by Dechter for solving
constraint satisfaction problems (Dechter 2003). Hybrid inference gives the advantages of
junction trees but still allows most of the techniques for dealing with determinism that are
available with search methods. Inference algorithms will be addressed again in Sect. 2.

As mentioned, we will be working with junction trees, and a junction tree can be formed
if and only if the underlying graph is triangulated. If the graph is not triangulated, we must
add edges to it until it becomes so. The choice of triangulation does not change the results
of any probabilistic calculations, but it can make an exponential difference in the time and
memory that is needed. Unfortunately, finding an optimal triangulation is NP-hard (Arn-
borg et al. 1987; Wen 1991) so heuristic search methods must be used. All exact inference
methods in one way or another implicitly define at least one graph triangulation (Jensen and
Jensen 1994). In the case of search methods, choosing the order the variables are instantiated
together with a caching scheme gives an implied triangulation. In other cases, a search tree
is formed by first defining a junction tree (Dechter and Mateescu 2004).

A common measure of triangulation quality is the size of the clique potentials formed
in junction tree message passing, usually called the state space or weight (Lauritzen and
Spiegelhalter 1988; Kjaerulff 1990; Wen 1991). Specifically, the state space or cardinality
of a vertex v, notated |v|, is the number of distinct values it may hold. The state space of
a clique, C, holding vertices vy, v, ..., vk is defined as S(C) =]_[f.{:l |v;|. Lastly, the state
space of a graph, G, with maximal cliques Cy, C», ..., Cy is defined as S(G) = Zf;l S(Cy).

State space is a good indicator of triangulation performance when dealing with standard
junction tree inference on positive distributions. Distributions containing determinism are
not positive, though. When determinism is present in a Bayesian network, a very basic opti-
mization for inference comes from the fact that the value of a deterministic variable can be
uniquely determined given its parents. To exploit this, one only needs to evaluate determin-
istic variables using their associated functions whenever possible rather than iterating over
them as if they were stochastic. For a given parent combination it contributes only a constant
time factor to evaluate the function, and performing this calculation does not require zero

@ Springer

Mach Learn (2011) 84:249-289 251

(a) Non-factored. The graph has (b) Factored. When d is deter- (c) Triangulation of (b) that re-

a state space of |a||||c]. ministic, this graph has a state moves effect of factorization.
space of |a||b| + |d||c|. When d is deterministic, this
graph has a state space of

la|[{|c]-

Fig. 1 Graph that demonstrates the use of a deterministic variable, d, to factorize a distribution. Solid arrows
are original graph edges, dotted lines are moralization edges, and dashed lines are fill-in edges

compression or any form of constraint propagation. In a moralized Bayesian network, every
variable will be in at least one maximal clique with its parents. A variable may also be a
member of other maximal cliques because of its children and other non-parent neighbors.
If a deterministic variable lives in a maximal clique that is missing one or more of its par-
ents, its value cannot be determined uniquely and it does need to be treated just as if it were
stochastic. We will now modify our definition of clique state space to reflect this:

Definition 1 The state space of a clique, C, with vertices vy, vy, ..., U, and the set & =
{v]v is deterministic and parents of v € C} is: S(C) =]_[Uec\@ |v].

This measure is still not fully adequate to describe the utility of a triangulation in every
situation. The various methods mentioned for computing probabilities have different perfor-
mances and a wide variety of time-space trade offs. Costs of queries on distributions with
determinism are difficult to gauge without actually performing the computation. With this
being said, this altered version of state space can give a measure of the upper bound of the
computational requirements. The tightness of this bound depends heavily on the particular
graph and will vary with different inference algorithms, but as will be seen we obtain sig-
nificant wall-clock speedups under this assumption using a modern probabilistic inference
engine.

When the altered state space is indicative of inference performance it presents problems
for conventional triangulation techniques. Consider the graph in Fig. 1(b). This graph is
triangulated and contains two maximal cliques, {a, b, d} and {d, c}. The clique {a, b, d}
contains both deterministic variable d and its parents, so d does not contribute to the state
space. In the clique containing {d, c}, the parents of d are not present so its value cannot
be calculated and it does contribute. This gives a total state space of |a||b]| + |d||c|. The
graph in Fig. 1(c) is an alternative triangulation of Fig. 1(b). This graph has a single, large
maximal clique with a state space of |a||b||c|. If d has a small cardinality relative to a and
b the state space of 1(b) will be smaller than that of 1(c), but if d is large enough 1(c) is
preferred. We show in Sect. 3 that on graphs with deterministic variables, triangulations
with large cliques can use unboundedly less computational resources than triangulations
that minimize clique size. In fact, when considering deterministic variables the state space
optimal triangulation will often be completely outside of the search space of conventional
triangulation techniques, including the popular elimination algorithm.

@ Springer

252 Mach Learn (2011) 84:249-289

In the example from Fig. 1 the decision between 1(b) and 1(c) is straightforward, but if
this is a part of a larger graph it is not so simple. It will be demonstrated in Sect. 6 that the
optimal choice cannot be made locally and the entire fill-in must be considered to choose the
correct triangulation. For the same reason, any method which uses graph transformations to
remove the deterministic variables (such as in Fig. 1(a)) would need to consider the possi-
ble transformations in tandem with the possible triangulations of each transformed graph.
Section 6.1 demonstrates how the search can be constrained by introducing ancestral pairs.
Ancestral pairs are the basis for novel triangulation heuristics and it is proven that no more
than the addition of edges between ancestral pairs needs to be considered when searching
for state space optimal triangulations in such graphs. Empirical results on random and real
world graphs are given in Sect. 7.

The paper also presents background material on inference, graph theory, and elimination
in Sect. 2. Section 4 presents an algorithm and correctness proof for determining if a trian-
gulation can be obtained via elimination, and Sect. 5 proves that the decision problem asso-
ciated with finding optimal state space triangulations in this mixed setting is NP-complete.
Section 8 describes a number of other methods for mixed stochastic/deterministic graph
triangulation that could be explored in future research, and Sect. 9 extends the results to
undirected graphs.

Some of the work presented herein was given by the same authors in Bartels and Bilmes
(2006) and a related technical report (Bartels and Bilmes 2004). This article, however,
presents several new results. A new set of results on randomly generated DBNSs is presented
in Tables 3 and 4. Section 8§ on alternative methods for mixed stochastic/deterministic graph
triangulation methods and Sect. 9 extending the previous work to undirected graphs are both
new. Theorems 9 and 12 were not previously presented, and Theorems 7, 11 and 13 appear
in the technical report but not in the conference publication. Section A.2 adds a description
of the complexity of Algorithm 1. Expanded and more detailed descriptions, proofs, and ad-
ditional diagrams are given throughout. Much of the paper was also presented in the thesis
of Bartels (2008).

2 Background

Before presenting the results of this paper, we provide needed background on probabilis-
tic inference. As mentioned, computing probabilistic quantities can be done using a search
procedure (Bacchus et al. 2003a, 2003b; Dechter and Mateescu 2004), a junction tree (Lau-
ritzen and Spiegelhalter 1988; Pearl 1988), or using a hybrid scheme (Dechter 2003). Search
methods traditionally work by performing a backtracking search through the possible in-
stantiations of the variables. This can be seen as an instance of the DPLL algorithm for
satisfiability (Davis et al. 1962; Bacchus et al. 2003b). This concept was brought to graph-
ical model inference in various forms in Pearl (1988), Dechter (1990), Darwiche (2001)
and in particular as the Value Elimination algorithm in Bacchus et al. (2003b). Search
methods were studied further as an exploration of an AND/OR solution space in Dechter
and Mateescu (2004), Mateescu (2007) and as weighted model counting in Sang et al.
(2005), Chavira and Darwiche (2008). These algorithms build caches of partial computa-
tions to exploit conditional independence. Methods also exist to calculate marginals for
the entire distribution for the order of magnitude cost of a single query (Sang et al. 2005;
Filali and Bilmes 2007). One of the primary advantages of search methods is that they are
effective at dealing with determinism. First, since they work by instantiating all of the vari-
ables in the distribution the values of deterministic variables are always known and one can

@ Springer

Mach Learn (2011) 84:249-289 253

immediately evaluate constraints. In some cases this reveals context specific (local) structure
that is not evident from the graph topology. Second, constraint propagation and “nogood”
learning (Dechter 1990) can be used to reduce the size of the search space. Last, using depth
first search allows such algorithms to evaluate variables in different orders when exploring
different branches of the search tree.

The junction tree algorithm can be viewed as a generalization of the elimination algo-
rithm developed much earlier for satisfiability and discrete optimization problems (Davis
and Putnam 1960; Bertele and Brioschi 1972). Elimination was extended directly to proba-
bilistic calculations in Dechter (1996). In elimination one performs a summation over each
of the distribution’s variables in turn. Each of these summations removes a variable from
the distribution and creates an intermediate table that is used in the next summation. This
procedure can be seen as a breadth first search over the solution space (Mateescu 2007).
Message passing in a junction tree is also a series of summations. The nodes and separators
of a junction tree provide an elegant and efficient data structure to cache the intermediate ta-
bles in a way that allows probabilistic quantities for the entire distribution to be calculated in
the order of magnitude time/memory cost of an elimination calculation for a single variable.
The primary criticism of junction trees is the memory requirements, but when one desires to
query many or all the variables in the graph the memory in the junction tree is needed and
any search algorithm will have similar storage requirements.

Many methods blur the line between the two types of inference. Cutset conditioning
(Dechter 1990) and recursive conditioning (Darwiche 2001; Allen and Darwiche 2003)
work by instantiating some variables and summing over others. Methods such as zero
compression give structured representations to junction tree tables (Jensen and Ander-
sen 1990) and methods such as Dechter and Larkin (2001), Larkin and Dechter (2003)
can take advantage of determinism in this setting. There are also ways of exploiting con-
text specific structure in junction trees and variable elimination (Boutilier et al. 1996;
Chavira and Darwiche 2007). Alternatively, in Mateescu (2007) it was demonstrated how
inference via breadth first search can be performed over AND/OR search spaces.

The form of hybrid inference most pertinent to the work presented here is based on the
method described in Dechter (2003). In junction tree inference, the primary computation is
in the projection of a clique potential onto a separator. This is the computation associated
with a “message” and is a summation over all of the variables that are in the clique potential
but not the separator. This is traditionally an iteration over all possible variable value combi-
nations in the potential. When dealing with a positive distribution this can be implemented
efficiently using a set of nested for loops. In hybrid inference, this summation is performed
using a search procedure to take advantage of any sparsity in the potential. The search adds
significant complexity, but can also yield significant savings when the distribution contains
many entries with zero probability.

The methods given in this paper do not rely on using a search algorithm for projecting
cliques onto separators. We only rely on making the following, simple optimization. When-
ever a clique potential contains a deterministic variable and its parents, the deterministic
variable’s value is always computed directly. This can be done in a nested for loop imple-
mentation by simply replacing the for loop that iterates over the deterministic variable by an
evaluation of the variable’s associated function. Since there is no iteration over the values
of the deterministic variable, its computational cost is a constant. Since a deterministic vari-
able takes on the value of its function with probability 1 (given its parents), the probabilities
associated with the deterministic variable’s values do not need to be stored in a table and do
not add any memory requirements to the clique potential.

@ Springer

254 Mach Learn (2011) 84:249-289

This paper only discusses exact inference and does not touch upon approximate methods.
In many cases, with a good triangulation we can run exact inference whereas many approx-
imate inference algorithms have no guarantees as to their quality. Research in Boolean sat-
isfiability (SAT) solvers continues to make progress and modern solvers are able to find
exact solutions to problems that were not possible in the past (Zhang and Malik 2002;
Berre and Simon 2005). Similarly, we believe progress can be made with continued work in
exact probabilistic inference. Furthermore, many of the results here are graph-theoretic and
apply to general graphs or for graphs with vertices marked with additional properties.

2.1 Graph theory and elimination

Before moving on to the main content of the paper, we define much of the notation, ter-
minology, and known theorems required in later sections. We also discuss the elimination
algorithm and relate it to our work herein.

A graph G = (V, E) is defined as a set of vertices, V, and edges E. An edge is an
unordered pair of vertices implying that £ C V x V. A path in a graph G is an ordered set
of vertices such that each consecutive pair of vertices in the path is connected by an edge.
A cycle is a path with two additional properties. These properties are that each vertex only
appears once in the cycle and that there is an edge that connects the first and last vertices of
the cycle. A complete set of vertices has an edge between every pair of vertices in the set.
A graph G| = (Vy, E)) is a subgraph of G, = (V,, E,) if V; €V, and E| C E,. A graph
G = (Vi, E) is a spanning subgraph of G, = (V,, E;) if V| =V, and E| C E>.

A chord is an edge connecting two non-consecutive vertices in a cycle. A graph is
triangulated if it contains no chordless cycles of length greater than three. A triangu-
lation of a graph G = (V, E) is a (possibly empty) set of edges F € V x V such that
E N F =0 and the graph T(G) = (V, E U F) is triangulated. The edges in F are called
fill-in edges. The term triangulation will also be used to mean the graph 7(G). Given a
graph G = (V, E), the neighbors of v € V are defined as NEg(v) = {w € V|(v, w) € E}.
A triangulation F of graph G = (V, E) is minimal if G’ = (V, E U F)) is not triangulated
for any Fy C F. An edge e is a non-minimal edge in triangulation 77(G) = (V, E U F) if
T,(G) = (V, EU F \ {e}) is also triangulated. A clique is a set of vertices for which every
vertex in the set is connected to every other vertex in the set. A maximal clique is a clique
that is not a subset of some larger clique. The treewidth of a triangulated graph (Arnborg
et al. 1987) is the size of its largest maximal clique minus 1. The treewidth of an arbitrary
graph is the smallest treewidth of all possible triangulations. A vertex is simplicial in the
graph G if NE (v) form a complete set. Triangulated graphs with more than one node have
at least two simplicial vertices (Golumbic 1980).

Vertex elimination (Parter 1961; Rose 1970) is an algorithm that can be used to tri-
angulate graphs (Kjaerulff 1990; Larranaga et al. 1997; Meila and Jordan 1997; Dechter
1998). An elimination order is a bijection @ : V < {1,2,...,|V|}. We use «(i) to de-
note the vertex indexed by the integer i in ordering o, and a~'(v) to denote the integer
position of node v in the ordering «. The deficiency (Rose 1970) of a vertex v in G is:
Dg(v) = ({u, w}{v,u} € E, {v,w} € E, {u, w} ¢ E}). That is, the deficiency of a vertex v
is the set of edges that one would need to add in order to make the neighbors of v a complete
set. Given G = (V, E), the v-elimination graph G, is defined by adding the edges D¢ (v)
to G and then deleting v and its incident edges from G. Creating G, from G is known as
eliminating the vertex v. The elimination graph, denoted as &,(G), is the original graph G
with the addition of any edges added at each step in the elimination process according to o
(see Rose 1970, MTE(G; «)). A perfect ordering is an ordering for which elimination adds

@ Springer

Mach Learn (2011) 84:249-289 255

(a) (®) ()

Fig. 2 Triangulation (b) is an elimination based triangulation of (a). Triangulation (c) of (a) is impossible
with elimination. Solid lines are original graph edges and dashed lines are fill-in edges (Ohtsuki et al. 1976)

no edges, i.e., « is perfect if £,(G) = G. A perfect order need not exist for a general graph.
The following theorems are important when working with elimination:

Theorem 1 All elimination graphs are triangulated. (Rose 1970)

Theorem 2 A graph is triangulated if and only if it has a perfect elimination ordering (Rose
1970, Theorem 1).

Although all elimination graphs are triangulated and all triangulated graphs have perfect
elimination orders, some triangulations of a graph cannot be generated via any elimination
order (Ohtsuki et al. 1976 and Fig. 2). Elimination can, however, create any minimal trian-
gulation (Ohtsuki et al. 1976):

Theorem 3 If T(G) = (V, E U F) is a minimal triangulation of G = (V, E), then there
exists an elimination order a such that £,(G) = T (G) (Ohtsuki et al. 1976, Theorem 1).

Most heuristics that do not involve elimination (such as Parra and Scheffler 1995;
Bodlaender et al. 2001) will choose minimal triangulations over non-minimal triangulations.

In this section we have defined elimination in the graph theoretical sense. The term elimi-
nation is also used to describe a class of algorithms where variables are removed from a large
expression one by one, typically by summing or maximizing over each variable in turn. An
early elimination algorithm can be found in Davis and Putnam (1960), where variables are
eliminated from Boolean formulas to determine if the expression is satisfiable. The work in
Parter (1961) presented graph theoretical elimination as a way to represent Gaussian elimi-
nation on a sparse symmetric matrix, and he demonstrated that trees have perfect elimination
orderings. Rose (1970) extended this result showing that a graph is triangulated if and only
if it has a perfect elimination ordering. What is typically known as the elimination algorithm
was presented by Bertele and Brioschi (1972)—this book presents the elimination algorithm
as a general dynamic programming approach for discrete optimization problems and illus-
trates the approach using graph theoretic elimination. In Lauritzen and Spiegelhalter (1988),
elimination is suggested as a fast way to triangulate a graph for the sake of forming a junc-
tion tree for inference. Dechter (1996, 1998), extended the methods of Bertele and Brioschi
to a wide variety of probabilistic calculations.

Our interest in triangulation is for its use in one of the many exact probabilistic cal-
culations that can be performed on a graphical model. Examples of these calculations
are: 1) finding any configuration over the set of variables that has a non-zero probabil-
ity (similar to constraint satisfaction (Dechter 2003) or the SAT problem (Cook 1971);
2) summing the scores of all variable assignments that do not get zero probability, use-
ful for computing the p(evidence) (similar to weighted SAT (Sang et al. 2005)); 3) find-
ing and storing all variable assignments that do not get zero probability, useful for various

@ Springer

256 Mach Learn (2011) 84:249-289

kinds of parameter learning (such as EM or gradient based), calculating posterior probabil-
ities, and finding the N most probable variable assignments in the graph (Nilsson 1998);
4) finding the most probable assignment of all variables given the evidence (Viterbi 1967,
Bertele and Brioschi 1972); 5) finding the most probable assignment of some of the vari-
ables given the evidence (which can be more expensive than the previous queries Park 2002).
For each of the above queries, there are a variety of methods, each a compromise within a
time-space trade off. For example, it is possible to compute the sum of all scores in time ex-
ponential in | V| (the number of node variables) and linear memory in the number of nodes,
or alternatively time and space exponential in w (the treewidth).

3 Minimal versus non-minimal triangulations

Given a background on triangulation and elimination, we can continue the discussion of
when and why one would want to move beyond conventional triangulation techniques.
It is a common belief that triangulations that minimize clique size are always desirable
for use in computing queries on a graphical model. The reason is that it can be shown
that many of the metrics of performance are upper bounded in some exponential function
on w, the inherent treewidth of the graph (Darwiche 2001; Dechter and Mateescu 2004;
Dechter 1998). A triangulation with minimum treewidth is not necessarily optimal for prob-
abilistic queries. An instance of this is when it may be more desirable to cluster many small
cardinality variables together in a clique to avoid increasing the sizes of cliques that contain
large cardinality variables (see Fig. 3). If the cardinalities of the variables differ dramati-
cally, upper bounds derived from the treewidth can be very loose. In addition, some queries
can be performed on junction trees without actually storing the clique potentials in mem-
ory; instead, only the separator potentials are stored. In such a scheme one might want to
increase clique size to reduce separator size and, in turn, reduce memory requirements (at
the cost of more time) (Dechter and Fattah 2001). In other inference methods clique degree
in the underlying junction tree is significant and one might want to enlarge clique size to
reduce the junction tree clique degree (Aji and McEliece 2000). Later in this section it will
be shown that large cliques can be beneficial when deterministic variables are present in the
graph. In all of these cases the treewidth, which is a property of the original graph, can be
much smaller than the treewidth of the triangulation that is actually used. In such a case the
treewidth of the original graph is not the relevant parameter in determining complexity.

In graphs without deterministic variables, state space optimal triangulations might not
always be treewidth optimal, but we show here that they will always be within the class
of minimal triangulations and therefore obtainable using some elimination order. Many pa-
pers attempt to minimize state space by searching over elimination orders (Kjaerulff 1990;
Larranaga et al. 1997; Meila and Jordan 1997) implying that the theorem has been assumed
in the past, but there does not appear to be a published proof until these authors’ work in
Bartels and Bilmes (2006). The proof of the following is given in Sect. A.1:

Theorem 4 Given a graph G = (V, E) where all of the variables are stochastic and have
state space > 2, some elimination graph of G will have optimal state space.

This theorem is important here for two reasons. First, it says that elimination is an effec-
tive triangulation search method in the case where state space without determinism is a good

indicator of the needed computational resources. In this case one does not need to use the

@ Springer

Mach Learn (2011) 84:249-289 257

(a) original untriangulated (b) maximum clique size is 3, (¢) maximum clique size is 4,
graph state space is 3x (2x3x3)= state space is 2 X (3 X2 x2x
54 2)=48

Fig. 3 These graphs demonstrate a triangulation that has optimal state space but is not optimal in maximum
clique size (although it is minimal). All variables are stochastic, and the cardinalities are |a| = |b| = 3, and
|c1] = |ea| = |e3| = 2. The difference in state space between the two triangulations can be made arbitrarily
large by increasing |a| and |b|. Solid lines are original graph edges and dashed lines are fill-in edges

new methods presented later in this paper. Second, the lemmas developed for proving The-
orem 4 are used to prove a key theorem in Sect. 6.1. In that section, elimination is used on
graphs augmented with certain extra fill-in edges to find state space optimal triangulations
for graphs with deterministic variables.

When using deterministic variables, state space optimal triangulations might not be ob-
tainable from any elimination order. Consider Fig. 4 where d is a deterministic function
of its parents a and b, the cardinalities of a, b, ¢ and e are all 5, and the cardinality of d
is n> — 1 (the largest sensible cardinality for d). This graph is triangulated after moraliza-
tion, and its state space with no additional fill-in is (2n* — 5?). If one considers the graph
in Fig. 4(b) the cost is reduced to (7* + n* — %) One might also run elimination beginning
with d, resulting in the graph of Fig. 4(c) and cost (1*). None of these nor any elimination
ordering will give the optimal triangulation seen in Fig. 4(d) having state space of 21>. This
state space is a factor of 1 smaller than any elimination based triangulation, and n can be
made arbitrarily large. One might also notice that in this example the problem can be solved
by transforming the graph into one that does not include the deterministic variable, where
a and b are both connected directly to ¢ and e. Standard elimination can then be used on
the transformed graph. Although this approach could work, it will be shown in Sect. 6.1 and
Fig. 6 that the optimal choice of which transformations to make cannot be made locally and
is not any simpler than choosing a fill-in.

4 Elimination graph detection

It has been demonstrated that elimination is unable to create certain (potentially useful)
triangulations, but given a triangulation, how can one tell if an elimination order could have
generated it? We give a polynomial time algorithm to solve this problem in Algorithm 1.
A correctness proof and an analysis of its complexity is given in Sect. A.2. It takes as input
a graph, G, and a triangulation, 7 (G), and returns true if 7(G) can be obtained by some
elimination order. This algorithm is essential in our results where we show that most of the
desirable triangulations in our test set could not have been generated by elimination.

Next, we illustrate the use of Algorithm 1 on Fig. 4. Consider the graph, G, in Fig. 4(a)
and its triangulation, 7'(G), in Fig. 4(b). First we construct the set A = {v|(v simplicial in
T(G)) & (NEg(v) =NEr () (v))}. The vertices a, c, and e are all simplicial in T (G), but
only a and e have the same neighbors in G as they do in 7(G). We pick a and eliminate

@ Springer

258 Mach Learn (2011) 84:249-289

(a) Original moralized (b) Elimination trian- (c) Elimination trian- (d) Triangulation not
graph (which is already gulation wusing order: gulation wusing order: possible with elimination

triangulated). Perfect a,c,b,d d,c,a,b
elimination order:
c,a,b,d

Fig. 4 The first three plots give examples of triangulations that are obtainable using elimination. The fourth
plot is an example of a non-elimination based triangulation with unbounded improvement over all possible
elimination based triangulations. Solid arrows are original graph edges, dotted lines are moralization edges,
and dashed lines are fill-in edges. In (a), the maximal cliques are (a, b, d), (a, c,d), and (b, d, e) with state
spaces of (n x n x 1), (n x n % (n2 — 1)), and (n x (712 — 1) x n) respectively. In (b), the maximal cliques
are (a, b, c,d) and (b, d, e) with state spaces (n x n x n x 1) and (n x n X (172 — 1)) respectively. In (c),
there is one maximal clique (a, b, ¢, d,) with state space (n x n x n x 1 x n). In (d), the maximal cliques
are (a, b, c,d) and (a, b, d, e) with state spaces (n x n x n x 1) and (n x n x 1 x n) respectively

Algorithm 1 isEliminationGraph
Oninput (G=(V,E), T(G)=(V,EUF))
if |V| =0 then
return frue
else
A = {v|(v simplicial in T(G)) & (NEg (v) = NEz () (v))}
if A = then
return false
else
choose v € A, return isEliminationGraph(G, (T(G)),)
end if
end if

the node from both graphs. The fill-in edge (b, ¢) is added to create G, and no fill-in edges
are added to create (7 (G)),. We recurse on these elimination graphs, and again we must
determine the set A. In this case vertices ¢ and e are simplicial in 7(G) and both have
the same edges in G and T (G). We eliminate ¢ and recurse. We will stop the example at
this point as one can see that b, d, e form a complete graph in both G and T (G), so any
ordering of these last three vertices will generate 7(G) from G. If one were to record the
vertex chosen from A at each step this would give an elimination order that one could use
to generate 7 (G) from G.

For a second example we will run isEliminationGraph on the triangulation given
in Fig. 4(d). Vertices ¢ and e are simplicial in 7 (G), but neither vertex has the same edges
in G (Fig. 4(a)). Therefore the set A is empty, and the algorithm will return false indicating
that no elimination order can create 7 (G) from G.

@ Springer

Mach Learn (2011) 84:249-289 259

5 Complexity

It was shown in Sect. 3 that certain large clique and non-minimal triangulations are some-
times desirable. In this section we discuss the computational complexity of finding triangu-
lations in the mixed stochastic/deterministic setting. It was proven in Yannakakis (1981) that
it is NP-complete to determine whether a graph has a triangulation with < k fill-in edges. In
Arnborg et al. (1987) it was shown that it is NP-complete to determine whether a graph has
treewidth < k. The proof in Wen (1991) demonstrated that finding optimal state space tri-
angulations in graphical models with binary variables is NP-hard through a reduction from
the Elimination Degree Sequence problem. Here we state that the decision version of the
triangulation problem remains in NP for any polynomial time heuristic f (G, I), where [
contains vertex information such as cardinality and determinism (i.e., if a vertex is a deter-
ministic function of its parents in the directed graph). This general definition allows us to
prove NP-completeness for determining if a triangulation is sufficiently good according to
our modified definition of state space. We show that the state space problem remains NP-
complete through a reduction from the treewidth problem. This reduction is simpler than
the reduction from the Elimination Degree Sequence problem and is valid for variables with
arbitrary cardinalities. See Sect. A.3 for the proofs.

Definition 2 Given graph G = (V, E), vertex information /, and threshold «. Define MAX-
TRI ={(G = (V, E), I,a) | G has a triangulation 7 (G), with f(T(G),I) <a}.

Theorem S5 The MAXTRI problem is in NP for all polynomial f(G, I).

Definition 3 MAXSTATESPACE = {(G = (V, E), I,a) | G has a triangulation with state
space < o}.

Theorem 6 MAXSTATESPACE is NP-complete.

6 Elimination with extra fill-in edges

At this point, we know that elimination alone is not sufficient to generate all triangulations,
and more importantly some graphs with deterministic dependencies cannot be optimally tri-
angulated by any elimination order. Because finding state space optimal triangulations is NP-
hard, it is necessary to develop heuristic approaches that are able to find triangulations that
traditional approaches cannot. This section describes an algorithm called extra-elimination
that extends elimination to make it possible to find any triangulation. This algorithm is given
here in its most general form, but at this point it has too much flexibility. In this form, the
algorithm is therefore not useful other than for illustrative purposes (which is why we de-
scribe it in this way). Later in the paper we limit its options to make it a practical search
algorithm.

Definition 4 (Extra-Elimination) Alternate the following two steps until no vertices remain:
(a) Add edges to the current graph, (b) Eliminate a vertex. When finished, take the union
of the extra edges added in the (a) steps and the fill-in edges added in the (b) steps and add
them to the original graph.

@ Springer

260 Mach Learn (2011) 84:249-289

/

/

- —-——-
-~

\

&
0

(@) (a,c) is ancestral from child ¢, (b) (dy,b) is ancestral with respect (c) (d,e) is fill-in needed to

and (a,b) is ancestral because bis to dp, (a,b) is ancestral with re- triangulate the graph, which

a neighbor from moralization spect to d; because of ancestral causes (a,e) to be ancestral
edge (d1,b)

Fig. 5 TIllustrations of different types of non-parent neighbors that cause ancestral edges. The deterministic
nodes are labeled d in each case. Solid arrows are original graph edges, dotted lines are moralization edges,
long dashed lines are ancestral edges, and short dashed lines are non-ancestral fill-in edges. Figures (b) and
(c) do not show all possible ancestral edges

We formalize this by providing a new definition for a kind of deficiency, and then we
regard elimination as a special case of extra-elimination. We have a graph G = (V, E),
elimination ordering « : {1,2,...,|V|} <> V, and for each v € V a set of extra edges H, C

{(ur, u2) | wy #uz, (y,u2) ¢ E, 0 (0) <@ (uy), @' (v) <@ 'u)}, H= Y| Ho-

Definition 5 The extra-deficiency of a vertex v in G with extra edges H is: Dg g (v) =
({u, w} [{v,u} e EUH,{v,w} € EUH, {u, w} ¢ E}).

Extra-elimination can now be defined in an analogous manner to elimination. Given
G = (V, E), the v-elimination graph G, is defined by adding the edges in H, and Dg(v)
and then deleting v and its incident edges from G. The elimination graph, denoted as
&, 1(G), is the original graph G with the addition of H plus the extra-deficiency edges
added from eliminating all variables in the order «. When H = §J, extra-deficiency becomes
ordinary deficiency, and extra-elimination reduces to elimination. We call an extra edge
e € H redundant if £, 5 (G) = &, m\(j(G). One useful property of this construction comes
from the following:

Theorem 7 Extra-elimination can create any triangulation.

Note that in this general form we do not have any guidance as to what extra edges to
add—this will be addressed in the next section.

6.1 Ancestral pairs

We have presented a general purpose algorithm that can produce arbitrary triangulations,
but it is not yet practical—at each elimination step one must choose an arbitrary fill-in, and
we have no guidance on how to choose these edges. Extra-elimination can be considerably
constrained by taking into account that we are considering Bayesian networks that may have
deterministic variables that have values given by arbitrary functions of their parents. In such
a graph, moralization will cause each deterministic variable to be in at least one maximal

@ Springer

Mach Learn (2011) 84:249-289 261

clique with its parents, but the variable might also be a member of other maximal cliques
due to its non-parent neighbors. In these cases we can sometimes reduce the state space by
adding fill-in edges that ensure that every clique that contains a deterministic variable d also
contains d’s parents. We call edges that can accomplish this goal ancestral edges, and these
are the edges that we will pick from when choosing extra fill-in edges.

Definition 6 A pair of nodes (p, ¢) in a Bayesian network is an ancestral pair if and only
if p is a parent of a deterministic node d, c is not a parent of d, and p # ¢ # d. An ancestral
edge is an edge that connects an ancestral pair.

Ancestral edges are named for the case where they connect a node’s parent to the node’s
child, but they can exist for a number of reasons. The first of these is the existence of undi-
rected neighbors due to moralization. An example of this is given in Fig. 5(a). In certain
contexts there might be neighbors from other sources as well, such as DBN frame bound-
aries (Bilmes and Bartels 2003), the creation of cliques for the analysis of posteriors, or
other edges that are implied by needing to perform a particular exact probabilistic query. We
call ancestral edges that are derived from all of the above cases original-graph ancestral
edges and the corresponding pairs of nodes original-graph ancestral pairs.

Second, an ancestral edge might obtain its ancestral status only after a different ancestral
edge is added to the graph. An example of this is given in Fig. 5(b). Pairs of nodes that are
original-graph ancestral, or that become ancestral after other ancestral edges are added are
called pre-triangulation ancestral pairs. Note that this definition implies a recursion: if an
ancestral edge is added it might create additional ancestral pairs. Pre-triangulation ancestral
pairs are the basis for the heuristics and results presented in Sects. 6.2 and 7.

Finally, fill-in edges are added to the graph in order to make it triangulated. When a fill-in
edge is attached to a deterministic variable it might also form additional ancestral pairs, as in
the example given in Fig. 5(c). These along with pre-triangulation ancestral edges make up
all possible ancestral edges as given by Definition 6. Unless otherwise stated the theorems
in this paper refer to all ancestral edges.

The following theorem states that an optimal state space triangulation can always be
found using extra-elimination where we limit the choice of extra edges to ancestral pairs.
The proof (in Sect. A.5) shows that the state space optimal triangulation will be a minimal
triangulation of a graph augmented by ancestral edges.

Theorem 8 Elimination with extra-elimination edge addition where the extra edges are
limited to ancestral edges is sufficient to find an optimal state space triangulation when all
cardinalities are > 2.

Our problem is still not solved, though. Theorem 8 only tells us that the needed non-
minimal edges will be ancestral in the optimal triangulation. Not all ancestral edges may
be needed, and not all needed ancestral edges will be known without knowing the rest of
the optimal triangulation. It might at first seem that we can look at each deterministic node,
d, with parents pa(d), and non-parent neighbor ¢ and add ancestral edges between pa(d)
and c if S(c Ud U pa(d)) is less than S(c Ud) + S(d U pa(d)), which is a strictly local
criterion. For example, in Fig. 6(a) whether or not it is beneficial to add ancestral edges
will depend on only the cardinality of d. That is, suppose |a| = |b| = |c| = |e|] = 10 and
|d| = 40, then the graph will have a state space of 900 using the triangulated graph with no
fill-in that happens to result from moralization. When all ancestral edges have been added
as in Fig. 6(b), however, this results in a state space of 2000. On the other hand, if |d| =99,

@ Springer

262 Mach Learn (2011) 84:249-289

(e) Ancestral edges added (f) (b, f) and (a, h) are not pre-triangulation an-
cestral pairs, they become ancestral after adding
fill-in edges (d, f), (d,h)

Fig. 6 Graphs illustrating why the choice of ancestral edges cannot be made locally. Variable d is determin-
istic in all graphs. Solid lines are original graph edges, dotted lines are moralization edges, long dashed lines
are ancestral edges, and the short dashed line is a non-ancestral fill-in edge

then the triangulated by moralization graph has a state space of 2080 while the state space
in Fig. 6(b) remains 2000. In this case it is easy to see that the ancestral edges should be
added.

In the general case, however, the choice of ancestral edges needed for a state space opti-
mal triangulation cannot be made without knowing the rest of the triangulation. In Fig. 6(c),
either (a, ¢) or (f,d) and either (b, e) or (d, h) needs to be added in order to triangulate
the graph. Just as in the Fig. 6(a) |d| = 40 case, it is not locally optimal to add the ancestral
edges, but if (a, ¢) and (b, e) are added to triangulate the graph, as in Fig. 6(b), the ancestral
edges might now be beneficial. If the cardinality of all of the stochastic variables is 10 and
the cardinality of d is 40, then Fig. 6(d) has a state space of 12100, but Fig. 6(e) that includes
the ancestral edges has a state space of only 6000.

As mentioned, not all ancestral edges associated with a given deterministic node, d, will
be included in the optimal triangulation. In some cases we may leave out ancestral edges in
order to take advantage of the factorization provided by d. In other cases we may only add
a subset of d’s ancestral edges so that it appears with its parents in some maximal cliques

@ Springer

Mach Learn (2011) 84:249-289 263

and is factorized in others. If we do add all of the ancestral edges associated with d, we can
prove that d will only appear in one maximal clique and this clique will include its parents.

Theorem 9 [f there is an edge between all of the parents and non-parent neighbors of a
node d, then d will be a member of exactly one maximal clique and this maximal clique will
include the parents of d.

Before moving on we note one possible alternative way to address deterministic vari-
ables. Instead of adding ancestral edges, we could transform the graph into one that does not
include any of the deterministic variables, and then standard elimination could be used on
the transformed graph. In this work, we prefer to work with ancestral pairs. This is because
the above transformation does not make the search problem any easier due to the fact that
you would not know the complete benefit of a graph transformation without considering the
entire resulting triangulation. One would also have to consider the cases where some de-
terministic variables are kept in the graph for some non-parent neighbors, but transformed
away for others. A method could be devised that combines a search over the possible graph
transformations and the minimal triangulations of the transformed graphs, but this inhomo-
geneous process does not have any advantage over the homogeneous process of searching
choices of fill-in within the set of ancestral edges. In addition, the deterministic variable
might have physical meaning and probabilities based on values of this random variable
might be required for a given application domain (see Sect. 7.3)—this would be much more
difficult to do in a graph in which the needed node has been completely removed. Lastly,
we claim that working with the original non-transformed graph by considering only ances-
tral edges leads to very simple search heuristics for triangulation that work well as will be
demonstrated below.

6.2 Ancestral pair heuristics

Extra-elimination with ancestral edges gives a framework for finding triangulations in net-
works with deterministic dependencies, but so far we have not given any guidance on which
ancestral pairs should be chosen. We now describe a pre-processing step that adds ancestral
edges to a graph, and this new graph is then triangulated using standard elimination heuris-
tics. The heuristics that are evaluated here choose edges from the set of pre-triangulation
ancestral pairs, and four heuristics are proposed for deciding which extra edges to add:

— all-extra: Add all pre-triangulation ancestral edges.

— sampled-extra: Randomly select a subset of pre-triangulation ancestral edges.

— lo-extra: Choose the pre-triangulation extra edges that are locally optimal. That is, if
we have a deterministic node, v, with parents pa(v) and non-parent neighbor c, the set of
edges between ¢ and pa(v) is locally optimal if S(cUvUpa(v)) < S(cUv)+ S(vUpa(v)).

— some-extra: Choose all pre-triangulation ancestral edges, with the exception that you ig-
nore ancestral pairs that are a result of undirected edges (such as from moralization). It
only considers ancestral pairs resulting from children of deterministic nodes plus any an-
cestral pairs that are recursively formed from other ancestral edge additions. This method
is included primarily to show the effect of not considering these less obvious ancestral
edges.

Limiting the edges to pre-triangulation ancestral edges allows the addition to be a pre-
processing step that can be followed by any method for finding minimal triangulations. As
mentioned, the fill-in from the triangulation step could increase the potential number of

@ Springer

264 Mach Learn (2011) 84:249-289

ancestral edges, as in Fig. 6(f). For completeness, an algorithm for searching all ancestral
pairs is given in Sect. 8.1, but we in this work do not present any further results utilizing it.
A genetic algorithm that can generate all possible ancestral edges was presented by these
authors in Bartels et al. (2005), Bartels (2008). In some cases, using the genetic algorithm to
explore the entire triangulation space gave speedups over the heuristics presented here, but
it required initialization using the heuristics.

7 Results

The goal of the experiments is to compare the four extra-elimination heuristics to elimina-
tion. The general method for generating a data point for our result set is the following. First,
an extra-elimination heuristic and a conventional elimination heuristic are chosen. Next, the
chosen methods are used to generate a pool of candidate triangulations. Then, the triangu-
lation in the pool with the smallest state space is selected. This triangulation is used in a
calculation of the probability of evidence and the amount of time this calculation takes is
measured. This procedure is repeated on a number of combinations of heuristics and pool
sizes.

A set of timing measurements is generated for each graph and each of the four extra-
elimination heuristics. The procedure used to generate data for the four extra-elimination
heuristics is repeated four times using pure elimination. There are two reasons for this rep-
etition. First, it provides a fair comparison between elimination and the overall best of the
four extra-elimination methods. Second, it ensures that a large part of the elimination search
space has been explored. Note that the elimination triangulations have a significant advan-
tage over the four extra-elimination methods individually.

A variety of state of the art elimination heuristics are used in the results. 20 one-step look
ahead heuristics were used, including minimum weight, fill, size, and various combinations
and repetitions of these. For each look ahead heuristic there was an additional parameter
from 1-3 where the next node in the order is chosen randomly from the top x choices.
This parameter is similar to the Stochastic-Greedy Algorithm given in Fishelson and Geiger
(2004). Maximum Cardinality Search was also used, bringing the total to 61. For each of
the 61 methods, separate pools of 100, 50, 10, and 1 triangulations were created. This was
repeated using a modified state space heuristic.

For each graph, the above leads to 488’ timings for each extra-elimination heuristic, and a
total of 196422 triangulations generated for each extra-elimination heuristic. There were also
4 x 488 = 1952 timings of elimination triangulations and 4 x 19642 = 78568 elimination
triangulations generated.

As mentioned, the triangulations were timed on a calculation of the probability of evi-
dence. The calculation was stopped if more than 1 gigabyte of memory was used.

All of the timing results were generated using probabilistic inference code that is im-
plemented in highly optimized C++. The inference algorithm itself is a hybrid between the
standard Hugin-style inference (Jensen et al. 1990) and the Shenoy-Shafer style inference
(Shenoy and Shafer 1986) applied to junction trees, but that exploits sparsity. After a trian-
gulation of the graph has been found, the resultant graph is converted into a junction tree, a

L1 triangulation heuristics x 2 selection heuristics x 4 pool sizes) = 488 timings.

2[(61 triangulation heuristics x 2 selection heuristics) x pool sizes of (100 + 50 + 10 + 1)] = 19642 trian-
gulations.

@ Springer

Mach Learn (2011) 84:249-289 265

Table 1 This table compares the performance of the four extra-elimination methods and elimination on
randomly generated graphs. The column labeled ‘best’ gives the number of graphs that the method was the
best of all methods. The ‘< x2’ column gives the number of graphs the method was not the best, but took
less than twice the time of the best. The x2—x4 column gives the number of graphs where the method was
at least twice as slow as the best, but less than four times as slow, and the x4—x8 and x8-x 16 columns are
similarly defined. The >= x 16 column gives the count of graphs where the method was more than 16 times
as slow as the best (Bartels and Bilmes 2006)

best < x2 x2—-x4 X4—-x8 x8-x 16 > x16
all-extra 240 98 14 1 3 0
sampled-extra 76 186 59 27 5 3
some-extra 50 204 71 21 7 3
lo-extra 18 63 58 68 54 95
elimination 15 43 58 66 56 118
Fig. 7 Number of randomly 350
generated graphs where the 300
fastest triangulation is an 250
elimination graph versus the 200
number not obtainable by any
elimination order 150
100
50
0

Elimination Non-Elimination

tree of cliques that satisfies the running intersection property. A standard “collect-evidence”
message order is then determined based on the junction tree, and messages are sent to the
root of the tree starting from the leaves. Also, if there is a choice to place a deterministic
child or a parent farther from the root along a sub-chain in the tree, preference is given to
keep the parent farther from the root—this ensures that sparsity in the model is not compu-
tationally costly (as described in the next paragraph).

Each message in the junction tree consists of expanding a clique based on a set of incom-
ing separators and then projecting down to an outgoing separator, where “incoming” and
“outgoing” relative to a clique is based on the selected root of the junction tree. Rather than
naively expanding the clique, however, we ensure that any sparsity present in the model is
never expanded. That is, the actual message expands entries in the clique only that are com-
patible with the intersection of all incoming separators—this ensures that any entries not
in the separator (due to previously discovered zero-scoring or zero-probability entries) do
not incur any computational cost. Then, once in the clique, all entries are expanded in topo-
logical order w.r.t. the directed Bayesian network (so that a deterministic child is iterated
immediately after all of its parents are instantiated). Several additional heuristics are also
used, such as a fail-first order (Tsang 1993) and various other standard methods (Dechter
2003). This ensures the preservation of any discovered sparsity during clique expansion.
Once done, on projection down to the outgoing separator, of course only the non-zero en-
tries are preserved so that once that separator is used as an incoming separator for some other
clique, the benefit of sparsity can propagate throughout the junction tree. Such an approach
to inference is quite compatible with the types of triangulations (and resultant junction trees)
that our methods produce.

@ Springer

266 Mach Learn (2011) 84:249-289

Fig. 8 This figure compares the . :

performance of the four ;:hmllln auonf l—ext

extra-elimination methods and :())Cr::ezez[r’alma Xty

elimination on randomly - - - sampled—extra

generated graphs. For each graph, 10°F | —— all—extra k!

the best time for each method
was normalized by the best
overall time for the graph. The
results for each method were then
sorted. The vertical axis gives the
number of times slower the

For each graph, # times slower than best

. . 10t
triangulation was compared to
the best for the graph. The
horizontal axis is an index
indicating the nth best graph for
the method
10 s ‘
0 50 100 150 200 250 300 350

Rank of the graph

7.1 Randomly generated Bayesian networks

The first set of graphs is composed of 356 randomly generated Bayesian networks. Each
of these graphs has 30 nodes, a maximum in-degree of 4, and the set of edges is chosen
uniformly over all graphs fulfilling the constraints. Each node has a 0.5 probability of being
deterministic and a 0.1 probability of being observed. The stochastic variables have cardinal-
ities between 2 and 5 and the observed variables have a cardinality of 50. The deterministic
variables have cardinalities between 2 and the product of their parents’ cardinalities, with
an upper bound of 125. For each graph, the fastest triangulation from each of the five meth-
ods is chosen. The ‘best’ column in Table 1 gives counts of the number of graphs where
each method was the best overall. The other columns give the number of graphs where each
method was various orders of magnitude slower than the best overall. Figure 7 compares the
number of graphs where the best triangulation could and could not have been created using
elimination (determined using Algorithm 1). To generate the plot in Fig. 8, for each graph
the best time from each method was normalized by the best overall time for the graph. The
scores for each method were then sorted. The x axis represents the index of the nth best
performing graph for the method, and the y axis represents the number of times slower the
method was than the best method for that graph.

In this experiment, all-extra was the overall winner scoring the best on over half of the
graphs. Sampled-extra was the second best, followed by some-extra. Lo-extra and elimina-
tion performed poorly overall. One would generally expect all-extra to perform well when
there is a high percentage of determinism (as in this set of random graphs). Given its strong
performance on this task one might even conclude that all-extra is the only method that
should ever be considered, but in one case it was 15 times as slow as the fastest triangulation
(which was an elimination graph). Sampled-extra has the potential to perform very well as it
subsumes all of the other methods, but the large number of fill-in choices keep it, on average,
slower than all-extra.

Table 2 gives results over sets of graphs randomly generated the same way as the previous
set, but with the exception that there is a fixed number of deterministic variables. The values
are the percentage of graphs where that method gave the fastest time or was less than twice
the fastest time. This experiment was designed to explore the performance of the heuristics
on various classes of graphs. With little determinism (such as the 5 column) there is less

@ Springer

Mach Learn (2011) 84:249-289 267

Table 2 Percentage of random

graphs with a fixed number of # deterministic 5 10 15 20 25

deterministic variables (out of

30) where method gave either the all-extra 82.8% 93.5% 100.0% 87.5% 100.0%

faS;est]jﬂferen]C; tiff;e OI(;V];?] sampled-extra 82.8 87.1 68.3 75.0 100.0

S0y (Bartels and Bilmes e extra 621 710 707 750 100.0
lo-extra 44.8 51.6 17.1 50.0 89.3
elimination 58.6 35.5 9.8 54.2 71.4

opportunity for improvement over elimination and we see smaller improvements. With a
lot of determinism (such as the 25 column) the total state space of the graph is small and
the solution can be found quickly regardless of the triangulation, so again there is less dif-
ferentiation. All-extra again out performed the other methods, and gave an especially large
advantage over the other methods in the 15 column.

7.2 Randomly generated dynamic Bayesian networks

The next set of graphs is 10 randomly generated dynamic Bayesian networks (DBNs) (Dean
and Kanazawa 1989). DBNs are composed of a graph template that is repeated to match the
length of a particular observed sequence. Triangulation is performed on a subgraph that is
created from the template rather than on the much larger, unrolled graph (Kjerulff 1992;
Xiang 1999; Murphy 2002). This subgraph is typically one instance of the template along
with a subset of variables from a second instance, together called the 1.5 slice (Murphy
2002). This additional set, called the interface, contains the variables that are directly con-
nected to any variable in an adjacent template instance. The interface sets (on both sides of
the template) are completed so that an unrolled triangulation can be constructed by piec-
ing together these triangulated subgraphs. It was noted in Xiang (1999), Bilmes and Bartels
(2003) that the template as given by the graph designer might not form the most optimal
structure for the purposes of triangulation and inference. All the graphs in this work are
re-templated using the boundary algorithm described in Bilmes and Bartels (2003). This
method searches the graph template for an interface set that has a lower cost than the inter-
face set as defined by the original template. The triangulations performed here are done on
an instance of the 1.5 slice of the re-templated graph. During inference, there is one instance
of the template for each observation, and the template instances are “glued” together at the
interface cliques. Each template instance is known as a frame.

The random DBNs have 24 vertices per frame, a maximum in-degree of 3, and the set
of edges is chosen with uniform probability over all graphs fulfilling the constraints. Each
node has a 0.5 probability of being deterministic and a 0.2 probability of being observed.
The stochastic variables have cardinalities between 2 and 5 and the observed variables have
a cardinality of 50. The deterministic variables have cardinalities between 2 and the product
of their parents’ cardinalities, with an upper bound of 125.

In addition to the set of triangulations and timings described at the beginning of the
section, a set of 488 timings were generated using one instance of maximum cardinality
search, minimum weight, fill, or size (labeled Once). This is to compare our elimination
baseline to a more typical triangulation baseline.

The results are split across Tables 3 and 4. Figure 9 presents the results in the same man-
ner as Fig. 8. The numbers are the average amount of time in seconds to compute the prob-
ability of evidence per 100 frames (that is, per 100 instances of the triangulated template).
The amount of time spent timing each triangulation is fixed for each graph, and multiple

@ Springer

268 Mach Learn (2011) 84:249-289

Fig. 9 This figure compares the 10' i
performance of the four e onee
extra-elimination methods and — all-extra

some—extra

locally—optimal—extra
- = =sampled—extra
——elimination
‘‘‘‘‘ best extra

elimination on randomly
generated graphs. For each graph,
the best time for each method
was normalized by the best
overall time for the graph. The
results for each method were then
sorted. The vertical axis gives the
number of times slower the
triangulation was compared to
the best for the graph. The
horizontal axis is an index
indicating the nth best graph for
the method. ‘best-extra’ is the
best of all-extra, some-extra, .
locally-optimal-extra, and 0 .
sampled-extra 1 2

For each graph, # times slower than best

hadl

Rank of the graph

observation sequences might be evaluated during that time. Longer times were chosen for
slower graphs that gave poor statistics in preliminary runs. A triangulation fails if it uses
more than 1 gigabyte of memory or fails to calculate the probability of evidence of 1 frame
during the fixed time window.

A 25%-31% improvement was seen on 3 graphs, a nominal improvement was seen on
1 graph, 3 cases gave comparable results, and elimination did better than the edge addition
heuristics on 3. These DBN results were much less dramatic than on the “non-dynamic” net-
works from the previous section. This is primarily because the interface cliques can account
for a majority of the compute time. These cliques can also make the graphs fairly dense
to begin with, leaving the resulting space of possible triangulations smaller than on graphs
with less structure.

As a group, the extra-elimination algorithms outperformed elimination, but the large pool
of elimination triangulations did better than any individual method. Sampled-extra was the
best of the extra-elimination algorithms, while all-extra was the worst. This difference from
the previous set of graphs is likely explained by the many edge additions needed to complete
the interface cliques. These edges give sampled-extra a smaller set of options to explore, and
because the interface edges make the graphs somewhat dense all-extra can be too aggressive.
The “once” set of triangulation performed poorly demonstrating the effectiveness of the
large variety of elimination and selection heuristics present in the other methods.

Tables 3 and 4 also give statistics on the mean, variance, and median times as well as
the percentage of timings that did not complete without running out of memory. Note that
for some graphs the variance can be quite high (Graph 5, some-extra has a mean of 253.9
seconds with a variance of 1094.2), and for others the failure rate is significant (Graph 1,
some-extra has a failure rate of 90.3%). This is because the differences between triangula-
tions can give exponential differences in cost. Recall that the state space of a clique is the
product of the state spaces of its variables. The Once heuristics explore a smaller portion of
the triangulation space than the other methods and can have a much higher failure rate.

7.3 Example real world graph

Our own interest in these networks arises from the use of DBNs to represent speech recogni-
tion and natural language processing systems. Such systems give explicit representations of

@ Springer

Mach Learn (2011) 84:249-289

269

Table 3 This table gives the first half of the results for the randomly generated DBNs. The second half of
the results is in Table 4. All scores are based on the amount of time in seconds to compute the probability
of evidence per 100 observations (that is, per 100 instances of the triangulated template). ‘% Fail® gives the
percentage of triangulation attempts where the time or memory limit was reached before the probability of
evidence frame could be computed for one frame. ‘£ o is the mean and variance of the (non-failing) times.
The median is over all attempts, and if more than half of the triangulations failed no median is given. Finally,
‘Best’ indicates the smallest time for all triangulation attempts. Various ratios of times are given, and the last
row tells if elimination could have produced the best (or indistinguishably close to best) overall triangulation

Graph 1 Graph 2 Graph 3 Graph 4 Graph 5
Once % Fail %93.6 %99.0 %30.9 %?2.0 %41.2
nto 518.6+8.7 108.5+1.7 189.0£197.9 259+754 257.6+203.9
Median - - 201.4 32 452.3
Best 511.0 106.7 39.7 1.7 31.6
Elim. % Fail %71.9 %729.4 %10.8 %6.5 %28.7
nto 849.54+234.6 659.6+£622.9 338.24+443.1 65.6+246.7 187.3+212.1
Median - 1287.0 136.9 3.1 203.1
Best 469.9 514 323 14 20.9
All % Fail %88.5 %11.9 %9.4 9%06.8 %78.5
nto 622.9+114.2 203.94+75.0 297.6+£280.7 34.9+173.3 985.0+764.6
Median - 182.0 184.8 3.0 -
Best 449.0 122.4 102.9 2.7 149.1
Samp. % Fail %383.1 %38.3 %12.2 %38.8 %51.8
nto 9743+474.6 349.6+368.8 375.84395.1 70.01+223.8 406.2+401.5
Median - 568.2 215.0 4.7 -
Best 448.0 64.1 40.1 1.7 16.4
Some % Fail %90.3 %?27.3 %6.6 %3.1 %44.1
nto 655.0+137.0 283.2+£263.7 477.1£356.4 84.2+2152 253.94+1094.2
Median - 198.3 533.0 27.2 4437
Best 473.0 84.1 50.2 2.7 17.2
L.O. % Fail %70.5 %38.5 %15.6 %5.1 %33.2
nto 865.14:199.8 531.9+£493.8 533.94499.4 105.14+258.1 170.2+202.7
Median - 893.7 657.5 13.1 299.9
Best 536.5 53.2 34.7 1.9 19.3
Best once/Best extra 1.14 2.00 1.14 0.99 1.92
Median elim./all - 7.07 0.74 1.03 -
Median elim./samp. - 2.27 0.64 0.66 -
Median elim./some - 6.49 0.26 0.11 0.46
Median elim./L.O. - 1.44 0.21 0.24 0.68
Best elim./Best extra 1.05 0.97 0.93 0.85 1.28
Best Is Elim. no yes yes yes no

@ Springer

270 Mach Learn (2011) 84:249-289

Table 4 This table gives the second half of the results for the randomly generated DBNs. The first half of
the results along with an explanation of the table is given in Table 3

Graph 6 Graph 7 Graph 8 Graph 9 Graph 10

Once % Fail %0.2 %1.0 %46.9 %100.0 %1.2
nto 64.7£99.2 61.6+£66.8 146.4+£1199 - 76.24+27.5
Median 14 42.5 394.0 - 86.4
Best 1.3 35.2 224 - 18.6

Elim. % Fail %2.4 %7.8 %?25.7 %88.6 %3.6
nto 21.8+80.8 136.4+177.9 222.24304.6 1952+£263.8 60.4+95.6
Median 1.6 56.7 202.2 - 35.0
Best 0.2 27.7 4.3 0.3 5.8

All % Fail 9%0.2 %22.5 %3.9 %86.7 %1.4
nto 148£99.0 291.6+1657 39.5+1224 15.8+61.1 27.8+£5.7
Median 0.4 229.0 27.9 - 30.7
Best 0.2 162.8 4.2 0.2 11.9

Samp. % Fail %1.2 %18.3 %16.4 %78.0 %6.4
nto 13.0£51.6 436.5+£419.2 238.54+412.0 3149+469.6 47.24+95.8
Median 0.6 390.9 94.1 - 23.5
Best 0.2 42.5 34 0.2 6.3

Some % Fail %0.0 %?24.1 %6.8 %81.5 %77.9
nto 10.8+£86.0 752.3+£466.2 69.0£180.2 10.3+25.9 186.5£259.6
Median 0.4 1178.0 39.7 - -
Best 0.2 67.9 4.0 0.2 13.5

L.O. % Fail %?2.3 %11.1 %50.0 %86.9 %12.9
nto 11.5+96.4 310.5+£208.8 61.1£145.6 156.5+211.8 86.7+£291.5
Median 0.4 308.4 - - 82.7
Best 0.2 36.0 4.3 0.3 5.7

Best once/Best extra 6.70 0.98 6.57 - 3.27

Median elim./all 3.93 0.25 7.26 - 1.14

Median elim./samp. 2.49 0.14 2.15 - 1.48

Median elim./some 3.85 0.05 5.10 - -

Median elim./L.O. 3.67 0.18 - - 0.42

Best elim./Best extra 1.00 0.77 1.27 1.28 1.02

Best Is Elim. yes yes no no yes

the relationships between words, syllables, phones, or parts of speech. A very basic model
for sequences is called the triangle structure and can be seen in Fig. 10. This structure was
introduced in Zweig (1998) and can be used to solve the following problem. Assume we
have a known sequence of symbols, and we have a sequence of observations that is signif-
icantly longer than the symbol sequence. The example symbol sequence we will use here
is “c’—"“a”—"“t” (modeling the word “cat”). We also have a sequence of 100 observations

@ Springer

Mach Learn (2011) 84:249-289 271

State
Counter

State
Transmon
State

Fig. 10 Triangle Structure (Zweig 1998), can be used for aligning a fixed length sequence to acoustic obser-
vations. White variables are hidden and shaded are observed. Straight arrows represent deterministic relation-
ships, and wavy arrow represent probabilistic relationships. This figure shows 3 “frames”, but in practice the
number of frames will depend on the length of the observation sequence (in speech graphs there are typically
hundreds of frames)

representing audio data. We know that the audio data contains the word “cat”, but we would
like to find out which observations correspond to “c”, which correspond to “a”, and which
correspond to “t”. The graph for this problem has four types of variables, and a variable of
each type is repeated once for each observation. They are as follows:

— State Counter: Deterministic variable indicating the position in the sequence. In the “cat”
example it counts from 1 to 3.

— State: Deterministic variable that gives the identity of the current state in the sequence. In
the example it takes on the values “c”, “a”, and “t”.

— State Transition: Boolean variable 1ndlcat1ng if the model is in the last frame of the current
state. This is a probabilistic variable with a distribution over “true” and “false”.

— Observation (Obs.): Vector of acoustic observations.

The State Counter is set to 1 in the first frame and set to the 3 in the last frame.
When the State Transition from the previous frame is false, State Counter copies its value
from the State Counter in the previous frame. When the State Transition from the previ-
ous frame is true, State Counter is set to 1 larger than the State Counter from the pre-
vious frame. The State variable gives the identity of the current phone in the sequence
by mapping 1 to “c”, 2 to “a”, and 3 to “t”. State is necessary because in many words
the same phone appears more than once and different values of State Counter might
map to the same state. The Observation is conditioned on State to give a different out-
put distribution for each phone. In the figure wavy arrows indicate that p(Obs.|State) and
p(State Transition|State) are probabilistic. Straight arrows show that p(State|State Counter)
and p(State Counter|Previous State Counter) are deterministic.

The triangle structure also forms the basis for more complicated graphs. Figure 11 gives
an example of how it can be built upon to create a speech recognizer. In this graph the
identity of the word or words is chosen probabilistically. The triangle structure still models
a deterministic sequence of phones, but the choice of sequence is randomly selected through
the choice of word. The variables in the graph are as follows:

— Word: A variable representing the identity of the current word.

— Word Transition: Boolean variable indicating if the model is in the last frame of the current
word.

— State Counter, State Transition, State, Observation (Obs.): These four variables form the
triangle structure, just as in Fig. 10.

@ Springer

272 Mach Learn (2011) 84:249-289

Word
Transition
State
Counter
State
Transition

Obs.

Fig. 11 Dynamic Bayesian Network for speech recognition (Bilmes et al. 2001). Wavy arrows are proba-
bilistic dependencies, solid, straight arrows are deterministic dependencies, and dotted arrows are switching
dependencies. Shaded nodes are observed variables, unshaded nodes are hidden variables

When the Word Transition is “true” a new value of Word is chosen probabilistically.
This is based on a distribution that is conditioned on the previous value of Word. When
Word Transition is “false” the value of the Word variable from the previous frame is simply
copied into the current frame. Word Transition is a “switching parent” to Word because its
value changes the type of conditional probability table that Word uses. This is indicated by
the dotted arrow from Word Transition to Word. There are both straight and wavy arrows
between the Word variables since this relationship can be either deterministic or random.
Word Transition itself is always deterministic. It is “true” when State Counter has iterated
through the entire sequence for the current word and “false” otherwise. The triangle structure
behaves as before, but with two modifications so that it can handle more than one word.
First, State is conditioned on Word as well as State Counter so that its value can change for
different words. Second, State Counter has Word Transition as a parent so that the count can
be reset to 0 whenever the end of a word is reached.

The third speech recognition graph is given in Fig. 12. This graph uses two symbol se-
quences that are allowed to be asynchronous. An example use for this graph is a speech
recognizer that uses both audio data of a person’s voice and video data of a person’s lip
movements. Lip movements tend to anticipate the voice so it can be useful to model au-
dio and video with separate symbol sequences that are allowed to start and end at different
times. This graph differs from Fig. 11 primarily in that it has two triangle structures. The
first triangle is composed of the variables State Counter 1, State Transition 1, State 1 and
Observation (Obs.) 1. The second is composed of the variables State Counter 2, State Tran-
sition 2, State 2 and Observation (Obs.) 2. The other difference is that Word Transition is
only “true” when both triangle structures reach the end of their sequences.

7.4 Real world graphs

The final set of graphs is the following 10 real-world dynamic Bayesian networks:

— Aurora Decoding—whole word model for speech recognition, Fig. 11 (Bilmes et al.
2001).

— Edit Distance training 1, 2, decoding—Ilearns edit distance parameters from data (Filali
and Bilmes 2005).

@ Springer

Mach Learn (2011) 84:249-289 273

Word
Transition
State
Counter 1
State
Transition 1

)
State
Counter 2
State
Transition 2

O

Fig. 12 Dynamic Bayesian Network for speech recognition using two synchronous symbol sequences. Sim-
ilar to the graph given in Zhang et al. (2003). Wavy arrows are probabilistic dependencies, solid, straight
arrows are deterministic dependencies, and dotted arrows are switching dependencies. Shaded nodes are
observed variables, unshaded nodes are hidden variables

— Feature Detect—extracts phonetic features from speech data (courtesy of Simon King).

— Image Concept Detect—for image classification (courtesy of Brock Pytlik).

— Mandarin—speech recognition graph modeling Mandarin Chinese tonal phones using
asynchronous spectral and pitch feature streams (Lei et al. 2005).

— MultiStream—speech recognition training graph with asynchronous feature streams,
Fig. 12, based on the graphs used in Zhang et al. (2003) and Subramanya et al. (2004).

— PhoneFree 1, 2—isolated word pronunciation scoring using a phone-free model (cour-
tesy of Karen Livescu).

The set of triangulation methods and timings are the same used for the randomly gen-
erated DBNs. The real-world graphs were also re-templated in the same manner, and the
results are again the average amount of time in seconds to compute the probability of evi-
dence per 100 frames. The results are given in Tables 5 and 6, and the range of results for
each method can be seen in Fig. 13.

On the real-world DBNSs, significant improvement was seen on 4 of 10 graphs with 2 of
these more than doubling in speed. These improvements were larger than what was seen on
the randomly generated DBNs. One reason is that the interfaces on real-world graphs tend
to be smaller on these human-designed graphs than on the randomly generated interfaces.

On this set of graphs, locally-optimal-extra performed very well on its own. Recall that
it performed poorly on the non-dynamic randomly generated graphs and gave average per-

@ Springer

274

Mach Learn (2011) 84:249-289

Table 5 This table gives results for real-world DBNs. All scores are based on the amount of time in seconds
to compute 100 DBN frames. ‘% Fail’ gives the percentage of triangulation attempts where the time or
memory limit was reached before the probability of evidence frame could computed for one frame. ‘u £ o’
is the mean and variance of the (non-failing) times. The median is over all attempts, and if more than half
of the triangulations failed no median is given. Finally, ‘Best’ indicates the smallest time for all triangulation
attempts. Various ratios of times are given, and the last row tells if elimination could have produced the best
(or indistinguishably close to best) overall triangulation (Bartels and Bilmes 2006)

Aurora Edit Dist. Edit Dist. Edit Dist. Feature
Decode Train 1 Train 2 Decode Detect
Once % Fail %0.0 %2.0 %20.3 %17.8 %0.0
nto 0.940.1 36.5+36.1 39.24+13.1 1240.0+£2714.8 618.54+293.1
Median 0.9 36.0 36.1 96.5 576.4
Best 0.8 11.0 30.6 24.4 378.8
Elim. % Fail %0.0 %5.9 %8.3 %4.7 %22.3
nto 1.3+£5.1 18.5+79.7 83.4+294.6 264.4+1144.4 495.9+222.7
Median 0.8 11.7 40.5 28.8 527.7
Best 0.2 2.8 4.6 1.0 12.2
All % Fail %0.0 %38.8 %85.0 %88.7 %39.8
nto 04+1.3 11.4+£359 57.5£366.1 221.8+784.7 646.9+216.7
Median 0.2 6.6 - - 1011.5
Best 0.2 2.8 6.2 1.0 212.9
Samp. % Fail %0.0 9%6.0 %34.4 %27.3 %61.1
nto 144+10.1 11.5+9.8 356.3+1065.6 387.7+£1145.8 464.6+518.9
Median 0.2 10.6 256.7 193.4 -
Best 0.2 2.8 4.8 1.0 18.2
Some % Fail %0.0 %3.9 %66.0 %66.2 %8.8
nto 0.3+£0.9 199+133.1 2894522 117.6 £462.1 108.3+192.0
Median 0.2 6.8 - - 31.1
Best 0.2 2.8 6.2 1.0 12.7
L.O. % Fail %0.0 %4.1 %55.7 %55.5 %30.5
nto 04+14 9.1£3.9 298.1+1272.3 102.4+387.0 140.7+£267.0
Median 0.2 7.3 - - 130.1
Best 0.2 2.8 4.5 1.0 8.9
Best once/Best extra 5.02 3.94 6.75 25.14 42.39
Median elim./all 4.17 1.77 - - 0.52
Median elim./samp. 3.80 1.10 0.16 0.15 -
Median elim./some 4.30 1.72 - - 16.94
Median elim./L.O. 3.77 1.59 - - 4.06
Best elim./Best extra 1.16 1.00 1.01 1.00 1.37
Best Is Elim. no yes yes yes no

@ Springer

Mach Learn (2011) 84:249-289

275

Table 6 This table gives the second half of the results for the randomly generated DBNs. The first half of
the results along with an explanation of the table is given in Table 5 (Bartels and Bilmes 2006)

Image Mandarin Multi- Phone Phone
Detect Stream Free 1 Free 2
Once % Fail %0.0 %42.6 %0.0 9%0.0 %25.4
nto 44.0+1.6 129402 64+26 49404 34.6+10.9
Median 435 13.1 5.6 5.0 45.1
Best 41.9 12.6 52 3.5 9.8
Elim. % Fail %4.9 %34.0 %3.8 %15.7 %18.4
nto 48.61+-49.9 12.84+10.1 204+118.7 138.51+1062.8 106.8 +1081.5
Median 424 12.9 5.5 4.8 29.6
Best 28.5 6.8 3.0 2.2 4.2
All % Fail %74.8 %3.3 %1.2 %80.3 %54.1
nto 48.51+86.9 84+55 9.1+£59.0 768.7+2749.0 517.9£2020.7
Median - 7.6 39 - -
Best 29.2 74 3.6 3.7 1.9
Samp. % Fail %22.4 %12.7 %4.2 %44.7 %53.5
nto 102.4+63.7 10.1+8.9 19.2+71.2 1822.1+£2737.6 2145.6+3351.7
Median 123.7 9.6 5.7 4633.9 -
Best 29.1 6.8 3.0 6.5 334
Some % Fail %2.9 %4.1 %2.6 %35.5 %36.5
nto 327.84+228.8 83+3.6 3424754 165.8+1371.0 169.9 +1607.4
Median 356.0 7.6 10.7 14.3 27.7
Best 29.2 7.4 3.0 2.5 3.5
L.O. % Fail %9.2 %2.5 %0.8 %38.1 %38.1
nto 45.7+£20.2 8.0+£34 5.34+14.0 61.14+262.2 23.2+4.7
Median 429 7.0 3.6 39.2 23.9
Best 28.8 6.8 2.9 1.0 24
Best once/Best extra 1.46 1.86 1.78 3.57 5.11
Median elim./all - 1.70 1.41 - -
Median elim./samp. 0.34 1.34 0.96 0.00 -
Median elim./some 0.12 1.70 0.51 0.34 1.07
Median elim./L.O. 0.99 1.84 1.51 0.12 1.24
Best elim./Best extra 0.99 1.00 1.02 2.29 2.21
Best Is Elim. yes yes yes no no

formance on the randomly generated DBNs. One explanation for this is that many of the
real-world graphs have deterministic variables with much larger cardinalities than the sur-
rounding random variables. Another is that the logical structure in the real world graphs
favors the more obvious locally optimal triangulations.

@ Springer

276 Mach Learn (2011) 84:249-289

10 :

©once

= = =sampled—extra

—— some—extra
all-extra

—— elimination
locally—optimal—extra

‘‘‘‘‘ best—extra

For each graph, # times slower than best

100 L L - P
1 2 3 4 5 6 7 8 9 10
Rank of the graph

Fig. 13 This figure compares the performance of the four extra-elimination methods and elimination on
randomly generated graphs. For each graph, the best time for each method was normalized by the best overall
time for the graph. The results for each method were then sorted. The vertical axis gives the number of times
slower the triangulation was compared to the best for the graph. The horizontal axis is an index indicating
the nth best graph for the method. ‘best-extra’ is the best of all-extra, some-extra, locally-optimal-extra, and
sampled-extra. ‘best-extra’ has a value of 1(10%) until its tenth graph

7.5 Discussion

These results demonstrate empirically that non-minimal triangulations produced with the
extra-elimination heuristics can give significant performance gains over state of the art elim-
ination triangulations. The various extra-elimination heuristics gave different results for dif-
ferent tasks. They had, by far, the largest effect on the first set of randomly generated graphs.
Only small improvements were seen on the randomly generated DBNS, but significant gains
were seen on the real-world DBNs. In practice the best results will be obtained by using a
variety of heuristics and comparing their performance.

8 Alternative methods for mixed stochastic/deterministic graph triangulation

Extra-elimination with pre-triangulation ancestral edges is just one possible way to produce
non-minimal triangulations. In this section we present some alternatives.

A scheme for producing a class of non-minimal triangulations, called super-cluster-trees,
was introduced in Dechter and Fattah (2001) for the purpose of finding junction trees with
small separator sizes. This algorithm collapses adjacent junction tree nodes that have large
separators until the maximum size of the separators falls to an acceptable level. This algo-
rithm, although useful for its intended purpose of minimizing separator size, cannot form
all possible triangulations. For example, the triangulation in Fig. 4(d) cannot be formed by
merging the junction tree nodes from the triangulations in Figs. 4(a), 4(b), or 4(c). Simi-
larly, one can reduce separator size using a super-bucket-tree created by eliminating a group
of variables at once (Dechter 2003). This algorithm can also create some non-minimal tri-
angulations but cannot be used to create Fig. 4(d). Certain junction tree cliques were also

@ Springer

Mach Learn (2011) 84:249-289 271

combined in Olesen and Madsen (2002) for the purpose of finding the maximal prime sub-
graph decomposition of Bayesian networks, but this decomposition was intended for use in
approximate inference, a pre-processing step for divide and conquer triangulation, or incre-
mental junction tree construction.

One could find optimal triangulations by adding extra edges to a graph after a triangula-
tion is produced by elimination. The disadvantage of this is that adding these edges might
cause the graph to become untriangulated. The super-cluster-tree algorithm is an instance
of post-elimination edge addition and could be extended with additional junction tree ma-
nipulations to create arbitrary triangulations (a similar algorithm was proposed in Draper
1995 for forming triangulations). To devise such an algorithm one would have to consider
operations that cover all desirable triangulations, keep the graph triangulated, and take into
consideration that there might be many junction trees for a given triangulation.

Another alternative is to begin with a seed triangulation and then refine it by changing
it one edge at a time. This scheme is based on the following theorem (Lauritzen 1996;
Bartels et al. 2005):

Theorem 10 Given any two triangulations of a graph, T,(G) and T, (G) there is a sequence
of triangulated graphs T,(G), T\ (G), T>(G), ..., T,(G) with only a single edge difference
between subsequent graphs in the sequence.

This was used for a genetic search by these authors in Bartels et al. (2005), but could
be used as a basis for many types of stochastic search. One could also use this concept in a
heuristic search that begins by adding all possible fill-in edges and then removes them until
some stopping condition is reached, or a method that begins with elimination and adds edges
one at a time.

8.1 Node connected extra-elimination

Next, we present an Extra-Elimination based algorithm that we call Node Connected Extra-
Elimination. Extra-elimination allows extra edges to be added at any point during the elim-
ination process, but the method given in Sect. 6.2 only added edges before any elimination
was performed. Alternatively, one could eliminate several vertices and then add edges to the
remaining graph, eliminate more vertices, and repeat. The following theorem states that the
same triangulation will result regardless of when the extra edges are added (with the restric-
tion that one is not allowed to add extra edges to a vertex that has already been eliminated).

The following theorem defines this idea more precisely by defining a sequence of extra
edge sets Hy),i = 1...|V|. The theorem says that you can move edges between the sets
H,) to form a new sequence of extra edges .7¢,;) i = 1...|V| as long as: 1) an extra edge
is not connected to a node that has already been eliminated; 2) the two sequences contain the
same set of non-redundant ancestral edges. The basis of the proof is that when one eliminates
a node v the deficiency only depends on the neighbors of v (with respect to both the original
graph edges and new edges in H that are adjacent to v), so an extra edge will not effect the
elimination fill-in until one of the vertices it is connected to is eliminated. The full proof is
given in Sect. A.4.

Theorem 11 We are given a graph G = (V, E), elimination ordering o, sets of extra edges
Hyiy,i=1...V|with H= Ul.‘;‘l Hy i, extra-elimination graph &, y(G) = (V,EU H U
F), and redundant extra edges H, C H. We define a new set of extra edges) i =
1...|V]| with € = ULZ‘I Gy and with redundant edges F€ such that H \ H, = 7€ \

@ Springer

278 Mach Learn (2011) 84:249-289

(9 () (a)
/ / \
/ / \

® 0 !)
Iy [
| |

(©) O (@)
X X
\ \

(a) Original graph (b) Elimination based (c¢) Optimal triangula-
which is already non-minimal triangula- tion, not obtainable by
triangulated. tion elimination.

Fig. 14 Example of non-minimal triangulation for an undirected graph. Each edge in the graph represents
the constraint that the variables it connects must be equal. Solid lines are original graph edges and dashed
lines are fill-in edges

FE. and all edges in F€ satisfy the definition of an extra edge with respect to graph G' =
(V, EUF) (thatis ¥ (uy, u3) € J6,, uy # uz, (u1,uz) ¢ EUF, 0~ '(v) <o '), 0™ (v) <
a~Y(uz)). Under such conditions, it is the case that &, 1 (G) = &, 2 (G).

This theorem is the basis for Node Connected Extra-Elimination. At each elimination
step, one chooses a node to eliminate and a (possibly empty) set of extra edges that are
connected to the node. This algorithm will never consider adding extra edges that are not
connected to the vertex that is about to be eliminated. The proof of the following is given in
Sect. A.4:

Theorem 12 Node Connected Extra-Elimination can produce any triangulation.

The following theorem tells us that all of the extra edges added during Node Connected
Extra-Elimination will be non-minimal in the final graph. This is a guarantee that if addi-
tional edges are added the search will span the space of non-minimal triangulations. Again,
the proof is in Sect. A.4.

Theorem 13 In extra-elimination, if an extra edge is added to a node just before the node
is eliminated then the extra edge will be non-minimal. In other words, all (u,v) € H, are
non-minimal.

If we limit the extra edges to those that are ancestral, it follows directly from Theorem 8
that the state space optimal triangulation is in its search space. It follows directly from
Theorem 11 that the algorithm can generate any triangulation that can be generated using
the pre-triangulation heuristics from Sect. 6.2.

9 Undirected models
So far we have discussed how non-minimal triangulations and ancestral edges can be useful

for improving the efficiency of inference in directed networks. This concept can easily be
extended to undirected networks. Undirected models can generalize directed models, and

@ Springer

Mach Learn (2011) 84:249-289 279

all of the previous discussion applies directly when a variable in an undirected model is a
deterministic function of a subset of its neighbors. Although such a situation is plausible,
symmetric constraints between neighbors are more typical in undirected models. A simple
example is a constraint that forces a set of variables to be equal. Similarly, one might have a
constraint that a set of N particular variables must sum to a constant. In this case, knowing
N — 1 of the variables in the relationship will allow you to determine the value of the last
variable.

Suppose we are given a constraint over a set of variables, X, ..., X,,. If it is the case that
knowing the values of some of the variables in X, ..., X,, gives us the value of the other
variables, then all of the variables in X1, ..., X, can be seen as being deterministic. All of
the variables in X1, ..., X, also play an analogous role to parent variables in the directed
case. Recall that ancestral edges in directed graphs connect the parents of a deterministic
variable D to non-parent neighbors of D. Similarly, we can say that an ancestral edge is one
that connects a variable in Xy, ..., X, to a neighbor of a different variable in X, ..., X,,.
Next, we give definitions for deterministic variable and ancestral edge that work for both
directed and undirected models.

A more general definition of a deterministic variable is as follows. Suppose we have a
probability distribution of the form:

1
rXe) = [] faXc)

C,-e‘to”

Z= Z Z 1_[fc,-(xc,-)

XieXg x€X; Cie€

Where X is the set all variables, C; are clique functions, and X¢, is the set of vari-
ables in the clique C;. A variable D € X is deterministic if there exists a function
fc’.(D, Xl, ...,Xn) where fC[(D :dk,Xl = X1, ...,X,, :)C,,) 750 and fCi(D ;édk,Xl =

X1, ..., Xy, = x,) =0 for all assignments to the variables X; = xy, ..., X,, = x,,. The value
of D = d; can be different for different assignments to Xy, ..., X,.
In the directed case, X1, ..., X, are the parents of D and f¢, is a conditional probability

table that equals 1 for values of D that are consistent with a deterministic function of D’s
parents and 0 elsewhere. Note that when the function is one-to-many this definition does not
result in the parent variables being named as deterministic. The function f¢, can also be a
symmetric constraint. For example, if we are given a constraint that says that X; = X, = X3
then fc, is a function that is non-zero for assignments where the constraint is met and zero
elsewhere. The definition would mark all three of X, X,, and X3 as deterministic.

We can now generalize the definition of ancestral edge. Given the function fc, (D, X1,
..., X,) that defines the variable D as deterministic and a set of edges E defined by the
clique functions of p(X), the ancestral edges are:

{(U,V)€EI(U,D)e E,Ue{Xy,....X,},(D,V)EE,V ¢{Xy,..., X,}}

In the directed case, X1, ... X,, are the parents of D, and this definition states that U is a
parent of D and V is a non-parent neighbor of D. This is the same as in Definition 6. Note
that this now generalizes to symmetric constraints in undirected models. Given the example
where X| = X, = X3, an edge that connects X to a neighbor of X, is ancestral. In this case
X, is deterministic and X; plays the role of “parent”.

The use of ancestral edges for undirected graphs is illustrated in Fig. 14. In this graph,
each pair of variables connected by an edge is constrained to be equal. Once we know one

@ Springer

280 Mach Learn (2011) 84:249-289

of the variable values, we know the other three with probability 1. Suppose the state space
of each variable is 7. In the original graph given by Fig. 14(a) we have three maximal
cliques. Because of the constraints, each maximal clique has a state space of 1 giving a total
state space of 37n. In Fig. 14(b) we have a triangulation that is obtainable by elimination
that reduces this to 27. Finally, Fig. 14(c) gives the optimal triangulation with state space
n which is not obtainable using elimination. In this example of symmetric constraints the
improvement is a function of the number of variables in the graph. In the undirected case
the improvement from making use of ancestral edges was unbounded, as in Fig. 4.

10 Conclusion

This paper has shown that large clique triangulations can be computationally useful on
graphs containing deterministic variables. An example was given where the optimal trian-
gulation has a state space that is arbitrarily smaller than all elimination based triangulations.
An algorithm was presented to determine if a triangulation could have been generated using
elimination, and it was shown that the generalized triangulation problem is NP-complete.
Extra-elimination was introduced as a framework for producing any triangulation, and it
was proven that extra edges can be limited to the ancestral edges when optimizing for state
space. Novel heuristics based on ancestral edges were presented and results were given on
randomly generated and real world graphs. It was also shown how non-minimal triangu-
lations can be applied to undirected models with symmetric constraints. Future work will
include a joint search for triangulation and within-clique dynamic variable orderings for use
in hybrid inference/search procedures.

Acknowledgements This work was supported by ONR MURI grant N000140510388 and by NSF grant
11S-0093430.

Appendix
A.1 Elimination is state-space optimal in positive graphs

Lemmal Let G = (V, E) and G' = (V, E’) both be triangulated graphs with E' C E and
|E\ E’| = k. Then there is an increasing sequence G' = G C --- C Gy = G of triangulated
graphs that differ by exactly one edge (Lauritzen 1996, Lemma 2.21, p. 20)

Lemma 2 Consider a graph G = (V, E) with any two distinct maximal cliqgues C, and
C,. There exists nodes w; and w, such that w; € Cy, wy € Cy, wy ¢ Cy, wy ¢ Cy, and
(wy, wy) ¢ E.

Proof Suppose the lemma is not true, then all w; € C;\ C; are connected to all w, € C,\ C;.
Because C; is maximal, there cannot exist v € V' \ C; such that V w, € C;, (w;, v) € E. This
implies that C; \ C, = #J, and we have a contradiction because C; is also a maximal clique
and since distinct must have at least one vertex that is not in C,. O

Lemma 3 Consider a non-minimally triangulated graph T (G) = (V, EUF), i.e., where an

edge (u,v) € F exists such that T'(G) = (V, EU (F \ {(u, v)})) is also triangulated. There
is only one maximal clique in T (G) containing both u and v.

@ Springer

Mach Learn (2011) 84:249-289 281

Proof Assume the contrary, so there is more than one maximal clique in 7 (G) contain-
ing u and v. We choose two distinct maximal cliques C; and C, both containing u and
v, and choose vertices w; and w; such that w, € Cy, wy € Cy, wy ¢ Co, wy ¢ Cy, and
(wy, wy) ¢ EU F. There will be a cycle in T'(G), u — w; — v — w, — u, and because 7' (G)
is triangulated this cycle must have a chord. Nodes w; and w, are not connected so « and v
must be connected, but this is a contradiction because 7' (G) does not contain edge (u, v). (]

Lemma 4 Consider a non-minimally triangulated graph T(G) = (V, E U F), i.e., where
there exists an edge (u, v) such that T'(G) = (V, EU(F \{(u, v)})) is also triangulated. Say
that C is the unique maximal clique in T (G) that contains both u and v and all variables in
this clique are stochastic (i.e., not deterministic). In T'(G), C will be split into the cliques
C, = C\{u}and C, = C\ {v}. Define c as the state space of the clique C \ {u, v}. If C, and
C, are maximal cliques in T'(G) the difference in state space S(T'(G)) — S(T(G)) will be
c(lul + |v| = |ul|vl). If C, is a subset of another maximal clique in T'(G) the difference will
be (1 — |u|)c|v|, if C, is a subset of another maximal clique, it will be (1 — |v|)c|u|, and if
both are subsets of their respective maximal cliques it will be —c|u||v|.

Proof The cliques not containing both u and v will be unaffected by the edge removal. The
state space of C is c|u||v|, and the state spaces of C, and C,, (if they exist) are c|v| and c|u|
respectively. d

Lemma 5 Given a graph G = (V, E) where all variables are stochastic (i.e., not deter-
ministic) with cardinality > 2, a triangulation that is state space optimal and minimal will
exist.

Proof Suppose we have a non-minimal triangulation 7'(G) and remove an edge (u, v) cre-
ating new triangulation 7'(G). If either of the new cliques created by the edge removal are
not maximal in 7’(G) the difference in state space will be negative (from Lemma 4 and
because |u| > 2 and |v| > 2). When both cliques are maximal, the state space difference
is c(lu] + |v| — |u||v]), again negative. From Lemma 1, when considering the increasing
sequence in reverse, we can create a decreasing sequence of graphs from any non-minimal
triangulation to some minimal triangulation, and the state space of each graph in the se-
quence will be less than or equal to the previous graph. Hence, any non-minimal triangula-
tion will have a spanning subgraph that is a minimal triangulation with a smaller or equal
state space. |

Theorem 4 Given a graph G = (V, E) where all of the variables are stochastic and have
state space > 2, some elimination graph of G will have optimal state space.

Proof By Lemma 5 a triangulation exists that is state space optimal and minimal, and by
Theorem 3 it is achievable using elimination.]

A.2 isEliminationGraph (Algorithm 1)
Theorem 14 Let G = (V, E) be a graph, a be an elimination ordering, and &, = (V, EUF)
be the graph where G is eliminated according to o. Then (v, w) € E U F if and only if there

exists a chain [v, vy, v, ..., v, w] in G such that @' (v;) < min(e~'(v), e " (W)) Vi =
1...k (Rose et al. 1976, Lemma 4).

@ Springer

282 Mach Learn (2011) 84:249-289

The following lemma is assumed by Ohtsuki et al. (1976) but never proven, and a similar
lemma for triangulated graphs and strict inclusion is given in Rose (1970, Lemma 3).

Lemma 6 Consider graph G, = (V, E) which is a spanning subgraph of Gg = (V, E U
Ep). If both graphs are eliminated according to ordering a creating £,(G) = (V, EU Fy)
and £,(Gp)=(V,EUEgU Fg), then Fy C (Eg U Fp).

Proof The lemma is clearly true for one vertex. Now assume it is true for G4, Gp, and
ordering & with N vertices, and consider graphs G 4/, G/, and ordering «’ all with N + 1
vertices. These graphs can be defined as £, (G) = (VU@ (1), EUEy UF,U Dg,, (a(1)))
and £/(Gp) = (VUa'(1), EUER U Ep U FgU D¢, (a(1))) where Eg = {(u,v) € Gy :
v=a(l)}and Ep ={(u,v) € Gp : v=a(1)}.

G4 is a spanning subgraph of Gy so by definition (E U E4) € (E U Eg U Ep/).
By definition we also know that NEg ,, («(1)) € NEg,, (2(1)), so we can conclude that
Dg ,, (@(1)) € Dg,, («(1)). From the induction hypothesis we know that Fy € Fp. There-
fore, (EU Ea U FaU Dg , (a(1))) S(EU EpU Ep U F U Dg, (a(1))). O

We supply one more lemma before proving the correctness of isElimination-
Graph. This lemma shows that in the case where 7'(G) is an elimination graph of G, a
node is simplicial in 7(G), and the node has the same neighbors in G and 7 (G), then we
can chose this node as the first node of an elimination order.

Lemma 7 We are given a graph G = (V, E) and a triangulation T(G) = (V, E U F).
Suppose F can be generated by some elimination order o, and where there exists k such that
a(k) is simplicial in T(G) and NEg (c(k)) = NE7 () (e (k)). Then, the order B with (1) =
ak), (2) =a(l),BB) =a®2),.... k) =ak = 1), pk+ 1) =ak+1),..., (V] =
a(|V|) will also generate F.

Proof Consider eliminating nodes in the already triangulated graph 7 (G) according to or-
der B. a(k) is simplicial in T (G) so eliminating it will not add edges to T (G). Moreover,
a(1) is simplicial in T(G), so it will still be simplicial in (7' (G))q k). Continuing with the
nodes in B in turn, foreachi =2, ..., k—1,k+1,...,|V], «(i) will not have any neighbors
in T(G) that it does not also have at the corresponding point when, according to «, it is elim-
inated from T (G). Therefore, § is a perfect ordering of 7' (G). Define £4(G) = (V, E U Fp)
where Fy are the fill-in edges produced when eliminating G according to 8. G is a spanning
subgraph of T'(G) so if we eliminate both 7(G) and G according to 8, from Lemma 6,
FgCF.

We wish next to show that Fg = F. Suppose to the contrary that there is some edge
(v,w) € F but (v,w) ¢ Fg. This edge cannot be adjacent on the node «(k) (mean-
ing v, w # a(k)) because NEg(a(k)) © NEg;) (a(k)) € NE7(G)(a(k)) = NEg(a(k)).
Define S, = {u € V : e '(u) < min[e~'(v),e”'(w)]} and Sg ={u eV :B7'u) <
min[8~!(v), B~ (w)]}. Clearly, if k < min[e~!(v), " (w)] then S, = Sp, and if k >
min[e ! (v), e~ (w)] then S, = Sg \ {«(k)}. From Theorem 14, there is a path in G,
[v, v, v, ..., v, w], where a(v;) € S,,Vi =1...1. But since (v, w) ¢ Fg, no such path
[v, v, v2, ..., vy, w] exists in G such that B(v;) € Sg, Vi =1...m. This, however, is a con-
tradiction since S, C Sg. Therefore, we must have that (v, w) € Fg. Therefore, Fg = F. [

Theorem 15 isEliminationGraph will return true if and only if F can be generated
by some elimination order «.

@ Springer

Mach Learn (2011) 84:249-289 283

Proof First we will show that if the algorithm returns frue then 3 « such that &, = T(G).
The proof is by induction on |V|. The theorem obviously holds for |V | = 1, assume it is
true when |V| = N — 1, and consider a graph where |V| = N. The first node chosen by
the algorithm is v. We have assumed that the algorithm returns true on the pair (G, T (G)),
so it must also return true on (G,, (T(G)),). From the induction hypothesis there exists
és(6,) = (T'(G)), so we construct elimination ordering o by concatenating v to the front of
ordering 8. NEg (v) = NE7(g) (v) so NEg,) (v) = NEr(g)(v). From the induction hypoth-
esis, the same holds for all other vertices, V \ {v}.

Next we show that if there is some elimination order « that generates F, or &, = (V, EU
F), then isEliminationGraph will return true. This will also be proven by induction
on |V|. The theorem obviously holds for |V| = 1, assume it is true when |V| =N — 1,
and consider a graph where |V| = N. From Lemma 7, we can create an order § where
some node, «(k), that is simplicial in 7(G) and NEg (¢ (k)) = NEr) (a(k)) is eliminated
first. Note that o(1) will be simplicial in 7(G) and NEg («(1)) = NE7 () (e (1)), so at least
one (k) will always exist. When the elimination graph G, is eliminated in the order
B without considering « (k) it will generate T (G)q), and from the induction hypothesis
isEliminationGraph will return true. O

We conclude this section with an analysis of the complexity of isElimination-
Graph. The graphs G and T (G) can be defined using adjacency matrices. First, consider
the complexity of a single call to the algorithm. There are three tasks that might depend on
the size of the input graph: (1) finding the simplicial nodes of T (G), (2) determining if a
simplicial node has the same neighbors in G and in 7 (G), (3) eliminating the node from
the graph. As a first step we create a list of maximal cliques that exist in 7(G). This list
is useful because a node is simplicial if and only if it is a member of exactly one maximal
clique. Each maximal clique can be represented by an array of binary indicators for each
node in the graph. Using maximal cardinality search (Tarjan and Yannakakis 1984) to find
a perfect ordering, the list of maximal cliques can be created in O(|V|?) (this can also be
done in O(|V |+ |E|) time using a Fibonacci heap). An O (] V) loop is used to examine the
vertices for membership in A. In practice one only needs to find a single vertex in A, but all
of the vertices might need to be examined before finding it. Nested inside this loop are the
two checks for membership in A. To determine if the current node is simplicial one must
check its membership in O (| V|) maximal cliques. One can check that the node has the same
neighbors in G and T(G) in O(|V|) by iterating through a row in the adjacency matrices.
To eliminate the chosen node, first we connect its neighbors in G which takes O (|V|?) time,
and then we build new adjacency matrices which takes O(|V|?) time. All three tasks are
O(]V|?), and we recurse O(]V|) times which brings the complexity to O (|V]?).

A.3 MAXSTATESPACE is NP-complete
Theorem 5 The MAXTRI problem is in NP for all polynomial f(G, I).

Proof The following program can verify a member of MAXTRI with a choice of fill-in F:
V ="Oninput (V,E, I, F,a):

1. Build the graph G = (V, EU F)
2. Check if G is triangulated
3. If f(G,I) <« accept; otherwise reject”

@ Springer

284 Mach Learn (2011) 84:249-289

The size of F is < |V, testing if G = (V, E U F) is triangulated can be done in polyno-
mial time (Rose et al. 1976; Tarjan and Yannakakis 1984), and testing that f(G,) < « is
polynomial time by definition. O

Definition 7 MAXTREEWIDTH = {(G = (V, E), k) | G has treewidth < k}.
Theorem 16 MAXTREEWIDTH is NP-complete (Arnborg et al. 1987).
Theorem 6 MAXSTATESPACE is NP-complete.

Proof First it is shown that MAXTREEWIDTH is polynomial time reducible to MAXS-
TATESPACE. A graph with tree-width k has a maximum clique size of k 4+ 1 and when
it has no deterministic variables and all variables are of the same cardinality |v|, the state
space of the maximum clique will be |v|**!. Suppose we are given an instance of MAX-
TREEWIDTH with graph G and parameter k. We construct an / assigning each vertex in G
a cardinality of | V| (i.e., the cardinality of each node is equal to the number of nodes in the
graph), and define no vertex as being deterministic. If the tree-width of G is at most k, since
there are no more than |V| — 1 maximal cliques in G, the graph cannot have a state-space
larger than (|V| — 1)|V |[**1. If on the other hand the tree-width of G is strictly larger than k,
the smallest possible state space for G would be |V |2 > (|V| — 1)|V|¥*!. Therefore, the
tree-width of G is at most & if and only if MAXSTATESPACE(G, I, |V [**?) accepts.

Next, the maximal cliques of a triangulated graph can be found in polynomial time
(Gavril 1972, Sect. 2), and given the maximal cliques the state space can be calculated
in polynomial time, so this satisfies Theorem 5, which implies that MAXSTATESPACE is
in NP. Therefore MAXSTATESPACE is NP-complete.]

A.4 Extra elimination
Theorem 7 Extra-elimination can create any triangulation.

Proof To obtain an arbitrary 7(G) = (V, EU F), add F as extra edges and eliminate ac-
cording to some perfect elimination order.]

Theorem 11 We are given a graph G = (V, E), elimination ordering o, sets of extra edges
Hyiyoi = 1...|V| with H =Y\ H,q), extra-elimination graph &, 4 (G) = (V,E U H U
F), and redundant extra edges H, € H. We define a new set of extra edges 7€, i =1...|V|
with 7€ = Uli‘l Iy and with redundant edges F¢, such that H \ H, = € \ ¢ and all
edges in F€ satisfy the definition of an extra edge with respect to graph G’ = (V, EUF)
(that is N (uy, uz) € F6), uy #uy, (ur,u2) ¢ EUF, a7 (v) <a™'(u), ™' (v) <™ (u2)).
Under such conditions, it is the case that &, 1 (G) =&y, 2 (G).

Proof The theorem will be proven by induction on |V|. It is obviously true for |V| =1,
assume it is true for |V| = N — 1, and consider the case where |V| = N. We define the sets
Hy = {(u,v)|(u,v) € Hyqy, u = a(l)} and H, = Hy) \ H,. The edges in H, cannot be
redundant because «(1) is the first node eliminated and cannot gain any neighbors except
through H,(1y. We have that H, C 4%, because H \ H, = S \ ¢, and one cannot add
edges to a(1) after it is eliminated (if an edge in H; was in some other %) this would
not be a legal extra edge). When «(1) is eliminated the fill-in edges that will be added depend
only on N Eg(a(1)) and Hi, so we have N Eg, , (a(1)) = NEg, ,» (a(1)). The fill-in created

@ Springer

Mach Learn (2011) 84:249-289 285

from the elimination of (1) will not be effected by edges in H..;, so we can move all of H_,
from H, (1) to Hyp). To see this note that we will have an equivalent graph if we add H, (),
eliminate (1), and add H, (), or if we add Hy 1) \ Hx1, eliminate (1), and add Hy o) U Hy .
Note that some edge in H.; might be added by the elimination of (1), but such edge is
redundant and can simply be removed from H. Similarly we can move %, \ H, from
F) 10 FE). After adding H, and eliminating «(1) we have a graph with |[V|=N — 1
vertices and our newly formed H,.7¢ meet the conditions of the theorem, so we can use the
induction hypothesis to complete the proof.]

Theorem 12 Node Connected Extra-Elimination can produce any triangulation.

Proof One can produce any triangulation by adding all of the fill-in edges and then eliminate
using a perfect elimination order. From Theorem 11 we will get the same triangulation
regardless of if the extra edges are added before any nodes are eliminated or if they are
added at later steps of Extra-Elimination.]

Theorem 13 In extra-elimination, if an extra edge is added to a node just before the node
is eliminated then the extra edge will be non-minimal. In other words, all (u,v) € H, are
non-minimal.

Proof Suppose extra edge (u,v) chords some four cycle v, n;,u,ny, v. We know that
o '(v) < o~ '(u) because (u,v) cannot be added after u is eliminated, and o~ !(v) <
a~'(ny), o' (v) < @~ '(ny) or (u, v) would exist from the elimination of n; or n, and could
not be in H,. When v is eliminated it is already neighbors with n; and n, because it cannot
gain any neighbors after it is eliminated. The elimination of v will connect n; and n, and
the cycle will be chorded without (u, v). O

A.5 Ancestral edges

Lemma 8 Consider a graph G with node cardinalities > 2 and triangulation T (G). Sup-
pose an edge (p, ¢) is added to form triangulation T, (G). If S(T,.0,(G)) < S(T (G)) then
(p, ¢) is ancestral with respect to some deterministic node D.

Proof From Lemma 3 there is only one maximal clique, C in 7,,,,(G) that contains both
p and c. In T(G), there will be maximal cliques C,, C. such that p € C,, and c € C..
Since the state space of cliques not containing p or ¢ will not be changed by the edge
addition we only consider C, C,, and C.. All three of C, C,, C. cannot all be maximal
cliques in 7., (G) because S(7,..,(G)) < S(T(G)). Therefore, one or both of C,, C, are
not maximal cliques in 7,,.,,(G), and one of C, and C. have a larger state space than C.
Without loss of generality, we say that S(C.) < S(C). Because C. C C and S(C.) > S(C),
we know there must be some deterministic variable D such that D € S.. We also know that
there is some variable set P such that p(D =d, P, = Py, ..., P, = p,) = 1. It must be the
case that P\ C. # @ and P \ C = or it would not be the case that S(C.) > S(C). Since
C =C,U{p} we know that p € P. We know that ¢ ¢ P or else (p, ¢) would already be part
of G. We know that (p, D) € EU F and (D, c) € EU F since p, D, c € C. Therefore, D is
ancestral in T},.,, (G). O

Theorem 8 Elimination with extra-elimination edge addition where the extra edges are

limited to ancestral edges is sufficient to find an optimal state space triangulation when all
cardinalities are > 2.

@ Springer

286 Mach Learn (2011) 84:249-289

Proof of Theorem 8§ We are given a graph G = (V, E) and we wish to obtain optimal state
space triangulation 7 (G) = (V, EU F). Define set A as all edges that are in F' and ancestral
in T(G). Next, construct G’ = (V, E U A). T(G) is a triangulation of G’ with fill-in F’' =
F \ A. We will next show that F’ is a minimal triangulation of G’, and because minimal
triangulations can always be created using elimination we can then conclude that 7'(G)
can be formed by adding A to G followed by elimination. Assume that this conclusion
is not true, and there is a set of edges M C F’ such that 7,,;,(G") = (V,(E U A) U M)
is triangulated. From Lemma 1 there is an increasing sequence of graphs that differ by
one edge beginning with 7,,;,(G") and ending with T'(G). State space S(T(G)) is optimal
80 S(Tin(G)) = S(T(G)). If S(T1,in(G)) > S(T(G)) at least one graph in the sequence
of graphs from 7,,;,(G’) to T(G) must have a lower state space than the previous graph.
From Lemma 8, this is a contradiction because F’ does not contain any ancestral edges.
Therefore, F’ is a minimal triangulation of G’ and 7'(G) is an elimination graph of G’. If
S(T,in(G")) = S(T (G)) we have not shown a contradiction but 7,,;,(G") is also an optimal
triangulation and is an elimination graph of G’.]

Theorem 9 [f there is an edge between all of the parents and non-parent neighbors of a
node d, then d will be a member of exactly one maximal clique and this maximal clique will
include the parents of d.

Proof We prove that d will be in one maximal clique by contradiction. Suppose d appears
in more than one maximal clique, two of these being C; and C,. Since the cliques are
maximal, there must be vy, v, such that v; € Cy, V, € C, where (v, v;) ¢ E, and we know
that (v;,d) € E, (v2,d) € E. The union of parents and non-parent neighbors of d is all of
the neighbors of d, so all of the neighbors of d form a complete set. This contradicts that
(v1, v2) ¢ E, so d must be in exactly one maximal clique. d is connected to its parents so
they are also in the maximal clique.]

References

Aji, S. M., & McEliece, J. (2000). The generalized distributive law. IEEE Transactions on Information The-
ory, 46, 325-343.

Allen, D., & Darwiche, A. (2003). New advances in inference by recursive conditioning. In Proc. of the 19th
annual conference on uncertainty in artificial intelligence (UAI) (pp. 2—10). San Francisco: Morgan
Kaufmann.

Arnborg, S., Corneil, D. J., & Proskurowski, A. P. (1987). Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic and Discrete Methods, 8, 227-284.

Bacchus, F., Dalmao, S., & Pitassi, T. (2003a). Algorithms and complexity results for #SAT and Bayesian
inference. In IEEE symposium on foundations of computer science (FOCS) (pp. 340-351).

Bacchus, F.,, Dalmao, S., & Pitassi, T. (2003b). Value elimination: Bayesian inference via backtracking search.
In Proc. of the 19th annual conference on uncertainty in artificial intelligence (UAI) (pp. 20-28). San
Francisco: Morgan Kaufmann.

Bartels, C. (2008). Graphical models for large vocabulary speech recognition. PhD thesis, University of
Washington, Seattle.

Bartels, C., & Bilmes, J. (2004). Elimination is not enough: Non-minimal triangulations for graphical models
(Tech. Rep. UWEETR-2004-0010). University of Washington.

Bartels, C., & Bilmes, J. (2006). Non-minimal triangulations for mixed stochastic/deterministic graphical
models. In Proc. of the 22nd conference on uncertainty in artificial intelligence, Cambridge, MA, USA.

Bartels, C., Duh, K., Bilmes, J., Kirchhoff, K., & King, S. (2005). Genetic triangulation of graphical models
for speech and language processing. In Proc. of the 9th European conference on speech communication
and technology (Eurospeech’05), Lisbon, Portugal.

@ Springer

Mach Learn (2011) 84:249-289 287

Berre, D. L., & Simon, L. (2005). Preface to the special volume on the SAT 2005 competitions and evalua-
tions. Journal on Satisfiability, Boolean Modeling and Computation, 2.

Bertele, U., & Brioschi, F. (1972). Nonserial dynamic programming. New York: Academic Press.

Bilmes, J., & Bartels, C. (2003). On triangulating dynamic graphical models. In Proc. of the 19th conference
on uncertainty in artificial intelligence, Acapulco, Mexico.

Bilmes, J., Zweig, G. et al. (2001). Discriminatively structured dynamic graphical models for speech recog-
nition. In Final report: JHU 2001 summer workshop.

Bodlaender, H. L., Koster, AM, van den Eijkhof, F., & van der Gaag, L. C. (2001). Pre-processing for tri-
angulation of probabilistic networks. In Proc. of the 17th annual conference on uncertainty in artificial
intelligence (UAI) (pp. 32-39). San Francisco: Morgan Kaufmann.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific independence in Bayesian
networks. In Proc. of the 12th conference on uncertainty in artificial intelligence, Portland, Oregon.

Chavira, M., & Darwiche, A. (2007). Compiling Bayesian networks using variable elimination. In Proc. of
the 20th international joint conference on artificial intelligence (IJCAI) (pp. 2443-2449).

Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model counting. Artificial Intel-
ligence, 172(6-7), 772-799.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In STOC ’71: Proc. of the third annual
ACM symposium on theory of computing (pp. 151-158). New York: ACM.

Darwiche, A. (2001). Recursive conditioning. Artificial Intelligence, 126, 5-41.

Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal of the ACM, 7(3),
201-215.

Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem-proving. Communications
of the ACM, 5(7), 394-397.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation. Artificial Intelli-
gence, 93(1-2), 1-27.

Dechter, R. (1990). Enhancement schemes for constraint processing: Backjumping, learning and cutset de-
composition. Artificial Intelligence, 41(3), 273-312.

Dechter, R. (1996). Bucket elimination: a unifying framework for several probabilistic inference algorithms.
In Proc. of the 12th annual conference on uncertainty in artificial intelligence (UAI) (pp. 211-219). San
Francisco: Morgan Kaufmann.

Dechter, R. (1998). Bucket elimination: a unifying framework for probabilistic inference. In M.I. Jordan
(Ed.), Learning and inference in graphical models (pp. 75-104). Cambridge: MIT Press.

Dechter, R. (2003). Constraint processing. San Francisco: Morgan Kaufmann.

Dechter, R., & Fattah, Y.E. (2001). Topological parameters for time-space tradeoff. Artificial Intelligence,
125(1), 93-118.

Dechter, R., & Larkin, D. (2001). Hybrid processing of beliefs and constraints. In Proc. of the 17th annual
conference on uncertainty in artificial intelligence (UAI) (pp. 112-119). San Francisco: Morgan Kauf-
mann.

Dechter, R., & Mateescu, R. (2004). Mixtures of deterministic-probabilistic networks and their and/or search
space. In Proc. of the 20th annual conference on uncertainty in artificial intelligence (UAI), Arlington,
Virginia (pp. 120-129).

Draper, D. (1995). Clustering without (thinking about) triangulation. In Proc. of the 11th annual conference
on uncertainty in artificial intelligence (UAI) (pp. 125-133).

Filali, K., & Bilmes, J. (2005). A dynamic Bayesian framework to model context and memory in edit dis-
tance learning: An application to pronunciation classification. In Proc. of the 43rd annual meeting of the
association for computational linguistics (ACL’05) (pp. 338-345). Ann Arbor: Association for Compu-
tational Linguistics. http://www.aclweb.org/anthology/P/P05/P05-1042.

Filali, K., & Bilmes, JA (2007). Multi-dynamic Bayesian networks. In B. Scholkopf, J. Platt, & T. Hoffman
(Eds.), Advances in neural information processing systems 19 (pp. 409—416). Cambridge: MIT Press.

Fishelson, M., & Geiger, D. (2004). Optimizing exact genetic linkage computations. Journal of Computa-
tional Biology, 11(2-3), 263-275.

Gavril, F. (1972). Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and
maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2), 180-187.

Golumbic, M. C. (1980). Algorithmic graph theory and perfect graphs. New York: Academic Press.

Jensen, F., & Andersen, S. (1990). Approximations in Bayesian belief universes for knowledge-based sys-
tems. In Proc. of the 6th annual conference on uncertainty in artificial intelligence (UAI), New York:
Elsevier.

Jensen, E., & Jensen, F. (1994). Optimal junction trees. In Proc. of the 10th annual conference on uncertainty
in artificial intelligence (UAI) (pp. 360-366). San Francisco: Morgan Kaufmann.

@ Springer

http://www.aclweb.org/anthology/P/P05/P05-1042

288 Mach Learn (2011) 84:249-289

Jensen, F., Lauritzen, S., & Olesen, K. (1990). Bayesian updating in causal probabilistic networks by local
computation. CSQ. Computational Statistics Quarterly, 4, 269—-282.

Kjaerulft, U. (1990). Triangulation of graphs-algorithms giving small total state space (Tech. Rep. R-90-09).
Aalborg University.

Kjerulff, U. (1992). A computational scheme for reasoning in dynamic probabilistic networks. In Proc. of
the 8th conference on uncertainty in artificial intelligence (UAI) (pp. 121-129). San Francisco: Morgan
Kaufmann.

Larkin, D., & Dechter, R. (2003). Bayesian inference in the presence of determinism. In Proc. of the AISTATS,
’03. Key West: Soc. for Al and Statistics.

Larranaga, P., Kuijpers, C., Poza, M., & Murga, R. (1997). Decomposing Bayesian networks by genetic
algorithms. Statistics and Computing, 7(1), 19-34.

Lauritzen, S. (1996). Graphical models. London: Oxford University Press.

Lauritzen, S., & Spiegelhalter, D. (1988). Local computations with probabilities on graphical structures and
their application to expert systems. The Journal of the Royal Statistical Society, 50, 57-224.

Lei, X., Ji, G., Bilmes, J., & Ostendorf, M. (2005). DBN multistream models for Mandarin toneme recogni-
tion. In Proc. of the international conference on acoustics, speech and signal processing (ICASSP).

Mateescu, R.E. (2007). AND/OR search spaces for graphical models. PhD thesis, University of California,
Irvine.

Meila, M., & Jordan, M. 1. (1997). Triangulation by continuous embedding. In M. C. Mozer, M. . Jordan, &
T. Petsche (Eds.), Advances in neural information processing systems (Vol. 9). Cambridge: MIT Press.

Murphy, K. P. (2002). Dynamic Bayesian networks: representation, inference and learning. PhD thesis, Uni-
versity of California, Berkeley.

Nilsson, D. (1998). An efficient algorithm for finding the m most probable configurations in probabilistic
expert systems. Statistics and Computing, 8, 159-173.

Ohtsuki, T., Cheung, L. K., & Fujisawa, T. (1976). Minimal triangulation of a graph and optimal pivoting
order in a sparse matrix. Journal of Mathematical Analysis and Applications, 54, 622-633.

Olesen, K. G., & Madsen, A. L. (2002). Maximal prime subgraph decomposition of Bayesian networks. IEEE
Transactions on Systems, Man and Cybernetics. Part B. Cybernetics, 32, 21-31.

Park, J. (2002). MAP complexity results and approximation methods. In Proc. of the 18th annual conference
on uncertainty in artificial intelligence (UAI) (pp. 388-396). citeseer.ist.psu.edu/park02map.html.
Parra, A., & Scheffler, P. (1995). How to use the minimal separators of a graph for its chordal triangulation.

In Automata, languages and programming (pp. 123—134). citeseer.ist.psu.edu/parra94how.html.

Parter, S. (1961). The use of linear graphs in gauss elimination. SIAM Review, 3(2), 119-130.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference (2nd edn.).
San Mateo: Morgan Kaufmann.

Rose, D. J. (1970). Triangulated graphs and the elimination process. Journal of Mathematical Analysis and
Applications, 32, 597-609.

Rose, D. J., Tarjan, RE, & Lueker, G. S. (1976). Algorithmic aspects of vertex elimination on graphs. SIAM
Journal on Computing, 5, 266-283.

Sang, T., Beame, P., & Kautz, H. (2005). Performing Bayesian inference by weighted model counting. In
Proc. of the 21st national conference on artificial intelligence (AAAI 05), Pittsburgh, USA.

Shenoy, P. P., & Shafer, G. (1986). Propagating belief functions with local computations. IEEE Expert, 1(3),
43-52.

Subramanya, A., Gowdy, J., Bartels, C., & Bilmes, J. (2004). DBN based multi-stream models for audio-
visual speech recognition. In Proc. of the international conference on acoustics, speech and signal
processing (ICASSP), Montreal, Canada.

Tarjan, R.E., & Yannakakis, M. (1984). Simple linear-time algorithms to test chordality of graphs, test acyclic-
ity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing, 13, 566—
579.

Tsang, E. (1993). Foundations of constraint satisfaction. New York: Academic Press.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.
IEEE Transactions on Information Theory, 13(2), 260-269.

Vomlel, J. (2002). Exploiting functional dependence in Bayesian network inference. In Proc. of the 18th
annual conference on uncertainty in artificial intelligence (UAI) (pp. 528-535). San Francisco: Morgan
Kaufmann.

Wen, W. X. (1991). Optimal decomposition of belief networks. In Proc. of the 6th annual conference on
uncertainty in artificial intelligence (UAI) (pp. 209-224). New York: Elsevier.

Xiang, Y. (1999). Temporally invariant junction tree for inference in dynamic Bayesian network. In Lecture
notes in computer science: Vol. 1600. Artificial intelligence today: recent trends and developments.
Berlin: Springer.

@ Springer

http://citeseer.ist.psu.edu/park02map.html
http://citeseer.ist.psu.edu/parra94how.html

Mach Learn (2011) 84:249-289 289

Yannakakis, M. (1981). Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic and
Discrete Methods, 2(1), 77-79.

Zhang, L., & Malik, S. (2002). The quest for efficient boolean satisfiability solvers. In Proc. of the 8th inter-
national conference on computer aided deduction (CADE 2002).

Zhang, Y., Diao, Q., Huang, S., Hu, W., Bartels, C., & Bilmes, J. (2003). DBN based multi-stream models for
speech. In Proc. of the IEEE intl. conference on acoustics, speech, and signal processing, Hong Kong,
China.

Zweig, G. G. (1998) Speech recognition with dynamic Bayesian networks. PhD thesis, University of Califor-
nia, Berkeley.

@ Springer

	Creating non-minimal triangulations for use in inference in mixed stochastic/deterministic graphical models
	Abstract
	Introduction
	Background
	Graph theory and elimination

	Minimal versus non-minimal triangulations
	Elimination graph detection
	Complexity
	Elimination with extra fill-in edges
	Ancestral pairs
	Ancestral pair heuristics

	Results
	Randomly generated Bayesian networks
	Randomly generated dynamic Bayesian networks
	Example real world graph
	Real world graphs
	Discussion

	Alternative methods for mixed stochastic/deterministic graph triangulation
	Node connected extra-elimination

	Undirected models
	Conclusion
	Acknowledgements
	Appendix
	Elimination is state-space optimal in positive graphs
	isEliminationGraph (Algorithm 1)
	MAXSTATESPACE is NP-complete
	Extra elimination
	Ancestral edges

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

