
Mach Learn (2011) 82: 445–473
DOI 10.1007/s10994-010-5228-1

Anytime learning of anycost classifiers

Saher Esmeir · Shaul Markovitch

Received: 4 July 2009 / Revised: 24 October 2010 / Accepted: 30 October 2010 /
Published online: 25 November 2010
© The Author(s) 2010

Abstract The classification of new cases using a predictive model incurs two types of
costs—testing costs and misclassification costs. Recent research efforts have resulted in
several novel algorithms that attempt to produce learners that simultaneously minimize both
types. In many real life scenarios, however, we cannot afford to conduct all the tests required
by the predictive model. For example, a medical center might have a fixed predetermined
budget for diagnosing each patient. For cost bounded classification, decision trees are con-
sidered attractive as they measure only the tests along a single path. In this work we present
an anytime framework for producing decision-tree based classifiers that can make accurate
decisions within a strict bound on testing costs. These bounds can be known to the learner,
known to the classifier but not to the learner, or not predetermined. Extensive experiments
with a variety of datasets show that our proposed framework produces trees with lower mis-
classification costs along a wide range of testing cost bounds.

Keywords Decision trees · Cost-sensitive learning · Resource-bounded reasoning ·
Anytime algorithms

1 Introduction

Assume that a hardware manufacturer has decided to use a machine-learning based tool
for assuring the quality of produced chips (e.g., Wang 2010). In realtime, each chip in the
pipeline is scanned and several features can be extracted from the image. The features vary
in their computation time. The manufacturer trains the component using thousands of chips
whose validity is known. Because the training is done offline, the manufacturer can provide

Editor: Johannes Fürnkranz.

S. Esmeir (�) · S. Markovitch
Computer Science Department, Technion—Israel Institute of Technology, Haifa, Israel
e-mail: esaher@cs.technion.ac.il

S. Markovitch
e-mail: shaulm@cs.technion.ac.il

mailto:esaher@cs.technion.ac.il
mailto:shaulm@cs.technion.ac.il

446 Mach Learn (2011) 82: 445–473

the values of all possible features, regardless of their computation time. When used in real-
time, however, the model must make a decision within 2 seconds. Therefore, for each chip,
the classifier may use features whose total computation time is at most 2 seconds.

A similar situation may occur in medical diagnoses, where machine learning techniques
are increasingly popular (Kononenko 2001). In many cases, for example due to limits on
insurance coverage, there is a fixed, possibly different, budget for diagnosing each pa-
tient. Therefore, the classifier should reach a decision under predetermined per-patient cost
bounds.

A third scenario is when we do not know the bound on resources in advance. Consider, for
example, a real-time classifier for detecting network attack traffic (e.g., Kim et al. 2004). The
resources available for classifying each packet may vary according to the current network
load, and the model must be prepared to return a prediction upon the arrival of the next
packet.

An algorithm that can improve the quality of its output with an increase in allocated
resources is called an anytime algorithm (Boddy and Dean 1994). We use a similar notation
and refer to a classifier whose expected misclassification costs decrease with the increase in
allocation of testing resources as an anycost classifier.

One way to produce an anycost classifier is to select a subset of the features whose total
cost fits the budget and to build a model using features from this set. Selecting a single subset
may be helpful when the learner is aware of the bound on classification cost, but not when
this bound is determined after learning the model (either before or during classification).
Moreover, some features might be irrelevant for some cases. Counting their cost in the quota
prevents the learner from using other relevant features.

An alternative is to use tree-based classifiers. In addition to their comprehensibility and
ease of use, decision trees are considered attractive when classification costs need to be
controlled because they ask only for the values of the features along a single path from the
root to a leaf. Obviously, decision trees can be easily converted into anycost classifiers. If
the learner stores at each node a default class label, the classification procedure can easily be
terminated at any time. However, solutions that do not consider the test costs during learning
may result in prohibitively expensive trees. Consider, for example, a decision tree with some
very expensive tests at the top levels. If the classification budget is relatively low, traversing
the entire decision path would be impossible and the classifier would have to stop too early
and return a prediction. This situation could be avoided if the learner takes into account
testing costs when choosing the splitting tests in the tree.

Recently, several researchers have proposed cost-sensitive decision-tree learners that at-
tempt to minimize the total cost during classification, that is, the sum of testing costs and
misclassification costs. Among these classifiers are ICET (Inexpensive Classification with
Expensive Tests, Turney 1995), DTMC (Decision Trees with Minimal Cost, Sheng et al.
2006), and our own algorithm, ACT (Anytime learning of Cost-sensitive Trees, Esmeir
and Markovitch 2007a). While successful in minimizing the total cost and producing cost-
efficient trees, cost-sensitive learners are not designed to build trees that operate under strict
bounds on classification resources. As a result, the produced classifier may exceed the clas-
sification budget or underuse it. Moreover, cost-sensitive learners require the testing costs
and the misclassification costs to be given in the same scale, which is what disqualifies these
learners in many real world scenarios. What is needed is a learning algorithm for producing
decision trees that can operate under strict classification budgets and yield low misclassifi-
cation costs.

Greiner et al. (2002) were pioneers in studying classifiers that actively decide what tests
to administer. They defined an active classifier as a classifier that given a partially specified

Mach Learn (2011) 82: 445–473 447

instance, returns either a class label or a strategy that specifies which test should be per-
formed next. Greiner et al. also analyzed the theoretical aspects of learning optimal active
classifiers using a variant of the probably-approximately-correct (PAC) model. They showed
that the task of learning optimal cost-sensitive active classifiers is often intractable. How-
ever, this task is shown to be achievable when the active classifier is allowed to perform only
(at most) a constant number of tests, where the limit is provided before learning. For this
setup they proposed taking a dynamic programming approach to build decision trees of at
most depth d . Their proposed method requires O(nd) time to find the optimal d-depth tree
over n attributes. Although this complexity is polynomial in n, it can be used, in practice,
only when n and d are small. Kapoor and Greiner (2005) extended this work to support pre-
determined limits on test costs rather than on the number of tests. In addition, while these
works can be applied when the budget is determined before learning, other scenarios may
occur when the maximal budget is not available to the learner but is provided to the classifier,
or when it is determined only during classification.

To address these challenges we introduce TATA (Tree-classification AT Anycost), a novel
framework for resource-bounded learning and classification. TATA is an anytime algorithm
that can utilize additional learning time to produce anycost classifiers that can exploit addi-
tional resources during classification. TATA is general and can be adapted to any time-cost
scheme. The learning time can be preallocated or determined dynamically. Similarly, the
classification budget may be given to the learner, after which TATA outputs a classifier that
operates under the given cost constraints. Alternatively, TATA can be configured to produce
a classifier that either takes the budget as a parameter, or proceeds with classification until
interrupted. The TATA framework can operate under each combination of the above. Ex-
tensive experimental evaluation with several datasets and under a variety of setups indicates
that TATA performs better than existing alternatives and exhibits good anytime and anycost
behavior.

The rest of this paper is organized as follows. In Sect. 2, we formalize the problem setup.
Next, in Sect. 3, we present three versions of TATA for the three different points at which
the maximal cost is determined: (1) before learning, (2) before classification, and (3) during
classification. In Sect. 4, we evaluate TATA experimentally. In Sect. 5, we discuss related
work, and finally, in Sect. 6, we conclude.

2 Resource-bounded learning and classification

In real-life applications, inductive concept learning involves several types of cost (Tur-
ney 2000). In the learning phase costs are associated with the acquisition of feature-values
(Melville et al. 2004; Lizotte et al. 2003; Sheng and Ling 2007a) and with tagging examples
(Lindenbaum et al. 2004).

2.1 Learning costs

Once the data has been collected, the next stage is model learning. This stage usually re-
quires resources such as memory and computation time. Algorithms whose results improve
with an increase in the allocated resources are called anytime algorithms. There are two
main classes of anytime algorithms, namely contract and interruptible (Russell and Zilber-
stein 1996). A contract algorithm is one that gets its resource allocation as a parameter. If
interrupted at any point before the allocation is completed, it might not yield any useful
results. An interruptible algorithm is one whose resource allocation is not given in advance

448 Mach Learn (2011) 82: 445–473

Fig. 1 Overview of our proposed framework. The training examples are provided to an anytime learner
that can trade computation speed for better classifiers. The learning time, ρl , can be preallocated (contract
learning), or not (interruptible learning). Similarly, the maximal classification budget, ρc , may be provided
to the learner (pre-contract classification), provided to the classifier (contract classification), or be unknown
(interruptible classification)

and thus must be prepared to be interrupted at any moment. While the assumption of pre-
allocated resources holds for many induction tasks, in many other real-life applications it is
not possible to allocate the resources in advance.

By definition, every interruptible algorithm can serve as a contract algorithm because one
can stop the interruptible algorithm when all the resources have been consumed. Russell and
Zilberstein (1996) showed that the other direction works as well: any contract algorithm A
can be converted into an interruptible algorithm B with a constant penalty. B is constructed
by running A repeatedly with exponentially increasing time limits. One problem with this
sequencing approach is the exponential growth of the gaps between the times at which an
improved result can be obtained. Another problem is the use of the contract algorithm as
a black box, disallowing the use of intermediate results. While we focus in this work on
contract learners, we will discuss how the proposed contract algorithms can be made inter-
ruptible using iterative improvement techniques that address the shortcomings of the general
sequencing approach.

2.2 Classification costs

During classification, costs are associated with the measurements required by the model and
with the prediction errors. Following previous works on cost-sensitive induction, we adopt
the model described by Turney (1995). In a problem with |C| classes, a misclassification cost
matrix M is a |C| × |C| matrix whose Mi,j entry defines the penalty of assigning the class
ci to an instance that actually belongs to the class cj . Let �(H,e) be the set of tests required
by a hypothesis H to classify a case e. We denote by cost(θ) the cost of administering the
test θ . The testing cost of e in H is therefore tcost(H, e) = ∑

θ∈� cost(θ). In addition, the
model allows attributes that share a common cost to be part of a group. When the first test
from the group is administered, we charge for the full cost. If another test from the same
group is administered, we apply a group discount. The total cost of classification is the sum

Mach Learn (2011) 82: 445–473 449

of the miscalculation cost and the testing cost. Cost-sensitive classifiers, which aim to reduce
the total cost of classification, require Mi,j and cost(θ) to be given in the same currency.

Many environments, however, involve strict limits on the testing costs. To operate in
such environments, the classifier needs to do its best without exceeding the bounds. Hence,
classifiers that focus on reducing the total cost may be inappropriate. Like the bound on
learning time, the bound on classification cost can be preallocated and given to the learner
(pre-contract classification), provided only to the classifier (contract classification), or de-
termined during classification (interruptible classification).

2.3 Anytime learning, anycost classification

The allocation of resources for learning and for classification is driven by different factors.
Therefore, our proposed framework needs to allow each allocation to be controlled inde-
pendently. Moreover, the interruptibility of the learner is not necessarily tied to that of the
classifier: an interruptible learner should be able, if required, to produce a contract classifier,
and vice versa. Figure 1 gives an overview of the different possible scenarios for learning
and classification.

More formally, let E be the set of training examples, A be the set of attributes, along
with their costs, and M be the misclassification cost matrix. Further, let ρl be the allocation
for learning resources and ρc be the limit on classification resources for classifying a case e.
For the scenarios where ρl or ρc are unknown, we assume two binary functions f l() and
f c(), which can be queried by the learner and the classifier respectively to find out whether
their resources have been exhausted. In this work we propose a novel framework that can be
applied in the following constraint combinations:

– Contract learning, pre-contract classification (CLPC): the learner is aware of both ρl

and ρc. It produces a classifier that uses at most ρc (the classifier does not benefit from
any remaining surplus). Formally, CLPC(E,A,M,ρl, ρc) → h(e).

– Interruptible learning, pre-contract classification (ILPC): similar to CLPC but the learning
time is not preallocated. Formally, ILPC(E,A,M,f l(), ρc) → h(e).

– Contract learning, contract classification (CLCC): the learner is aware of ρl but not of ρc ,
which becomes available right before classification. The learner must produce a classi-
fier that can operate under different cost constraints. The produced classifier should act
according to the provided ρc. Formally, CLCC(E,A,M,ρl) → h(e,ρc).

– Interruptible learning, contract classification (ILCC): similar to CLCC but the learning
time is not predetermined. Formally, ILCC(E,A,M,f l()) → h(e,ρc).

– Contract learning, interruptible classification (CLIC): the learner is aware of ρl . Neither
the learner nor the classifier is provided with ρc. The learner must produce a classifier
that utilizes the available resources until interrupted and queried for a solution. Formally,
CLIC(E,A,M,ρl) → h(e,f c()).

– Interruptible learning, interruptible classification (ILIC): similar to CLIC but the learning
time is unknown. Formally, ILIC(E,A,M,f l(), ρc) → h(e,f c()).

In each of the aforementioned scenarios, and unlike the cost-sensitive setup used by
Turney (1995), we do not require Mi,j and ρc to be provided in the same currency. This
allows us to operate in environments where it is not possible to convert from one scale to
another, for example time to money or money to risk.

In the next section we present TATA, our proposed framework for anytime learning of
anycost classifiers. TATA can operate under each of the aforementioned scenarios.

450 Mach Learn (2011) 82: 445–473

3 The TATA framework

To act under the different cost scenarios presented in Sect. 2, we propose a framework
into which any anytime pre-contract learner may be plugged. When configured to produce
contract or interruptible classifiers, the framework builds a repertoire (committee) of pre-
contract classifiers, each of which is designed to operate under a different classification
budget. We start by motivating and describing our choice of tree-based pre-contract classi-
fiers. We then introduce our anytime algorithm for learning pre-contract trees, and conclude
by presenting our repertoire approach for contract and interruptible classification.

3.1 Tree-based pre-contract classifiers

The pre-contract component should be able to control testing costs efficiently, and to ex-
ploit additional learning resources in order to improve the produced models. For the first
requirement, a decision-tree based classifier would make an ideal candidate. When classi-
fying a new case, decision trees ask only for the values of the tests on a single path from
the root to one of the leaves. Decision tree models are also considered attractive due to their
interpretability (Hastie et al. 2001), an important criterion for evaluating a classifier (Craven
1996), their simplicity of use, and their accuracy, which has been shown to be competitive
with other classifiers for several learning tasks.

Decision trees, however, cannot be used as is: when the classification budget does not
allow exploring the entire path, the tree cannot make a decision. This problem can be over-
come by storing a default class at each internal node. If classification is stopped early, the
prediction is made according to the last explored node.

Formally, let ρc be the bound on testing costs for each case. When classifying an example
e using a tree T , we propagate e down the tree along a single path from the root of T until a
leaf is reached or classification resources are exhausted. Let �(T , e) be the set of tests along
this path. We denote by cost(θ) the cost of administering the test θ . The testing cost of e in
T is therefore tcost(T , e) = ∑

θ∈�(T ,e) cost(θ). Note that tests that appear several times are
charged for only once. The cost of a tree is defined as the maximal cost of classifying an
example using T . Formally,

Test-Cost(T) =
⎧
⎨

⎩

0, T is a leaf

cost(θroot(T)) + max
T̂ ∈ Children (T)

Test-Cost(T̂), otherwise.

Having decided about the model, we are interested in a learning algorithm that can ex-
ploit additional time resources, preallocated or not, in order to improve the induced anycost
trees. We recently presented two anytime algorithms for learning decision trees. The first,
called LSID3 (Esmeir and Markovitch 2007b), can trade computation speed for smaller and
more accurate trees, and the second, ACT, can exploit extra learning time to produce more
cost-efficient trees. Neither algorithm, however, can produce trees that operate under given
classification budgets; therefore, they are inappropriate for our task.

3.2 Anytime learning of pre-contract trees

The most common method for learning decision trees is TDIDT (top-down induction of de-
cision trees). TDIDT algorithms start with the entire set of training examples, partition it into
subsets by testing the value of an attribute, and then recursively build subtrees. The TDIDT
scheme, however, does not take into account bounds on the testing cost. Therefore, we first

Mach Learn (2011) 82: 445–473 451

Fig. 2 Exemplifying the recursive invocation of TDIDT$. The initial ρc was $60 (left-hand figure). Since
two tests (a2 and a5) with a total cost of $30 have been used, their current cost is zero and the remaining bud-
get for the TDIDT$ process is $30. a1, whose cost is $40, is filtered out. Assume that, among the remaining
candidates, a6 is chosen. The subtrees of the new split (right-hand figure) are built recursively with a budget
of $20

Fig. 3 Top-down induction of
anycost decision trees. E is the
set of examples and A is the set
of attributes

Procedure TDIDT$(E,A,ρc)

If E = ∅ Or ρc ≤ 0 Return Leaf(nil)

If ∃c such that ∀e ∈ E class(e) = c Return Leaf(c)
θ ← CHOOSE-TEST(A,E,ρc)

V ← OUTCOMES(θ)

Foreach vi ∈ V

Ei ← {e ∈ E | θ(e) = vi}
Si ← TDIDT$(Ei,A,ρc − cost(θ))

Return Node(θ, {〈vi, Si〉 | i = 1 . . . |V |})

describe TDIDT$, a modification for adapting any TDIDT algorithm to the pre-contract
scenario. TDIDT$ filters out splits whose cost exceeds the remaining budget, and stops the
recursive partitioning when additional splits cannot be afforded. We then consider the ques-
tion of split selection in TDIDT$ algorithms, and introduce the pre-contract component in
the TATA framework.

3.2.1 Top-down induction of anycost trees

Traditional TDIDT algorithms do not consider limits on classification costs. Expensive tests,
in this case, may block their subtrees and make them useless. In the pre-contract setup, ρc ,
the maximal testing cost, is known in advance. Figure 3 formalizes our modified TDIDT
procedure, denoted TDIDT$. TDIDT$ avoids exceeding ρc by considering only tests whose
costs are lower. When a choice is made to split on a test θ , the cost bound for building
the subtree under it is decreased by cost(θ). Figure 2 exemplifies the recursive invocation
of TDIDT$. The initial ρc was $60 (left-hand figure). Since two tests (a2 and a5) with a
total cost of $30 have been used, their current cost is zero and the remaining budget for
the TDIDT$ process is $30. a1, whose cost is $40, is filtered out. Assume that, among the
remaining candidates, a6 is chosen. The subtrees of the new split (right-hand figure) are built
recursively with a budget of $20.

452 Mach Learn (2011) 82: 445–473

TDIDT$ is designed to search in the space of trees whose test-cost is at most ρc. It can
be instantiated by means of an attribute selection procedure.

3.2.2 Greedy TDIDT$ instantiations

Our first proposed anycost learner, called C4.5$, instantiates TDIDT$ by taking information
gain as the split selection criterion, as in C4.5. Unlike the original C4.5, C4.5$ filters out
unaffordable tests. It does not, however, consider the costs of the remaining candidates.
Assume, for example, that the cost of the attribute with the highest information gain is
exactly ρc, the maximal classification budget. C4.5$ will choose to split on it and will not
be able to further develop the tree.

The EG2 algorithm (Nunez 1991) chooses attributes based on their Information Cost
Function, ICF(θ) = (2�I(θ) −1)/(cost(θ)+1), where �I is the information gain. We denote
by EG2$ an instantiation of TDIDT$ that uses ICF. EG2$ does not use ρc when evaluating
splits and therefore might over-penalize informative yet costly attributes, even when ρc is
large enough. This problem is intensified when the immediate information gain of relevant
attributes is low, for example due to inter-correlation as in XOR-like concepts.

3.2.3 The pre-contract-TATA algorithm

Both C4.5$ and EG2$ require a fixed short runtime and cannot exploit additional resources
to improve the resulting classifier. Our recently introduced ACT algorithm overcomes the
problems greedy cost-sensitive learners encounter by allowing learning time to be traded
for lower total classification costs. ACT is an anytime TDIDT algorithm that invests more
time resources for making better split decisions. For every candidate split, ACT attempts to
estimate the total expected cost of using the resulting subtree were the split to take place. The
estimation is based on a biased sample of the space of trees rooted at the evaluated attribute.
The sample is obtained using a stochastic version of EG2, denoted Stochastic-EG2. ACT is
a contract anytime algorithm parameterized by r , the number of trees in the sample.1 When
r is larger, the resulting estimations are expected to be more accurate, improving the final
tree.

ACT attempts to minimize the sum of the testing and misclassification costs. However,
it does not consider the maximal classification budget and may violate testing cost limits.
Therefore, it is inappropriate for building pre-contract anycost classifiers. TATA, our pro-
posed anytime learner, has a different goal: minimizing the misclassification costs given a
bound on the testing costs. Hence, TATA must take a different approach for (1) top-down
induction, (2) pruning, (3) biasing the sample, and (4) evaluating trees in the sample.

While ACT adopts the TDIDT approach, in TATA we use TDIDT$. This carries 2 bene-
fits: first, it guarantees that the produced tree will not violate the maximal cost, and second,
it filters out some of the attributes and saves their evaluation time, which can be costly in
the anytime setup. Once the tree is built, ACT post-prunes it in an attempt to reduce test-
ing and misclassification costs. In TATA reducing testing costs is not beneficial because the
built tree already fits the budget. Therefore, the objective of TATA’s post-pruning is to reduce
misclassification costs, regardless of testing costs. When misclassification costs are uniform,
this problem reduces to maximizing accuracy and thus we adopt C4.5’s error-based pruning
(EBP). When misclassification cost is not uniform, we slightly modify EPB, and prune if
the expected misclassification costs decrease (rather than the expected error).

1As a contract algorithm, ACT assumes that the learning time is predetermined. Mapping contract time to r

was discussed in a previous work (Esmeir and Markovitch 2007b).

Mach Learn (2011) 82: 445–473 453

Fig. 4 Attribute evaluation in
Pre-contract-TATA. E-MC stands
for the expected misclassification
cost. For each candidate split, we
sample the space of trees under it
that fit the remaining budget ($60
in the example) and evaluate the
split by the minimal expected
misclassification cost in the
sample ($110 in the example)

Procedure TATA-CHOOSE-ATTRIBUTE(E,A, r, ρc)

If r = 0
Return C4.5$-CHOOSE-ATTRIBUTE(E,A,ρc)

Foreach θ ∈ {θ ∈ A|cost(θ) < ρc}
V ← OUTCOMES(θ)

Foreach vi ∈ V

Ei ← {e ∈ E | θ(e) = vi}
T ← C4.5$(Ei,A,ρc − cost(θ))

mini ← EXPECTEDMC(T)

Repeat r − 1 times
T ← STOCHASTIC-C4.5$(Ei,A,ρc − cost(θ))

mini ← min(mini , EXPECTEDMC(T))

totalθ ← ∑|V |
i=1 mini

Return θ for which totalθ is minimal

Fig. 5 Attribute selection in pre-contract-TATA. EXPECTEDMC(T) returns the expected misclassification
cost of T

Like ACT, TATA samples the spaces of subtrees under each split to estimate its utility.
ACT uses Stochastic-EG2 to bias the sample towards low-cost trees. In TATA, however, we
would like to bias our sample towards accurate trees that fit our testing costs budget. There-
fore, instead of using Stochastic-EG2, we designed a stochastic version of C4.5$, called
Stochastic-C4.5$.2 In Stochastic-C4.5$ attributes are chosen semi-randomly, proportionally
to their information gain. Note that the cost of the attributes affects the split decisions twice:
first, TDIDT$ filters out the unaffordable tests, and second, the sampled trees themselves
must fit the remaining budget, which penalizes expensive tests when the budget is relatively

2Unlike the Stochastic-ID3 algorithm used in our previous work (Esmeir and Markovitch 2007b), Stochastic-
C4.5 and Stochastic-C4.5$ post-prune the induced trees.

454 Mach Learn (2011) 82: 445–473

low. We also tried to sample using stochastic versions of EG2 and DTMC. However, these
cost-sensitive samplers did not yield any benefit and in some cases over-punished features
with high costs.

Having decided about the sampler, we need to decide how to evaluate the sampled trees.
ACT favors trees whose expected total cost is lowest. In TATA all sampled trees fit the
budget and therefore we choose to split on the attribute whose subtree is expected to have
the lowest misclassification cost, as exemplified in Fig. 4.

Figure 5 formalizes the split selection component in pre-contract-TATA. Pre-contract-
TATA is a contract anytime algorithm parameterized by r , the number of trees to sample.
For a given set of examples and attributes, the runtime complexity of TATA grows linearly
with r , just as it does in ACT (Esmeir and Markovitch 2007a). When we cannot afford
sampling (r = 0), TATA builds the tree using C4.5$. r is predetermined according to the al-
located resources. In Sect. 3.2.4 we discuss the interruptible learner, which does not assume
preallocation of resources.

3.2.4 Interruptible learning of pre-contract classifiers

The algorithm presented in Sect. 3.2.3 requires r , the number of trees in the sample, as a
parameter. When the learning resources are not predetermined, we would like the learner
to utilize extra time until interrupted. In a previous work we presented IIDT (Esmeir and
Markovitch 2007b), a general framework for Interruptible Induction of Decision Trees, that
need not be allocated resources a priori.

IIDT starts with building a greedy tree. Then, it repeatedly selects a subtree whose re-
construction is expected to yield the highest marginal utility, and rebuilds the subtree with
a doubled allocation of resources. This iterative improvement approach presents a tradeoff
between short and long term benefit. Rebuilding subtrees in upper levels results in signifi-
cant improvements but requires more resources. Choosing deeper nodes, on the other hand,
allows more frequent, yet smaller improvements. IIDT allows us to control the tradeoff be-
tween efficient resource use and anytime performance flexibility, by setting a granularity
parameter. Depending on the specific task, the user can guide IIDT to rebuild the entire tree
at every iteration, or focus on smaller, deep subtrees.

The same iterative improvement approach can be applied to convert pre-contract-TATA
into an interruptible algorithm. The initial greedy tree would be built with C4.5$, and subtree
reconstructions would be made using pre-contract-TATA. The marginal utility of construct-
ing a tree would take into account both the expected misclassification cost of the tree and
the expected resources required by the reconstruction process. The interruptible version of
pre-contract-TATA allows the learning process to be interrupted at anytime. The resulting
classifier, however, is pre-contract: it is designed to operate under the provided cost budget.
In the following subsections we present algorithms for learning contract and interruptible
classifiers.

3.3 Learning contract classifiers

The pre-contract classification scenario assumes that ρc , the bound on testing costs, is known
to the learner. In many real-life scenarios, however, we do not know ρc before building the
model; we therefore require classifiers that either get ρc as a parameter before proceeding
with classification (contract classification) or can do their best until stopped and queried for
a decision (interruptible classification). Note that TDIDT$-based algorithms cannot be used
as is because ρc is unavailable at the time of learning. Obviously, C4.5 and EG2 can be

Mach Learn (2011) 82: 445–473 455

Fig. 6 Classifying a case using
repertoires in contract-TATA Procedure CONTRACT-TATA-CLASSIFY(B, e,ρc)

c∗ ← max{c | c ≤ ρc ∧ ∃T , 〈c,T 〉 ∈ B}
T ∗ ← T | 〈c∗, T 〉 ∈ B

Return CLASSIFY(T ∗, e)

Procedure CONTRACT-TATA-UNIFORM-LEARN(E,A, r, k)

ρc
min ← MINIMAL-ATTRIBUTE-COST(A)

ρc
max ← TOTAL-ATTRIBUTE-COSTS(A)

C ← ⋃k−1
i=0 {ρc

min + i
k−1 (ρc

max − ρc
min)}

Return {〈c, PRE-CONTRACT-TATA(E,A, r, c)〉 | c ∈ C}
Fig. 7 Building repertoires in contract-TATA with uniform cost gaps

slightly modified, by storing default classifications at each internal node to produce contract
and interruptible trees; these algorithms do not need the value of ρc . However, they are not
designed to exploit a given testing budget. Therefore, we are looking for a learner that has
the advantages of pre-contract-TATA without getting the value of ρc as parameter.

3.3.1 Repertoire of trees

Clearly, different classification budgets lead to different decision making strategies. When
allocated a low budget, the contract classifier should rely on a small number of inexpensive
tests. On the other hand, when the budget is high, the same classifier can afford to conduct
expensive tests. Therefore, a good contract classifier must be prepared to utilize any ρc it
gets.

For this purpose we suggest using pre-contract-TATA to build a collection of k trees,
each with a different value of ρc. We call such a collection a repertoire. In pre-contract-
TATA we exploit extra learning resources in order to increase r , the number of trees in
the sample, and thus improve attribute-utility estimations. When composing a repertoire we
can benefit from additional learning time either for building trees of higher quality or for
increasing the granularity of the repertoire. The values of k and r impose a tradeoff between
tree quality and granularity. Larger values of r mean better trees. Larger values of k mean
less time to invest in each tree and higher memory requirements but increase the chances
of finding a tree that fits the allocation. These chances depend also on the selection of ρc

values. Let ρc
max be the cost of taking all tests and let ρc

min be the cost of the least expensive
attribute. Obviously, there is no need to build trees with ρc > ρc

max or ρc < ρc
min. Therefore,

we uniformly distribute the k values in the range [ρc
min − ρc

max], where the difference in the

cost contract of each two successive trees is δ = ρc
min

−ρc
max

k−1 .
Similarly to ensemble-based methods, a repertoire stores the k trees in memory. There-

fore, its space complexity grows linearly with k. The runtime complexity also grows, on
average, linearly with k.3 Figure 7 formalizes the procedures for forming repertoires with
uniform gaps under the contract setup. Repertoires with nonuniform cost gaps are consid-
ered in Sect. 3.3.2.

3Building trees for lower classification budgets takes, on average, less time, while building trees that can
exploit higher classification budgets takes, on average, more time.

456 Mach Learn (2011) 82: 445–473

Procedure CONTRACT-TATA-HILL-LEARN(E,A, r, k)

ρc
min ← MINIMAL-ATTRIBUTE-COST(A)

ρc
max ← TOTAL-ATTRIBUTE-COSTS(A)

Tmin ← PRE-CONTRACT-TATA(E,A, r, ρc
min)

Tmax ← PRE-CONTRACT-TATA(E,A, r, ρc
max)

B ← 〈〈ρc
min, Tmin〉, 〈ρc

max, Tmax〉〉
While |B| < k

i ← arg maxi=1,...,|B|−1(EE(Ti) − EE(Ti+1)) ∗ (ci+1 − ci+1)

INSERT-SORTED(B, 〈 ci+ci+1
2 , PRE-CONTRACT-TATA(E,A, r,

ci+ci+1
2)〉)

Return B

Fig. 8 Building repertoires in contract-TATA using the hill-climbing approach

Unlike ensembles that combine predictions from several trees, the final decision of a
repertoire classifier is based on a single tree. In the contract setup, classification resources
are preallocated and therefore we pick a tree from the repertoire that best fits the cost bound.

Given a repertoire B and a classification budget ρc, we would use the (
ρc−ρc

min

δ
+ 1)th tree

in the repertoire. However, a tree does not necessarily use the maximal cost it is allowed
to use. Therefore when a tree is formed, we store it along with its actual maximal cost ρ̂c .
In the classification phase, we choose the tree associated with the largest c that does not
exceed ρ̂c. Figure 6 formalizes the procedures for using a repertoire to classify a case under
the contract setup.

3.3.2 Learning repertoires with nonuniform cost gaps

In repertoires with uniform cost distribution, every two successive trees are built with max-
imal cost allocations that differ by δ. In many domains, however, increasing the contract
by δ results in the same tree or a tree that performs similarly. In such a case, the efforts to
build the second tree are wasted. These efforts could have been invested in more interest-
ing cost regions where increasing the contract is useful. This problem is intensified when k,
the repertoire size, is small. Consider, for example, a problem with 4 attributes, 3 of which
cost $1 and 1 of which costs $13. In this case, ρc

min = 1 and ρc
max = 16. Assume that we

would like to build a repertoire of size k = 4. Because δ = 5, the four trees will be built
with ρc = 1,6,11,16 respectively. As a result, the 2nd and the 3rd trees would be identical
because they can test the same set of attributes (all but the expensive one).

Another problem with the uniform approach is the requirement that k, the repertoire
size, be decided in advance. This is affordable when learning resources are predetermined
(contract learning) but imposes a problem if the learning process itself needs to be interrupt-
ible. In Sect. 3.2.4 we described an interruptible version of the pre-contract learner, which
produces a single tree and iteratively improves it. This technique, nevertheless, cannot be
applied to build a repertoire of several trees.

To overcome the aforementioned shortcomings, we propose a different approach for
choosing the sequence of ρc values in a repertoire. Rather than uniform gaps, we propose
an iterative improvement solution. We start with a repertoire that consists of two trees: one
built with ρc

min and the other with ρc
max . We then repeatedly choose two successive trees,

T1 and T2, built with ρc
1 and ρc

2 respectively, and add another tree with ρc = 0.5(ρc
1 + ρc

2).
Throughout the process, the stored trees are sorted by ρc.

Choosing ρc
1 and ρc

2 is not trivial. We are interested in maximizing the benefit from adding
a new tree. Therefore, ρc

2 − ρc
1 should be large enough to cover a wide range of potential ρc

Mach Learn (2011) 82: 445–473 457

Fig. 9 Using repertoires in
interruptible-TATA Procedure INTERRUPTIBLE-CLASSIFY(�, e)

While NOT-INTERRUPTED

T ← NEXT-TREE(�)

l ← CLASSIFY(T , e)

Return l

values. At the same time, the expected reduction in misclassification costs, if a tree is built in
between, should be significant. To estimate the latter we use the expected errors of the built
trees. Two successive trees whose expected errors vary significantly indicate that it may be
worthwhile to build a tree in between them. Combining these two criteria, we choose T1 and
T2 that maximize (ρc

2 − ρc
1) · (EE(T2) − EE(T1)). In this case, setting ρc of the new tree to

0.5(ρc
1 + ρc

2) is optimal. We refer to this method as a hill-climbing repertoire. This process
can be repeated until the learner is interrupted, or until a predetermined number of trees have
been built. Figure 8 formalizes the procedure for building hill-climbing repertoires.

Similarly to the uniform-gaps case, each tree is stored along with its actual maximal
classification cost. When classifying an instance, we choose the tree that best fits the given
classification limit.

3.4 Learning interruptible classifiers

In the interruptible setup, the classification budget is provided neither to the learner nor the
classifier. The classifier is expected to utilize resources until it is interrupted and queried
for class label. To operate in such a setup, we again form repertoires. Unlike the contract
setup, however, ρc is available to the classifier. Therefore, we cannot choose a single tree
for classification. We first describe the use of repertoires for interruptible classification, and
then address the problems that may arise when traversing multiple trees.

3.4.1 Forming repertoires for interruptible classification

One solution is to form a repertoire with uniform gaps, similarly to the contract setup (see
Fig. 7). When we need to classify an instance, we start by using the lowest-cost tree, which
is built with ρc = ρc

min. We then move on to the next tree, as long as resources allow. When
interrupted, we use the prediction of the last fully explored tree as the final decision. Since
the trees in the repertoire are sorted by their ρc , the last fully explored tree is expected
to have better predictability than those preceding it.4 Figure 9 formalizes the classification
procedure under the interruptible setup.

While simple, this approach raises two important considerations. First, because we are
charged for the cumulative cost of using the trees, it is no longer ideal to have as many trees
in the repertoire as possible. Second, when forming the repertoire, the learner should take
into account tests that appear in previous trees in the repertoire because their outcome might
have been already known when using the tree for classification.

3.4.2 Determining the size of interruptible repertoires

Determining the repertoire size is not trivial. Even if we are not limited in our learning
resources, we would like to limit the number of trees in the repertoire to avoid wasting

4Instead of relying solely on the last tree, a weighted voting decision can be made. However, in this work we
chose to focus on single-tree decisions, which allow better interpretability.

458 Mach Learn (2011) 82: 445–473

Fig. 10 An example of applying cost discounts when forming a repertoire for interruptible classification.
The numbers represent the number of examples that follow each edge. Because the value of a1 is required
at the root of T1, any subsequent tree can obtain this value at no cost. The probability for testing a2 is 50%
in T2. When inducing T3, the attribute a2 has already been measured with a probability of 50%. Hence, we
discount the cost of a2 by 50% ($5 instead of $10). Similarly, the cost of a3 is discounted by 80% ($2 instead
of $10)

classification resources on trees that will not affect the final decision. On the other hand,
if the repertoires are too small, it might not be possible to optimally exploit the available
classification resources.

Obviously, the optimal size depends much on the characteristics of the problem. In our
experimental study we will consider using a fixed number of trees. In the future, we intend
to analyze this problem theoretically and find the optimal value. This task is even more
challenging because of the second issue (re-administering tests).

3.4.3 Discounting repeated tests

Once a tree is used for classification and the relevant tests in the decision path are admin-
istered, we do not charge for the same test in the subsequent trees because its outcome is
already at hand. The learner could use this information to improve the structure of the reper-
toire. Assume, for example, that the value of an attribute a1 is measured at the root node
of the first tree in the repertoire. Subsequent trees that ask for a1’s value are not charged.
Therefore, when building the subsequent trees, the cost of a1 should be treated as zero. Nev-
ertheless, given a case to classify, not all tests that appear in earlier trees are necessarily
administered, but only those that appear in decision paths that have been followed. Obvi-
ously, one cannot know in advance which tree paths will be followed because this depends
on the feature values of the actual case.

To handle this situation we take a probabilistic approach. We assume that future test
cases will come from the same distribution as the training examples. Let T1, . . . , Ti be the
trees that have already been built. When building Ti+1, we discount the cost of each attribute
by the probability of examining its value at least once in T1, . . . , Ti . For an attribute a, we
measure this probability by the percentage of training examples whose a value would have
been queried by previous trees.

Consider, for example, the trees in Fig. 10. The probability to measure a1 in T1 is 100%.
Therefore, when building subsequent trees, the cost of a1 would be zero. The probability for
testing a2 is in T2 20%. Hence, when inducing T3, we discount the cost of a2 by 20% ($8
instead of $10). Similarly, the cost of a3 is discounted by 80% ($2 instead of $10).

Because the trees may be strongly correlated, we cannot simply calculate this probabil-
ity independently for each tree. For example, if T3 in the aforementioned example tests a2

for 70% of the examples, we would like to know for how many of these examples a2 has
been tested also in T2. Therefore, we traverse the previous trees with each of the training
examples and mark the attributes that are tested at least once. For efficiency, the matrix that

Mach Learn (2011) 82: 445–473 459

Procedure APPLY-DISCOUNT(E,A,�)

Mi,j ← 0
Foreach e ∈ E

Foreach T ∈ �

Â ← attributes whose values tested by T when classifying e

Foreach a ∈ A

Me,a ← 1
Foreach a ∈ Â

pa ←
∑|E|

e=1 Ma,e

|E|
cost(a) ← cost(a) · (1 − pa)

Fig. 11 Procedure for applying discounts when forming discount repertoires for interruptible classification

Fig. 12 The different components of the TATA framework. Pre-contract-TATA (top) is provided with ρc , and
produces a classifier that operates within that bound. Contract-TATA (left) and Interruptible-TATA (right)
build a repertoire of pre-contract classifiers, learned using pre-contract-TATA. The classifiers are ordered
by ρc (lowest first). In the case of contract classification, a single classifier (grayed) is chosen to classify
each instance. In the case of interruptible classification, the classifiers are explored while resources permit
(grayed). The last result obtained before interruption is returned

represents which tests were administered for which case is built incrementally and updated
after building each new tree.

We refer to this method as a discount repertoire. The repertoire is formed using the
same method in Fig. 7 with a single change: before building each tree, cost discounts are
applied; the discounts are based on the trees already in the repertoire. Figure 11 formalizes
the procedure for updating test costs. During classification we iterate over the trees until
interrupted, as described in Fig. 9.

3.5 The TATA framework components: a summary

We presented three different components of TATA for the three different classification cost
scenarios. Pre-contract-TATA allows learning decision trees that can operate under a prede-
termined classification budget. Contract-TATA builds a repertoire of pre-contract trees, each

460 Mach Learn (2011) 82: 445–473

Table 1 Comparing MC, the
misclassification cost, for
different testing cost contracts.
The numbers represent the
average over 100 datasets. The
last column indicates whether the
advantage of TATA(r = 5) is
statistically significant according
to the Wilcoxon test (α = 5%)

Learner
∫ ρc

max
1
3 ρc

max

MC(ρc) Wilcoxon

TATA(r = 5) 21.12

C4.5 28.84
√

TATA(r = 0) 26.93
√

EG2 31.21
√

EG2$ 30.48
√

with a different classification budget. When classifying a new case, the classifier picks the
tree that best suits the available resources and uses it for classification. Similar to contract-
TATA, interruptible-TATA builds a repertoire of pre-contract trees. During classification,
however, it explores the trees in the repertoire in order (lowest classification cost first). When
interrupted, it returns the decision made by the last fully explored tree. While both contract-
TATA and interruptible-TATA use pre-contract-TATA to build repertoires, their considera-
tion of repertoire size and tree budgets differ due to the difference in the way the classifiers
are used. For each of the three components, we presented a contract anytime learner and
discussed what steps to take when learning needs to be interruptible.

Figure 12 summarizes the interconnection between TATA’s components. While in this
work we focused on tree-based classifiers, any pre-contract classifier can be plugged in
TATA to produce contract and interruptible classifiers.

4 Experimental evaluation

A variety of experiments were conducted to test the performance and behavior of TATA
in 3 different setups: pre-contract, contract, and interruptible. Recently, we presented an
automatic method for assigning testing costs to attributes in existing datasets (Esmeir and
Markovitch 2007a). We applied this method 4 times on 20 UCI (Asuncion and Newman
2007) problems5 and another 5 datasets that hide hard concepts and have been used in pre-
vious machine learning literature. Appendix gives a detailed description of these datasets.6

Following the recommendations of Bouckaert (2003), 10 runs of a 10-fold cross-
validation experiment were conducted for each dataset and the reported results are averaged
over the 100 individual runs. This setup allows relatively higher replicability of the results.

4.1 Pre-contract classification

We first compare pre-contract TATA to several other pre-contract learners, and then we ex-
amine TATA’s anytime behavior.

4.1.1 Comparison under different budgets

Our first set of experiments compares C4.5, EG2, EG2$, TATA(r = 0), which is equivalent
to C4.5$, and TATA(r = 5), which samples 5 trees at each node to choose a split, in the pre-
contract setup. Misclassification has been set uniformly to 100. Note that the absolute value

5The datasets vary in size, type of attributes, and dimension.
6The 4 × 25 datasets are available at http://www.cs.technion.ac.il/~esaher/publications/rbc.

http://www.cs.technion.ac.il/~esaher/publications/rbc

Mach Learn (2011) 82: 445–473 461

Fig. 13 Pre-contract results: the
misclassification cost for
different preallocated testing
costs, as percentage of the total
cost. The results are averaged
over all 100 datasets

of the misclassification cost does not matter because we do not assume same-scale. ACT,
ICET, and DTMC cannot be applied in such a setup because they require the tradeoff factor
between misclassification cost and testing cost to be given. This is one of the important
differences between TATA and cost-sensitive learners that attempt to minimize the total cost
of classification.

For each dataset we invoked the algorithms 30 times, each with a different ρc value taken
from the range [0,120%ρc

max), with uniform steps. Figure 13 describes the misclassification
cost of the different algorithms, as a function of ρc. For each point (ρc value), the results are
averaged over the 100 datasets.

Clearly, TATA(r = 5) is dominant. When ρc ≤ ρc
min, the algorithms cannot administer

any test and thus their performance is identical. At the other end, when ρc ≥ ρc
max , the at-

tribute costs are actually not a constraint. In this case TATA(r = 5) performed best, confirm-
ing the results reported in Esmeir and Markovitch (2007a) when misclassification costs were
dominant. The more interesting ρc values are those in between. Table 1 lists the normalized
area under the misclassification cost curve over the range [1

3 ρc
max, ρ

c
max]. Confirming the

curves, the results indicate that TATA(r = 5) has the best overall performance. The Wilcoxon
test (Demsar 2006), which compares classifiers over multiple datasets, finds TATA(r = 5)
to be significantly better than all the other algorithms.

As expected, all five algorithms improve with the increase in ρc because they can use
more features. For ρc values slightly larger than ρc

min, we can see that EG2, which is cost-
sensitive, performs better than C4.5. The reason is that EG2 takes into account attribute costs
and hence will prefer lower cost attributes. With the increase in ρc and the relaxation of cost
constraints, C4.5 becomes better than EG2.

It is interesting to compare the TDIDT$ variants of C4.5 and EG2 to their TDIDT coun-
terparts. It is easy to see that both TDIDT$ variants exhibit better anycost behavior, until the
point where all relevant attributes can be used (ρc ∼ ρc

max), where the performance of each
pair becomes identical. The advantage of the TDIDT$ variants is due to their not choosing
tests that violate the cost limits; thus, they will not be forced to stop the classification process
earlier.

A comparison of TATA(r = 0) to TATA(r = 5) indicates that the latter is clearly better:
while TATA(r = 0) chooses split attributes greedily, TATA(r = 5) samples the possible sub-
trees of each candidate and bases its decision on the quality of the sampled trees. Of course,
the advantage of TATA(r = 5) comes at a price: it uses far more learning resources.

462 Mach Learn (2011) 82: 445–473

Fig. 14 Pre-contract results: the misclassification cost as a function of the preallocated testing costs con-
tract for one instance of Glass (upper-left), AND-OR (upper-right), MULTI-XOR (lower-left) and KRK
(lower-right)

Figure 14 gives the results for 4 individual datasets, Glass, AND-OR, MULTI-XOR and
KRK. In all 4 cases TATA is dominant with its r = 5 version being the best method. We can
see that the misclassification cost decreases almost monotonically. The curves, however, are
less smooth than the average result from Fig. 13 and slight degradations are observed. The
reason could be that irrelevant features become available and mislead the learner. The KRK
curve looks much like steps. The algorithms improve at certain points. These points repre-
sent the budgets when the use of another relevant attribute becomes possible. The graphs
of AND-OR and MULTI-XOR do not share this phenomenon because these concepts hide
interdependency between the attributes. As a result, an attribute may be useless if other at-
tributes cannot be considered. The performance of the greedy C4.5 and TATA(r = 0) on
these problems is very poor.

4.1.2 Anytime behavior of pre-contract TATA

Besides being able to produce good anycost trees, TATA itself is an anytime algorithm that
can trade learning resources for producing better trees. Our next experiment examines the
anytime behavior of TATA by invoking it with different values of r . Figure 15 shows the
results. As we can see, all TATA versions are better than C4.5. With the increase in r (larger
samples of trees), the advantage of TATA increases.

The most significant improvement is from r = 0 to r = 1. TATA with r = 0 is a greedy
algorithm that uses local heuristics. When r > 0, TATA uses sampling techniques to evaluate
attributes and thus improves notably. For more difficult concepts, where only a combination
of a large number of attributes yields information, a larger value of r would be needed.

Mach Learn (2011) 82: 445–473 463

Fig. 15 TATA with different
sample sizes on the Multi-XOR
dataset

Fig. 16 Contract results: the misclassification cost as a function of the preallocated testing costs contract for
Glass (upper-left), AND-OR (upper-right), MULTI-XOR (lower-left) and KRK (lower-right)

4.2 Contract classification

TATA uses repertoires to operate in the contract and interruptible setups. To examine the any-
cost behavior of TATA in the contract setup we built 3 repertoires, each of size 16. The first
repertoire uses pre-contract-TATA(r = 0) to induce the trees, with uniform contract gaps.
The second repertoire uses pre-contractTATA(r = 3) to induce the trees, with uniform con-
tract gaps. The trees in the third repertoire are also formed using pre-contract-TATA(r = 3),
but with the hill-climbing approach instead of uniform gaps.

464 Mach Learn (2011) 82: 445–473

Fig. 17 Learning repertoires
with different time allocations
and sample sizes. Each curve
represents the normalized AUC
for a fixed-time allocation and
varying r values

The repertoires were used to classify examples in the contract setup. 120 uniformly dis-
tributed ρ values in the range [0–120%ρc

max] were used as contract parameters. Figure 16
describes the performance of these three repertoires on 4 datasets (Glass, AND-OR, MULTI-
XOR, and KRK), averaged over the 100 runs of 10 times 10-fold cross-validation. In addi-
tion, we report the results of the cost-insensitive C4.5.

It is easy to see that across all 4 domains Uniform- and Hill-TATA(r = 3) are dominant.
Uniform-TATA(r = 0) is better than C4.5 when the provided contracts are low. When the
contracts can afford to use all the attributes, both algorithms perform similarly. In compari-
son to Uniform-TATA(r = 0), the anycost behavior of Uniform-TATA(r = 3) is better: it is
monotonic and utilizes testing resources better.

Uniform- and Hill-TATA(r = 3) exhibit interesting performance differences. While both
algorithms display similar trends, Hill-TATA reaches better results slightly earlier than
Uniform-TATA on 3 out of the 4 domains (with the exception of KRK). The reason is that
Hill-TATA selects the series of ρc’s heuristically, rather than by means of blind uniform
gaps. As a result, it can focus on cost ranges where it is worthwhile to build more trees.
These differences are expected to diminish when the repertoires are larger, which enables
Uniform-TATA to cover more contracts. To verify this hypothesis, we repeated the experi-
ments with k = 32 and indeed the performance gap closed. It is important to note, however,
that while Uniform-TATA is a contract learner that requires k in advance, Hill-TATA is an
interruptible learner and is therefore appropriate also for cases where the learning resources
are not preallocated.

In Sect. 4.1 we examined the anytime behavior of the learner in the pre-contract setup.
The results indicate that the misclassification costs decrease with the increase in the sample
size (and hence learning resources). In the contract setup, given a fixed learning time, in-
creasing the sample size comes at a price: reducing the number of trees in the repertoire. An
interesting question is whether one should invest more resources in building better single
trees or in forming larger repertoires. To investigate this, we learned several repertoires us-
ing the hill-climbing approach. The trees of each repertoire were induced with a different r

parameter for pre-contract-TATA, from 0 up to 7. When r = 0, pre-contract-TATA behaves
like the greedy C4.5$. In this case we assumed that an infinite number of trees can be built
(in practice a tree was built for every tested value of ρc).

Because we used the hill-climbing approach, we could stop the learning process at any
time. We chose three different stopping points: 1 minutes, 3 minutes, and 5 minutes. We
tested the performance of these 8 × 3 repertoires. Figure 17 gives the results. Each curve

Mach Learn (2011) 82: 445–473 465

Fig. 18 Results for interruptible classification: the misclassification cost as a function of the interruption
costs for Glass (upper-left), AND-OR (upper-right), MULTI-XOR (lower-left) and KRK (lower-right)

stands for a different time allocation. The first plot gives the normalized AUC in the range
ρ = 33%–99%ρc

max .
It is easy to see that in all three graphs, increasing the learning time allows the production

of more trees: the curve for T = 5 is lower than that of T = 3 and T = 1. Interestingly, for
each of the fixed-time curves, a U shape is observed. On the one hand, if the samples are
too small, it might be difficult to learn the concept perfectly. On the other hand, increasing r

means more time per tree and thus results in smaller repertoires, without covering significant
ranges of ρc. In the extreme case, for example T = 1, r > 3, it is impossible to build even
a single tree and the error-rate is 50%, as is the base-line error. We can see that the optimal
value of r differs from one time allocation to another.

4.3 Interruptible classification

In the interruptible classification setup, TATA forms a repertoire of trees and traverses it
until interrupted. Unlike the contract setup, here we would like to limit the number of trees
in the repertoire to avoid wasting resources on tests that will not be needed by the tree that
makes the final decision. This would be the case even if we had infinite learning resources.
However, too small repertoires may lead to poor performance in significant ρc ranges. To
examine the anycost behavior of TATA in the interruptible setup, we built three different
repertoires:

– Repertoire of 3 TATA(r = 0) trees with uniform distribution learned with attribute dis-
counts.

– Repertoire of 3 TATA(r = 3) trees with uniform distribution learned with attribute dis-
counts.

466 Mach Learn (2011) 82: 445–473

– Repertoire of 16 TATA(r = 3) trees with uniform distribution learned with attribute dis-
counts.

The repertoires were used to classify examples in the interruptible setup. In addition, we
report the results of C4.5. 120 uniformly distributed ρc values in the range [0–120%ρc

max]
were used as interruption triggers. Figure 18 describes the performance of these repertoires
on 4 datasets (Glass, AND-OR, MULTI-XOR, and KRK), averaged over the 100 runs of 10
times 10-fold cross-validation.

As we can see, TATA(r = 3) variants achieve the best performance along a wide range of
ρc values. Interestingly, for some cases (e.g., MULTI-ANDOR) it is better to form smaller
repertoires while for other cases (e.g., Glass) larger repertoires yield better results. Further-
more, in the MULTI-XOR problem k = 16 is better at the beginning, then at some point
k = 3 becomes better, and finally they become almost equal. The reason for this phenom-
enon is that the k = 3 repertoire does not contain trees suitable for lower ρc values. The
k = 16 repertoire, on the other hand, spends too many resources on cheap trees, and hence
its performance when ρc increases is weaker than k = 3. At some point, however, both reach
the same performance because they have administered all the relevant tests.

An interruptible classifier can, by definition, operate under the pre-contract and contract
classification settings. It cannot, however, exploit the additional information available in
these setups, and therefore might underperform. The results reported for pre-contract-TATA
and interruptible-TATA show that when the classification budget is known to the learner, pre-
contract-TATA is clearly the best choice. For example, in the MULTI-XOR problem, pre-
contract-TATA reaches its optimal results for ρc < 250 (Fig. 14), while interruptible-TATA
has a higher misclassification cost even with ρc = 300 (Fig. 18). Moreover, the learning
resources used by pre-contract-TATA to build a single tree that fits the known budget are far
less than those needed to build a repertoire.

5 Related work

While, to the best of our knowledge, no specific attempt has been made to design an any-
time algorithm for learning anycost decision trees, several related works, aside from those
mentioned in the previous sections, warrant discussion here.

Yang et al. (2007) introduced Anytime Averaged Probabilistic Estimators (AAPE) for uti-
lizing additional computational resources during classification. At classification time, AAPE
computes Naive Bayes and then exploits extra time to refine the probability estimate. Ueno
et al. (2006) showed how to convert nearest neighbor classifiers into anytime classifiers.
The proposed algorithm, called Anytime Nearest Neighbor (ANN), utilizes additional clas-
sification time by considering more and more examples out of which the nearest neighbor
is picked. Unlike TATA, both AAPE and ANN are fixed-time learners and cannot benefit
from additional resources during learning. Moreover, ANN and AAPE do not deal with at-
tribute costs and assume that the major constraint is the computation time required by the
probabilistic models.

Cost-sensitive trees have been the subject of many research efforts. Several works pro-
posed greedy learners that take into account test costs by modifying the split criteria;
these include EG2 (Nunez 1991), IDX (Norton 1989), and CS-ID3 (Tan and Schlimmer
1989). These methods, however, do not consider misclassification costs. Other researchers
introduced learning algorithms that consider different misclassification costs (Breiman et
al. 1984; Pazzani et al. 1994; Provost and Buchanan 1995; Webb 1996; Bradford et al.
1998; Domingos 1999; Drummond and Holte 2000; Elkan 2001; Zadrozny et al. 2003;

Mach Learn (2011) 82: 445–473 467

Lachiche and Flach 2003; Abe et al. 2004; Vadera 2005; Margineantu 2005; Zhu et al. 2007;
Sheng and Ling 2007b; O’Brien et al. 2008; Bourke et al. 2008). These methods, however,
do not consider test costs and hence are appropriate mainly for domains where test costs are
not a constraint.

Recently, several research efforts have been invested in developing tree-learners that con-
sider both test costs and misclassification costs, and look for a tree that minimizes their sum.
In DTMC (Decision Trees with Minimal Cost), a greedy method that attempts to minimize
both types of costs simultaneously, a tree is built top-down, and a greedy split criterion
that takes into account both testing and misclassification costs is used (Ling et al. 2004;
Sheng et al. 2006). The ICET algorithm (Inexpensive Classification with Expensive Tests,
Turney 1995) was a pioneer in non-greedy search for a tree that minimizes test and misclas-
sification costs. ICET uses genetic search to produce a new set of costs that reflects both the
original costs and the misclassification cost reduction contributed by each attribute. Then
it builds a tree using the EG2 algorithm but with the evolved costs instead of the original
ones. Bayer-Zubek and Dietterich (2005) formulated the cost-sensitive learning problem as
a Markov Decision Process (MDP), and used a systematic search algorithm based on the
AO* heuristic search procedure to solve the MDP. Fan et al. (2000) studied the problem
of cost-sensitive intrusion detection systems (IDS), where the goal is to maximize security
while minimizing costs. Freitas et al. (2007) presented a greedy algorithm for decision tree
induction that considers misclassification costs, testing costs, delayed costs, and costs as-
sociated with risk, and applied on several medical tasks. These methods, however, are not
designed to produce anycost trees that can utilize strict classification budgets.

Greiner et al. analyzed the theoretical aspects of learning cost-sensitive active classifiers
using a variant of the probably-approximately-correct (PAC) model. They showed that is it
possible to PAC-learn optimal trees that administer at most a predetermined constant number
of tests. Their proposed method, however, requires O(nd) time to find the optimal d-depth
tree over n attributes. Farhangfar et al. (2008) presented a fast way to produce near-optimal
depth-bounded trees under the Naive Bayes assumption. The proposed approach resulted
in a speedup of O(n/ logn) and, despite the unrealistic assumption, it yielded relatively
high classification accuracy. Even after this improvement, however, the algorithm is still
exponential in d , the depth of the tree, and therefore impractical for problems with large n

and d .
Costs are also involved in the learning phase, during example acquisition. The problem

of budgeted learning has been studied by Lizotte et al. (2003). There is a cost associated
with obtaining each attribute value of a training example, and the task is to determine which
attributes of which instances to test given a budget. Kun et al. (2007) presented algorithms
based on the multi-armed bandit problem to operate in the budgeted learning setup. In a
related work, Kaplan et al. (2005) explored the theoretical aspects of learning from data
where observing the value of an attribute has an associated cost.

An extension to the work on optimal bounded active classifiers (Greiner et al. 2002) is
when tests have costs also during the learning phase. Kapoor and Greiner (2005) presented a
budgeted learning framework that operates under strict budget for feature-value acquisition
during learning and produces a classifier with a limited classification budget.

Provost et al. (2007) discussed the challenges electronic commerce environments bring to
data acquisition during learning and classification. They discussed several settings and pre-
sented a unified framework to integrate acquisition of different types, with any cost structure
and any predictive modeling objective.

A related problem is active feature-value acquisition. In this setup one tries to reduce
the cost of improving accuracy by identifying highly informative instances. Melville et al.

468 Mach Learn (2011) 82: 445–473

(2004) introduced an approach in which instances are selected for acquisition using the
accuracy of the current model and its confidence in the prediction.

Our setup assumed that we are charged for acquiring each of the feature values of the
test cases. The term test strategy (Sheng et al. 2005) describes the process of feature value
acquisition: which values to query for and in what order. Several test strategies have been
studied, including sequential, single batch and multiple batch (Sheng et al. 2006), each of
which corresponds to a different diagnostic policy. These strategies are orthogonal to our
work because they assume a given decision tree.

Bilgic and Getoor (2007) tackled the problem of feature subset selection when costs are
involved. The objective is to minimize the sum of the information acquisition cost and the
misclassification cost. Unlike greedy approaches that compute the value of features one at a
time, they used a novel data structure called the value of information lattice (VOILA), which
exploits dependencies between missing features and makes it possible to share information
value computations between different feature subsets. VOILA was shown empirically to
achieve dramatic cost improvements without the prohibitive computational costs of com-
prehensive search.

Nijssen and Fromont (2007) presented DL8, an exact algorithm for finding a decision
tree that optimizes a ranking function under size, depth, accuracy and leaf constraints. The
key idea behind DL8 is that constraints on decision trees are simulated as constraints on
itemsets. They show that optimal decision trees can be extracted from lattices of itemsets
in linear time. The applicability of DL8, however, is limited by two factors: the number of
itemsets that need to be stored, and the time that it takes to compute these itemsets. In some
cases, the number of frequent itemsets is so large that it is impossible to compute or store
them within reasonable time or space.

6 Conclusions

Machine learning techniques are increasingly popular in applications that involve constraints
on classification budget, including, among others, hardware fault detection (Wang 2010),
medical diagnosis (Kononenko 2001), spam detection (Dredze et al. 2007), network traffic
(Kim et al. 2004; Wang and Yu 2009), and intra-day trading (Luss and d’Aspremont 2009).
In this work we described three different scenarios for anycost classification. In the pre-
contract setup the maximal cost is known to the learner; in the contract setup it is known
after building the predictive model but before proceeding with classification; and in the
interruptible setup the cost limit is provided neither to the learner nor the classifier. The
major contribution of this paper is the TATA framework, which is designed to operate in
such environments.

For the pre-contract setup, TATA builds a tree top-down and exploits extra resources to
make better split decisions. During the recursive induction, TATA considers only tests that
fit the budget. For each split, it samples the space of subtrees under it that fit the remain-
ing budget, and prefers the split under which there is a subtree with a minimal expected
misclassification cost.

For the contract and interruptible scenarios, TATA builds a repertoire of trees from sev-
eral invocations of pre-contract-TATA with different cost limits. While in contract-TATA the
tree that best fits the budget is picked, in interruptible-TATA the trees in the repertoire are
traversed sequentially until interrupted, and the prediction of the last fully explored tree is
returned. A great advantage of the repertoire concept is its generality: it can be easily con-
figured to use any base classifier given a pre-contract learning algorithm for that classifier.

Mach Learn (2011) 82: 445–473 469

While our interruptible classifier can operate also under the pre-contract and contract
classification setup, it comes at a price. First, during learning, resources are allocated for
building trees that are eventually ignored. Unlike the pre-contract learner that invests 100%
of the available learning time in a single tree, learners of contract and interruptible classifiers
split their resources among several trees. Building 10 trees of the same quality as the pre-
contract learner takes, on average, 10 times longer. Second, during classification, resources
are wasted on testing attributes that may not affect the final decision. Unlike pre-contract
and contract classifiers, which test only the attributes along a single path of a single tree,
interruptible classifiers measure features from several trees. Some of these features may not
be needed by the last fully explored tree.

The learning components of TATA are themselves anytime, and can utilize extra learning
resources to produce better anycost classifiers. These resources may be preallocated (con-
tract learning) or not (interruptible learning). In the pre-contract setup, the TATA learner can
utilize extra time to form larger samples and thus improve tree-utility estimations. In the
contract and interruptible scenarios, extra time can be invested either to create better single
trees or to enlarge the repertoires.

The experimental study shows that TATA exhibits good anytime behavior and produces
substantially better anycost classifiers. For many real-life problems that involve limits on
testing cost, TATA makes it possible to obtain affordable decision trees with notably lower
misclassification costs. Depending on the specific needs of the application, the user can
choose to provide TATA with the classification budget either before learning the model, or
before classifying each case. Alternatively, if the budget is not predetermined, the user can
interrupt the classifier when the budget is exhausted without explicitly providing an upper
bound.

In the future we intend to examine other methods for producing the TATA samples. In
addition, we plan to further research the tradeoff between the size of a repertoire and the
quality of the trees composing it, both in the contract and interruptible setups.

Appendix: Datasets

Table 2 lists the characteristics of the 25 datasets we used. Below we give a more detailed
description of the non-UCI datasets used in our experiments:

1. Multiplexer: The multiplexer task was used by several researchers for evaluating clas-
sifiers (e.g., Quinlan 1993). An instance is a series of bits of length a + 2a , where a is
a positive integer. The first a bits represent an index into the remaining bits and the la-
bel of the instance is the value of the indexed bit. In our experiments we considered the
20-Multiplexer (a = 4). The dataset contains 500 randomly drawn instances.

2. Boolean XOR: Parity-like functions are known to be problematic for many learning algo-
rithms. However, they naturally arise in real-world data, such as the Drosophila survival
concept (Page and Ray 2003). We considered XOR of five variables with five additional
irrelevant attributes.

3. Numeric XOR: A XOR based numeric dataset that has been used to evaluate learning
algorithms (e.g., Baram et al. 2003). Each example consists of values for x and y coordi-
nates. The example is labeled 1 if the product of x and y is positive, and −1 otherwise.
We generalized this domain for three dimensions and added irrelevant variables to make
the concept harder.

470 Mach Learn (2011) 82: 445–473

Table 2 Characteristics of the datasets used

Dataset Instances Attributes Max att.

Nominal (binary) Numeric Domain Classes

Breast Cancer 277 9 (3) 0 13 2

Bupa 345 0 (0) 5 – 2

Car 1728 6 (0) 0 4 4

Flare 323 10 (5) 0 7 4

Glass 214 0 (0) 9 – 7

Heart 296 8 (4) 5 4 2

Hepatitis 154 13 (13) 6 2 2

Iris 150 0 (0) 4 – 3

KRK 28056 6 (0) 0 8 17

Monks-1 124 + 432 6 (2) 0 4 2

Monks-2 169 + 432 6 (2) 0 4 2

Monks-3 122 + 432 6 (2) 0 4 2

Multiplexer-20 615 20 (20) 0 2 2

Multi-XOR 200 11 (11) 0 2 2

Multi-AND-OR 200 11 (11) 0 2 2

Nursery 8703 8 (8) 0 5 5

Pima 768 0 (0) 8 – 2

TAE 151 4 (1) 1 26 3

Tic-Tac-Toe 958 9 (0) 0 3 2

Titanic 2201 3 (2) 0 4 2

Thyroid 3772 15 (15) 5 2 3

Voting 232 16 (16) 0 2 2

Wine 178 0 (0) 13 – 3

XOR 3D 200 0 (0) 6 – 2

XOR-5 200 10 (10) 0 2 2

4. Multi-XOR/Multi-AND-OR: These concepts are defined over 11 binary attributes. In both
cases the target concept is composed of several subconcepts, where the first two attributes
determines which of them is considered. The other 10 attributes are used to form the
subconcepts. In the Multi-XOR dataset, each subconcept is an XOR, and in the Multi-
AND-OR dataset, each subconcept is either AND or OR.

References

Abe, N., Zadrozny, B., & Langford, J. (2004). An iterative method for multi-class cost-sensitive learning.
In Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data
mining (KDD-2004), Seattle, WA, USA (pp. 3–11).

Asuncion, A., & Newman, D. (2007). UCI machine learning repository. University of California, Irvine,
School of Information and Computer Sciences. http://www.ics.uci.edu/~mlearn/MLRepository.html.

Baram, Y., El-Yaniv, R., & Luz, K. (2003). Online choice of active learning algorithms. In Proceedings of the
20th international conference on machine learning (ICML-2003), Washington, DC, USA (pp. 19–26).

Bayer-Zubek, V., & Dietterich, T.G. (2005). Integrating learning from examples into the search for diagnostic
policies. Artificial Intelligence, 24(1), 263–303.

http://www.ics.uci.edu/~mlearn/MLRepository.html

Mach Learn (2011) 82: 445–473 471

Bilgic, M., & Getoor, L. (2007). Voila: Efficient feature-value acquisition for classification. In Proceedings
of the 22nd national conference on artificial intelligence (AAAI-2007), Vancouver, British Columbia,
Canada (pp. 1225–1230).

Boddy, M., & Dean, T. L. (1994). Deliberation scheduling for problem solving in time-constrained environ-
ments. Artificial Intelligence, 67(2), 245–285.

Bouckaert, R. R. (2003). Choosing between two learning algorithms based on calibrated tests. In Proceedings
of the 20th international conference on machine learning (ICML-2003), Washington, DC, USA (pp. 51–
58).

Bourke, C., Deng, K., Scott, S. D., Schapire, R. E., & Vinodchandran, N. V. (2008). On reoptimizing multi-
class classifiers. Machine Learning, 71(2–3), 219–242.

Bradford, J., Kunz, C., Kohavi, R., Brunk, C., & Brodley, C. (1998). Pruning decision trees with misclas-
sification costs. In Proceedings of the 9th European conference on machine learning (ECML-1998),
Chemnitz, Germany (pp. 131–136).

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984) Classification and regression trees. Wadsworth
and Brooks, Monterey.

Craven, M. W. (1996). Extracting comprehensible models from trained neural networks. Ph.D. thesis, De-
partment of Computer Sciences, University of Wisconsin, Madison.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7(Jan), 1–30.

Domingos, P. (1999). Metacost: a general method for making classifiers cost-sensitive. In Proceedings of the
5th international conference on knowledge discovery and data mining (KDD’1999), San Diego, CA,
USA (pp. 155–164).

Dredze, M., Gevaryahu, R., & Elias-Bachrach, A. (2007). Learning fast classifiers for image spam. In Pro-
ceedings of the 4th conference on email and anti-spam (CEAS-2007), Mountain View, CA, USA

Drummond, C., & Holte, R. C. (2000). Exploiting the cost (in)sensitivity of decision tree splitting criteria.
In Proceedings of the 17th international conference on machine learning (ICML-2000), San Francisco,
CA, USA (pp. 239–246). San Mateo: Morgan Kaufmann.

Elkan, C. (2001). The foundations of cost-sensitive learning. In Proceedings of the 17th international joint
conference on artificial intelligence (IJCAI-2001), Seattle, Washington, USA (pp. 973–978).

Esmeir, S., & Markovitch, S. (2007a). Anytime induction of cost-sensitive trees. In J. Platt, D. Koller, Y.
Singer, & S. Roweis (Eds.), Proceedings of the 21st annual conference on neural information processing
systems (NIPS-2007), Vancouver, B.C., Canada (pp. 425–432). Cambridge: MIT Press.

Esmeir, S., & Markovitch, S. (2007b). Anytime learning of decision trees. Journal of Machine Learning
Research, 8(May), 891–933.

Fan, W., Lee, W., Stolfo, S. J., & Miller, M. (2000). A multiple model cost-sensitive approach for intru-
sion detection. In Proceedings of the 11th European conference on machine learning (ECML-2000),
Barcelona, Catalonia, Spain (pp. 142–153).

Farhangfar, A., Greiner, R., & Zinkevich, M. (2008). A fast way to produce near-optimal fixed-depth decision
trees. In Proceedings of the 10th international symposium on artificial intelligence and mathematics
(ISAIM-2008), Fort Lauderdale, Florida, USA.

Freitas, A., Pereira, A., & Brazdil, P. (2007). Cost-sensitive decision trees applied to medical data. In I. Song,
J. Eder, & T. Nguyen (Eds.), Lecture notes in computer science: Vol. 4654. Proceedings of the 9th
international conference on data warehousing and knowledge discovery (DaWak-2007), Regensburg,
Germany (pp. 303–312). Berlin: Springer.

Greiner, R., Grove, A. J., & Roth, D. (2002). Learning cost-sensitive active classifiers. Artificial Intelligence,
139(2), 137–174.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: data mining, inference,
and prediction. New York: Springer.

Kaplan, H., Kushilevitz, E., & Mansour, Y. (2005). Learning with attribute costs. In Proceedings of the 37th
annual ACM symposium on theory of computing (STOC-2005) (pp. 356–365).

Kapoor, A., & Greiner, R. (2005). Learning and classifying under hard budgets. In Proceedings of the 9th
European conference on machine learning (ECML-2005), Porto, Portugal (pp. 170–181).

Kim, H., Kim, J., Bahk S., & Kang, I. (2004). Fast classification, calibration, and visualization of network
attacks on backbone links. In H.-K. Kahng (Ed.), Lecture notes in computer science: Vol. 3090. Pro-
ceedings of the 18th international conference on information networking (ICOIN-2004), Busan, Korea
(pp. 837–846). Berlin: Springer.

Kononenko, I. (2001). Machine learning for medical diagnosis: history, state of the art and perspective. Arti-
ficial Intelligence in Medicine, 23(1), 89–109.

Kun, D., Bourke, C., Scott, S., Sunderman, J., & Zheng, Y. (2007). Bandit-based algorithms for budgeted
learning. In Proceedings of IEEE international conference on data mining (ICDM-2007), Omaha, NE,
USA (pp. 463–468).

472 Mach Learn (2011) 82: 445–473

Lachiche, N., & Flach, P. (2003). Improving accuracy and cost of two-class and multi-class probabilistic
classifiers using ROC curves. In Proceedings of the 20th international conference on machine learning
(ICML-2003), Washington, DC, USA.

Lindenbaum, M., Markovitch, S., & Rusakov, D. (2004). Selective sampling for nearest neighbor classifiers.
Machine Learning, 54(2), 125–152.

Ling, C. X., Yang, Q., Wang, J., & Zhang, S. (2004). Decision trees with minimal costs. In Proceedings of the
21st international conference on machine learning (ICML-2004), Banff, Alberta, Canada (pp. 69–77).

Lizotte, D. J., Madani, O., & Greiner, R. (2003). Budgeted learning of naive Bayes classifiers. In Proceedings
of the 19th conference on uncertainty in artificial intelligence (UAI-2003), Acapulco, Mexico (pp. 378–
385).

Luss, R., & d’Aspremont, A. (2009). Predicting abnormal returns from news using text classification. In Pro-
ceedings of the 1st international workshop on advances in machine learning for computational finance,
London, UK.

Margineantu, D. (2005). Active cost-sensitive learning. In Proceedings of the 19th international joint confer-
ence on artificial intelligence (IJCAI-2005), Edinburgh, Scotland (pp. 1622–1623).

Melville, P., Saar-Tsechansky, M., Provost, F., & Mooney, R. J. (2004). Active feature acquisition for classi-
fier induction. In Proceedings of the 4th IEEE international conference on data mining (ICDM-2004),
Brighton, UK (pp. 483–486).

Nijssen, S., & Fromont, E. (2007). Mining optimal decision trees from itemset lattices. In Proceedings of the
13th ACM SIGKDD international conference on knowledge discovery and data mining (KDD-2007),
San Jose, CA, USA (pp. 530–539).

Norton, S. W. (1989). Generating better decision trees. In N. S. Sridharan (Ed.), Proceedings of the 11th
international joint conference on artificial intelligence, Detroit, Michigan, USA (pp. 800–805).

Nunez, M. (1991). The use of background knowledge in decision tree induction. Machine Learning, 6(3),
231–250.

O’Brien, D., Gupta, M., & Gray, R. (2008). Cost-sensitive multi-class classification from probability es-
timates. In A. McCallum & S. Roweis (Eds.), Proceedings of the 25th international conference on
machine learning (ICML-2008), Helsinki, Finland (pp. 712–719).

Page, D., & Ray, S. (2003). Skewing: an efficient alternative to lookahead for decision tree induction. In
Proceedings of the 18th international joint conference on artificial intelligence (IJCAI-2003), Acapulco,
Mexico (pp. 601–607).

Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., & Brunk, C. (1994). Reducing misclassification costs:
knowledge intensive approaches to learning from noisy data. In Proceedings of the 11th international
conference on machine learning (ICML-1994), New Brunswick, NJ, USA (pp. 217–225).

Provost, F., & Buchanan, B. (1995). Inductive policy: The pragmatics of bias selection. Machine Learning,
20(1–2), 35–61.

Provost, F., Melville, P., & Saar-Tsechansky, M. (2007). Data acquisition and cost-effective predictive mod-
eling: targeting offers for electronic commerce. In Proceedings of the 9th international conference on
electronic commerce (ICEC-2007) (pp. 389–398).

Quinlan, J. R. (1993). C4.5: programs for machine learning. San Mateo: Morgan Kaufmann.
Russell, S. J., & Zilberstein, S. (1996). Optimal composition of real-time systems. Artificial Intelligence,

82(1–2), 181–213.
Sheng, V. S., & Ling, C. X. (2007a). Partial example acquisition in cost-sensitive learning. In Proceedings of

the 13th ACM SIGKDD international conference on knowledge discovery and data mining (KDD-2007),
San Jose, CA, USA (pp. 638–646).

Sheng, V. S., & Ling, C. X. (2007b). Roulette sampling for cost-sensitive learning. In Proceedings of the 18th
European conference on machine learning (ECML-2007), Warsaw, Poland (pp. 724–731).

Sheng, S., Ling, C. X., Ni, A., & Zhang, S. (2006). Cost-sensitive test strategies. In Proceedings of the 21st
national conference on artificial intelligence (AAAI-2006), Boston, MA, USA (pp. 482–487).

Sheng, S., Ling, C. X., & Yang, Q. (2005). Simple test strategies for cost-sensitive decision trees. In Proceed-
ings of the 9th European conference on machine learning (ECML-2005), Porto, Portugal (pp. 365–376).

Tan, M., & Schlimmer, J. C. (1989). Cost-sensitive concept learning of sensor use in approach and recog-
nition. In Proceedings of the 6th international workshop on machine learning, Ithaca, NY, USA
(pp. 392–395).

Turney, P. D. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree
induction algorithm. Journal of Artificial Intelligence Research, 2, 369–409.

Turney, P. (2000). Types of cost in inductive concept learning. In Proceedings of the workshop on cost-
sensitive learning held with the 17th international conference on machine learning (ICML-2000), Stan-
ford, CA, USA (pp. 5–21).

Ueno, K., Xi, X., Keogh, E., & Lee, D. (2006). Anytime classification using the nearest neighbor algorithm
with applications to stream mining. In Proceedings of the 6th IEEE international conference on data
mining (ICDM-2006), Washington, DC, USA (pp. 623–632).

Mach Learn (2011) 82: 445–473 473

Vadera, S. (2005). Inducing cost-sensitive non-linear decision trees (Technical Report 03-05-2005). School
of Computing, Science and Engineering, University of Salford.

Wang, S. (2010). Machine learning based volume diagnosis of semiconductor chips. Patent application,
United States, number 20100005041.

Wang, Y., & Yu, S.-Z. (2009). Supervised learning real-time traffic classifiers. Journal of Networks, 4(7),
622–629.

Webb, G. (1996). Cost-sensitive specialization. In Proceedings of the 4th pacific rim international conference
on artificial intelligence (PRICAI-1996), London, UK (pp. 23–34). Berlin: Springer.

Yang, Y., Webb, G., Korb, K., & Ting, K. (2007). Classifying under computational resource constraints:
anytime classification using probabilistic estimators. Machine Learning, 69(1), 35–53.

Zadrozny, B., Langford, J., & Abe, N. (2003). Cost-sensitive learning by cost-proportionate example weight-
ing. In Proceedings of the 3rd IEEE international conference on data mining (ICDM-2003), Melbourne,
FL, USA (pp. 435–442). Berlin: Springer.

Zhu, X., Wu, X., Khoshgoftaar, T., & Yong, S. (2007). An empirical study of the noise impact on cost-
sensitive learning. In Proceedings of the 20th international joint conference on artificial intelligence
(IJCAI-2007), Hyderabad, India (pp. 1168–1173).

	Anytime learning of anycost classifiers
	Abstract
	Introduction
	Resource-bounded learning and classification
	Learning costs
	Classification costs
	Anytime learning, anycost classification

	The TATA framework
	Tree-based pre-contract classifiers
	Anytime learning of pre-contract trees
	Top-down induction of anycost trees
	Greedy TDIDT$ instantiations
	The pre-contract-TATA algorithm
	Interruptible learning of pre-contract classifiers

	Learning contract classifiers
	Repertoire of trees
	Learning repertoires with nonuniform cost gaps

	Learning interruptible classifiers
	Forming repertoires for interruptible classification
	Determining the size of interruptible repertoires
	Discounting repeated tests

	The TATA framework components: a summary

	Experimental evaluation
	Pre-contract classification
	Comparison under different budgets
	Anytime behavior of pre-contract TATA

	Contract classification
	Interruptible classification

	Related work
	Conclusions
	Appendix: Datasets
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

