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Abstract In this analytical study we derive the optimal unbiased value estimator (MVU)
and compare its statistical risk to three well known value estimators: Temporal Difference
learning (TD), Monte Carlo estimation (MC) and Least-Squares Temporal Difference Learn-
ing (LSTD). We demonstrate that LSTD is equivalent to the MVU if the Markov Reward
Process (MRP) is acyclic and show that both differ for most cyclic MRPs as LSTD is then
typically biased. More generally, we show that estimators that fulfill the Bellman equation
can only be unbiased for special cyclic MRPs. The reason for this is that at each state the
bias is calculated with a different probability measure and due to the strong coupling by
the Bellman equation it is typically not possible for a set of value estimators to be unbiased
with respect to each of these measures. Furthermore, we derive relations of the MVU to MC
and TD. The most important of these relations is the equivalence of MC to the MVU and to
LSTD for undiscounted MRPs in which MC has the same amount of information. In the dis-
counted case this equivalence does not hold anymore. For TD we show that it is essentially
unbiased for acyclic MRPs and biased for cyclic MRPs. We also order estimators according
to their risk and present counter-examples to show that no general ordering exists between
the MVU and LSTD, between MC and LSTD and between TD and MC. Theoretical results
are supported by examples and an empirical evaluation.
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1 Introduction

One of the important theoretical issues in reinforcement learning are rigorous statements
on convergence properties of so called value estimators (e.g. Sutton 1988; Watkins and
Dayan 1992; Jaakkola et al. 1994; Bradtke and Barto 1996) which provide an empirical
estimate of the expected future reward for every given state. So far most of these convergence
results were restricted to the asymptotic case and did not provide statements for the case of a
finite number of observations. In practice, however, one wants to choose the estimator which
yields the best result for a given number of examples or in the shortest time.

Current approaches to the finite example case are mostly empirical and few non-empirical
approaches exist. Kearns and Singh (2000) present upper bounds on the generalization error
for Temporal Difference estimators (TD). They use these bounds to formally verify the intu-
ition that TD methods are subject to a “bias-variance” trade-off and to derive “schedules” for
estimator parameters. Comparisons of different estimators with respect to the bounds were
not performed. The issue of bias and variance in reinforcement learning is also addressed in
other works Singh and Dayan (1998), Mannor et al. (2007). Singh and Dayan (1998) provide
analytical expressions of the mean squared error (MSE) for various Monte Carlo (MC) and
TD estimators. Furthermore, they provide software that yields the exact mean squared error
curves given a complete description of a Markov Reward Process (MRP). The method can
be used to compare different estimators for concrete MRPs. But it is not possible to prove
general statements with their method. The most relevant works for our analysis are provided
by Mannor et al. (2007) and by Singh and Sutton (1996).

In Mannor et al. (2007) the bias and the variance in value function estimates is studied and
closed-form approximations are provided for these terms. The approximations are used in a
large sample approach to derive asymptotic confidence intervals. The underlying assumption
of normally distributed estimates is tested empirically on a dataset of a mail-order catalogue.
In particular, a Kolmogorov-Smirnov test was unable to reject the hypothesis of normal
distribution with a confidence of 0.05. The value function estimates are based on sample
mean estimates of the MRP parameters. The parameter estimates are used in combination
with the value equation to produce the value estimate. Different assumptions are made in
the paper to simplify the analysis. A particularly important assumption is that they assume
that the number of visits of a state is not random but fixed and that each state is visited
at least once (Mannor et al. 2007, p. 310, top of right column). Under this assumption the
sample mean parameter estimates are unbiased. We show that the application of the value
equation onto these unbiased parameter estimates results in biased value estimates. Without
this assumption the sample mean estimates underestimate the parameters in the average
and the value estimates can be unbiased. We state special cases in which this happens. We
address this point in detail in Sect. 3.4.

In Singh and Sutton (1996) different kinds of eligibility traces are introduced and ana-
lyzed. It is shown that TD(1) is unbiased if the replace-trace is used and that it is biased if
the usual eligibility trace is used. What is particularly important for our work is one of their
side findings: The Maximum Likelihood and the MC estimates are equivalent in a special
case. We characterize this special case with Criterion 3 (p. 303) and we make frequent use
of this property. We call the criterion the Full Information Criterion because all paths that
are relevant for value estimation in a state s must hit this state. The idea behind this criterion
is to make a “fair” comparison of value estimators that use only paths that hit state s with
value estimators that propagate information back to state s (for details see p. 303). This same
property is already described in Singh and Sutton (1996, Theorem 5, p. 11).

In this paper we follow a new approach to the finite example case using tools from sta-
tistical estimation theory (e.g. Stuart and Ord 1991). Rather than relying on bounds, on
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Fig. 1 The figure shows two value estimator classes and four value estimators. On the left the class of
unbiased value estimators is shown and on the right the class of Bellman estimators. The graph visualises to
which classes the estimators belong and how the two classes are related. The cursive texts state conditions
under which different estimators are equivalent, respectively, under which the two classes overlap: (1) The
modified TD estimator (Appendix B) is unbiased if the MRP is acyclic, (2) MC is equivalent to the MVU if the
Full Information Criterion (FI) is fulfilled and γ = 1, (3) ML is equivalent to the MVU if the MRP is acyclic
or if FI is fulfilled and γ = 1, (4) in general, the class of unbiased value estimators does not overlap with
the class of Bellman estimators. However, both overlap if the MRP is acyclic or if FI is fulfilled and γ = 1
(indicated by the dashed semi-ellipse). The dashed semi-ellipse suggests that the classes are not equivalent.
In Sect. D.3 (p. 329) we present two simple examples that show that this is indeed the case

approximations, or on results to be recalculated for every specific MRP this approach al-
lows us to derive general statements. Our main results are sketched in Fig. 1. The major
contribution is the derivation of the optimal unbiased value estimator (Minimum Variance
Unbiased estimator (MVU), Sect. 3.3). We show that the Least-Squares Temporal Difference
estimator (LSTD) from Bradtke and Barto (1996) is equivalent to the Maximum Likelihood
value estimator (ML) (Sect. 3.4.6) and that both are equivalent to the MVU if the discount
γ = 1 (undiscounted) and the Full Information Criterion is fulfilled or if an acyclic MRP is
given (Sect. 3.4.3). In general the ML estimator differs from the MVU because ML fulfills
the Bellman equation and because estimators that fulfill the Bellman equation can in general
not be unbiased (we refer to estimators that fulfill the Bellman equation in the future as Bell-
man estimators). The main reason for this effect being the probability measures with which
the expectations are taken (Sect. 3.1). The bias of the Bellman estimators vanishes exponen-
tially in the number of observed paths. As both estimators differ in general it is natural to
ask which of them is better? We show that in general neither the ML nor the MVU estimator
are superior to each other, i.e. examples exist where the MVU is superior and examples exist
where ML is superior (Sect. D.2).

The first-visit MC estimator is unbiased (Singh and Sutton 1996) and therefore inferior
to the MVU as the MVU is the optimal unbiased estimator. However, we show that for
γ = 1 the estimator becomes equivalent to the MVU if the Full Information Criterion applies
(Sect. 3.5). Furthermore, we show that this equivalence is restricted to the undiscounted case.
Finally, we compare the estimators to TD(λ). We show that TD(λ) is essentially unbiased
for acyclic MRPs (Appendix B) and is thus inferior to the MVU and to the ML estimator for
this case. In the cyclic case TD is biased (Sect. 3.6).

An early version of this work was presented in Grünewälder et al. (2007). The analysis
was restricted to acyclic MRPs and to the MC and LSTD estimator. The main findings were
that LSTD is unbiased and optimal for acyclic MRPs and that MC equals LSTD in the
acyclic case if the Full Information Criterion applies and γ = 1. It turned out that the second
finding was already shown in more generality by Singh and Sutton (1996, Theorem 5). The
restriction to acyclic MRPs simplified the analysis considerably compared to the general
case which we approach here.
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Theoretical findings are summarized in two tables in Sect. 3.7 (p. 310). Symbols are
explained at their first occurrence and a table of notations is included in Appendix A. For
the sake of readability proofs are presented in Appendix C.

2 Estimation in reinforcement learning

A common approach to the optimization of a control policy is to iterate between estimating
the current performance (value estimation) and updating the policy based on this estimate
(policy improvement). Such an approach to optimization is called policy iteration (Sutton
and Barto 1998; Bertsekas and Tsitsiklis 1996). The value estimation part is of central im-
portance as it determines the direction of the policy improvement step.

In this work we focus on this value estimation problem and we study it for Markov Re-
ward Processes. In Reinforcement Learning Markov Decision Processes are typically used.
An MRP is the same with the only difference being that the policy does not change over
time.

2.1 Markov reward processes

A Markov Reward Process consists of a state space S (in our case a finite state space), prob-
abilities pi to start in state i, transition probabilities pij and a random reward Rij between
states i and j . The MRP is acyclic if no state i and no path π = (s1, s2, s3, . . .) exists such
that P (π) := ps1s2ps2s3 . . . > 0 and state i is included at least twice in π .

Our goal is to estimate the values Vi of the states in S, i.e. the expected future reward
received after visiting state i. The value is defined as

Vi =
∑

j∈S

pij

(
E[Rij ] + γVj

)
and in vector notation by V =

∞∑

t=0

γ tPtr = (I − γ P)−1r,

where P = (pij ) is the transition matrix of the Markov process, I the identity matrix,
γ ∈ (0,1] a discount factor and r is the vector of the expected one step reward (ri =∑

j∈S
pijE[Rij ]). In the undiscounted case (γ = 1) we assume that with probability one

a path reaches a terminal state after a finite number of steps.
A large part of this work is concerned with the relation between the maximum likelihood

value estimator and the optimal unbiased value estimator. In particular, we are interested
in equivalence statements for these two estimators. Equivalence between these estimators
can only hold if the estimates for the reward are equivalent, meaning that the maximum
likelihood estimator for the reward distribution matches with the optimal unbiased estimator.
We therefore restrict our analysis to reward distributions with this property, i.e. we assume
throughout that the following assumption holds:

Assumption 1 The maximum likelihood estimate of the mean reward is unbiased and equiv-
alent to the optimal unbiased estimate.

The assumption is certainly fulfilled for deterministic rewards. Other important cases are
normal distributed, binomial and multinomial distributed rewards.
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2.2 Value estimators and statistical risk

We compare value estimators with respect to their risk (not the empirical risk)

E[L(V̄i , Vi)], (1)

where V̄i is a value estimator of state i and L is a loss function, which penalizes the deviation
from the true value Vi . We will mainly use the mean squared error

MSE[V̄i] := E[(V̄i − Vi)
2], (2)

which can be split into a bias and a variance term

MSE[V̄i] = V[V̄i]︸ ︷︷ ︸
Variance

+(E[V̄i − Vi]︸ ︷︷ ︸
Bias

)2. (3)

An estimator is called unbiased if the bias term is zero. The unbiasedness of an estimator
depends on the underlying probability distribution with which the mean is calculated.

Typically, there is a chance that a state is not visited at all by an agent and it makes no
sense to estimate the value if this event occurs. We encode the probability event that state i

has not been visited with {Ni = 0} and that it has been visited at least once with {Ni ≥ 1},
where Ni denotes the number of visits of state i. Unbiased estimators are estimators that
are correct in the mean. However, if we take the (unconditional) mean for an MRP then we
include the term E[V̄i |{Ni = 0}] into the calculation, i.e. the value estimate for the case that
the estimator has not seen a single example. This is certainly not what we want. We therefore
measure the bias of an estimator using the conditional expectation E[ · |{Ni ≥ 1}].

Equal weighting of examples We conclude this section by citing a simple criterion with
which it is possible to verify unbiasedness and minimal MSE in special cases. This criterion
provides an intuitive interpretation of a weakness of the TD(λ) estimator (see Sect. 3.6). Let
xi, i = 1, . . . , n be a sample consisting of n ≥ 1 independent and identically distributed (iid)
elements of an arbitrary distribution. The estimator

n∑

i=1

αixi , with 0 ≤ αi ≤ 1, and
n∑

i=1

αi = 1, (4)

is unbiased. It has the lowest variance for αi = 1/n (Stuart and Ord 1991). The xi could,
for example, be the summed rewards for n different paths starting in the same state s, i.e.
xi :=∑∞

t=0 γ tR
(i)
t , where R

(i)
t denotes here the reward at time t in path i. The criterion states

that for estimators which are linear combinations of iid examples all examples should have
an equal influence and none should be preferred over another. However, it is important to
notice that not all unbiased estimators must be linear combinations of such sequences and
that better unbiased estimators might exist. In fact this is the case for MRPs. The structure
of an MRP allows better value estimates.

2.3 Temporal difference learning

A commonly used value estimator for MRPs is the TD(λ) estimator (Sutton 1988). It con-
verges on average (L1-convergence, Sutton 1988) and it converges almost surely to the cor-
rect value (Watkins and Dayan 1992; Jaakkola et al. 1994). In practical tasks it seems to
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outperform the MC estimator with respect to convergence speed and its computational costs
are low. Analyses for the TD(0) estimator are often less technical. We therefore restrict some
statements to this estimator. TD(0) can be defined by means of an update equation:

V̄ (i+1)
s = V̄ (i)

s + αi+1(R
(i+1)

ss′ + γ V̄
(ji+1)

s′ − V̄ (i)
s ), (5)

where V (i)
s denotes the ith value estimate of state s, i.e. the value estimate after state s

has been visited i times. s ′ denotes the successor state of state s in the corresponding path.
V̄

(ji+1)

s′ denotes the value estimate of state s ′ when state s is visited for the (i +1)th time. The
use of (i) differs slightly from the last section as not all paths need to hit state s anymore,
respectively can hit state s multiple times. Finally, αi+1 is the learning rate and R

(i+1)

ss′ is the
reward which occurred during the transition from s to s ′. The general TD(λ) update equation
is heavy in notation if we want to keep track of all the variables. We therefore drop some
indices that are not of major importance for our analysis. The update equation is given by

V̄ (i+1)
s = V̄ (i)

s + �V̄ (i+1)
s and �V̄ (i+1)

s = αφ(i+1)(Rtt ′ + γ V̄t ′ − V̄t )e
(i+1)
s .

We suppressed the indices of Rtt ′ , V̄t ′ and V̄t . V̄ (i+1)
s is like before the ith value estimate

of state s. t denotes the state at the i + 1th update and t ′ the successor state. Rtt ′ is the
reward gained at that transition and V̄t ′ and V̄t are the value estimates for state t and t ′.
We want the learning rate to change with the number of visits of state s and not with each
update of V̄s , therefore we use the function φ(i + 1) to map i + 1 to the corresponding
number of visits of state s. Finally, e(i+1)

s is an eligibility trace. The update equation can be
applied after each transition (online), when a terminal state is reached (offline) or after an
entire set of paths has been observed (batch update). The eligibility trace can be defined in
various ways. Two important definitions are the accumulating trace and the replacing trace
(Singh and Sutton 1996). In Singh and Sutton (1996) it is shown that for λ = 1 the TD(λ)
estimator corresponding to the accumulating trace is biased while the one corresponding to
the replacing trace is unbiased. The replacing trace is defined by

e(i+1)
s =

{
1 if s = t,

γ λe(i)
s else.

(6)

The idea is here that the value estimate for state s gets a TD(0) like update in step i + 1 if
state s is visited in that step (s = t ) and otherwise it gets a scaled down update. For acyclic
MRPs both definitions are equivalent. For λ < 1 the estimators are biased towards their
initialization value. However, a minor modification is sufficient to delete the bias for acyclic
MRPs (Appendix B on p. 319). We will mostly use this modified version.

2.4 Monte Carlo estimation

The Monte Carlo estimator is the sample mean estimator of the summed future reward (Sut-
ton and Barto 1998). For acyclic MRPs the MC estimator is given by

1

n

n∑

i=1

( ∞∑

t=0

γ tR
(i)
t

)
, (7)

where n is the number of paths that have been observed.
In the cyclic case there are two alternative MC estimators: First-visit MC and every-visit

MC. First-visit MC makes exactly one update for each visited state. It uses the part of the
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path which follows upon the first visit of the relevant state. The first-visit MC estimator V̄i

is unbiased for every state i, i.e. E[V̄i |Ni ≥ 1] = Vi . Every-visit MC makes an update for
each visit of the state. The advantage of the every-visit MC estimator is that it has more
samples available for estimation, however, the paths overlap and the estimator is therefore
biased (Singh and Sutton 1996). Both estimators converge almost surely and on average to
the correct value.

The MC estimators are special cases of TD(λ). The every-visit MC estimator is equiva-
lent to TD(λ) for the accumulate trace and the first-visit MC estimator for the replace trace
if λ = 1 and αi = 1/i.

3 Comparison of estimators: theory

The central theme of this paper is the relation between two important classes of value estima-
tors and between four concrete value estimators. One can argue that the two most important
estimator classes are the estimators that fulfill the Bellman equation and estimators that are
unbiased. The former class is certainly of great importance as the Bellman equation is the
central equation in Reinforcement Learning. The latter class proved its importance in statis-
tical estimation theory, where it is the central class of estimators that is studied. We analyse
the relation between these two classes.

We concentrate on popular Reinforcement Learning estimators (the Monte-Carlo and
the Temporal Difference estimator) and on estimators that are optimal in the two classes.
These are: (1) The optimal unbiased value estimator which we derive in Sect. 3.1. (2) The
Maximum Likelihood (ML) estimator for which one can argue (yet not prove!) that it is the
best estimator in the class of Bellman estimators.

Parts of this section are very technical. We therefore conclude this motivation with a high
level overview of the main results.

Estimator classes: unbiased vs. Bellman estimators The key finding for these two estima-
tor classes is that cycles in an MRP essentially separate them. That means if we have an
MRP with cycles then the estimators either do not fulfill the Bellman equation or some of
them must be biased. The main factor that is responsible for this effect is the “normaliza-
tion” {Ni ≥ 1}. The Bellman equation couples the estimators, yet the estimators must be
“flexible” to be unbiased with respect to different probability measures, i.e. the conditional
probabilities P[ · |{Ni ≥ 1}].

Furthermore, we show that the discount has an effect on the bias of Bellman estimators.
Estimators that use the Bellman equation are based on parameter estimates p̄ij . We show
that these parameter estimates must be discount dependent. Otherwise, a “further bias” is
introduced.

We show that these factors are the main factors for the separation of the classes: (1) If the
MRP is acyclic or (2) if the problem with the normalization and the discount is not present
then Bellman estimators can be unbiased.

Estimator comparison and ordering: MVU, ML, TD and MC The key contribution in this
part is the derivation of the optimal unbiased value estimator. We derive this estimator by
conditioning the first-visit Monte Carlo estimator with “all the information” that is available
through the observed paths and we show that the resulting estimator is optimal with respect
to any convex loss function. The conditioning has two effects: (1) The new estimator uses the
Markov structure to make use of (nearly) all paths. (2) It uses “consistent” alternative cycles
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beside the observed ones. For example, if a cyclic connection from state 1 → 1 is observed
once in the first run and three times in the second run, then the optimal estimator will use
paths with the cyclic connection being taken 0 to 4 times. Consistent with this finding, we
show that if the first-visit MC estimator observes all paths and the modification of cycles
has no effect, then the first-visit MC estimator is already optimal.

Furthermore, the methods from statistical estimation theory allow us to establish a strong
relation between the MVU and the Maximum Likelihood estimator. The ML estimator also
uses all the information, but it is typically biased as it fulfills the Bellman equation. However,
in the cases where the ML estimator is unbiased it is equivalent to the MVU. In particular,
the ML estimator is unbiased and equivalent to the MVU for acyclic MRPs or for MRPs
without discount where the Full Information Criterion applies.

In the final theory part we are addressing the Temporal Difference estimator. In contrast
to MC and ML the theoretical results for TD are not as strong. The reason being that the tools
from statistical estimation theory that we are applying can be used to compare estimators
inside one of the two estimator classes. However, TD is typically neither contained in the
class of unbiased estimators nor in the class of Bellman estimators. We are therefore falling
back to a more direct comparison of TD to ML. The analysis makes concrete the relation
of the optimal value estimator to TD and demonstrates the power of the Lehmann-Scheffe
theorem.

Beside the mentioned equivalence statements between different estimators we are also
establishing orderings like “the MVU is at least as good as the first-visit MC estimator” or
we are giving counter-examples if no ordering exists.

3.1 Unbiased estimators and the Bellman equation

In this section we analyze the relation between unbiased estimators and Bellman estimators.
Intuitively, we mean by “a value estimator V̄ fulfills the Bellman equation” that V̄ = r̄ +
γ P̄V̄, where r̄, P̄ are the rewards, respectively the transition matrix, of a well defined MRP.
We make this precise with the following definition:

Definition 1 (Bellman Equation for Value Estimators) An estimator V̄ fulfills the Bellman
equation if an MRP M̄ exists with the same state space as the original MRP, with a transition
matrix P̄, deterministic rewards r̄ and with value V̄, i.e. V̄ = r̄ + γ P̄V̄. Furthermore, M̄ is
not allowed to have additional connections, i.e. P̄ij = 0 if in the original MRP Pij = 0 holds.

Two remarks: Firstly, we restrict the MRP M̄ to have deterministic rewards for simplicity.
Secondly, the last condition is used to enforce that the MRP M̄ has a “similar structure” as
the original MRP. However, it is possible for M̄ to have fewer connections. For example,
this will be the case if not every transition i → j has been observed.

Constraining the estimator to fulfill the Bellman equation restricts the class of estimators
considerably. Essentially, the only degree of freedom is the parameter estimate P̄. If I − γ P̄
is invertible then

V (P̄, r̄) := V̄ = (I − γ P̄)−1r̄, (8)

i.e. V̄ is completely specified by P̄ and r̄. Here, V (P̄, r̄) denotes the value function for an
MRP with parameters P̄ and rewards r̄. In particular, the Bellman equation couples the
value estimates of different states. This coupling of the value estimates introduces a bias.
The intuitive explanation of the bias is the following: Assume we have two value esti-
mators V̄i , V̄j and both are connected with a connection i → j and p̄ij = 1 holds. Fix-
ing, E[V̄j |{Nj ≥ 1}] = Vj defines then essentially the value for V̄i as V̄i = rij + γ V̄j . Yet,
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the value for V̄i must be flexible to allow V̄i to depend on the probability of {Ni ≥ 1}, as
E[V̄i |{Ni ≥ 1}] = Vi must hold. It is in general not possible to fulfill both constraints simul-
taneously in the cyclic case, i.e. constraining V̄i for all states i and enforcing the Bellman
equation. However, value estimators for single states can be unbiased, even if the Bellman
equation is fulfilled.

Another factor that influences the bias is the discount γ . If the Bellman equation is ful-
filled by V̄ then the value estimate can be written as

∑∞
t=0 γ t P̄t r̄, i.e. γ t weights the estimate

P̄t of Pt . If E[P̄t ] �= Pt and the parameter estimate P̄ is independent of γ then with varying
γ the deviations of P̄t from Pt are weighted differently and it is intuitive that we can find
a γ for which the weighted deviations do not cancel out and the estimator is not unbiased.
This effect can be circumvented by making the parameter estimator P̄ discount dependent.

3.1.1 Normalization P[{Ni ≥ 1}] and value estimates on {Ni = 0}

Consider the MRP shown in Fig. 2(B) and let the number of observed paths be one (n = 1).
The agent starts in state 2 and has a chance of p to move on to state 1. The value of state 1
and 2 is

V1 = V2 = (1 − p)

∞∑

i=0

ipi = p

1 − p
. (9)

Using the sample mean parameter estimate p̄ = i/(i + 1), we get the following value esti-
mate for state 2:

V̄2(i) = p̄

1 − p̄
= i ⇒ E[V̄2(i)] = (1 − p)

∞∑

i=0

V̄2(i)p
i = V2, (10)

where V̄2(i) denotes the value estimate, given the cyclic transition has been taken i times.
The estimator fulfills the Bellman equation. Therefore, V̄1(i) = V̄2(i) = i, given at least one
visit of state 1, i.e. conditional on the event {N1 ≥ 1}. The expected value estimate for state
1 is therefore

E[V̄1(i)|{N1 ≥ 1}] = (1 − p)
∑∞

i=1 ipi

(1 − p)
∑∞

i=1 pi
= p/(1 − p)

1 − (1 − p)
= V1

p
, (11)

where (1 − p)
∑∞

i=1 pi = p is the normalization. Hence, the estimator is biased.
Intuitively the reasons for the bias are: Firstly, V̄1 equals V̄2 on {N1 ≥ 1} but the estima-

tors differ (in general) on {N1 = 0}. In the example, we did not exploit this issue. We could
make use of it by introducing a reward for the transition 2 → 3. Secondly, the normalization
differs, i.e. E[ · ] versus E[ · |{N1 ≥ 1}]. In our example we exploited this issue. Both esti-
mators are 0 on {N1 = 0} and are therefore always equivalent. However, the expectation is
calculated differently and introduces the bias.

The following Lemma shows that this problem does not depend on the parameter estimate
we used:

Lemma 1 (p. 323) For the MRP from Fig. 2(B) there exists no parameter estimator p̄ such
that Vi(p̄) is unbiased for all states i.

How do these effects behave with respect to the number n of observed paths? Let pi

denote the probability to visit state i in one sampled path. Then the probability of the
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event {Ni = 0} drops exponentially fast, i.e. P[{Ni = 0}] ≤ (1 − pi)
n and the normaliza-

tion 1/P[{Ni ≥ 1}] approaches one exponentially fast. Therefore, if the estimates are upper
bounded on {Ni = 0} then the bias drops exponentially fast in n.

3.1.2 Discount

Consider the MRP from Fig. 2(A) with modified reward R11 = 0,R12 = 1 for one run
(n = 1) and for γ < 1. We use again the sample mean parameter estimate, i.e. p̄ = i/(i + 1)

if the cyclic transition has been taken i times. The value of state 1 is

V1 = (1 − p)

∞∑

i=0

γ ipi = 1 − p

1 − γp
and the value estimate is V̄1 = 1 − i/(i + 1)

1 − γ i/(i + 1)
.

The estimator is unbiased if and only if

(1 − p)

∞∑

i=0

γ ipi ?= E[V̄1] = (1 − p)

∞∑

i=0

1 − i/(i + 1)

1 − γ i/(i + 1)
pi. (12)

The equality marked with
?= holds if and only if

∞∑

i=0

(
γ i − 1 − i/(i + 1)

1 − γ i/(i + 1)

)
pi = 0. (13)

With induction one sees that γ i ≤ 1−i/(i+1)

1−γ i/(i+1)
. Induction basis (i = 1):

γ ≤ 1 − 1
2

1 − γ

2

⇔ γ − γ 2

2
≤ 1

2
⇔ 0 ≤ (1 − γ )2 = 1 − 2γ + γ 2. (14)

Induction step:

γ i+1 I.H.≤ γ
1 − i

i+1

1 − γ i
i+1

?≤ 1 − i+1
i+2

1 − γ i+1
i+2

⇔

γ

(
1 − i

i + 1
− γ

i + 2

)
≤ 1 − i + 1

i + 2
− γ i

(i + 1)(i + 2)
⇔

(i − γ i)(γ − 1) ≤ (1 − γ )2 ⇔ −(i − γ i) ≤ 1 − γ, (15)

where the last inequality holds, because −(i − γ i) ≤ 0 and (1 − γ ) ≥ 0. I.H. denotes Induc-
tion Hypothesis.

Hence, the estimator is unbiased if and only if the left and the right side of the inequality
are equivalent. This is the case only for γ = 1: (14) shows that only γ = 1 is a candidate
and it is easy to verify that for γ = 1 both sides of the inequality are equivalent. Thus, the
estimator is biased for all γ < 1 and is only unbiased for γ = 1.

In general, value estimators that fulfill the Bellman equation must at least be discount
dependent to be able to be unbiased for general MRPs, as the following Lemma shows:

Lemma 2 (p. 323) For the MRP from Fig. 2(A) with modified reward R11 = 0,R12 = 1 and
for n = 1 there exists no parameter estimator p̄ that is independent of γ such that V1(p̄) is
unbiased for all parameters p and all discounts γ .
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Fig. 2 A A cyclic MRP with starting state 1 and with probability p for the cyclic transition. The reward is 0
for the cyclic transition and 1 otherwise. B A cyclic MRP with starting state 2 and with probability p for the
cyclic transition. The reward is 1 for the cyclic transition from state 2 to state 1 and 0 otherwise

3.2 Maximum likelihood parameter estimates and sufficient statistics

We start this section with a derivation of the maximum likelihood parameter estimates. After
that we introduce a minimal sufficient statistics for MRPs and we show that this statistic
equals the maximum likelihood estimates.

3.2.1 Maximum likelihood parameter estimates

Let pij be the transition probability of state i to j , pi the probability to start in i and x a
sample consisting of n iid state sequences x1, . . . , xn. The log-likelihood of the sample is

log P[x|p] =
n∑

k=1

log P[xk|p]. (16)

The corresponding maximization problem is given by

max
pij ,pi

n∑

k=1

log P[xk|pij ,pi], s.t.:
∑

j∈S

pij =
∑

j∈S

pj = 1, for all i. (17)

The unique solution for pij and pi (Lagrange multipliers) is given by

pij = μij

Ki

=: p̄ij and pi = 1

n

(
Ki −

∑

j∈S

μji

)
=: p̄i , (18)

where Ki denotes the number of visits of state i, μij the number of direct transitions from
i to j , p̄ij the estimate of the true transition probability pij and p̄i the estimate of the true
starting probability pi .

3.2.2 Sufficient statistics

We need some results and concepts from point estimation theory (e.g. Lehmann and Casella
1998). The first important concept that we need is that of a sufficient statistic S. A statistic
S is a function of data, e.g. S(x) =∑n

i=1 xi , with x1, . . . , xn being a sample of an arbitrary
distribution, is a statistic. The intuition is here that the statistic contains information from the
sample in a compressed form. For example, to predict the mean of a distribution it might be
enough to know

∑n

i=1 xi and the concrete values xi do not provide any useful information
beside that.

The question is now, when does a statistic S(x) contain all the useful information from
a sample? This question leads to the concept of sufficiency. Intuitively, a statistic which
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contains all information about a sample is called sufficient. In detail, a statistic is sufficient if
the probability of a sample is completely determined by the statistic S, i.e. if it is independent
of the underlying data generating distribution:

P(X = x|S(x), θ) = P(X = x|S(x)), (19)

where θ parameterises the data generating distribution. If a concrete function of a sample is
a sufficient statistic or not depends on the underlying family of distributions. E.g. for some
families the sample mean is a sufficient statistic for others it is not.

Why is this now relevant for estimation? The idea is here that an estimator is a function
of a sample, e.g. a function that takes x1, . . . , xn as an input and predicts the mean by aver-
aging over the sample. The estimator itself is again a stochastic object as it varies with the
drawn sample. Thus, it has a distribution on its own which depends on θ as θ parameterises
the data generating process. Now, given a sufficient statistic S(x) the sample probability is
completely described by S(x) and so is the distribution of the estimator. For example, if
for two estimators A and B that are functions of the sufficient statistic S(x) it holds that
A(S(x)) = B(S(x)) then both have the same distribution over estimates and are essentially
equivalent.

Completeness is another important property of a statistic S which has also to do with
this concept of equivalence of estimators. A statistic S is complete if Eθ [h(S)] = 0 for all θ

implies h = 0 almost surely. Let us again take two estimators A(S(x)) and B(S(x)), let us
assume that the statistic S is complete and let us define the function h(S) := A(S)−B(S). If
Eθ [h(S)] = Eθ [A(S)−B(S)] = Eθ [A(S)]−Eθ [B(S)] = 0 for all θ then due to completeness
A(S(x)) = B(S(x)) almost surely. Hence, if the two estimators have the same mean for each
θ then they are equivalent almost surely.

A final property of a sufficient statistic that we need is minimality. The minimal sufficient
statistic is the sufficient statistic with the smallest dimension. For example, the sample itself
is a sufficient statistic: S(x) = x = (x1, . . . , xn). This concrete statistic has dimension n. For
some probability distributions the sample mean is a sufficient statistic, i.e. S(x) =∑n

i=1 xi .
This statistic has dimension 1. The minimal statistic has typically the same dimension as the
parameter space. To define this formally, suppose that a statistic S is sufficient for a family
of parameters θ . Then S is minimally sufficient if S is a function of any other statistic T that
is sufficient for that family.

We need all these concepts to state one important theorem, the so called Lehmann-Scheffe
theorem. The theorem says that for a complete and minimal sufficient statistics S and any
unbiased estimator A the estimator E[A|S] = E[A|S(x)] is the optimal unbiased estimator
with respect to any convex loss function and hence the unbiased estimator with minimal
MSE. If the estimator A is already a function of the sufficient statistic S(x) then E[A|S] = A.
Otherwise, E[A|S(x)] is the average estimate of A, whereas the average is taken over all
samples x ′ that are consistent with S(x). These are the samples x ′ for which S(x ′) = S(x)

holds.
The proof of the theorem is actually not too difficult and it provides insight into why the

different properties of S are needed. We go through the main steps to help the reader build
some intuition:

We already said that completeness is important for the equivalence of estimators. Espe-
cially, if two estimators A,B are functions of a sufficient statistic and if both have the same
mean then they are equivalent almost surely. This is useful for the theorem as it is assumed
that the estimator A is unbiased. Conditioning with S preserves the unbiasedness and hence
E[A|S] is unbiased and a function of the sufficient statistic S. Assume now that B is another
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unbiased estimator, then E[B|S] is also an unbiased estimator and a function of the sufficient
statistic and hence equivalent to E[A|S]. So completeness guarantees a unique point in the
class of unbiased estimators to which E[ · |S] projects.

Sufficiency of the statistic S is needed as it makes E[A|S] independent of the true θ . If S

would not be sufficient then E[A|S] could only be calculated with the help of the true θ and
in this sense would not be a valid estimator.

To understand the optimality of the estimator E[A|S] one needs to understand two things:
First, that conditioning with S reduces the estimation error. This is due to a straight forward
application of the Jensen inequality for conditional expectations. Let us take the MSE as an
error measure for convenience, then

MSE(E[A|S]) = E[(E[A|S] − V )2] = E[E[A − V |S]2]
≤ E[E[(A − V )2|S]] = E[(A − V )2] = MSE(A), (20)

where we denote the true value that we want to estimate with V . Second, that the “maximal”
conditioning is achieved by conditioning with a minimal sufficient statistic. Let us assume
that S is a minimal sufficient statistic and T another (non-minimal) sufficient statistic then we
can improve the estimator E[A|T] by conditioning it with S. On the contrary, conditioning
the estimator E[A|S] with T does not change anything as S is a function of T due to the
minimality of S.

We want to apply this theorem now to value estimation. The first thing that we need is
the minimal sufficient statistic for an MRP.

Sufficient statistics for an MRP The statistic that we need is provided by the maximum
likelihood solution for the MRP parameters. We demonstrate this with the help of the Fisher-
Neyman factorization theorem. It states that a statistic is sufficient if and only if the density
f (x|θ) can be factored into a product g(S, θ)h(x). For an MRP we can factor the density as
needed by the Fisher-Neyman theorem (h(x) = 1 in our case),

P(x|p) =
n∏

i=1

(
pxi (1)

Li∏

j=2

pxi (j−1)xi (j )

)
=
∏

s∈S

p
(Ks−∑s′ μs′s )
s

∏

s,s′∈S

p
μss′
ss′ , (21)

where xi (j ) is the j th state in the ith path, n the number of observed paths and Li the length
of the ith path. μss′ is sufficient for pss′ and because sufficiency is sustained by one-to-one
mappings (Stuart and Ord 1991) this holds true also for the maximum likelihood estimates
p̄ss′ = μss′/Ks . The sufficient statistic is minimal because the maximum likelihood solution
is unique (Stuart and Ord 1991).1 The sufficient statistic is also complete because the sample
distribution induced by an MRP forms an exponential family of distributions (Lemma 4,
p. 324). A family {Pθ } of distributions is said to form an s-dimensional exponential family
if the distributions Pθ have densities of the form

pθ(x) = exp

(
s∑

i=1

ηi(θ)Ti(x) − A(θ)

)
h(x) (22)

with respect to some common measure μ (Lehmann and Casella 1998). Here, the ηi and A

are real-valued functions of the parameters, the Ti are real-valued statistics and x is a point in

1It is needed to use the minimal parameter set of the MRP to be formally correct. The minimal sufficient
statistics excludes also one value μss′ , however the missing value is defined by the other μ’s.
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the sample space. The η’s are called natural parameters. It is important that the natural para-
meters are not functionally related. In other words no f should exist with η2 = f (η1). If the
natural parameters are not functionally related, then the distribution is complete (Lehmann
and Casella 1998). Otherwise, the family forms only a curved exponential family and a
curved exponential family is not complete.

3.3 Optimal unbiased value estimator

The Lehmann-Scheffe theorem states that for any unbiased estimator A the estimator E[A|S]
is the optimal unbiased estimator with probability one (w.p.1), given S is a minimal and
complete sufficient statistic. For the case of value estimation this means that we can use
any unbiased value estimator (e.g. the Monte Carlo estimator) and condition it with the
statistic induced by the maximum likelihood parameter estimate to get the optimal unbiased
value estimator. From now on, we refer to this estimator as the Minimum Variance Unbiased
estimator (MVU).

Theorem 2 (MVU) Let V̄ be the first-visit Monte-Carlo estimator and S the sufficient and
complete statistics for a given MRP. The estimator E[V̄ |S] is unbiased and the optimal
unbiased estimator with respect to any convex loss function w.p.1. Especially, it has minimal
MSE w.p.1. For deterministic reward and n := |S| the sufficient statistic is

S = (p̄1, . . . , p̄n, p̄11, p̄12, . . . , p̄nn),

where p̄i and p̄ij are the maximum likelihood estimates of the MRP parameters and the
estimator E[V̄ |S] is given by

E[V̄ |S] = 1

|�(S)|
∑

π∈�(S)

V̄ (π), (23)

where π := (π1, . . . , πi) denotes a vector of paths, �(S) denotes the set of vectors of paths
which are consistent with the observation S, | · | is the size of a set and V̄ (π) is the first-visit
MC estimate for the vector of paths π .

Essentially, π is an ordered set of paths and it is an element of �(S) (i.e. consistent
with S) if it produces the observed transitions, starts and rewards. In detail, assume again
deterministic reward and let us denote the observed sample with π . π ′ is consistent with
S(π) = (p̄1, . . . , p̄n, p̄11, p̄12, . . . , p̄nn) if S(π ′) = S(π). The MC estimate in (23) is simply
the average value for the paths in π . The estimator E[V̄ |S] is thus the average over all paths
which could explain the (compressed) data S. As an example, take the two state MRP from
Fig. 2(A). Assume that an agent starts twice in state 1, takes two times the cycle in the first
run and zero times in the second. The paths which are consistent with this observation are:


(S) = {((1,1,1,2), (1,2)), ((1,1,2), (1,1,2)), ((1,2), (1,1,1,2))}. (24)

The example also shows that the ordering of paths matters. Here, each path ((1,2), (1,1,2)

and (1,1,1,2)) occurs two times while without ordering (1,1,2) would be counted twice
as often as the other two paths. The MC estimator for the value of a state s does not consider
paths which do not hit s. On the contrary the conditioned estimator uses these paths. To see
this take a look at the MRP from Fig. 8(A) at p. 327. Assume, that two paths were sampled:
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(1,2,4) and (2,3). The MC value estimate for state one uses only the first path. Taking a
look at

�(S) = {((1,2,4), (2,3)), ((1,2,3), (2,4)), ((2,3), (1,2,4)), ((2,4), (1,2,3))}, (25)

we can observe that the conditioned estimator uses the information. The bold paths are paths
that do not occur in the sample and start in state 1, i.e. paths that are used by the MC value
estimator for state 1.

3.3.1 Costs of unbiasedness

The intuition that the MVU uses all paths is, however, not totally correct. Let us take a
look at the optimal unbiased value estimator of state 1 of the MRP in Fig. 2(B) for γ = 1.
Furthermore, assume that one run is made and that the path (2,1,2,3) is observed. No
permutations of this path are possible and the estimate of state 1 is therefore the MC estimate
of path (1,2,3), which is 0. In general, if we make one run and we observe i transitions
from state 2 to state 1, then the estimate is (i − 1). That is we ignore the first transition. As
a consequence, we have on average the following estimate:

(1 − p)

∞∑

i=1

(i − 1)pi = p
p

1 − p
= pV1. (26)

The term p is exactly the probability of the event {N1 ≥ 1} and the estimator is conditionally
unbiased on this event. The intuition is, that the estimator needs to ignore the first transition
to achieve (conditional) unbiasedness.

Hence, unbiasedness has its price. Another cost beside this loss in information is that the
Bellman equation cannot be fulfilled. In Sect. 3.1 we started with Bellman estimators and
we showed that the estimators are biased. Here, we have a concrete example of an unbiased
estimator that does not fulfill the Bellman equation, as V̄1 = (i − 1) �= i = V̄2. For this
example this is counterintuitive as p12 = 1 and essentially no difference between the states
exists in the undiscounted case.

3.3.2 Undiscounted MRPs

In the undiscounted case permutations of paths do not change the cumulative reward. For
example,

∑n

i=1 Rπiπi+1 =∑n

i=1 Rπσ(i)πσ(i)+1 , if σ is a permutation of (1, . . . , n), because the
time at which a reward is observed is irrelevant. This invariance to permutations implies
already a simple fact. We need the following criterion to state this:

Criterion 3 (Full Information) A state s has full information if, for every successor state
s ′(�= s) of s (not only immediate successor states) and any path π , it holds that

πi = s ′ ⇒ ∃j with j < i and πj = s.

πi denotes the ith state in the path. In Fig. 2(A) state 1 and 2 have this property and in (B)
state 2 and 3. In general, if it is only possible to reach successor states of s by visiting s then
the Full Information Criterion applies to state s. For example, if there is a single start state
then the criterion applies to that state. A more visual example is a room in a building with a
single one-way door located at state s. In this case the Full Information criterion applies to
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state s. If there is a second door to the room through which one can enter then the criterion
does not apply to s.

Let π be a vector of paths following the first visit of state s that are consistent with the
observations. V̄ (π) is then given by (1/|π |)∑i

∑
j R

(i)

jj+1, where |π | is the number of paths

contained in π and R
(i)

jj+1 is the observed reward in path i at position j . Rearranging the path
does not change the sum and the normalizing term. Therefore each consistent path results in
the same first-visit MC estimate and the MVU equals the first-visit MC estimator.

Corollary 1 Let V̄ be the first-visit MC estimator and let the value function be undis-
counted. If the Full Information Criterion applies to a state s, then

E[V̄s |S] = V̄s . (27)

The undiscounted setting allows alternative representations of the optimal estimator. As an
example, suppose we observed one path π := (1,1,1,2) with reward R(π) = 2R11 + 1R12.
The optimal estimator is given by R(π). Alternatively, we can set the reward for a path π

with j -cycles to R(π) := jR11 + R12 and define a new probability measure P̂[{j cycles}]
such that

∑∞
j=0 j P̂[{j cycles}] = i, i.e. we average over the set of paths with 0 to “∞” many

cycles using the probability measure P̂[{j cycles}]. If this measure is constrained to satisfy∑∞
j=0 j P̂[{j cycles}] = i, then

∞∑

j=0

P̂[{j cycles}](jR11 + R12) = iR11 + R12 = MVU. (28)

We pronounce this point here, because the ML value estimator, which we discuss in the next
section, can be interpreted in this way.

3.3.3 Convergence

Intuitively, the estimator should converge because MC converges in L1 and almost surely.
Furthermore, conditioning reduces norm-induced distances to the true value. This is already
enough to follow L1 convergence but the almost sure convergence is not induced by a norm.
We therefore refer to an integral convergence theorem which allows us to follow a.s. under
the assumption that the MC estimate is upper bounded by a random variable Y ∈ L1. Details
are given in Sect. C.3.

Theorem 4 (p. 325) E[V̄ |S] converges on average to the true value. Furthermore, it con-
verges almost surely if the MC value estimate is upper bounded by a random variable
Y ∈ L1.

Such a Y exists for example, if the reward is upper bounded by Rmax and if γ < 1 as in this
case each MC estimate is smaller than Rmax

∑∞
i=0 γ i = Rmax/(1 − γ ).

An MVU algorithm can be constructed using (23). However, the algorithm needs to iter-
ate through all possible paths and therefore has an exponential computation time.

3.4 Least-squares temporal difference learning

In this section we discuss the relation of the MVU to the LSTD estimator. The LSTD estima-
tor was introduced by Bradtke and Barto (1996) and extensively analyzed in Boyan (1998)
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and Boyan (1999). Empirical studies showed that LSTD often outperforms TD and MC with
respect to convergence speed based on sample size.

In this section we support these empirical findings by showing that the LSTD estimator is
equivalent to the MVU for acyclic MRPs and closely related to the MVU for undiscounted
MRPs. We derive our statements not directly for LSTD, but for the maximum likelihood
value estimator (ML) which is equivalent to LSTD (Sect. 3.4.6). The estimator is briefly
sketched in Sutton (1988), where it is also shown that batch TD(0) is in the limit equivalent
to the ML estimator. The estimator is also implicitly used in the certainty-equivalence ap-
proach, where a maximum likelihood estimate of an MDP is typically used for optimization.

3.4.1 Maximum likelihood estimator

The ML value estimator is given by V (P̄, r̄), where P̄ := (p̄ij ) is the maximum likelihood
estimate of the transition matrix and r̄ is the vector of the maximum likelihood estimates of
the expected one step reward. Hence, the ML value estimator is given by:

V̄ =
∞∑

i=0

γ i P̄i r̄ = (I − γ P̄)−1r̄, (29)

whereas the Moore-Penrose pseudoinverse is used if P̄ is singular (e.g. too few samples).

3.4.2 Unbiasedness and the MVU

If an estimator is a function of the sufficient statistic (e.g. V̄ = f (S)) then the conditional
estimator is equal to the original estimator, V̄ = E[V̄ |S]. If the estimator V̄ is also unbiased
then it is the optimal unbiased estimator w.p.1 due to the Lehmann-Scheffe theorem. The
defined maximum likelihood estimator is a function of a minimal and complete sufficient
statistic. This statistic consists of the counts for the different transitions. These counts are
used to compute the estimate of the transition matrix and the maximum likelihood value
estimator is a function of this estimated transition matrix. Therefore, the following relation
holds between the ML estimator and the MVU:

Corollary 2 The ML estimator is equivalent to the MVU w.p.1, if and only if it is unbiased.

The following two subsections address two cases where ML is unbiased.

3.4.3 Acyclic MRPs

The ML estimator is unbiased in the acyclic case and therefore equivalent to the MVU.

Theorem 5 (p. 325) The ML estimator is unbiased if the MRP is acyclic.

Corollary 3 The ML estimator is equivalent to the MVU w.p.1 if the MRP is acyclic.

3.4.4 Undiscounted MRPs

It is also possible that ML value estimates for specific states are unbiased even if the MRP
is cyclic. One important case in which ML value estimates are unbiased is characterized by
the Full Information Criterion. If it applies to a state i then the problem of Sect. 3.1.1 does
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not affect state i. For example, in Sect. 3.1.1 we showed that the value estimator for state 1
is biased. However, (10) shows that in the same example the value estimator for state 2 is
unbiased and for state 2 the Full Information Criterion applies.

This can be shown by using Theorem 5 from Singh and Sutton (1996), which states that
the ML estimator equals the first-visit MC estimator if the Full Information Criterion holds
and γ = 1. Furthermore, in this case the first-visit MC estimator is equivalent to the MVU
w.p.1 (Corollary 1). Hence, ML is unbiased and optimal w.p. 1. We state this as a corollary:

Corollary 4 The ML estimator of a state i is unbiased and equivalent to the MVU w.p.1 if
the Full Information Criterion applies to state i and if γ = 1.

We analyze this effect using a simple MRP and we give two interpretations.

Example: Cyclic MRP—unbiased We start with calculating the bias of ML explicitly for
a simple MRP and thus “verifying” the Corollary. The value of state 1 for the MRP of
Fig. 2(A) with γ = 1 is V1 = (1 − p)

∑∞
i=0 ipi . The Full Information Criterion applies to

state 1. The ML estimate for a sample of n paths is

V̄1 =
(

1 − k

k + n

) ∞∑

i=0

i

(
k

k + n

)i

=
(

1 − k

k + n

)
k/(k + n)

(1 − k/(k + n))2
= k

n
, (30)

where k is the number of cycles taken (summed over all observed paths). Therefore

E[V̄1] = E

[
k

n

]
= 1

n

n∑

i=1

E[ki]. (31)

Furthermore,

E[ki] = (1 − p)

∞∑

ki=0

kip
ki = V1 (32)

and the ML estimator is unbiased. Now, Corollary 2 tells us that the ML estimator is equiv-
alent to the MVU w.p.1.

It is also possible to show this equivalence using simple combinatorial arguments. The
MVU and the MC estimate for this MRP is k

n
: Let u be the number of ways of splitting k

into n paths. For each split the summed reward is k and the MC estimate is therefore k
n

.
Hence, the MVU is uk/n

u
= k

n
.

Interpretation I: Non-linearity vs. underestimated parameters It is interesting that ML
is unbiased in this example. In general nonlinear transformations of unbiased parameter
estimates produce biased estimators, as

E[f (θ̄)] = f (θ) = f (E[θ̄ ]) (33)

essentially means that f is a linear transformation as f and E commute. Furthermore, the
value function is a nonlinear function. Yet, in our example the parameter estimator θ̄ is
actually not unbiased. For n = 1:

E

[
k

k + 1

]
= (1 − p)

∞∑

k=0

k

k + 1
pk < (1 − p)

∞∑

k=1

pk = (1 − p)

∞∑

k=0

pk+1 = p. (34)
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The parameter is underestimated on average. The reason for this lies in the dependency be-
tween the visits of state 1. For a fixed number of visits with iid observations, the parameter
estimate would be unbiased. The relation between these two estimation settings is very sim-
ilar to the first-visit and every-visit MC setting. The first-visit MC estimator is unbiased
because it uses only one observation per path while the every-visit MC estimator is biased.
In our case, the effect is particularly paradoxical as for the iid case the value estimator is
biased.

Interpretation II: Consistency of the set of paths The ML estimator differs in general from
the MVU because it uses paths that are inconsistent with the observation S. For example,
given the MRP from Fig. 2(A) with the observation (1,1,1,2). The set of paths consistent
with this observation is again {(1,1,1,2)}. The ML estimator, however, uses the following
set of paths

{(1,2), (1,1,2), (1,1,1,2), (1,1,1,1,2) . . .}, (35)

with a specific weighting P̂[{j cycles}] for a path that contains j cycles. In general, this
representation will result in an estimate that is different from the MVU estimate. However,
if Corollary 4 applies then both representations are equivalent. State 1 fulfills the properties
of the Full Information Criterion. The ML estimator can therefore be represented as a sum
over the cycle times with each summand being a product between the estimated path prob-
ability and the reward of the path if γ = 1. One can see this easily for the example (one run
with i = 2 cycles being taken): The path probability is in this case simply P̂[{j cycles}] =
p̄j (1 − p̄) and because

∑∞
j=0 jp̄j (1 − p̄) = i = 2 ((30) with n = 1) the estimate is equal to

2R11 + R12 which is exactly the MVU estimate (compare to (28) on p. 304).

3.4.5 Which estimator is better? The MVU or ML?

The MVU is optimal in the class of unbiased estimators. However, this does not mean that
the ML estimator is worse than the MVU. The ML estimator is also a function of the suffi-
cient statistics, it is just not unbiased. To demonstrate this, we present two examples based
on the MRP from Fig. 2(A) in Sect. D.2 (p. 328). One for which the MVU is superior and
one where the ML estimator is superior. We summarize this in a corollary:

Corollary 5 MRPs exist in which the MVU has a smaller MSE than the ML estimator and
MRPs exist in which the ML estimator has a smaller MSE than the MVU.

3.4.6 The LSTD estimator

The LSTD algorithm computes analytically the parameters which minimize the empirical
quadratic error for the case of a linear system. Bradtke and Barto (1996) showed that the
resulting algorithm converges almost surely to the true value. In Boyan (1998) a further
characterization of the least-squares solution is given. This turns out to be useful to establish
the relation to the ML value estimator. According to this characterization, the LSTD estimate
V̄ is the unique solution of the Bellman equation, i.e.

V̄ = r̄ + γ P̄V̄, (36)

where r̄ is the sample mean estimate of the reward and P̄ is the maximum likelihood estimate
of the transition matrix.

Comparing (36) with (29) of the ML estimator it becomes obvious that both are equiva-
lent if the sample mean estimate of the reward equals the maximum likelihood estimate.
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Corollary 6 The ML value estimator is equivalent to LSTD if the sample mean and the
maximum likelihood estimator of the expected reward are equivalent.

3.5 Monte Carlo estimation

We first summarize Theorem 5 from Singh and Sutton (1996) and Corollary 1 from p. 304:

Corollary 7 The (first-visit) MC estimator of a state i is equivalent to the MVU and to the
ML estimator w.p.1 if the Full Information Criterion applies to state i and an undiscounted
MRP is given.

Essentially, the corollary tells us that in the undiscounted case it is only the “amount” of
information that makes the difference between the MC and MVU estimators, and the MC
and ML estimators. Amount of information refers here to the observed paths. If MC observes
every path then the estimators are equivalent.

From a different point of view this tells us that in the undiscounted case the MRP struc-
ture is only useful for passing information between states, but yields no advantage beyond
that.

3.5.1 Discounted MRPs

In the discounted cyclic case the MC estimator differs from the ML and the MVU estima-
tor. It differs from ML because ML is biased. The MC estimator is equivalent to the MVU
in the undiscounted case because the order in which the reward is presented is irrelevant.
That means the time at which a cycle occurs is irrelevant. In the discounted case this is not
true anymore. Consider again the MRP from Fig. 2(A) with the following two paths π =
((1,1,1,2), (1,2)). The MC estimate is 1/2((1 + γ ) + 0). The set of paths consistent with
this observation is �(S) = {((1,1,1,2), (1,2)), ((1,1,2), (1,1,2)), ((1,2), (1,1,1,2))}.
Hence, the MVU uses the cycle (1,1,2) besides the observed ones. The MVU estimate
is 1/3((1 + γ )/2 + 2/2 + (1 + γ )/2) = 1/3(2 + γ ). Both terms are equivalent if and only
if γ = 1. For this example the Full Information Criterion applies.

Similarly, for acyclic MRPs the MC estimator is different from the ML/MVU estimator
if γ < 1. Consider a 5 state MRP with the following observed paths: ((1,3,4), (1,2,3,5)),
a reward of +1 for 3 → 4 and −1 for 3 → 5. The ML estimate for state 1 is (1/4γ 2 +
1/4γ )(1 − 1) = 0, while the MC estimate is 1/2(−γ 2 + γ ) which is 0 if and only if γ = 1.
Again the Full Information Criterion applies.

3.5.2 Ordering with respect to other value estimators

Beside the stated equivalence the MVU is for every MRP at least as good as the first-visit
MC estimator, because the first-visit MC estimator is unbiased. The relation to ML is not
that clear cut. In general MRPs exist where the first visit MC estimator is superior and
MRPs exist where the ML estimator is superior (see Sect. D.2, p. 328 for examples). How
about TD(λ)? Again the relation is not clear cut. In the case that the MRP is acyclic and
that Corollary 7 applies the first-visit MC estimator is at least as good as TD(λ). In general,
however, no ordering exists (see Sect. D.1, p. 326 for examples).
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3.6 Temporal difference learning

One would like to establish inequalities between the estimation error of TD and the error of
other estimators like the MVU or the ML estimator. For the acyclic case TD(λ) is essentially
unbiased and the MVU and the ML estimator are superior to TD. However, for the cyclic
case the analysis is not straightforward, as TD(λ) is biased for λ < 1 and does not fulfill the
Bellman equation. So TD is in a sense neither in the estimator class of the MVU nor of the
ML estimator and conditioning with a sufficient statistics does not project TD to either of
these estimators.

The bias of TD can be verified with the MRP from Fig. 2(A) with a discount of γ = 1
and with n = 1. If we take the TD(0) estimator with a learning rate of αj = 1/j then the
value estimate for state 0 is i/(i + 1)

∑i

j=1 1/j if i cyclic transitions have been observed.
The estimate should on average equal i to be unbiased. Yet, for i > 0 it is strictly smaller
than i.

While our tools are not usable to establish inferiority of TD, we can still interpret the
weaknesses of TD with it. In the following we focus on the TD(0) update rule.

3.6.1 Weighting of examples and conditioning

In the examples comparing TD(λ) and MC (Sect. D.1.1, p. 326) one observes that a weak-
ness of TD(0) is that not all of the examples are weighted equally. In particular, (4) on p. 293
suggests that no observation should be preferred over another. Intuitively, conditioning sug-
gests so too: For an acyclic MRP TD(0) can be written as V̄i = p̂ij (Rij + γ V̄j ), whereas p̂ij

differs from the maximum likelihood parameter estimates p̄ij due to the weighting. Gen-
erally, conditioning with a sufficient statistics permutes the order of the observations and
resolves the weighting problem. Therefore, one would assume that conditioning with the
element p̄ij of the sufficient statistics changes V̄i to p̄ij (Rij + γ V̄j ). As conditioning im-
proves the estimate, the new estimator would be superior to TD(0). However, conditioning
with just a single element p̄ij must not modify the estimator at all, as the original path might
be reconstructed from the other observations. E.g. if one observes a transition 1 → 2 and
2 → 3, with 2 → 3 being the only path from state 2 to state 3, then it is enough to know that
transition 1 → 2 occurred and state 3 was visited.

Despite these technical problems, the superiority of p̄ij over p̂ij and the weighting prob-
lem are reflected in the contraction properties of TD(0). Due to Sutton (1988) TD(0) con-
tracts towards the ML solution. Yet, the contraction is slow compared to the case where each
example is weighted equally.

3.6.2 Weighting of examples and contraction factor

We continue with another look at the familiar ML equation: V̄ = r̄+γ P̄V̄ =: T̄V̄. If the ma-
trix P̄ is of full rank then the ML estimate is the sole fixed point of the Bellman operator T̄.
The ML estimate can be gained by solving the equation, i.e. V̄ = (I−γ P̄)−1r̄. Alternatively,
it is possible to make a fixed point iteration. I.e. starting with an initial guess V̄(0) and it-
erating the equation, i.e V̄(n) = T̄V̄(n−1). Convergence to the ML solution is guaranteed by
the Banach Fixed Point Theorem, because T̄ is a contraction. The contraction factor is upper
bounded by γ ‖P̄‖ ≤ γ , where ‖ · ‖ denotes in the following the operator norm. The bound
can be improved by using better suited norms (e.g. Bertsekas and Tsitsiklis 1996). Hence,
for n updates the distance to the ML solution is reduced by a factor of at least γ n.



310 Mach Learn (2011) 83: 289–330

Applying the TD(0) update (5) to the complete value estimate V̄ using P̄ and a learning
rate of 1/n results in

V̄(n) = V̄(n−1) + 1

n

(
r + γ P̄V̄(n−1) − V̄(n−1)

)=
(

n − 1

n
+ 1

n
T̄
)

V̄(n−1). (37)

In this equation the weighting problem becomes apparent: The contraction T̄ affects only a
part of the estimate. Yet, the operators S̄(n) := ( n−1

n
+ 1

n
T̄) are still contractions. For V̄ and

W̄:

‖S̄(n)V̄ − S̄(n)W̄‖ ≤ n − 1

n
‖V̄ − W̄‖ + 1

n
‖T̄‖‖V̄ − W̄‖ ≤ n − 1 + γ

n
‖V̄ − W̄‖. (38)

The contraction coefficient is therefore at least n−1+γ

n
. The ML solution (in the following V̄)

is a fixed point for the S̄(i) and for n iterations the distance is bounded by

‖S̄(n) . . . S̄(1)V̄(0) − V̄‖ ≤
∏n−1

i=0 (i + γ )

n! ‖V̄(0) − V̄‖. (39)

The smaller γ the faster the contraction. Yet, even in the limit the contraction is much slower
than the contraction with the ML fixed point iteration, i.e. for γ tending to 0 the norm
decreases at least with 1/n while for the ML fixed point iteration it decreases with γ n. For
γ = 0.1 and two applications of the Bellman operator the contraction is at least γ 2 = 1/100
and it needs 100 iterations with the TD(0) equation to reach the same distance.

TD(0) is applied only to the current state and not to the full value vector. The same can be
done with the ML fixed point iteration, i.e. V̄i = p̄ij (R̄ij +γ V̄j ). We analyze the contraction
properties of this estimator in the empirical part and we refer to the estimator as the iterative
Maximum Likelihood (iML) estimator. The costs of the algorithm are slightly higher than
the TD(0) costs: O(|S|) (time) and O(|S|2) (space).

The restriction to the current path does not affect the convergence, i.e. the restricted
iteration converges to the ML solution. Intuitively, the convergence is still guaranteed, as
a contraction of γ is achieved by visiting each state once and because each state is visited
infinitely often. Using that idea the following theorem can be proved:

Theorem 6 iML is unbiased for acyclic MRPs, converges on average and almost surely to
the true value.

We use this algorithm only for the analysis and we therefore omit the proof.

3.7 Summary of theory results

We conclude the theory section with two tables that summarize central properties of estima-
tors and established orderings. Footnotes are used to reference the corresponding theorems,
corollaries or sections. We start with a table that summarizes the properties of the different
estimators (Table 1). The row Optimal refers to the class of unbiased estimators and to con-
vex loss functions. The statement that ML is unbiased if the Full Information Criterion is
fulfilled and γ = 1 applies state-wise. I.e. for a cyclic MRP there will exist a state for which
the ML estimator is biased. However, if the Full Information Criterion applies to a state,
then the ML estimator for this particular state is unbiased. Finally, F-visit MC denotes the
first-visit Monte-Carlo estimator.
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Table 1 The table summarizes properties of different value estimators. The references for the statements are:
(1) Theorem 4, p. 304. (2) (23), p. 302. (3) Theorem 2, p. 302. (4) Corollary 3, p. 305. (5) Corollary 4, p. 306.
(6) Minorly modified TD estimator. Theorem 8, p. 322. (7) Corollary 7, p. 308. Counterexamples for γ < 1:
Sect. 3.5.1, p. 308

Estimator MVU ML/LSTD TD(λ) (F-visit) MC

Convergence L1, a.s.(1) L1, a.s. L1, a.s. L1, a.s.

Cost (Time) exp?(2) O(|S|2) O(|S|) O(|S|)
Cost (Space) O(|S|2) O(|S|) O(|S|)
Unbiased

√(3) Acyclic(4) or Cr. 3
and γ = 1(5)

Acyclic(6) √

Bellman Acyclic(4) or Cr. 3
and γ = 1(5)

√

Optimal
√(3) Acyclic(4) or Cr. 3

and γ = 1(5)
Cr. 3 and γ = 1(7)

Table 2 The table summarizes orderings between value estimators with respect to estimation quality. The
references for the statements are: (1) Corollary 2, p. 305. (2) Counterexamples: Sect. D.2, p. 328. (3) Minorly
modified TD estimator. Theorem 8, p. 322. (4) Theorem 2, p. 302. (5) Corollary 7, p. 308. (6) Theorem 5 in
Singh and Sutton (1996). (7) Corollary 3, p. 305. (8) Counterexamples: Sect. D.1, p. 326

ML/LSTD TD(λ) (F-visit) MC

MVU ML unbiased: =(1)

In general: �=(2)
Acyclic: ≤(3,4) Cr. 3 and γ = 1: =(5)

In general: ≤(4)

ML/LSTD Acyclic: ≤(3,4,7) Cr. 3 and γ = 1: =(6)

In general: �=(2)

TD(λ) In general: �=(8)

Table 2 summarizes established orderings between value estimators. The legend is the
following: = means equivalent, �= means not comparable, ≤ means that the estimator in
the corresponding row has a smaller risk (estimation error) than the estimator in the cor-
responding column. With In general we mean for �= that there exist MRPs where the row
estimator is superior and MRPs where the column estimator is superior. However, for a sub-
class of MRPs, like acyclic MRPs, one of the estimators might be superior or they might be
equivalent. For ≤ in general means that the row estimator is always as good as the column
estimator, however, both might be equivalent on a subclass of MRPs.

4 Comparison of estimators: experiments

In this section we make an empirical comparison of the estimators. We start with a com-
parison using acyclic MRPs. For this case the ML estimator equals the MVU and the MVU
solution can be computed efficiently. This allows us to make a reasonable comparison of the
MVU/ML estimator with other estimators. In a second set of experiments we compare the
MVU with the ML estimator using a very simple cyclic MRP. In a final set of experiments
we compare the contraction properties of iML and TD(0).
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4.1 Acyclic MRPs

We performed three experiments with acyclic MRPs for analyzing the estimators. In the
first experiment we measured the MSE w.r.t. the number of observed paths. In the second
experiment we analyzed how the MRP structure affects the estimation performance. As we
can see from Corollary 1 the performance difference between “MDP” based estimators such
as TD or ML and model-free estimators like MC depends on the ratio between the number
of sequences hitting a state s itself and the number of sequences entering the subgraph
of successor states without hitting s. We varied this ratio in the second experiment and
measured the MSE. The third experiment was constructed to analyze the practical usefulness
of the different estimators. We measured the MSE in relation to the calculation time.

Basic experimental setup We generated randomly acyclic MRPs for the experiments. The
generation process was the following: We started by defining a state s for which we want
to estimate the value. Then we generated randomly a graph of successor states. We used
different layers with a fixed number of states in each layer. Connections were only allowed
between adjacent layers. Given these constraints, the transition matrix was generated ran-
domly (uniform distribution). For the different experiments, a specific number of starts in
state s was defined. Beside that, a number of starts in other states were defined. Starting
states were all states in the first layers (typically the first 4). Other layers which were further
apart from s were omitted as paths starting in these contribute insignificantly to the esti-
mate, but consume computation time. The distribution over the starting states was chosen
to be uniform. Finally, we randomly defined rewards for the different transitions (between
0 and 1), while a small percentage (1 to 5 percent) got a high reward (reward 1000). Be-
side the reward definition, this class of MRPs contains a wide range of acyclic MRPs. We
tested the performance (empirical MSE) of the ML, iML, MC and TD estimators. For the
first two experiments the simulations were repeated 300000 times for each parameter set-
ting. We split these runs into 30 blocks with 10000 examples each and calculated the mean
and standard deviation for these. In the third experiment we only calculated the mean using
10000 examples. We used the modified TD(0) version which is unbiased with a learning
rate of 1/i for each state, where i is the iteration index of the corresponding state. The ML
solution was computed at the end and not at each run. This means no intermediate estimates
were available, which can be a drawback. We also calculated the standard TD(0) estimates.
The difference to the modified TD(0) version is marginal and therefore we did not include
the results in the plots.

4.1.1 Experiment 1: MSE in relation to the number of observed paths

In the first experiment, we analyzed the effect of the number of observed paths given a fixed
rate of ps = 0.2 for starts in state s. The starting probability for state s is high and beneficial
to MC (the effect of ps is analyzed in the second experiment). Apart from ML, all three
estimators perform quite similarly with a small advantage for iML and MC (Fig. 3). ML is
even for few paths strongly superior and the estimate is already good for 10 paths. Note that,
due to the scale the improvement of ML is hard to observe.

4.1.2 Experiment 2: MSE in relation to the starting probability

In the second experiment we tested how strongly the different estimators use the Markov
structure. To do so, we varied the ratio of starts in state s (the estimator state) to starts in the
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Fig. 3 MSE of ML, iML, TD(0)
and MC in relation to the number
of observed paths. The state
space consisted of 10 layers with
20 states per layer

Fig. 4 MSE of ML, iML, TD(0)
and MC in relation to the starting
probability of the estimated state.
The state space consisted of 10
layers with 20 states per layer

subgraph. The paths which start in the subgraph can only improve the estimation quality of
state s if the Markov structure is used. Figure 4 shows the results of the simulations. The
x-axis gives the number of starts in the subgraph while the number of starts in state s was
set to 10. We increased the number exponentially. The exponential factor is printed on the
x-axis. x = 0 is equivalent to always start in s. One can see that the MC and ML estimator
are equivalent if in each run the path starts in s. Furthermore, for this case MC outperforms
TD due to the weighting problem of TD (Sect. 3.6.2). Finally, TD, iML and ML make
a strong use of paths which does not visit state s itself. Therefore, TD becomes superior
to MC for a higher number of paths. The initial plateau for the TD estimator appeared in
the modified and the standard version. We assume that it is an effect of the one step error
propagation of TD(0). For the one step error propagation a path starting in a state s ′ in the
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Fig. 5 MSE in relation to the computation time of the ML, iML, TD(0) and MC estimator. The left plot
shows pure computation time (we excluded computation time for MRP calculations like state changes). In
the right plot, an extra factor for each observed path is included (one second per path). The state space
consisted of 10 layers with 20 states per layer. We tracked for a given number of paths (ML: 10–50, iML,
TD(0), MC: 10–1000) the MSE and the computation time. The plot was constructed with the mean values for
every number of paths

ith layer can only improve the estimate if i paths are observed that span the gap between s

and s ′. The probability of such an event is initially very small but increases with more paths.

4.1.3 Experiment 3: MSE in relation to calculation time

In many practical cases the convergence speed per sample is not the important measure. It
is the time which is needed to produce a good estimate. This time depends on how many
samples an estimator needs, the computation time to calculate the estimate from the sam-
ple and the time needed to generate the sample. We constructed an experiment to evaluate
this relation (Fig. 5). We first tested which estimator is superior if only the pure estimator
computation time is regarded (left part). For this specific MRP the MC estimator converges
fastest with respect to time. The rate for starts in state s was 0.2, which is an advantage for
MC. The ratio will typically be much lower. The other three estimators seem to be more or
less equivalent. In the second plot a constant cost of 1 was introduced for generating a path.
Through this the pure computation time becomes less important while the needed number of
paths for reaching a specific MSE level becomes relevant. As ML needs only very few paths,
it becomes superior to the other estimators. Further, iML catches up on MC. For higher costs
the estimators will be drawn further apart from ML (indicated by the arrow). The simula-
tions suggest that MC or TD (dependent on the MRP) are a good choice if the path costs are
low. For higher costs ML and iML are alternatives.

4.2 Cyclic MRPs: MVU—ML comparison

Calculating the MVU is infeasible without some algebraic rearrangements. Yet, the alge-
braic rearrangements get tricky, even for simple MRPs. We therefore restrict the comparison
of the MVU and the ML estimator to the simplest possible cyclic MRP, i.e. the MRP from
Fig. 2(A). The MC and ML value estimates are

1

n

n∑

u=1

iu−1∑

j=0

γ j = 1

1 − γ
− 1

n

n∑

u=1

γ iu

1 − γ
(40)
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and

(1 − p̄)

∞∑

i=0

1 − γ i

1 − γ
p̄i = 1

1 − γ

(
1 − 1 − p̄

1 − γ p̄

)
= p̄

1 − γ p̄
, (41)

where iu denotes the number of times the cycle has been taken in run u. The MVU sums
the MC estimates over all consistent sets, i.e. over all vectors (k1, . . . , kn) which fulfill∑n

u=1 ku = s :=∑n

u=1 iu. Let the normalization N being the size of this set and MC(ki)

being the MC estimate for ki cycles. The MVU is given by

1

nN

∑

|(k1,...,kn)|=s

MC(k1) + · · · + MC(kn)

= 1

nN

s∑

k1=0

. . .

s−k1...−kn−2∑

kn−1=0

MC(k1) + · · · + MC(kn), (42)

where in the second line kn = s − k1 . . . − kn−1. The number of times ku takes a value j

is independent of u, i.e. MC(k1) appears equally often as MC(ki ) if k1 = ki . Hence, it is
enough to consider MC(k1) and the MVU is

1

N

s∑

k1=0

MC(k1)

s−k1∑

k2=0

. . .

s−k1...−kn−2∑

kn−1=0

1 =: 1

N

s∑

k1=0

MC(k1)C(k1). (43)

Finally, the coefficient is C(k1) = (s+n−2−k1
n−2

)
and the normalization is N = (s+n−1

n−1

)
. The

derivation can be done in the following way. First, observe that 1 = (
kn

0

)
. Then, that

∑s−k1...−kn−2
kn−1=0

(
kn

0

) = (1+(s−k1...−kn−2)

1

)
(e.g. rule 9 in Aigner 2006, p. 13). And finally that

∑s−k1...−kn−3
kn−2=0

(1+(s−k1...−kn−2)

1

) = ∑s−k1...−kn−3
kn−2=0

(1+kn−2
1

)
. Iterating the steps leads to the nor-

malization and the coefficients. Alternatively, these coefficients can be derived by assuming
that you have s indistinguishable objects (the cycles) that you want to place into n boxes
(the runs). In summary the MVU is

1

1 − γ
− 1

(1 − γ )
(
s+n−1
n−1

)
s∑

i=0

(
s + n − 2 − i

n − 2

)
γ i . (44)

We compared the MVU to the ML estimator in two experiments. The results are shown in
Fig. 6. One can observe in Fig. 6(A) that high probabilities for cycles are beneficial for ML
and that the discount which is most beneficial to ML depends on the probability for the cycle.
We have seen in Sect. 3.4.4 that the Bellman equation enforces the estimator to use all cycle
times from 0 to “∞” and thus in a sense “overestimates” the effect of the cycle. Furthermore,
the probability for the cycle is underestimated by ML, i.e. E[p̄] < p (Sect. 3.4.4), which can
be seen as a correction for the “overestimate”. The parameter estimate is independent of the
true probability and the discount. Therefore, a parameter must exist which is most beneficial
for ML, i.e. ML is biased towards this parameter. The experiment suggests that the most
beneficial parameter p is close to 1, meaning that ML is biased towards systems with high
probabilities for cycles.

In Fig. 6(B) the results of the second experiment are shown. In this experiment γ = p =
0.9 and the number of paths is varied. One can observe that the difference between the ML
and the MVU estimator is marginal in comparison to the difference to the MC estimator.
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Fig. 6 A The plot shows the difference in MSE between the ML estimator and the MVU (MSE(ML)-
MSE(MVU)) for 10 paths and different values of γ and p. In the top right part the MVU is superior and
in the remaining part the ML estimator. B The plot shows the MSE of the ML, the MVU and the MC estima-
tor and the bias of ML with respect to the number of paths for p = γ = 0.9. 30000 samples were used for the
mean and the standard deviation (30 blocks with 1000 examples)

Furthermore, the bias of ML approaches quickly to 0 and the MVU and the ML estimator
become even more similar.

4.3 Contraction: ML, iML and TD(0)

In a final set of experiments we compared the contraction factor of different operators. We
generated randomly transition matrices for a state space size of 100 and applied the different
operators. The results are shown in Fig. 7. The left plot shows the results for the usual
Bellman operator and the bound for different discount values. In the middle the TD(0) update
equation is used and in the right plot the Bellman operator is applied state wise, whereas the
state is chosen randomly from different priors. The prior probabilities for states 1, . . . , n :=
|S| are given by: p1 = (1 − c)m,pi = (1 − c + 2c(i − 1)/(n − 1))m, . . . ,pn = (1 + c)m,
where m = 1/n (mean) and c denotes the deviation from the uniform prior. If c = 0 then we
have a uniform distribution. If c = 0.1 then p1 = 0.9m,p2 = (0.9+0.2/(n−1))m, . . . ,pn =
1.1m.

While we were not able to prove that TD is in general inferior to ML or to iML the plots
suggest this to be the case for typical MRPs. Especially, the contraction of TD (middle plot)
to the ML solution is magnitudes slower than the contraction using the Bellman operator.
The state-wise update reduces the contraction speed further. The right plot shows the differ-
ence between the fixed point iteration and the state-wise update with the Bellman operator
(corresponding to iML). The contraction factor of the state-wise update depends crucially
on the distribution of visits of the different states. At best (i.e. uniform distribution over the
states) the contraction is about |S|-times slower than the contraction with the Bellman oper-
ator applied to the full state vector, i.e. |S| many update steps of single states have roughly
the same effect as one full update.

5 Summary

In this work we derived the MVU and compared it to different value estimators. In particu-
lar, we analyzed the relation between the MVU and the ML estimator. It turned out that the
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Fig. 7 The three plots show the contraction rate of different operators to the ML solution. The x-axis denotes
the number of applications of the operators and the y-axis shows the distance to the ML solution. The left and
the center plot are normed with the initial distance (before the first application). Left: The Bellman operator
is used. The discount γ varies from 0.3 to 0.9. For each discount value the empirical distance and the bound
(dotted line) is plotted. Center: Same setting as in the left plot but with the “TD(0)” operator. Right: In this
plot γ = 0.9. The ML curve corresponds again to the Bellman operator. For the other three curves only single
states are updated with the Bellman operator, whereas the states which are updated are chosen randomly due
to the prior probabilities from Sect. 4.3. The percent values denote the deviation from the uniform prior for
the states (0% means uniform). |S| updates were performed per iteration instead of just one, i.e. |S| many
states were drawn from the prior probabilities and the values of these states were updated sequentially in the
order in which they were drawn

relation between these estimators is directly linked to the relation between the class of unbi-
ased estimators and Bellman estimators. If the ML estimator is unbiased then it is equivalent
to the MVU and more generally the difference between the estimators depends on the bias
of ML. This relation is interesting, in particular as the estimators are based on two very dif-
ferent algorithms and proving equivalence using combinatorial arguments is a challenging
task. Furthermore, we demonstrated in this paper that the MC estimator is equivalent to the
MVU in the undiscounted case if both estimators have the same amount of information. The
relation to TD is harder to characterize. TD is essentially unbiased in the acyclic case and
therefore inferior to the MVU and the ML estimator in this case. In the cyclic case TD is
biased and our tools are not applicable.

We want to conclude the section with open problems. Possibly, the most interesting prob-
lem is the derivation of an efficient MVU algorithm. The combinatorial problems that must
be solved appear to be formidable. Therefore, it is astonishing that in the undiscounted case
the calculation essentially boils down to calculating the ML estimate. In particular, the expo-
nential runtime of a brute force MVU algorithm which is intractable even for simple MRPs
decreases in this case to an O(n3) factor. This efficiency is mainly due to the irrelevance of
the time at which a reward is observed. In the discounted case the time of an observation
matters and the algorithmical difficulties increase considerably. Instead of the full geometric
series of ML with arbitrary long paths it seems to be needed to make a cut-off at a maxi-
mum number of cycles, i.e. replacing (I−γ P̄)−1 with something like (I−(γ P̄)s)(I−γ P̄)−1,
where s is the maximum number of cycles. Yet, (44) shows that a weighting factor is asso-
ciated with each time step and the MVU equation is not that simple.

Another interesting question concerns the bias of the ML estimator. We showed that the
normalizations {Ni ≥ 1} are the reason for the bias. Furthermore, if the Full Information
Criterion applies then the normalization problem is not present and we used a theorem from
Singh and Sutton (1996) to deduce unbiasedness of ML for this case. Yet, there seems to be
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a deeper reason for the unbiasedness of the ML estimator and the theorem from Singh and
Sutton (1996) appears to be an implication from this and from Corollary 1 (MVU = MC).

5.1 Discussion

In the discussion section we address two questions: (1) What is the convergence speed of the
MVU? (2) Which estimator is to be preferred in which setting? In this section the emphasis
is put onto gaining intuition and not on mathematical rigor.

Convergence Speed We are interested in the MSE and in the small deviation probability
of the MVU. First, let us state the variance and the Bernstein inequality (e.g. Lugosi 2006,
Theorem 3, p. 219) for the first-visit MC estimator with n paths available for estimation:

V[V̄ (n)] = MSE[V̄ (n)] = 1

n
V[R] (45)

and

P(|V̄ (n) − V | ≥ ε) ≤ 2 exp

(
− ε2n

2V[R] + 2dε/3

)
, (46)

where V[R] is the variance in the cumulative reward (see Sobel 1982 for the variance of an
MRP) and d is an upper bound for the difference between the cumulative reward of any path
and the mean V , i.e. |∑∞

t=0 γ tRt − V | < d .
How about the MVU? In the undiscounted case the MVU has the same variance and

small deviation probability if the Full Information Criterion applies. The quality increases
with further paths into the graph of successor states. Intuitively, the improvement in quality
depends on the “distance” of the entry point s ′ in the successor state graph to the state s of
which we want to estimate the value. For example, if the shortest path from s to s ′ visits 10
intermediate states then the information gained at s ′ will in general not improve the estimate
at state s too much. Opposite to that, if s ′ is a direct successor of state s then paths that
enter the successor states graph at state s ′ will improve the estimate considerably. A natural
distance measure for this setting is the probability to move from state s to s ′. Furthermore,
the improvement will depend on the variation in the cumulative reward of paths starting
in s ′. Paths, that run through regions in which the reward has high variance will yield a
better performance increase than paths which run through near deterministic regions. The
performance will, however, be lower bounded by the case that all of the paths start directly
in s. Therefore, for undiscounted MRPs the rough lower bound (1/N)V[R] will hold:

1

N
V[R] ≤ MSE[E[V̄ (n)|S]] ≤ 1

n
V[R], (47)

where n denotes here the number of paths that visit state s and N denotes the number of
paths that visits the graph of successor states of s (including the paths that visit state s). If
starts in the successor graph are c times more often than starts in s, i.e. N = (c + 1)n then

1

c + 1
MSE[V̄ (n)] ≈ MSE[E[V̄ (n)|S]]. (48)

Similarly, a “reasonable” Bernstein bound of the small deviation probability will lie between

2 exp

(
− (c + 1)ε2n

2V[R] + 2dε/3

)
and 2 exp

(
− ε2n

2V[R] + 2dε/3

)
. (49)
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Choosing an estimator Our study shows that we have essentially a tradeoff between
computation time and convergence speed per sample. As one would expect, the methods
which converge faster have a higher computation time. It seems that the fast methods with
bad convergence speed are superior if we consider pure computation time (Experiment 3,
Sect. 4.1.3). However, if there are costs involved for producing examples, then the compu-
tationally expensive methods become competitive. In a high cost scenario it currently seems
best to choose the ML/LSTD estimator. The MVU might become an alternative, but an ef-
ficient algorithm is currently missing. Furthermore, the algorithmic problems restricted the
numerical comparison to ML and it is unclear in which setting which estimator is superior.
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Appendix A: Notation

μss′ The number of direct transitions from state s to s′
π Path

πi ith state in the path


ss′ Set of all paths from state s to s′
�(S) Set of paths that are consistent with S

P,E,V Probability measure, expectation and variance

Hs Sum of the reward received through transitions from state s

Ks Number of visits of state s

p̄ss′ Estimate of the probability for a direct transition from state s to s′
P̄ss′ Estimate of the transition probability from state s to s′
R̄s Estimator of the reward received through transitions from state s

S State space

S,T Sufficient Statistics

Vs True value of state s

V̄s Estimated value of state s. Value estimator varies with the section

V̄
(i)
s , P̄

(i)

ss′ , . . . Superscripts denote values after the ith run

V,P, . . . Vectors and Matrices

Appendix B: Unbiased TD(λ)

In this section we introduce a (minorly) modified TD(λ) estimator. The estimates are, in
contrast to the standard TD(λ) estimator, independent of the initialization. In the acyclic
case this is already enough to guarantee unbiasedness of TD(λ). We first discuss the TD(0)
case. This case contains the major arguments in an accessible form.
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B.1 TD(0)

We first restate the TD(0) equation through unfolding the recursive definition ((5), p. 294).

Lemma 3 If the TD(0) estimator is initialized with 0 then for an acyclic MRP it equals

V̄ (n)
s =

n∑

i=1

βiR
(i) +

∑

s′∈S

(
n∑

i=1

Ti,s,s′βiγ V̄
(ji )

s′

)
, (50)

where βi := (αi

∏n

j=i+1(1 − αj )), R(i) is the received reward in path i and Ti,s,s′ a random
variable which is one if in run i the state s ′ followed immediately upon state s and is zero
otherwise.

Proof The recursive TD(0) definition (5) can be written as: V̄ (n)
s = V̄ (n−1)

s (1 − αn) +
αn(R

(n) + γ V̄
(jn)

s′ ). Substituting V̄ (n−1)
s and denoting the i-th level successor of state s with

s(i−1):

V̄ (n)
s = (γ V̄ (n−2)

s (1 − αn−1) + αn−1(R
(n−1) + γ V̄

(jn−1)

s′′ )
)
(1 − αn) + αn(R

(n) + γ V̄
(jn)

s′ )

= γ V̄ (n−2)
s (1 − αn−1)(1 − αn) + αn−1(1 − αn)(R

(n−1) + γ V̄
(jn−1)

s′′ ) + αn(R
(n) + γ V̄

(jn)

s′ )

= · · · =
n∑

i=1

(
αi ·

n∏

j=i+1

(1 − αj )

)(
R(i) + γ V̄

(ji )

s(i)

)
=:

n∑

i=1

βi

(
R(i) + γ V̄

(ji )

s(i)

)
. (51)

�

The estimate contains values V̄
(0)

s′ if state s ′ has not been visited before. This biases the
estimator towards the initialization. The estimator can be made unbiased for acyclic MRPs
by excluding these values and by guarantying that the βi terms sum to one. Modification 1
does exactly this.

Modification 1 Modified TD(0) for acyclic MRPs

Let s be the current state, s ′ the successor state of s in the i-th path and V̄ (i)
s the value

estimate for state s in path i.
if s is a terminal state then

Set V̄ (i)
s = 0.

else
if V̄ (i)

s has never been updated then
set the learning rate for this step to 1.

end if
if V̄

(i)

s′ has never been updated then
first update the estimate V̄

(i)

s′
end if
Use the TD(0) update rule (5).

end if

Setting the learning rate for the first example to 1 eliminates the initialization of V̄s .
The second rule assures that the initialization of the estimators of the successor states is
eliminated. Setting the learning rate α1 to 1 has also the effect that the weighting factors βi

sum to one, independent of the learning rate. For example for n = 3, we have
∑3

i=1 βi =
1(1 − α2)(1 − α3) + α2(1 − α3) + α3 = 1.
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Theorem 7 The modified TD(0) estimator is unbiased if the MRP is acyclic.

Proof We prove this by induction. Order the states such that for each state s the successor
states s ′ of s come before s. Go from the beginning through this ordered set.
Induction Basis (first state in the ordered set): The first state is a terminal state. For a
terminal state s the value estimator is unbiased as V̄s = 0 = Vs holds.
Induction Step (next state in the ordered set): Due to the induction we know that the
modified TD(0) estimator is unbiased for any successor state of the current state s as these
come earlier in the ordering. The expected estimate has the form (Lemma 3):

E

[
n∑

i=1

βiR
(i) +

∑

s′∈S

( n∑

i=1

Ti,s,s′βiγ V̄
(ji )

s′
)∣∣∣Ks = n

]

= E

[
n∑

i=1

βiR
(i)

∣∣∣∣∣Ks = n

]
+
∑

s′∈S

n∑

i=1

βiγ E
[
Ti,s,s′ V̄ (ji )

s′
∣∣Ks = n

]

= E

[
n∑

i=1

βiR
(i)

∣∣∣∣∣Ks = n

]
+
∑

s′∈S

pss′
n∑

i=1

βiγ E
[
V̄

(ji )

s′
∣∣Ks = n

]
. (52)

It remains to show that E[V̄ (ji )

s′ |Ks = n] is unbiased. For ji ≥ 2 this follows from the induc-
tion hypothesis. For the case ji = 1 Modification 1 guarantees that the estimator has at least
one example for estimation and is unbiased due to the induction hypothesis. Furthermore,
the βi ’s sum to one due to the modification and

∑
s′∈S

pss′γVs′
∑n

i=1 βi =∑s′∈S
pss′γVs′ . �

B.2 TD(λ)

The TD(λ) case is essentially the same. The main difference is that the estimates of all states
of a path are used. Therefore, it is not enough that the estimators of the direct successor
states are set to “reasonable” values, but all states of the path must be:

Modification 2 Modified TD(λ) for acyclic MRPs

Let s be the current state, s ′ the successor state of s in the i-th path and V̄ (i)
s the value

estimate for state s in path i.
if s is a terminal state then

Set V̄ (i)
s = 0.

else
if V̄ (i)

s has never been updated then
set the learning rate for this step to 1.

end if
if for any successor (not necessarily a direct successor) s ′ of s in the i-th path V̄

(i)

s′ has
never been updated then

first update the estimate V̄
(i)

s′
end if
Use the TD(λ) update rule.

end if
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Theorem 8 The modified TD(λ) estimator is unbiased if the MRP is acyclic.

Proof Proof by induction. Induction Hypothesis: E[V̄s |Ks = n] = Vs.

Induction Basis: For terminal states the Hypothesis trivially holds.
Induction Step: Let π(i + 1, n) be state i-th successor state of state s in path n, π(1, n) = s

and let Rπ(i+1,n) be the reward received at the transition from the i-th successor state of state
s in path n. It is more convenient for the proof to enumerate the value estimates of state
i with the number of paths that have been observed. Thus we use V̄ n

s to denote the value
estimate of state s after observing n path and after applying the TD(λ) update rule at each
transition. In the acyclic case TD(λ) can be written as

V̄ n
s = (1 − αn)V̄

n−1
s + αn

(
∑

i=1

(γ λ)i−1Rπ(i,n) + γ (1 − λ)
∑

i=2

(γ λ)i−2V̄π(i,n)

)

= (1 − α1)V̄
0
s +

n∑

j=1

βj

(
∑

i=1

(γ λ)i−1Rπ(i,j) + γ (1 − λ)
∑

i=2

(γ λ)i−2V̄π(i,j)

)
. (53)

We suppressed the “iteration” index of V̄π(i,j) for readability. Like in the TD(0) case βj :=
(αj

∏n

k=j+1(1 − αk)). Applying the expectation operator and using α1 = 1, we get

E[V̄ n
s |Ks = n] = E

⎡

⎣
n∑

j=1

βj

(
∑

i=1

(γ λ)i−1Rπ(i,j) + γ (1 − λ)
∑

i=2

(γ λ)i−2V̄π(i,j)

)∣∣∣∣∣Ks = n

⎤

⎦

=
n∑

j=1

βj

(
∑

i=1

(γ λ)i−1
E[Rπ(i,j)|Ks = n]

+γ (1 − λ)
∑

i=2

(γ λ)i−2
E[V̄π(i,j)|Ks = n]

)
. (54)

Instead of E[Rπ(i,j)] and E[V̄π(i,j)] we use E[Ri] and E[V̄i] in the following to denote the
expected reward in step i, respectively the expected value estimate in step i (expected state
times expected value estimate for that state). Due to the induction hypothesis

E[V̄i |Ks = n] = Vi =
∞∑

j=i

γ j−i
E[Rj ]. (55)

Substituting this term into (54):

n∑

j=1

βj

(
∑

i=1

(γ λ)i−1
E[Ri] + γ (1 − λ)

∑

i=2

(γ λ)i−2
∑

u=i

γ u−i
E[Ru]

)
. (56)

Taking a specific E[Ri], we see that for the coefficient

(γ λ)i−1 + γ (1 − λ)(γ i−2λi−2 + . . . + γ i−2λ + γ i−2)

= γ i−1

⎛

⎝λi−1 + (1 − λ)

i−2∑

j=0

λj

⎞

⎠= γ i−1

(
λi−1 + (1 − λ)

1 − λi−1

1 − λ

)
= γ i−1 (57)

holds. We know already that the βj sum to one. Hence, the modified TD(λ) is unbiased. �
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Appendix C: Proofs

C.1 Unbiased estimators—Bellman equation

Lemma 1 For the MRP from Fig. 2(B) there exists no parameter estimator p̄ such that Vi(p̄)

is unbiased for all states i.

Proof Assume that V̄1, V̄2 are unbiased, i.e. E[V̄1|{N1 ≥ 1}] = E[V̄2] = V1 = V2 and the
estimator fulfills the Bellman equation, i.e. V̄1 = V̄2 on N1 := {N1 ≥ 1}. Then

E[V̄2|N1] Bellm.= E[V̄1|N1] unb.= V1
Bellm.= V2

unb.= E[V̄2]. (58)

We used for the first equality that p̄12 must equal 1 as there is only one connection leading
away from state 1. The derived equality shows that the average value estimate V̄2 must be
the same as the average estimate for the case that the connection 2 → 1 has been taken at
least once. This implies that the value estimate for the case that only the connection 2 → 3
has been taken must be the same as the average value estimate:

E[V̄2] = E[V̄2|N1]P[N1] + E[V̄2|Nc
1 ]P[Nc

1 ] unb.= E[V̄2]P[N1] + E[V̄2|Nc
1 ]P[Nc

1 ], (59)

where Nc
1 denotes the event N1 = 0. This implies that E[V̄2|N1] = E[V̄2] = E[V̄2|Nc

1 ].
There are two possibilities to achieve this equality: (1) All three terms are 0. In particular,

E[V̄2] = 0 �= V2. This contradicts unbiasedness. (2) E[V̄2|Nc
1 ] �= 0: As R23 = 0 that means

that p̄21 �= 0, despite the fact that this transition has not been observed. Furthermore, this
implies that p̄12 = 1 as otherwise no valid MRP is defined. As a consequence V̄1 = V̄2

on both the events N1 and Nc
1 , in particular E[V̄1|Nc

1 ] = E[V̄2|Nc
1 ] �= 0. Now, we get a

contradiction with the following argument:

V1 + E[V̄1|Nc
1 ] unb.= E[V1|N1] + E[V̄1|Nc

1 ] = E[V2|N1] + E[V̄2|Nc
1 ] = E[V̄2] unb.= V2

Bellm.= V1,

(60)
as the equality can only hold if E[V̄1|Nc

1 ] = 0. �

Lemma 2 For the MRP from Fig. 2(A) with modified reward R11 = 0,R12 = 1 and for
n = 1 there exists no parameter estimator p̄ that is independent of γ such that V1(p̄) is
unbiased for all parameters p and all discounts γ .

Proof For V (p̄) to be unbiased, it must hold that

E

[
(1 − p̄)

∞∑

i=0

γ ip̄i

]
= (1 − p)

∞∑

i=0

γ ipi ⇒

∞∑

i=0

γ i(E[(1 − p̄)p̄i] − (1 − p)pi) = 0. (61)

If the equality holds for all γ ∈ (0,1), then E[(1 − p̄)p̄i] = (1 − p)pi for i ≥ 0. Other-
wise, with xi := E[(1 − p̄)p̄i] − (1 − p)pi and xn being the first term different from 0
(|xn| > 0): |γ nxn| = |∑∞

i=n+1 γ ixi | and therefore |xn| = |γ ∑∞
i=n+1 γ i−(n+1)xi |. We can now

adjust the discount to downscale the right hand side arbitrary low, while the left side stays
unaffected. The sequence |xi | is bounded, i.e. |xi | ≤ max{E[(1 − p̄)p̄i], (1 −p)pi} for all i.
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Furthermore, both terms are bounded by maxa∈[0,1](1 − a)ai . The maximum is reached for
a = i/(i + 1) and the maximal value over all i is reached for i = 0. The value for i = 0 is 1.
Therefore,

∣∣∣∣γ
∞∑

i=n+1

γ i−(n+1)xi

∣∣∣∣< γ

∞∑

i=n+1

γ i−(n+1)1 = γ

(1 − γ )
. (62)

For γ < |xn|/(1 − |xn|) the term and the remaining part of the sum becomes smaller
than |xn|. |xn|/(1 − |xn|) is always larger than 0 as |xn| > 0 and for |xn| → 1 the discount γ

can be chosen arbitrary large. In summary this contradicts the assumption and E[(1 − p̄)p̄i]
must equal (1 − p)pi for all i ≥ 0.

Therefore, E[1 − p̄] = 1 − p ⇒ E[p̄] = p and E[(1 − p̄)p̄] = (1 − p)p ⇒ E[p̄2] = p2.
Consequently, p̄ must be a constant. Otherwise, we get a contradiction with the following ar-
gument: The possible values of p̄ are countable (countable many outcomes). We denote the
values with ai and with qi the probabilities for the values ai . From E[p̄2] = E[p̄]2 it follows
that

∑∞
i=0 qia

2
i =∑∞

i=0

∑∞
j=0 qiqjaiaj ⇒∑∞

i=0

∑
j �=i qiqj aiaj = 0. Furthermore, qi, ai ≥ 0

for all i and therefore qiqjaiaj = 0 for all i �= j . As a consequence, there can be only one
ai > 0 with qi > 0. Because E[p̄] = p it holds that ai = p/qi and because E[p̄2] = p2 it
holds that ai = p/

√
qi . Hence, qi = 1 and the parameter estimate is almost surely a con-

stant p. Hence, for an MRP with parameter p/2 the estimator will not be unbiased. �

C.2 Markov reward process

Lemma 4 Assume that each state has a reward distribution which comes from a d-
dimensional exponential family. An MRP with finite state space and iid sequences forms
then an (s + |S|d)-dimensional exponential family, where s is the number of free MRP pa-
rameters.

Proof Firstly, we demonstrate that the transition distribution forms an exponential family.
The density can be written as

P(X1 = π(1), . . . ,Xl = π(l)) =
∞∏

i=1

P ci
πi

= exp

( ∞∑

i=1

ci logPπi

)
, (63)

with π(j) being the observed paths, {πi}i∈N the set of all paths that can be generated by the
MRP (which are countable infinite many paths), ci is the number of observed paths equiv-
alent to πi and Pπ the probability of path π . The parameters Pπ are redundant. We explore
now the MRP structure to find natural parameters that are not functionally dependent. The
size of this set of parameters is the number of necessary MRP parameters, that is

�Starting States − 1 +
∑

i∈S

(
�Direct Successors of i − 1

)
. (64)

We reformulate the exponential expression to reduce the number of parameters. First, one
can observe that

∏∞
i=1 P ci

πi
is equivalent to

∏
i∈S

(p
ni

i

∏
j∈S

p
μij

ij ), where ni is the number
of starts in state i. The parameters are still redundant: Let state 1 be a starting state and
S the remaining set of starting states, then p1 = 1 −∑j∈S pj . Furthermore, we have one
redundant parameter pij for every state i. The first problem can be overcome by using A(θ)

in the following way: n log(1 −∑i∈S pi) +∑i∈S ni log pi

(1−∑j∈S pj )
. Here, A(θ) equals the
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n term and ni is the number of starts in state i. Using the same approach for the transition
parameters results in Ki log(1−∑j∈S(i) pij )+∑j∈S(i) μij log

pij

(1−∑u∈S(i) piu)
, with S(i) being

the set of successor states of i without the first successor. This time the Ki term cannot be
moved into A(θ), as Ki is data dependent. This problem can be overcome by observing that
Ki = ni +∑j∈S

μji and by splitting the Ki terms. As a result we get

exp

(
n log

(
1 −

∑

i∈S

pi

)⎛

⎝1 −
∑

u∈S(1)

p1u

⎞

⎠+
∑

i∈S

ni log
pi(1 −∑u∈S(i) piu)

(1 −∑j∈S pj )

+
∑

i∈S

∑

j∈S(i)

μij log
pij (1 −∑u∈S(j) pju)

(1 −∑u∈S(i) piu)

)
. (65)

This case is enough if the reward is deterministic. In the general case where each reward
distribution comes from a d-dimensional exponential family the natural parameters and the
statistics of the reward distributions must be included in the sum of (22). Similarly, A(θ)

and h(x) need to be adapted. This is possible as there is no functional relation between the
MRP parameters and the parameters of the reward distributions. �

C.3 MVU

Theorem 4 E[V̄ |S] converges on average to the true value. Furthermore, it converges al-
most surely if the MC value estimate is upper bounded by a random variable Y ∈ L1.

Proof The estimator converges on average, because E[|E[V̄ |S] − V |] ≤ E[|V̄ − V |] n→∞−→
0, where n denotes the number of observed paths and convergence follows from the MC
convergence. The inequality follows from the Lehmann-Scheffe Theorem, respectively from
the Jensen inequality because | · | is convex.

We need to show that

lim
n→∞ E[V̄ |S] = V a.s., (66)

where n denotes again the number of observed paths for almost sure convergence.
Due to Bauer and Burckel (1995, Sect. 15 Conditional Expectation, (15.14))

limn→∞ E[V̄ |S] = V a.s. if V̄ converges almost surely to V and if it is upper bounded
by a random variable Y ∈ L1. V̄ converges almost surely as V̄ is the MC estimator. The
second condition is fulfilled due to the assumptions of our Theorem. �

C.4 ML estimator

Theorem 5 The ML estimator is unbiased if the MRP is acyclic.

Proof The value function can be written as

Vs = E[Rs] +
∑

s′∈S

∑

π∈
ss′
Pπγ |π |

E[Rs′ ], (67)

where 
ss′ is the set of paths from s to s ′, Pπ the probability of path π , |π | the length of
the path and E[Rs] =∑s′∈S

pss′E[Rss′ ]. The ML estimator can be written in the same form,
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whereas Pπ is replaced with P̄π :=∏i p̄πiπi+1 and the expected reward with the reward
estimator. The sample mean estimator p̄ is unbiased and the reward estimator is unbiased
because of our initial assumption. The main problem is to show that P̄π is unbiased, i.e. that

E

[∏

i

p̄πiπi+1

∣∣∣∣Ks = n

]
?=
∏

i

pπiπi+1 . (68)

The estimator for the last transition in a path (denote it with p
ŝ ˆ̂s ) is conditionally independent

of the others given the number of visits of state ŝ (Kŝ ). This is also the main point where
acyclicity is needed. Using this together with the law of total probability and the fact that p̄

is unbiased, leads to the following statement (with L being the length of the path π ):

E

[
L−1∏

i=1

p̄πiπi+1

∣∣∣Ks = n

]
=

n∑

l=1

E

[L−1∏

i=1

p̄πiπi+1

∣∣∣Ks = n,Kŝ = l
]
P[Kŝ = l|Ks = n]

ind=
n∑

l=1

E

[
L−2∏

i=1

p̄πiπi+1

∣∣∣∣∣Ks = n,Kŝ = l

]
p

ŝ ˆ̂sP[Kŝ = l|Ks = n]

= p
ŝ ˆ̂s

n∑

l=1

E

[
L−2∏

i=1

p̄πiπi+1

∣∣∣∣∣Ks = n,Kŝ = l

]
P[Kŝ = l|Ks = n]

= p
ŝ ˆ̂sE

[
L−2∏

i=1

p̄πiπi+1

∣∣∣∣∣Ks = n

]
, (69)

where “ind” abbreviates “independence”. We used that for l = 0 the last estimator p̄ in the
product is zero. The procedure has to be repeated for every p̄. As a result the expectation of
this estimator is equal to the path probability. One can handle the reward estimator with the
same procedure. In summary we find that the value estimator is unbiased. �

Appendix D: Counterexamples

D.1 MC—TD

We present two examples in this section. In the first example MC has a lower MSE than
TD(0) and is at least as good as TD(λ) for every λ. In the second example TD(0) is superior
to MC.

D.1.1 MC superior to TD

Figure 8(A) shows an example for which the MC estimator is superior. We assume that the
learning rate αi of TD(0) is between 0 and 1, that the learning rate in the first step is 1
(α1 = 1) and that the estimator is initialized to 0 (we use this assumption for readability, it
is also possible to use the unbiased TD(0) estimator (Modification 1)). Let state 1 be the
starting state, n be the number of observed paths and let γ = 1 for simplicity.

The MC estimator for state 2 is 1/n
∑n

i=1 Yi , where Yi = R23 or Yi = R24 are the rewards
received after a transition from state 2 to state 3 or 4. For state 1 we obtain 1/n

∑n

i=1(Yi +
R

(i)

12 ), where the Yi are the same as before and R
(i)

12 is the received reward after a transition
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Fig. 8 A An MRP for which TD
is inferior to MC. The transition
from state 1 to state 2 is followed
by a reward R12 = +1 and
R12 = −1 with probability
p = 0.5 each. B An MRP for
which MC is inferior to TD. No
reward is received for transitions
1 → 2 and 1 → 3. p1 and p2 are
the probabilities to start in state 1
and 2

to state 2. The MC estimator is a weighted average of the examples and it is the optimal
unbiased linear estimator (4) as αi = 1/n for all i.

We now analyze the TD(0) estimator. Consider two different sequences αi and α̃i , i =
1, . . . , n, of learning rates for the TD(0) estimators V̄1 and V̄2. The TD(0) estimator V̄2 can
be written as (Lemma 3, Appendix B)

V̄
(n)

2 =
n∑

i=1

(
α̃i

n∏

j=i+1

(1 − α̃j )

)
Yi =:

n∑

i=1

β̃iYi . (70)

The estimator is unbiased and has minimal variance if and only if β̃i = 1/n. This can be
enforced by choosing α̃i = 1/i. For state 1 we obtain

V̄
(n)

1 =
n∑

i=1

βi(V̄
(i−1)

2 + R
(i)

12 ) =
n∑

i=1

βi

(
i−1∑

j=1

β̃jYj + R
(i)

12

)

=
(

n∑

i=1

βiR
(i)

12

)
+
(

n−1∑

i=1

(
β̃i

n∑

j=i+1

βj

)
Yi

)
=:
(

n∑

i=1

βiR
(i)

12

)
+
(

n−1∑

i=1

ξiYi

)
, (71)

where βi = αi

∏n

j=i+1(1 − αj ). Using the Bienaymé equality (e.g. Bauer and Burckel 1995)
the variance of the estimator takes the following form

V(V̄
(n)

1 )
ind= V

(
n∑

i=1

βiR
(i)

12

)
+ V

(
n−1∑

i=1

ξiYi

)
iid= V(R

(1)

12 )

n∑

i=1

β2
i + V(Y1)

n−1∑

i=1

ξ 2
i . (72)

Y1 and R
(1)

12 have the same variance. With ξn = 0

V(V̄
(n)

1 ) = V(Y1)

(
n∑

i=1

β2
i +

n∑

i=1

ξ 2
i

)
. (73)

Because 0 ≤ βi, ξi ≤ 1 and
∑n

i=1 βi =∑n

i=1 ξi = 1 (see Appendix B) this term would be
minimal if and only if βi = ξi = 1/n. From βi = β̃i = 1/n, however, it follows that ξi =
1/n

∑n−1
i+1 1/n = (n − i − 2)/n2 �= 1/n. Hence optimality cannot be achieved. Since both

MC and TD are unbiased, we obtain MSE[MC] < MSE[TD].
This example demonstrates a major weakness of TD, namely that it is impossible for TD

to weight the observed paths equally, even for simple MRPs. Furthermore, MC is for this
example the optimal unbiased value estimator and TD(λ) is unbiased. The optimality of MC
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is a direct implication of Corollary 7 from Sect. 3.5. Therefore MSE[MC] ≤ MSE[TD(λ)]
for each λ.

D.1.2 TD superior to MC

Figure 8(B) shows an example where TD(0) is superior. Let the number of observed paths
be n = 2 and γ = 1. The value of all states is zero. TD(0) and MC are unbiased for this
example. The variance of the MC estimator for states 1, 2 and 3 is therefore given by

E[V̄ 2
3 ] = P[R(1) = 1,R(2) = 1] · 12 + P[R(1) = −1,R(2) = −1] · (−1)2

+ P[R(1) = 1,R(2) = −1] · 0 + P[R(1) = −1,R(2) = 1] · 0

= (1/4)12 + (1/4)(−1)2 + (2/4) · 0 = 1/2,

E[V̄ 2
1 ] = E[V̄ 2

2 ] = (1/4)1/2 + (1/2)1 + 0 = 5/8,

(74)

where R(i) denotes the received reward in run i. The first term in the second line results from
starting two times in state 1 or 2 and the second term in the second line from a single start in
state 1. Setting the learning rate αi to αi = 1/i for TD, the estimator for state 3 is equivalent
to the corresponding MC estimator and therefore the variance is 1/2. In the first run the
standard TD(0) update rule uses the initialization value of state 3 to calculate the estimate
in state 1 or 2. This is advantageous and results in a variance of 1/2. Without exploiting this
advantage the variance is 17/32. This is still lower than the variance of the MC estimator.
Since both estimators are unbiased we obtain MSE[TD(0)] < MSE[MC].

In this example we used the propagation of value estimates which TD performs to show
superiority. Without propagation of value estimates TD cannot outperform MC if we use an
unbiased TD version and a discount of γ = 1. This is because MC observes all relevant paths
and is hence equivalent to the optimal unbiased value estimator. If the discount is smaller
than one then MC is not optimal anymore and also differs from the ML estimator. The
second example in Sect. 3.5.1 shows that MC weights transitions from a state s ′ according
to the length of the path taken from state s (the state for which MC estimates the value) to s ′.
The length should, however, play no role. TD has here a slight advantage as the TD value
estimate at state s ′ treats all transitions independent of the length of the path taken from state
s to s ′.

D.2 MVU/MC—ML

We show by means of counterexamples that neither the MVU is superior to the ML estimator
nor is the ML estimator superior to the MVU or to the MC estimator. We use again the MRP
from Fig. 2(A) on p. 299 with modified reward R11 = 0,R12 = 1 and with n = 1. As we
showed before, the value for state 1 is (1 − p)/(1 − γp) and the ML estimate is (1 −
p̄)/(1 − γ p̄), where p̄ = i/(i + 1) and i denotes the number of times the cyclic connection
has been taken. The MC estimate and therefore the MVU estimate is given by γ i . Because
of the unbiasedness of the MVU/MC estimator the MSE is given by:

MSE[V̄1] = E[V̄ 2
1 ]−V 2

1 = (1 −p)

∞∑

i=0

γ 2ipi − (1 − p)2

(1 − γp)2
= p(1 − p)

(1 − γp)2(1 − γ 2p)
(1 − γ )2,

(75)
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where V̄1 denotes the MVU/MC estimator. For the MSE of the ML estimator ¯̄V1 we need to
calculate the first and the second moment. The first moment:

E[ ¯̄V1] = (1 − p)

∞∑

i=0

1 − p̄

1 − γ p̄
pi = (1 − p)

∞∑

i=0

1

1 + (1 − γ )i
pi. (76)

In the following, we chose γ such that (1 − γ )−1 = m ∈ N. The sum can then be written as

m(1 − p)

pm

∞∑

i=0

1

m + i
pm+i = m(1 − p)

pm

( ∞∑

i=1

pi

i
−

m−1∑

i=1

pi

i

)

= m(1 − p)

pm

(
ln

1

1 − p
−

m−1∑

i=1

pi

i

)
. (77)

The second moment:

E[ ¯̄V 2
1 ] = (1 − p)

∞∑

i=0

(1 − p̄)2

(1 − γ p̄)2
pi = (1 − p)

∞∑

i=0

1

(1 + (1 − γ )i)2
pi

= (1 − p)m2

pm

∞∑

i=0

1

(m + i)2
pm+i = (1 − p)m2

pm

( ∞∑

i=1

pi

i2
−

m−1∑

i=1

pi

i2

)
. (78)

The infinite sum is called Spence function or dilogarithm and is denoted with Li2(p). Using
these terms one can derive the MSE:

(1 − p)2m2

pm(m(1 − p) + p)

(
m(1 − p) + p

(1 − p)

(
Li2(p) −

m−1∑

i=1

pi

i2

)

− 2

m(1 − p)

(
ln

1

1 − p
−

m−1∑

i=1

pi

i

)

+ pm

(m(1 − p) + p)

)
. (79)

For γ = p = 1/2 the MSE of the MVU/MC estimator is 0.127 and 0.072 for the ML esti-
mator. Contrary, for p = 0.99 the MSE of the MVU/MC estimator is 0.0129 and 0.0219 for
the ML estimator.

D.3 Bellman—unbiased

Figure 1 in the introduction gives an overview of the relation between two classes of estima-
tors: Bellman estimators and unbiased estimators. In particular, the figure shows that both
classes overlap if the MRP is acyclic or if the Full Information criterion holds and γ = 1. We
present in this section two examples that show that neither of the classes is fully contained
in the other, even if these assumptions hold.
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Example 1: Bellman �⊂ unbiased This relation is easy to see: Use an estimator of the
transition probabilities that does not use data, i.e. p̄ij = const . If the constant differs from
the true pij then the corresponding value estimator is biased while it fulfills the Bellman
equation. This approach can be applied on any MRP to get a biased Bellman estimator. In
particular, it can be applied to any acyclic MRP or to the case where the Full Information
criterion holds and γ = 1.

Example 2: Unbiased �⊂ Bellman The other direction is also not too difficult. We can use
Fig. 8(A) with R12 = 0, γ = 1 and state 1 being the start state. Then all the assumptions
from above are fulfilled. Using the unbiased TD(0) version from Appendix B it is easy to
see that this estimator does not fulfill the Bellman equation: Assume that after observing
the first path the estimates fulfill the Bellman equation. For the second path we then have
two choices. Either it can go through states 1, 2, 3 or 1, 2, 4. Now assume that the Bellman
equation will be fulfilled if path 1, 2, 3 occurs (otherwise we are already done). This means
that an estimator p̄12 exists such that V̄1 = p̄12V̄2 holds. If instead of path 1, 2, 3 the path 1,
2, 4 occurs then V̄1 and p̄12 will be the same as for the path 1, 2, 3 as the TD(0) estimator
uses only the old value V̄2 to calculate the new estimates. V̄2 will, however, be different as a
different reward is observed.
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