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Abstract Documents come naturally with structure: a section contains paragraphs which
itself contains sentences; a blog page contains a sequence of comments and links to related
blogs. Structure, of course, implies something about shared topics. In this paper we take the
simplest form of structure, a document consisting of multiple segments, as the basis for a
new form of topic model. To make this computationally feasible, and to allow the form of
collapsed Gibbs sampling that has worked well to date with topic models, we use the mar-
ginalized posterior of a two-parameter Poisson-Dirichlet process (or Pitman-Yor process)
to handle the hierarchical modelling. Experiments using either paragraphs or sentences as
segments show the method significantly outperforms standard topic models on either whole
document or segment, and previous segmented models, based on the held-out perplexity
measure.
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1 Introduction

Documents come with structure: a section contains paragraphs which itself contains sen-
tences; a blog page contains a sequence of comments and links to related blogs; a paper
contains appendices and references to related work. Some forms of structure are modelled
with links in a document, and many different approaches follow from the key initial pa-
per here (Cohn and Hofmann 2001). Some forms of structure are readily modelled sim-
ply by typing tokens, separating out the words, the links, maybe the names, into different
multinomials in the topic model, easily done with existing theory (Buntine and Jakulin 2006,
Sect. 5.2). Other forms of structure work with the topic space themselves (Blei et al. 2004;
Mimno et al. 2007). However, a different challenge in text analysis is the problem of un-
derstanding the document structure. In this paper, we look at the original layout of each
document as our guide to structure by following the ideas of Shafiei and Milios (2006), who
developed a hierarchical model of the segments in a document.

Given a collection of documents, each of which consists of a set of segments (e.g., sec-
tions, paragraphs, or sentences), each segment contains a group of words, we wish to explore
the latent topic structure of each document by taking into account segments and their layout.
We believe segments in a document not only have meaningful content but also provide pre-
liminarily structural information, which can aid in the analysis of the original text. This idea
actually originates from the way in which people normally compose documents (e.g. essays,
theses or books). Obviously, to write a document, we need first come up with some main
ideas, then organize segments around them, and the ideas for segments could vary around
the main ideas.

We take essay writing as an example. An easily accessible and understandable structure
is very important for an essay. Generally, an essay should have main ideas which indicate
what the essay deals with; then paragraphs, basic structural units in an essay, are organized
around the main ideas. Furthermore, each paragraph should have one or more ideas, called
sub-ideas in our work, which must link to the main ideas. It means they are not isolated, but
sub-ideas can be more specific than the main ideas, and generally be variations of them. The
layout and progression of ideas give the meaningful structure of an essay.

Can we statistically model documents in this manner? We adopt probabilistic generative
models called topic models. The basic idea is that each document is a random mixture over
several latent topics, each of which is a distribution over words. Topic models specify a
simple probabilistic process by which words can be generated. Here, we can consider Latent
Dirichlet Allocation (LDA) model, proposed by Blei et al. (2003), as a way of modelling
“ideas” with topics. However, LDA cannot simultaneously learn main ideas and sub-ideas
under the same latent topic settings.

Extending LDA to involve segments of a document, Shafiei and Milios (2006) presented
a Latent Dirichlet Co-Clustering (LDCC) model. It assumes there are two kinds of topics,
document-topics (i.e., distributions over segments) and word-topics (i.e., distributions over
words). Thus the LDCC model does not share topics between documents and their segments.
It is also assumed that each segment is associated with only one document-topic. We will
argue that these assumptions can be removed by using distributions over topics (i.e., topic
proportions).

There are other topic models that discover the hierarchical structure of topics, for instance
using the Hierarchical Dirichlet Process (HDP) (Teh et al. 2006), Hierarchical LDA (HLDA)
(Blei et al. 2004), and Pachinko Allocation Model (PAM) (Mimno et al. 2007). HDP is built
on data that have been pre-clustered into a hierarchical structure. HLDA organizes topics
into a tree based on the nested Chinese restaurant process (CRP), then generates documents
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by selecting topics along the paths in the tree. PAM uses a directed acyclic graph (DAG)
to model the topic hierarchies. These models attempt to capture the intra-topic correlation
(i.e., the hierarchical structure of topics) that is quite different from the document structure
we deal with. Another model, Dynamic Topic Models (DTM) (Blei and Lafferty 2006),
analyzes the time evolution of topics among document collections, rather than inside each
document.

In this paper, we develop a simple structure topic model using the two-parameter Poisson
Dirichlet process (PDP) (Pitman and Yor 1997; Ishwaran and James 2001), based on recent
theoretical results of the PDP for finite discrete cases (Buntine and Hutter 2010). This has
the advantage of allowing a collapsed Gibbs sampler to be developed for the hierarchical
structure model. The rest of this paper is organized as follows. In Sect. 2, we present our new
Segmented Topic Model (STM), and then elaborate an approximate inference algorithm for
STM in Sect. 3. STM is compared with previous models in Sect. 4, and experiments based
on unbiased evaluations reported in Sect. 5. Our experiments clearly illustrate the superiority
of our STM over previous models.

2 Segmented topic model

Our Segmented Topic Model (STM) is a four-level probabilistic generative topic model: two
levels of topics proportions, a level of topics and a level of words.

Before specifying STM, we list all notations and terminologies used in this paper. Nota-
tions are depicted in Table 1. We define the following terms and dimensions:

– A word is the basic unit of our data, indexed by {1, . . . ,W }.
– A segment is a sequence of L words. It can be a section, paragraph, or even sentence. In

this work, we assume segments are paragraphs or sentences.
– A document is an assemblage of J segments, as shown in Fig. 1(b).
– A corpus is a collection of I documents.

The basic idea of STM is to assume that each document i has a certain mixture of latent
topics, denoted by probability vector μi , and is composed of meaningful segments; each
of these segments also has a mixture over the same space of latent topics as those for the
document, and these are denoted by probability vector νi,j for segment j of document i.
Both the main ideas of a document and sub-ideas of its segments are modelled here by
these distributions over topics. Sub-ideas are taken as variants of the main ideas, and thus
sub-ideas can be linked to the main ideas, giving correlations between a document and its
segments.

How do the segment proportions νi,j vary around the document proportions μi? The use
of the PDP distribution as νi,j ∼ PDP(a, b,μi ) distribution is a key innovation here. We
would be happy to use, instead, a distribution such as νi,j ∼ Dirichlet(bμi ) where b plays
the role of “equivalent sample size”. However, such a distribution makes the prior non-
conjugate to the likelihood so general MCMC sampling is required and parameter vectors
such as μi can no longer be integrated out to yield efficient collapsed Gibbs samplers. We
therefore employ the following lemma adapted from (Buntine and Hutter 2010):

Lemma 1 The following approximations on distributions hold

PDP(0, b,discrete(θ)) ≈ Dirichlet(bθ),

PDP(a,0,discrete(θ)) ≈ Dirichlet(aθ) (as a → 0).
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Table 1 List of notations

Notation Description

K Number of topics

I Number of documents

Ji Number of segments in document i

Li,j Number of words in document i, segment j

W Number of words in dictionary

α Base distribution for document topic probabilities

μi Document topic probabilities for document i, base distribution for segment topic probabilities

νi,j Segment topic probabilities for document i and segment j

Φ Word probability vectors as a K × W matrix

φk Word probability vector for topic k, entries in Φ

γ W -dimensional vector for the Dirichlet prior for each φk

wi,j,l Word in document i, segment j , at position l

zi,j,l Topic for word in document i, segment j , at position l

Fig. 1 The Segmented Topic
Model and the document
structure used in this model

The first approximation is justified because the means and the first two central moments
(orders 2 and 3) of the LHS and RHS distributions are equal. The second approximation is
justified because the mean and first two central moments (orders 2 and 3) agree with error
O(a2).

The PDP is a prior conjugate to the multinomial likelihoods, as will be shown in a later
section, so allows collapsed Gibbs samplers of the kind used for LDA. Thus, conditioned
on the model parameters α,γ ,Φ and PDP parameters a, b (called discount and strength
respectively), STM assumes the following generative process for each document i:

1. Draw μi ∼ DirichletK(α)

2. For each segments j ∈ {1, . . . , Ji}
(a) draw νi,j ∼ PDP(a, b,μi )

(b) For each wi,j,l , where l ∈ {1, . . . ,Li,j }
i. Select a topic zi,j,l ∼ discreteK(νi,j )

ii. Generate a word wi,j,l ∼ discreteW(φzi,j,l
)

We have assumed the number of topics (i.e., the dimensionality of the Dirichlet dis-
tribution) is known and fixed, and the word probabilities are parameterized by a K × W

matrix Φ . The graphical representation of STM is depicted in Fig. 1(a), where shaded nodes
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are observed random variables, unshaded nodes are latent random variables, and the plates
indicate repeated sampling.

The complete-data likelihood of each document i (i.e., the joint distribution of all ob-
served and latent variables) can be read directly from the graph using the distributions given
in the above generative process.

3 Approximate inference by collapsed Gibbs sampling

We have described the motivation behind STM. Here, we elaborate the procedures for in-
ference and parameters estimation under STM. In order to use the model, we need to solve
the key inference problem which is to compute the posterior probability of latent variables
(i.e., μ, ν and z) given the input α, Φ , a, b and observations w, p(μ,ν,z |w,α,Φ, a, b).
Unfortunately, this posterior distribution cannot be computed directly, due to the intractable
computation of marginal probabilities. We must appeal to an approximated inference, where
some of the parameters (e.g. μ, ν and Φ) can be integrated out rather than explicitly esti-
mated. Two standard approximation methods have been applied to topic models: variational
inference (Blei et al. 2003) and collapsed Gibbs sampling (Griffiths and Steyvers 2004). We
use the latter taking advantage of the collapsed sampler for the PDP.

Table 2 lists all statistics needed in our algorithm. The statistics ti,j,k and its derivatives
are introduced next.

3.1 Marginalizing the PDP

The necessary data for the model is the assignments of words to topics indicated by zi,j,l , but
also some latent statistics called “table counts of the CRP” indicated by ti,j,k , and collectively
referred to as the current state of the CRP. This subsection explains how these table counts
appear. For our purposes, one does not need to know what these table counts are, or how
they are derived, since they can be treated as constrained latent variables that just make the
sampling work (according to the lemma below). An explanation of them, however, appears
in Appendix.

The following lemma, which we adapt from Buntine and Hutter (2010) is used to handle
the PDP. It marginalises the νi,j out of the posterior for our model and leaves μi in conjugate

Table 2 List of statistics

Statistic Description

Mi,k,w Topic by word total sum in document i, the number of words with dictionary index w and topic k.

Mk,w Mi,k,w totalled over documents i, i.e.,
∑

i Mi,k,w .

Mk Vector of W values Mk,w .

ni,j,k Topic total in document i and segment j for topic k.

Ni,j Topic total sum in document i and segment j , i.e.,
∑

k ni,j,k .

ni,j Topic total vector, i.e., (ni,j,1, . . . , ni,j,K).

ti,j,k Table count in the CRP for document i and segment j , for topic k. This is the number of tables
active for the k-th value.

Ti,j Total table count in the CRP for document i and segment j , i.e.,
∑

k ti,j,k .

t i,j Table count vector, i.e., (ti,j,1, . . . , ti,j,K).
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form. Consider that part of the complete data likelihood containing segment topic probabili-
ties νi,j . For each document i, this takes the form p(νi ,zi |μi ,α,Φ, a, b). Ideally, we would
like to integrate the vectors νi out for a nice collapsed sampler. We can do this, however, at
the cost of introducing the additional latent statistics t i , thus getting p(t i ,zi |μi ,α,Φ, a, b)

where the t i are integer vectors rather than real-valued vectors. The lemma explains how.

Lemma 2 Given a probability vector μ of dimension K , and the following set of priors and
likelihoods for j = 1, . . . , J

νj ∼ PDP(a, b,μ),

nj ∼ multinomialK(νj ,Nj ),

where Nj = ∑
k nj,k , introduce auxiliary latent variables t j such that tj,k ≤ nj,k and tj,k = 0

if and only if nj,k = 0, then the following marginalised posterior distribution holds

p(n1:J , t1:J |a, b,μ) =
∏

j

C
Nj
nj

(b|a)∑
k tj,k

(b)Nj

∏

j,k

S
nj,k

tj,k ,a

∏

k

μ

∑
j tj,k

k .

The functions introduced in the lemma are as follows: C
Nj
nj

is the multi-dimensional
choose function of a multinomial; (x)N is given by (x|1)N , (x|y)N denotes the Pochhammer
symbol with increment y, it is defined as

(x|y)N = x(x + y) · · · (x + (N − 1)y) =
{

xN if y = 0,

yN × Γ (x/y+N)

Γ (x/y)
if y > 0,

where Γ (·) denotes the standard gamma function; and SN
M,a is a generalized Stirling number

given by the linear recursion (Buntine and Hutter 2010; Teh 2006)

SN+1
M,a = SN

M−1,a + (N − Ma)SN
M,a

for M ≤ N . It is 0 otherwise and SN
0,a = δN,0. These rapidly become very large so computa-

tion needs to be done in log space using a logarithmic addition.

3.2 The model likelihoods

Consequently, to build a collapsed Gibbs sampler, we first need to derive the marginal distri-
bution over w, z and the newly introduced table counts t . The Dirichlet priors we put on μi

are conjugate to the multinomial distributions, which make the marginalization much easier.
Thus, the joint conditional distribution of zi , t i,1:Ji

,wi can be easily computed by integrating
out μi , νi,j and Φ respectively as follows:

First, integrating out the segment topic distribution νi,j by using Lemma 2, we have
p(μi ,zi ,wi , t i,1:Ji

|α,Φ, a, b)

1

BetaK(α)

∏

k

μ
αk+∑

j ti,j,k−1

i,k

∏

j

(b|a)Ti,j

(b)Ni,j

∏

j,k

S
ni,j,k

ti,j,k ,a

∏

w,k

φ
Mi,k,w

k,w

where BetaK(α) is K dimensional beta function that normalizes the Dirichlet. Then, inte-
grating out the document topic distributions μi and the topic-word matrix Φ , as is usually
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done for collapsed Gibbs sampling, gives

p(z1:I ,w1:I , t1:I,1:Ji
|α,γ , a, b)

=
∏

i

BetaK(α + ∑
j t i,j )

BetaK(α)

∏

i,j

(b|a)Ti,j

(b)Ni,j

∏

i,j,k

S
ni,j,k

ti,j,k ,a

∏

k

BetaW(γ + Mk)

BetaW(γ )
. (1)

3.3 The collapsed Gibbs sampling algorithm

Collapsed Gibbs sampling is a special form of Markov chain Monte Carlo simulation, which
should proceed until the Markov chain has “converged”, though in practice we run it for a
fixed number of cycles. While the proposed algorithm does not directly estimate μ, ν and Φ ,
we will show how they can be approximated using the posterior sample statistics of z and t .
To apply this algorithm we divides the collapsed Gibbs sampler into two parts. First, given
the current table counts ti,j,k , we sample the zi,j,l variables. Second, given all assignments
of words to topics, we sample the table counts ti,j,k for each topic under each segment.

Now, the full conditional distribution for zi,j,l can be obtained by focusing on a zi,j,l , and
looking at the proportionalities in (1). For this, ti,j,k is mostly constant, as is Ni,j . Also, we
have to take care with constraints on ti,j,k , namely, ti,j,k ≤ ni,j,k . We should note ti,j,k can be
forced to decrease when ni,j,k decreases by removing the current zi,j,l . Hereby, to compute
the final conditional distribution we have to distinguish between three cases:

1. removing zi,j,l = k forces n′
i,j,k = t ′i,j,k = 0;

2. before removing zi,j,l = k, ni,j,k = ti,j,k > 0, so we should decrease t ′i,j,k = ti,j,k − 1;
3. adding zi,j,l forces n′

i,j,k = t ′i,j,k = 1,

where the dash indicates statistics after excluding (or including) the current topic assign-
ment zi,j,l . Taking into account all cases, we obtain the final full conditional distribution
p(zi,j,l = k |z1:I − {zi,j,l},w1:I , t1:I,1:Ji

,α, a, b)

∝
(

αk + ∑
j t ′i,j,k

∑
k αk + ∑

j,k t ′i,j,k
(b + aT ′

i,j )

)1
n′
i,j,k

≡0

⎛

⎜
⎝

S
n′
i,j,k

+1

t ′
i,j,k

,a

S
n′
i,j,k

t ′
i,j,k

,a

⎞

⎟
⎠

1
n′
i,j,k

>0

γwi,j,l
+ M ′

k,wi,j,l∑
w(γw + M ′

k,w)
.

Given the current state of topic assignment of each word, the conditional distrib-
ution for table count ti,j,k can be obtained by cancelation of terms in (1), yielding
p(ti,j,k |z1:I ,w1:I , t1:I,1:Ji

− {ti,j,k},α, a, b)

∝ Γ (αk + ∑
j ti,j,k)

Γ (
∑

k αk + ∑
j,k ti,j,k)

(b|a)Ti,j
S

ni,j,k

ti,j,k ,a,

which stochastically samples the table counts ti,j,k for each restaurant.
From the statistics obtained after the convergence of Markov chain, we can easily esti-

mate the document topic distribution μ, the segment topic distribution ν, and topic-word
distributions Φ . They can be approximated from the following posterior expected values via
sampling:

μ̂i,k = Ezi ,t i,1:Ji
|wi ,α,Φ,a,b

[
αk + ∑

j ti,j,k
∑

k αk + ∑
j,k ti,j,k

]

, (2)
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ν̂i,j,k = Ezi ,t i,1:Ji
|wi ,α,Φ,a,b

[
ni,j,k − a × ti,j,k

b + Ni,j

+ μi,k

Ti,j × a + b

b + Ni,j

]

, (3)

φ̂k,w = Ezi ,t i,1:Ji
|wi ,α,Φ,a,b

[
γw + Mk,w

∑
w(γw + Mk,w)

]

. (4)

3.4 Sampling the strength parameter

Initial experiments showed the strength parameter b of the PDP strongly affects perplex-
ity results and seemed difficult to set by optimisation. We therefore developed a simple
sampling method using auxiliary variables as follows. Each segment i, j has an auxiliary
probability qi,j ∼ Beta(b,Ni,j ). From this, using an improper prior for b of the form 1/b,
the posterior for b is given by

b |q1:I ,z1:I ,w1:I , t1:I,1:Ji
,α,γ , a ∼ Gamma

(∑

i,j

Ti,j ,
∑

i,j

log 1/qi,j

)

. (5)

Sampling using these auxiliary variables operates every major Gibbs cycle as follows:

1. Sample qi,j ∼ Beta(b,Ni,j ) for each document i and segment j and compute∑
i,j log 1/qi,j .

2. Sample b according to the condition distribution (5).

4 Comparison with other topic models

In this section we compare STM, in terms of text modelling, with two topic models,1 Latent
Dirichlet Allocation (LDA) (Blei et al. 2003) and Latent Dirichlet Co-Clustering (LDCC)
(Shafiei and Milios 2006).

4.1 Latent Dirichlet Allocation

LDA is a three-level probabilistic generative model, the idea of which is that documents are
random mixtures over latent topics, where each topic is a distribution over words. It assumes
the generative process shown in Fig. 2(a), where for each document μi ∼ DirichletK(α).
Compared with LDA, instead of sampling a topic z directly from the document topic distrib-
ution μ, STM adds another layer between z and μ, which is the segment topic distribution ν.
Adding this distribution implies a higher fidelity of STM over LDA on modelling the cor-
relation between the document topics and its segment topics (i.e., the topic structure inside
a document). LDA could also model the correlation by having two runs through documents
and their segments separately. Nevertheless, the consistency of underlying topics between
two separate runs cannot be guaranteed, since different runs will come up with different la-
tent topics. Therefore, LDA cannot simultaneously model document topic distributions and
segment topic distributions under the same latent topic space, as does our STM.

1We have changed some notations from the original papers to make them consistent with ours.
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Fig. 2 The Latent Dirichlet Allocation (LDA) model and the Latent Dirichlet Co-Clustering Model

4.2 Latent Dirichlet Co-Clustering

LDCC is a four-level probabilistic model, as STM. It tries to extend LDA by assuming
documents are random mixtures over document-topics, each of those topics is characterized
by a distribution over segments; and segments are random mixtures over word-topics, each
word-topic is a distribution over words. The two different kinds of topics are connected by
hyper-parameters α, under the assumption that each document-topic is a mixture of word-
topics. It is a kind of nested LDA, as shown in Fig. 2(b). LDCC also assumes that each
segment is associated with only one document-topic (y in Fig. 2(b)), which is a quite strong
assumption in our view.

In contrast, STM allows documents and segments to share same latent topics, rather than
assuming two different kinds, as we believe a document and its segments should be gener-
ated from the same kind of topics. Moreover, STM relaxes the assumption on segments by
assuming each segment still has a topic distribution drawn from its document topic distribu-
tion. Thus, each segment can also exhibit multiple topics, which includes the case that it has
only one topic, if the distribution highly concentrates on one topic. In this sense, STM does
not have the strong assumptions of LDCC.

5 Experimental results

We implemented the three models in C, and ran them on a desktop with Intel(R) Core(TM)
Quad CPU (2.4 GHz), though our code is not multi-threaded. The training time, for instance,
on the NIPS dataset with 100 topics and 1000 Gibbs iterations is approximately 5 hours for
LDA, 33 hours for LDCC and 20 hours for STM. We first present experimental results for
STM, LDA and LDCC on two patent datasets (which will be placed in the UCI Machine
Learning Repository). These results present an in depth study of the characteristics of the
model. We then present perplexity results on the NIPS dataset2 and an extract from the
Reuters RCV1 corpus (Lewis et al. 2004). The comparison of the per-word predictive per-
plexity on held-out testing documents evidently demonstrates the advantage of STM over
the other two models.

5.1 Data sets and evaluation criteria

The two patent datasets are randomly selected from 5000 US patents3 granted between Jan.
and Mar. 2009 under the class “computing; calculating; counting” with international patent

2It is available at http://nips.djvuzone.org/txt.html.
3All patents are from Cambia, http://www.cambia.org/daisy/cambia/home.html.

http://nips.djvuzone.org/txt.html
http://www.cambia.org/daisy/cambia/home.html


14 Mach Learn (2010) 81: 5–19

classification (IPC) code G06. Patents in G06-1000 are split into paragraphs according to
the original structure. Patents in G06-9904 are split into sentences with a Perl package (Lin-
gua::En:Sentence). All stop-words, extremely common words (e.g., top 40 for G06-1000),
and less common words (i.e., words appear in less than 5 documents) have been removed.
This leads to a vocabulary size of 10385 unique words in G06-1000 and 11518 in G06-990.
The G06-1000 dataset contains 1,000 patents, 60,564 paragraphs, and 2,513,087 words. The
G06-990 dataset contains 990 patents, 249,102 sentences, and 2,832,364 words. We treat
paragraphs or sentences as segments, and hold out 80% of each dataset for training and 20%
for testing.

To evaluate the generalization capability of these models to unseen data, we compute
perplexity which is a standard measure for estimating the performance of probabilistic lan-
guage models. The perplexity of a collection D of I document that is formally defined as:

exp{−
∑I

i=1 lnp(wi )
∑I

i=1 Ni
}, where wi indicates all words in document i, and Ni indicates the total

number of words in i. A lower perplexity over unseen documents means better generaliza-
tion capability. In our experiments, it is computed based on the held-out method introduced
in (Rosen-Zvi et al. 2004). In order to calculate the likelihood of each unseen word in STM,
we need to integrate out the sampled distributions (i.e. μ, ν, and Φ) and sum over all pos-
sible topic assignments. Here, we approximate the integrals using a Gibbs sampler and (2),
(3) and (4) for each sample of assignments z, t .

5.2 Topic variability analysis among segments

We first investigate the variability between topic proportions (i.e., distributions) of docu-
ments and those of their segments. As we discussed before, it is modelled by the PDP with
two parameters, a and b. Due to space limitations, we only present our studies on how b

acting on the diversity among document topic proportions (i.e., μi ) and their segment topic
proportions (i.e., νi,j ). We have observed in our preliminary experiments that b could sig-
nificantly influence topic proportions. Therefore, we fix a = 0.2 for the G06-1000 dataset
and a = 0 for the G06-990 dataset, change b from 0.1 to 300.0, and then run STM on those
two datasets with k = 50. The standard deviation (Fig. 3(a)) is used to measure the variation
of νi,j , and entropy (Fig. 3(c)) to show the expected number of topics in either documents
or segments. The prior mean and variance of νi,j are given by Buntine and Hutter (2010):

E [νi,j ] = μi; V[νi,j ] = 1 − a

1 + b

(
diagonal(μi ) − μiμ

†
i

)
.

As shown in Fig. 3(a), the standard deviation decreases while b is increasing, as we ex-
pect. When b is small, the variance of topic proportions in segments is large. Hereby, the
topic proportion νi,j of a segment could be quite different from that of the corresponding
document (μi ), as indicated in Fig. 3(c) by the different expected number of topics. In con-
trast, when b gets quite large, the variance of segment topic proportions becomes small.
Figure 3(c) shows the expected number of topics in each segment will get close to that of
the document it belongs to. In such a case, there could be no difference between a document
topic proportion and its segment topic proportions, and segments loose their specificity on
topics. We can observe that the perplexity turns out to be larger when b is quite small or quite

4We randomly selected 1000 patents, but 10 were deleted after pre-processing, because they were too small.
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Fig. 3 Standard deviation, perplexity and entropy by fixing a and changing b from 0.1 to 300.0. STM_P and
STM_S indicate STM runs on paragraphs (G06-1000) and sentences (G06-990) respectively

T-1 T-2 T-3 T-4 T-5 T-6

Security Key Compression Clock Java Word
Authentication Keys Compressed Signals Language String
Protected Encryption Encoding Channel Class Words
Authorization Encrypted Encoded Timing Objects Character
Authorized Content Codes Frequency Environment Frequency
Protection Decryption Symbol Channels Library Text
Computing Secure Video Synchronization Platform Characters
Execution Generated Decoder Generator Native Objects
Trusted Secret Decoding Delay Programming Language
Permission Public Encoder Enable Applications Prefix

Fig. 4 Topic examples from STM for the G06-1000 dataset

large in Fig. 3(b). Consequently, we can conclude that the topic deviation between a doc-
ument and its segments should be neither too small nor too big, which somehow complies
with the way in which people structure ideas in writing. In addition, Fig. 4 lists 6 meaningful
topic examples derived from the G06-1000 dataset by our STM trained on 150 topics, with
a = 0.2 and b = 10.

5.3 Perplexity comparison

We follow the standard way in topic modelling to evaluate the per-word predicative perplex-
ity of STM, LDA and LDCC. In the training procedure, each Gibbs sampler is initialized
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Fig. 5 Perplexity on the G06-1000 dataset and the G06-990 dataset, for LDA, LDCC, and STM

Table 3 P-values for paired
t-test G06-1000 G06-990

LDCC STM STM_B LDCC STM STM_B

LDA_D 7.0e–5 1.3e–3 5.4e–4 2.9e–2 4.8e–3 2.2e–3

LDA_P/S 5.0e–2 1.5e–2 8.0e–3 3.9e–1 9.1e–3 6.3e–3

LDCC 3.9e–2 2.8e–2 1.1e–2 7.7e–3

randomly and runs for 500 burn-in iterations. We then draw a total number of 5 samples at a
lag of 100 iterations. These samples are averaged to obtain the final trained model, as in Li
et al. (2007).

We set hyper-parameters fairly in order to make a scientific comparison, as they are im-
portant to these models. Symmetric Dirichlet priors (i.e., α for LDA and STM, δ for LDCC)
are simply used in our experiments, although we can estimate them from data using, for
instance, the moment-match algorithm proposed in Minka (2000). With γ fixed to 200/W ,
we run different settings of α and δ (from 0.01 to 0.9) for different number of topics (i.e.
5, 10, 25, 50, 100, and 150), and empirically choose the optimal parameters for LDA and
LDCC. We have observed, for example, the LDA model trained on α = 0.1 is always better
on both G06-1000 and G06-990 datasets than on other settings, but the LDCC model varied
quite a bit (e.g., δ = 0.9 for 25 word-topics, δ = 0.01 for 100 word-topics). The number of
document-topics in LDCC is fixed to 20 for all experiments and α is estimated using the
moment-match algorithm, as in Shafiei and Milios (2006). We use α = 0.5 in STM for all
number of topics without tuning, and set a = 0.2 and b = 10 for both the G06-1000 dataset
and the G06-990 dataset. Note that we seek to optimize the parameter settings for the two
competitors (LDA and LDCC), which enables us to draw sound conclusions on STM’s per-
formance.

Figure 5(a) presents the results for those models on the G06-1000 dataset. LDA has been
run on document level (LDA_D) and paragraph level (LDA_P) separately. It is interesting to
see that LDA_P is better than LDA_D. LDCC exhibits better performance than LDA_D, but
it is only comparable with LDA_P. The paired t-test, shown in Table 3, gives p-value = 0.05
to the slight improvement, which can be rejected at 0.05 significance level. In contrast,
STM (with or without sampling b using the scheme of Sect. 3.4, indicated by STM and
STM_B respectively) consistently performs better than all the other models. The advantage
is especially obvious for large numbers of topics. The superiority of STM over LDA and
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Table 4 Perplexity on the NIPS
dataset and the Reuters dataset K STM LDCC LDA_D LDA_S

NIPS 100 1632 2296 1991 2182

150 1516 2335 1881 2186

Reuters 100 1893 2154 1824 2687

LDCC is statistically significant according to the paired t-test with p-values shown in the
third and fourth columns of Table 3.

Similar comparison on the G06-990 dataset is shown in Fig. 5(b). We run LDA (indi-
cated by LDA_S), LDCC and STM on the sentence level. The perplexity of LDCC becomes
slightly larger than LDA_S when the number of topics is greater than 50. It is comparable to
LDA_S, as LDCC v.s. LDA_P in Fig. 5(a). Interestingly, the performance of either LDA or
LDCC on the sentence level turns out to be much worse than LDA on the document level.
However, the paired t-test results in the last two columns of Table 3 show that our STM
is statistically better than both LDA and LDCC. STM can certainly retain its good gener-
alization capability even on sparse text. Evidently, the results illustrated in both Figs. 5(a)
and 5(b) demonstrate that STM can work remarkably well on both the paragraph level and
the sentence level.

5.4 Further experiments

In order to further exhibit the advantage of STM, we also ran it on the NIPS dataset and an
extract of the Reuters dataset using a = 0 and sampling the strength parameter b according
to the scheme of Sect. 3.4. The NIPS dataset is processed to remove bibliography material
(everything after “References”) and header material (everything before “Abstract”) yielding
1,629 documents, 174,474 sentences (as “segments”), and 1,773,365 words. The Reuters
articles are extracted from 20-25/8/1996, and the articles in categories CCAT, ECAT and
MCAT are dropped yielding 2,640 articles with a total of 38,182 sentences (as “segments”)
of average length about 11. Again 80% were used for training and 20% for testing. Perplexity
results appear in the Table 4.

6 Conclusion

In this paper, we have proposed a segmented topic model (STM), a probabilistic genera-
tive model of segments based on the two-parameter Poisson Dirichlet process (PDP). We
have developed for STM an efficient collapsed Gibbs sampling algorithm to sample from
the posterior PDP. The ability of STM to explore correlated segment topics (i.e., the latent
topic structure of a document) has been demonstrated in our experiments by the statisti-
cally significant improvement in terms of per-word predictive perplexity compared with the
standard topic model (LDA) and previous segmented model (LDCC). The primary benefit
of our model is that it allows us to simultaneously model document topic distributions and
segment topic distributions under the same latent topic space, without separate runs as LDA
or introducing different kinds of topics as in LDCC. Though we have restricted ourselves to
paragraphs and sentences, STM readily models other segments, like sections and chapters.

There are many ways that the work described here can be extended. Perhaps the most
promising extension to our STM is to consider the full segmented structure of documents,
such as essay-paragraph-sentence, blog-comments-sentence, etc., since PDPs can be easily



18 Mach Learn (2010) 81: 5–19

extended to full trees, e.g., HLDA (Blei et al. 2004), and our collapsed sampling method for
PDPs still applies. In applications, our model can be applied to, for example, topic-based
multi-document summarization (Arora and Ravindran 2008).
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Appendix: Two-parameter Poisson Dirichlet process

The two-parameter Poisson-Dirichlet process (PDP), is a generalization of the Dirichlet
Process. In regard to STM, let ν be a distribution over topics (i.e. topic proportion) of a
segment. We place a PDP prior on ν: ν ∼ PDP(a, b,μ), where the three parameters are: a
base distribution μ (i.e. topic proportion of the document); a (0 ≤ a < 1) and b (b > −a).
The strength parameter b can be understood as controlling the amount of variability around
μ (Teh 2006).

Here, we give a brief discussion of the PDP under the CRP configuration by following the
discussion in Buntine and Hutter (2010). Customers in the CRP are words in our model, and
dishes in the CRP are topics. Consider a sequence of N customers sitting down in a Chinese
restaurant with an infinite number of tables each with infinite capacity. The basic process
with ν marginalized out is specified as follows: the first customer sits at the first table; the
(n + 1)th subsequent customer sits at the t th table (for 1 ≤ t ≤ T ) with probability n∗

t −a

b+n
,

or sits at the next empty ((T + 1)th) table with probability b+T ×a
b+n

. Here, T is the current
number of occupied tables in the restaurant, and n∗

t is the number of customers currently
sitting at table t . The customer takes the dish assigned to that table, for table t given by k∗

t .
Therefore, the posterior distribution of the (n + 1)th customer’s dish is

b + T × a

b + n
μ +

T∑

t=1

n∗
t − a

b + n
δk∗

t
(·)

where k∗
t indicates the distinct dish associated with the t th table, and δk∗

t
(·) places probability

one on the outcome k∗
t . A snapshot of this process with n = 15, T = 5, n∗

1 = 5, n∗
2 = 3,

n∗
3 = 4, n∗

4 = 2, n∗
5 = 1 is shown in Fig. 6.

In general PDP theory, the dishes (or values) at each table can be any measurable quantity,
but in our case they are a finite topic index k ∈ {1, . . . ,K}. This finite discrete case has some
attractive properties shown in Buntine and Hutter (2010), which follows some earlier work
of Teh (2006). To consider this case we introduce another latent variable: tk , the table count
of dish k (referred to as the multiplicity in Buntine and Hutter 2010). In Fig. 6 with n = 15,
for instance, the first and last table have k = 1 so the table count for t1 = 2. The table counts
are t1 = 2, t2 = 2, t3 = 1 and all others zero. Note that

∑K

k=1 tk = T , and table counts are not
observed.

Fig. 6 Analog of Chinese restaurant process for PDP
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