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Abstract Recursive partitioning methods are among the most popular techniques in ma-
chine learning. The purpose of this paper is to investigate how to adapt this methodology
to the bipartite ranking problem. Following in the footsteps of the TREERANK approach
developed in Clémencgon and Vayatis (Proceedings of the 2008 Conference on Algorithmic
Learning Theory, 2008 and IEEE Trans. Inf. Theory 55(9):4316-4336, 2009), we present
tree-structured algorithms designed for learning to rank instances based on classification
data. The main contributions of the present work are the following: the practical implementa-
tion of the TREERANK algorithm, well-founded solutions to the crucial issues related to the
splitting rule and the choice of the “right” size for the ranking tree. From the angle embraced
in this paper, splitting is viewed as a cost-sensitive classification task with data-dependent
cost. Hence, up to straightforward modifications, any classification algorithm may serve as
a splitting rule. Also, we propose to implement a cost-complexity pruning method after the
growing stage in order to produce a “right-sized” ranking sub-tree with large AUC. In par-
ticular, performance bounds are established for pruning schemes inspired by recent work on
nonparametric model selection. Eventually, we propose indicators for variable importance
and variable dependence, plus various simulation studies illustrating the potential of our
method.
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1 Introduction

The goal of bipartite ranking procedures is to order all possible values x € X of a random
variable X over a measurable space X'. The available output information on each realization
X is modeled by a random binary label ¥ € {—1, 41}. Consider the classification dataset
{(X;,Y:) : 1 <i <n} obtained by sampling the random pair (X, Y). The scoring approach
to ranking binary classification data consists of building a scoring function s : X — R which
takes higher values when the event “Y = +1” is more likely to be observed. This problem
arises in a large variety of applications, ranging from the design of search engines in infor-
mation retrieval to medical diagnosis through credit-risk screening or anomaly detection in
signal processing.

Several approaches have been considered in order to develop ranking algorithms un-
der binary label information. Standard methods build a scoring rule based on the plug-
in approach (such as logistic regression models, see for instance Hastie and Tibshirani
1990). Machine learning methods are mostly based on the maximization of a perfor-
mance functional, like the AUC criterion, which depends on pairs of observations (refer
to RankSVM (Joachims 2002), RankNet (Burges et al. 2005), RankBoost (Freund et al.
2003), RankRLS (Pahikkala et al. 2007)). A natural direction to explore is also the adapta-
tion of decision trees in the spirit of CART (Breiman et al. 1984) for ranking purposes.
The number of papers introducing modifications of decision trees is considerable (see
for instance Provost and Domingos 2003; Ferri et al. 2003; Flach and Matsubara 2007;
Hiillermeier and Vanderlooy 2008, 2009; Yu et al. 2008 and references therein). The main
ideas underlying these works are: (i) the use of classification decision trees as estimators of
the regression function, also known as Probabilistic Estimation Trees (PET), (ii) the choice
of a splitting rule adapted to the bipartite ranking problem. Indeed, adapting successful clas-
sification or regression methods to ranking may require significant innovations since the
ranking problem is of different nature. We point out that popular classification rules are
based on the concept of local learning (see Friedman 1996). For classification procedures
such as those obtained through recursive partitioning of the input space X, the predicted la-
bel of a given instance x € X only depends on the data lying in the subregion of the partition
containing x. In contrast, the notion of ranking/ordering would rather involve comparing the
subregions to each other.

Following this line of thought, we have proposed, in our previous work (Clémencon and
Vayatis 2008, 2009), a different description of ranking decision trees. We characterize the
output of a decision tree algorithm not only by a partition of the feature space and the lo-
cal properties of the cells composing the partition, but also by a permutation over the cells.
The permutation indicates how to rank new observations (points lying in the same cell being
ranked equal). These two ingredients (partition and permutation) define a piecewise constant
real-valued function, a so-termed scoring rule. We also developed, and thoroughly investi-
gated, a specific recursive partitioning method, called the TREERANK algorithm. This algo-
rithm produces scoring rules in a simple top-down approach. An important contribution of
this work also consists in the connection established between the partitioning of the feature
space through this algorithm and the approximation/estimation of the optimal ROC curve by
splines of order 1. In Clémencon and Vayatis (2009), it was proved that, under general as-
sumptions, the resulting piecewise linear ROC curve converges to the optimal one not only
in the AUC sense but also in a stronger sense (with respect to the supremum norm). How-
ever, due to the very principle of recursive partitioning, the TREERANK algorithm suffers
from the same drawback as the popular CART method (see Breiman et al. 1984): it may be
fooled by an XOR configuration, yielding inappropriate first splits and compromising the
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results of the tree growing procedure. In classification, given the local aspect of the decision
rule, a bad start may nevertheless be compensated by growing the tree further at the cost of
a certain amount of artificial complexity. With ranking, this drawback may have much more
dramatic consequences due to the global nature of the ranking task. In some sense, ranking
errors are stacked as one grows the tree and the performance of the TREERANK algorithm is
very sensitive to the chosen splitting rule. Recursive splitting is achieved by the means of the
optimization of an entropic measure which accounts for AUC maximization on a given cell
of the partition induced by the tree. This is called the Optimization step of the TREERANK
algorithm and it is the critical step both from computational and approximation viewpoints.

The present paper proposes to solve the practical issues inherent to the nature of the
TREERANK algorithm. The primary goal of this paper is to propose pragmatic strategies for
performing the Optimization step of the TREERANK algorithm efficiently. Technically, the
question addressed is how to split the cells in a flexible manner, so that accurate approxi-
mants of bilevel sets of the regression function may be obtained. Partition-based splitting
rules, both fixed and adaptive, are considered for this purpose. We also provide an interpre-
tation of the Optimization step as a cost-sensitive classification task with a data-dependent
cost, equal to the rate of positive instances within the node to split. In this view, TREERANK
appears as a recursive implementation of a cost-sensitive version of CART. The question of
selecting the final size of the resulting ranking tree is also tackled from the perspective of
model selection based on complexity penalization pruning. In this respect, two approaches
are considered. The cross validation-based selection method of the CART algorithm is first
extended to the ranking setup. Expected performance bounds are also established for rank-
ing trees selected through direct minimization of a specific complexity penalized version of
the AUC criterion. In addition, conditions under which such pruning schemes are shown to
be consistent in the AUC sense are exhibited.

The paper is organized as follows. In Sect. 2, notations are first set out and we briefly
recall important concepts of the bipartite ranking problem together with certain key results
of ROC analysis. We also list the important properties of piecewise constant scoring rules
which are produced by the algorithms presented in this paper. In Sect. 3 we examine how to
implement the Optimization step of the TREERANK algorithm. Issues related to the selection
of the size of the ranking tree are tackled in Sect. 4, while Sect. 5 deals with interpretation of
tree-based ranking rules with perpendicular splits. Eventually, implementations were tested
on artificial and real data sets and simulation results are presented in Sects. 6 and 7. Detailed
proofs are deferred to Appendix A section.

2 Background and preliminaries

We start off with a brief description of the bipartite ranking task and recall key concepts
related to this statistical learning problem. We also recall the principles underlying the
TREERANK algorithm and state preliminary results in order to give an insight into sub-
sequent implementations.

2.1 The bipartite setup
The probabilistic framework is exactly the same as the one in standard binary classification.
We denote by (X, Y) a pair of random variables where Y € {—1, 41} is a binary label and

X models some observation for predicting Y, taking its values in a feature space X C R? of
high dimension. Throughout the paper, £ denotes the joint distribution of (X, Y) and p =
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P{Y = +1}. The probability distribution L is entirely determined by the pair (i, ) where
denotes the marginal distribution of X and n(x) =P{Y =+1 | X =x}, x € X, is the regres-
sion function. We also introduce G(dx) and H (dx), the conditional distributions X given
Y =+1and Y = —1 respectively. We will assume that these probability measures are equiv-
alent. Observe that, with these notations, n(x) = pdG/dH (x)/(1 — p + pdG(x)/dH (x))
and u(dx) = pG(dx) + (1 — p)H(dx).

We now state the bipartite ranking problem. Based on the observation of i.i.d. examples
D, ={(X;,Y;): 1 <i < n}, the goal here is to learn how to order all instances x € X’ in
a way that positive labels appear with large probability on the top in the list. Clearly, the
simplest way of defining an order relationship on X is to transport the natural order on the
real line to the feature space through a scoring rule s : X — R. The notion of ROC curve,
which we recall below, provides a functional criterion for evaluating the performance of the
ordering induced by such a function. Here and throughout, we denote by F~!(¢) = inf{u €
R : F(u) > t} the pseudo-inverse of any cumulative distribution function F : R — R and by
S the set of all scoring functions, i.e. the space of real-valued measurable functions on X.
The indicator function of any event £ is denoted by I{€} and the notation I~ will also be
used for denoting the indicator function of any set C C X'.

Definition 1 (ROC CURVE) Let s € S. The ROC curve of the scoring function s(x) is the
PP-plot given by:

1> P{s(X) =1V =—1},Pls(X) =1 | Y =+1}), ey

where, by convention, discontinuity points corresponding to possible jumps of the condi-
tional distributions of s(X) given Y = +1 and given Y = —1 are continuously connected by
line segments. We denote by « € (0, 1) = ROC(s, ) the resulting curve.

Let G;(dx) and H;(dx) denote the conditional distributions of s(X) given ¥ = +1 and
given Y = —1 respectively, for any s € S. In the case where these probability distributions
are both continuous, the ROC curve of s is the graph of the mapping:

a € [0, 1]»—>ROC(s,ot)=1—GsoH;'(l—oz). 2)

Remark I (ALTERNATIVE CONVENTION) With the convention mentioned above, it is note-
worthy that the curve ROC(s, .) is linear-by-parts as soon as the conditional distributions of
s(x) are both discrete. Another usual convention consists of defining ROC(s, .) as the graph
of the mapping (2) in all cases. Equipped with this notation, when G, or H, are discrete, the
ROC curve of s is piecewise constant.

Optimal ROC curve. It is a well-known result in ROC analysis that increasing transforms
of the regression function n(x) form the class S* of optimal scoring functions in the sense
that their ROC curve, namely ROC* = ROC(#, .), dominates the ROC curve of any other
scoring function s (x) uniformly:

Vo €[0,1[, ROC(s,®) < ROC*(x).
We refer to Clémencon and Vayatis (2009) for a rigorous proof based on a standard Neyman-

Pearson argument together with a detailed list of properties of the optimal ROC curve. It
is noteworthy that the curve ROC* is concave. More generally, for any scoring function

@ Springer



Mach Learn (2011) 83: 31-69 35

s(x), ROC(s, .) is a concave curve as soon as the likelihood ratio dG,/d H; is a monotone
function.

We now set the notations H* = H, and G* = G, as well as Q*(«) = H* '(1 — ) for all
a € (0,1). We recall from Clémengon and Vayatis (2009) that if 0*(0) = lim,_,o O* () <
1, H* and G* are differentiable and H*' is lower bounded by a strictly positive constant on
its support, then the function ROC* is twice differentiable on [0, 1] with bounded deriva-
tives:

Vae[0.1]. ROC”(q)= 4P @
p(l — 0*(a))
and
(1—p)0* ()

ROC*” = —
@= 0= 0@y

Refer to Corollary 7 and Proposition 8 in Clémencon and Vayatis (2009) for further details.

The AUC criterion. In practice, the function-like performance measure described above is
generally summarized by a scalar quantity, the area under the ROC curve (AUC in abbrevi-
ated form).

Definition 2 (THE AUC CRITERION) Let s(x) be a scoring function. The area under its
ROC curve is given by

1
AUC(s):/ ROC(s, a)da.
=0

o=l

It is easy to check that the class S* of optimal scoring functions corresponds to the set of
scoring functions with maximum AUC. We set:

Vs € §*, AUC*" = AUC(s).

The popularity of the AUC criterion mainly arises from the fact that it may be interpreted
in a probabilistic manner, as shown by the following result, whose proof is left to the reader.

Proposition 1 For any scoring function s(x), we have:
AUC(s) = P{s(X) > s(X) | (Y, Y) = (+1, =)}
+ %P{S(X) =s(X) | (Y, Y) = (+1, =D},
where (X', Y') denotes a copy of the pair (X, Y), independent from the latter.

Remark 2 (OPTIMAL AUC) It has been shown in Clémengon et al. (2008) that, when the
distribution of n(X) is continuous, the maximal AUC depends on the dispersion of 7(X)
through the relationship:

1 E[nX)—nX’

2 4p(1—p)
where X’ denotes an independent copy of the r.v. X. The quantity E[|n(X) — n(X")|] is
known as the Gini mean difference of n(X), a popular measure of dispersion in statistics.
Hence, the more concentrated 1 (X), the more difficult the ranking problem.

)

@ Springer



36 Mach Learn (2011) 83: 31-69

Remark 3 (ALTERNATIVE CONVENTION (BIS)) We point out that, with the other conven-
tion for ROC curves mentioned in Remark 1, the area under the ROC curve of any scoring
function s reduces to the expression AUC(s) = P{s(X) > s(X") | (Y, Y') = (+1,—D)}.

2.2 Piecewise constant scoring functions

For reasons related to approximation theory and of computational nature that shall appear
clearly in the subsequent analysis, we focus here on the simplest scoring functions, namely
real-valued piecewise constant functions on the feature space X'. We also underline that
it is of practical importance in many ranking applications (medical diagnosis, credit-risk
screening, marketing) to segment the population in ordered “strata” with distinct features
in an interpretable fashion. Any scoring function s(x) of this type, taking K > 1 distinct
values, yields a ranking/ordering of all instances x € X entirely characterized by a partition
‘P counting K nonempty measurable subsets Cy, ..., Cg, together with a permutation o in
the symmetric group G of {1,..., K}.

Definition 3 ((P, 0)-REPRESENTATION) The (P, o)-representation of a piecewise con-
stant scoring function s(x) taking K distinct values A; > --- > Ak is given by:

K
s@) =Y M- T{x € Cop), 3

k=1

where P = {C}1<k<k 1s a partition of A in K non empty cells and o € G.

Reciprocally, a partition P = {Cy, ..., Cg} including #P = K non empty cells combined
with a permutation o € & defines a scoring function with (P, o)-representation:

K
spo(X) =Y (K —k+1) T{x € Cop}.

k=1

The ordering induced by (3) is entirely characterized by the pair (P, o), in the sense that its
ROC curve coincides with ROC(sp ¢, .).

We emphasize the fact that ranking/scoring is a global learning problem. Indeed, in con-
trast to binary classification, where a decision rule may be immediately derived from a par-
tition P of the feature space alone, through a majority-voting scheme, the bipartite ranking
problem is of global nature. The local properties of the regression function on a given cell
alone are useless, nearest neighbors rules make no sense for this problem and cells of P
have to be compared to each other somehow, by means of the permutation o € Gyp in the
setup described above.

Now set:

a(C)=P{XeC|Y=-1},
BC)=PXeC|Y=+1},

for any a measurable subset C C X. The next proposition particularizes the ROC curve and
the AUC for a piecewise constant scoring function. Its proof is straightforward and thus
omitted.

Proposition 2 Let s(x) be a piecewise constant scoring function with (P, o )-representation
K
s) =1 M- Ifx € Cogy )
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(i) The ROC curve of the scoring function s(x) is the broken line that connects the knots
{(ax (), Br(8)) : 0 <k < K}, where: Yk € {1, ..., K},

k k
a(s) =Y a(Copy) and Bi(s)=Y _ B(Coa),

=1 =1

and ay(s) = Bo(s) = 0 by convention.
(ii) The AUC of the scoring function s(x) is given by:

K—1

1
AUC(s) = 5 D (1 (s) = () - (Ber1 () + Be(s)) - “

k=0

Optimal permutations. The next result describes the best scoring function in the AUC
sense among all piecewise constant scoring functions that may be represented by means of a
given partition P. In order to state it precisely, further notations and definitions are needed.

Definition 4 (SUBPARTITION) Let P and P’ be two partitions of X'. The partition P’ is a
subpartition of P, when any cell C' € P’ may be written as a union of cells C € P. The
following notation will be used: P’ C P.

We denote by Sp the set of scoring functions with a (P, o)-representation for some
(OIS G#'p.

Theorem 1 (AUC OPTIMALITY, Clémencon and Vayatis 2009) Consider a partition of X
with K > 1 non empty cells: P = {Cy} <<k . Let 03, € G such that

B(Coz ) Ss ﬁ(Crf;;(K)).
a(Cox ) a(Cox (k)

Then, s3(x) = 5p.ot, (x) maximizes the AUC over | Jpip Spr:

AUC(s3) = max AUC(s).
P

seSpr,P'C

In the case where the cells are equivalent with respect to the false positive rate, i.e. Yk €
{1,....,K}: a(Cy) =1/K, we also have

Va €[0,1], ROC(s, @) <ROC(sp, ),

for all s € Spr, P’ C P. The latter result also holds when cells are equivalent with respect
to the true positive rate.

It is noteworthy that o, corresponds to the permutation in G which renders the piece-
wise linear curve ROC(sp , .) concave.

On plug-in ranking rules. To any partition P = {Cy}1<x<x of X also correspond piece-
wise constant approximants of the regression function, which may serve as scoring func-
tions. For instance, np(x) = Z,lepﬁ(Ck)//L(Ck) - I{x € C;} is the best approximant
among functions that are constant on each cell C; of the partition in the L,(u)-sense,
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ie |Inp(X) — (X)||L S = = Minses, E[(s(X) — n(X))?]. It follows from the fact that
w(Cr) = (1 — p)a(Cy) + pB(Cy) for all k that the plug-in scoring function np(x) yields
the same ranking as s3(x). Hence, as a scoring function, the approximant 75 (x) of the
regression function is optimal in the AUC sense among all scoring rules in ( /p Spr.

The next proposition relates the deficit of AUC for the scoring function s3(x) to the
L (w)-error of the corresponding plug-in estimator np(x) (see Corollary 9 in Clémengon
and Vayatis 2009 for a similar result with different notations).

Proposition 3 Assume that n(X) has a continuous distribution. Then, for any partition
P ={Cr}1<k<k of X with K > 2 non empty cells, we have:

. . ||777>(X)_77(X)”L1(p,)
AUC* — AUC(s5) < S 4p(1 Zg(ck)

where, forallk € {1, ..., K}, G(Cy) =E[|n(X) —n(X")|-I{(X, X') € C,%}] denotes the Gini
mean difference of n(X) with the expectation restricted to the domain {(X, X') € C, x Ci}.

Empirical ROC curve and AUC. From a practical perspective, the selection of a scoring
function s(x) is based on training data D, = {(X;, Y;); 1 <i < n}. The relevance of a candi-
date s(x) is thus evaluated by plotting the empirical version of its ROC curve.

We set: Vi € {1, ...,n},

1
) =— 3 (X)) = s(Xn),

T =1

A 1
Py =— 3 Ts(X)=zs(Xp),

tjyi=+1

wheren, =3 . l{Yi=+1}=n—n_.
Let 0 € S, be such that &0(1)(5) <...< &U(n)(s) and set &(T(O)(S) = BO‘(O)(S) =0 by
convention. The empirical ROC curve of s(x) is the piecewise linear function given by:

Vie{l,...,n}, Vo € [Qpi—1)(5), Qi) ()],

ﬁa(z)(s) ﬂa(i—l)(s)
Ao (i) () — Qo i—1)(s5)

ROC(s, @) = (@ = &im1(5)) + Bii (5).

By definition, the empirical AUC of s(x) is the area under its empirical ROC curve:

1
AUC(S):/ ROC(s, o)da

>y ]I{s(X ) > s(X;)}

iy =+1j/Yj=—
+5 Y. D Hsxn=sXp),
nn—, 5 =+1j/Yj=—1

the latter expression being the empirical version of the identity stated in Proposition 1.
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All results established when considering true ROC curves extend to their empirical ver-
sions, replacing G, H and p by their counterparts calculated from the sample D,,. In partic-
ular, given a partition P = {Cy}1<k<x of the feature space X, the ordering of the cells with
maximum empirical AUC corresponds to permutations ¢* such that,

B(Csa) _  _ BCow)
A(Cs+y) — A(Corx))’

where for all measurable subset C C X:
o (C) ! i:]I{X eC,Y, 1}
o =— i » i = — 1y,
-3

1

ny

Y IX; e C.Yi=+1,

i=1

B(C) =

which correspond respectively to the empirical false positive rate and the empirical true
positive rate of a classifier predicting 41 on the set C.

It renders the empirical ROC curve concave and corresponds to the same ranking induced
by the estimator of the regression function

. _
~ n4B(Cr) _
P = Zkzl na(Co +npCy G

meaning that 7jp = argmax, g, ﬁ(s).

Tree-structured ranking rules. The present article focuses on a specific family of piecewise
constant scoring rules, those defined by binary ranking trees namely. Consider first a com-
plete, left-right oriented, rooted binary tree 7p, with finite depth D > 1. Every nonterminal
node (d, k) of Tp, withd € {0,..., D —1}and k € {0, ...,2¢ — 1}, corresponds to a subset
C,x C X and has two descendants: a left sibling corresponding to a subset Cy11 2 C Cyx
and a right sibling associated to Cyi1 2x+1 = Cak \ Cay1,2k, With Cp o = X for the root node
by convention. In the sequel, we call such a (complete) ranking tree a master ranking tree.

This way, any subtree 7 C 7p acts as a ranking rule, by scanning its outer leaves from
left to right. In particular, the resulting order corresponds to the one induced by the scoring
function:

s7(x) = > (2P — 2P~y . I{x € Cyp).
(d,k): terminal nodes of 7~

The score sr(x) may be computed in a top-down fashion, through a sequence of binary
rules. At the root node, the score is initially set to 2° and at each subsequent internal node
(d, k) of T, the current score remains unchanged if x moves to the left child, while one
substracts 2P+ to it if x moves to the right child.

2.3 The TREERANK approach
Assume that a training data set D, = {(X|,Y}), ..., (X,, Y,)} of n independent samples

of the pair (X,Y) is available. For notational convenience, we set a0 = B40 = 0 and
Q04 = B¢ =1 for all d > 0. We suppose that we are given a class C of subsets of &,
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Fig. 1 (Color online)

A tree-structured ranking rule
(top) and the ROC curve of a
subtree (bottom). A score (red
circles) is assigned to each cell.
The restriction of these values to
the outer leaves of any subtree of
the master ranking tree (blue
circles) produces a scoring rule
which orders the corresponding
cells according to the left-right
orientation

B2z A - - - == : —

B

\

\

ari Azz

on which attainable partitions are based. Let D > 1 be fixed. We now recall the specific
method called TREERANK which was proposed in Clémencon and Vayatis (2008), and fur-
ther studied in Clémengon and Vayatis (2009), for adaptively generating a tree-structured
partition of the feature space X’ in ordered cells {Cp : k=0,..., 20 —1}. Precisely, the
piecewise constant scoring rule it outputs is described by a master ranking tree. Each one of
the terminal leaves of the tree corresponds to a unique cell of the partition. The ordering of
the cells is simply obtained by perusing the terminal leaves from the left to the right at the
bottom of the tree (see Fig. 1). The pseudo-code is described in Fig. 2.

Remark 4 (ON STOPPING RULES) One may consider continuing to split the nodes until
either the number of data points within a cell has reached a minimum number specified a
priori, or else splitting yields no improvement in the empirical AUC sense. From a practical
perspective, in both cases one then sets: Cyy1or = Cyx and Cyqy 2441 = 9.

Remark 5 (ON CONCAVITY) We point out that, unless the collection C of subset candidates
is union stable (i.e. Y(C,C'") € C?, C U C’ € C), the empirical curve ROC(sp, .) output by
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TREERANK ALGORITHM

1. (INITIALIZATION) Set C o = X.
2. (ITERATIONS) Ford =0,...,D —land k=0,...,29 — 1:
(a) (OPTIMIZATION STEP) Set the entropic measure:

R j4+1(C) = @ 41 = @2 BC) = (Ba 1 = Bai)&(C).
Find the best subset Cyy1 2k of rectangle Cy i in the AUC sense:

Cat12k= argmax  Agp41(0).
CeC, CCCyx

Then, set Cy412k+1 =Cak \ Ca1,2k-
(b) (UPDATE) Set

g 1,2%k+1 = gk +0(Cyy1,26)
Ba+1,2k+1 = Bax + B(Cqayi1,2¢),

and

Qd+1,2k+2 = Ad k+1>
Ba+1,2k+2 = Bd k+1-
3. (OuTPUT) After D iterations, get the piecewise constant scoring function:

20
sp) =Y 2P -k I{x e Cpl,
k=0

together with an estimate of the curve ROC(sp,.), namely the broken line
ROC(sp, .) that connects the knots {(ap x,Bp k) :k=0,..., 2D}, and the follow-
ing estimate of AUC(sp):

— [ 1 1
AUC(sp) = / ROC(sp,a)da = 2 + 3

a=

2P-1
> Ap-1k+1(Cp ).
k=0

Fig. 2 Pseudo-code for the TREERANK algorithm

TREERANK is not necessarily concave (see Proposition 21 in Clémengon and Vayatis 2009).
If it is not, one should notice that the rankings induced by sp(x) and the plug-in estimator
ﬁpD (x) based on the partition Pp = {Cpy :0 <k < 2P — 1} are not the same. If the cells
C, . are built by aggregating elementary subsets, such as cubes of a grid partition of the
feature space X' (see Sect. 3.2), then it is easy to see that concavity is guaranteed. However,
when candidates are produced recursively by applying a simple splitting rule at each step to
the current node, this property is generally not satisfied (see Sect. 3).

The TREERANK algorithm produces an empirical ROC curve that mimics the piecewise
linear approximant of the optimal ROC curve obtained through an adaptive nonlinear parti-
tioning scheme of the unit interval. We describe this approximation scheme below. We also
refer to Sect. D in Clémencon and Vayatis (2009) for further details.
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Adaptive piecewise linear approximation of ROC*.  As initial approximant, we start with
the main diagonal 8 = o of the ROC space corresponding the subdivision ag, =0 <
) = 1. At the next step, the approximation is refined by adding a point af ; between
af g =oag, and af, = of; in the meshgrid, in order to produce a broken line, connecting
the knots {(ai“ » ROC* (a]“,k)) 1k €{0, 1, 2}} with minimum L-distance to the target curve
ROC*, or, equivalently, with maximum AUC. We point out that this is also the best inter-
polator with two linear pieces in terms of sup-norm, see Proposition 20 in Clémengon and
Vayatis (2009) and additionally that the point (a7 ;, ROC* (@] 1)) added to the meshgrid cor-
responds to the point of ROC* at which the tangent has the same slope as the straight line
passing through (e o, ROC* (a5 ) and (a5 1 ROC* (ag,1))- The procedure is then iterated:
one adds a point a3 | between &3, = af , and o3, = «f ; and another one, «; ;, between
oy, =caf and a3, = af , in order to maximize the AUC of the interpolator thus obtained.
Atstep D, a tree-structured subdivision o}, , =0 < &}, | <-+- <@}, ,p, = 1 of the unit inter-
val has then been produced, yielding a linear-by-parts interpolator with 22 + 1 pieces. The
resulting curve may be viewed as the ROC curve of a scoring function, namely the piecewise
constant function:

201
spx) =Y 2P —k) Ix € Cp ).
k=0
where the Cj ;s are the specific bilevel sets of the regression function defined recursively
by: Cgo=~X andVd >0, A} ; =0, A% , = 1 and Vk € {0, 24y,

Cip={reX: Ay, <n0x)<Ajl,

where

pBC )
Al 2kl = (C% ) and  AjL 5 =A%,
dk

With the notations previously set out, we have 57, (x) = 57, (x) where Pj, is the partition
D
of the feature space given by:

Pp={Ch,:k=0,....,2° —1}.

Like the subdivision {‘XB i k=0,..., 2P} of the unit interval, this partition is obtained
recursively through the procedure described above and is thus related to a tree-structure as
well: Vd > 0, Vk € {0, ..., 27}, Cj splits into Cj, | 5, and Cj,; 5, - Hence, the TREER-
ANK algorithm may be viewed as a statistical version of this recursive partitioning scheme,
which adaptively search for a collection of n(x)’s bilevel sets in order to optimize the ROC
curve. However, the Optimization step, which consists in splitting in a nearly optimal fash-
ion each cell of the current partition based on labeled data lying in it, is not described in
a specific manner. Indeed, the convergence rate analysis of TREERANK in Clémengon and
Vayatis (2009) has been carried out under the assumption that the class C of cell candidates
includes all the Cj ;’s. Therefore, it is very unlikely that simple rules, such as the one which
consists in searching for the best perpendicular split at each step in the spirit of the original
CART methodology, can produce cells close to the bilevel sets C ,, except in very specific
cases (refer to Sect. VI of Clémencon and Vayatis 2009 for illustrative examples). It is the
main goal of the subsequent analysis to specify possible flexible strategies for splitting re-
gions of the feature space, in order to generate partitions Pp = {Cp; : k =0,...,20 — 1}
close to the ideal partition Pj,.
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3 Splitting for ranking

In this section, we focus on the practical implementation of the Optimization step of the
TREERANK algorithm. We first set out the goals of the splitting rule from the perspective
of AUC maximization and we underline the difference with the standard classification task.
Eventually, the ranking splitting rule is interpreted as a cost-sensitive classification splitting
rule with a data-dependent cost.

3.1 Binary scoring rule vs. classification rule

In the classification setup, partitioning techniques aim at splitting the feature space into two
halves, ideally as {x € X : n(x) > 1/2} U {x € X : n(x) < 1/2}, by means of a majority
voting scheme in each cell of the partition. It is noteworthy that, as a binary scoring func-
tion, the Bayes classifier x € X — 2 - I{n(x) > 1/2} — 1 is suboptimal regarding the AUC
criterion, except in very specific cases, as shown by the next result.

Lemma 1 (OPTIMAL BINARY SCORING FUNCTIONS) Let p =P(Y = +1) and consider
the (binary) scoring function sf(x) =2 -I{x € C*} + I{x € X \ C*} with C* = {n(x) = p}.
Let C C X be an arbitrary measurable subset and set s =2 - I¢c + Lx\c. We then have:

1 1
AUC(s) = 5 + 5(B(C) —(O)) = AUC(s)). &)
More precisely, the following identity holds:

1
AUC(sy) — AUC(s) = ——— - E[In(X) — p| - I{X € C*AC}], 6)
2p(1—p)
where A denotes the symmetric difference between sets.
In addition, we have

AUC(s]) = 3 Blmax((1 ~ pin(X), pl — n(OI] ™
p(1—p)

This result shows that, unless the two sets {n > 1/2} and {n > p} coincide up to a
wn-negligible set, the AUC of the Bayes classifier is strictly smaller than AUC(s}). In addi-
tion, when the optimal ROC curve is differentiable and strictly concave (see Sect. 2.1 above),
the ROC curve of the Bayes classifier is determined by the knot (@, ROC*(«)), where ROC*
has a tangent with slope (1 — p)/p, whereas ROC(s{) is the broken line defined by the point
of ROC* where the tangent has a slope equal to 1, see Fig. 3. We point out that, under the set
of assumptions listed in Sect. 2.1, (1 — p)/ p always belongs to [ROC* (1), ROC*'(0)], since
this condition amounts to saying that p lies between the essential infimum and supremum
of n(X) and we have E[n(X)] = p. Refer to Remark 5 of Sect. C in Clémengon and Vayatis
(2009) for further details.

Bipartite ranking as a collection of imbricated binary scoring problems. ~We propose data-
driven procedures for constructing a binary scoring function with AUC close to AUC(s}).
When running the TREERANK algorithm, such a procedure will be iteratively applied, in a
“fractal” manner, to the subsample lying in each cell C of the current tree-structured parti-
tion. Indeed, let us introduce the conditional AUC restricted to the cell C:

AUC(s | C) =P{s(X) >s(X) | (Y, Y)=(+1,-1), (X, X") € C}
+ %P{S(X) =s(X)| (Y, Y)=(+1,-1),(X, X) € C}.
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Fig. 3 ROC curves: optimal
binary scoring function (solid
broken line) vs. Bayes classifier
(dotted broken line) in a situation
where p > 1/2

True positive rate

False positive rate

It suffices to observe that, conditioned upon the event X € C, the AUC of the scoring func-
tion s =2 - I¢ + Iey¢r where C’ C C is given by:

2\ B0 a(C)
_ 1(1 n a(C)B(C) —ﬁ(C)Ot(C/))
2 a(C)B(C) '

This observation illustrates that, within the TREER ANK approach, bipartite ranking boils
down to solving a collection of “nested” binary scoring problems, in contrast to the RANK-
BOOST method developped by Freund et al. (2003), which consists of combining binary
scoring rules in an additive fashion.

3.2 Partition-based splitting rule

We now describe a simple strategy for building a nearly optimal binary scoring function
based on a partition of the feature space specified a priori.

As shown by the next result, the procedure described in Fig. 4 determines the binary scor-
ing function, constant on each cell of the initial partition P = {Cy}; <x <k, that has maximum
empirical AUC.

Proposition 4 Letr P = {Cih<k<kx be a partition of the space X and denote by 5*(x) =
2-I{x € LY+ I{x € R} the scoring function determined by the partition-based splitting rule
based on P and the sampling data D, . Then, for any binary scoring rule s =2 -I¢c + Ix\c,
where the subset C C X is formed by a union of cells in P, we have:

AUC(s) < AUCG™).

This proposition simply results from Theorem 1 applied to the empirical distribution of
the (X;, Y;)’s, the details are omitted.
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PARTITION-BASED SPLITTING RULE

1. (INpUT) Cell: CC X
Data points in C: D, (C) ={(X;,Y;): 1 <i <n,X; € C}
Partition of C: {Cy,...,Cg} with K > 1.

2. (“CONCAVIFICATION” STEP) Compute o € G such that:

E(Co(l)) . E(CG(K))
A(Cy1) ~ T @Co(k)’

where @(.) and E(.) denote the empirical false and true positive rates based on the
sample D, (C).

3. (MERGING STEP) Vk € {1,...,K},set Ly = Ulgk Cy (1) and compute the entropic
measure A (k) = B(Ly) —@(Lg). Let

k* = arg max {X(k)} .
1<k<K

4. (OutpUT) Form the leaves:

L:Lk* and R:C\L.

Fig. 4 Pseudo-code for the partition-based splitting rule

Uniform partitions. Assume, for simplicity, that X = [0, 1]¢ and consider subpartitions
of the partition P(j) made of dyadic cubes of side length 27/, i.e. of subsets of the form
]_[, ) [k; /27, (k; 4+ 1)/2/ [where 0 < k; < 2/ foralll € {1,..., q}. Note that the partition has
cardinality #P(j) = 2/9. We denote by I L = L the output of the partition-based splitting
rule from P(j) and by fry=2-l{x e L; }+ I{x e R; ;) the related binary scoring function.
It is reasonable to expect that the level set {x € X : r](x) > p} may be accurately estimated
from a collection of such cubes when the boundary of the set is sufficiently smooth and the
sidelength 27/ is chosen small enough. This is formalized by the next result.

Theorem 2 (DYADIC SPLITTING RULE) For all j > 1, denote by P, ; the collection of
partitions of X made of two non empty sets, obtained as unions of dyadic cubes of side
length 277 . Suppose that p € [p, p] with 0 < p < p < 1. There exists a constant ¢ < 00
depending on p and p such that for all § € (0, 1), we have with probability at least 1 — §:
forn > 1 large enough and for all j > 1,

AUC(s)) — AUCG?) <c- 2+ {AUC(ST) — max AUC(s) ®)
Jn

792]

Remark 6 (BIAS, SMOOTHNESS ASSUMPTIONS AND MODEL SELECTION) Under smooth-
ness assumptions on the level set C* = {x € X' : n(x) > p}, it is possible to control the bias
term. Indeed, in the case where p has a bounded density with respect to Lebesgue measure
A on R?, by virtue of Lemma 1, we have:

AUC(sy) — AUC(s) < % -A(C*AC),

for any s =2 - I¢ + Ix\¢ with C € P, ;. When the boundary dC* is of finite perimeter
per(dC*) < oo (which is the case if n(x) is of bounded variation, the boundary being then
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dC* ={x € X : n(x) = p} by virtue of the continuity of 1), the bias term is bounded by
minCEPZ_j AMC*AC) < c - per(dC*)27/4, for some constant ¢ < 0o, see Proposition 9.7 in
Mallat (1990). Then, choosing the level of resolution j = j(n) so that 2/ ~ p!/49) a5
n — oo yields a rate bound of order n~ /4 in (8). Faster generalization bounds may be
established under more restrictive assumptions involving a regularity parameter 6 of dC*,
such as its box dimension. Although the optimal choice for j would then depend on 6,
a standard fashion of nearly achieving the optimal rate of convergence is to perform model
selection, adding an adequate penalty term to the empirical AUC criterion, see Clémencon
and Vayatis (2009).

Remark 7 (ON FASTER RATES OF CONVERGENCE) As in the classification setting, faster
rates of convergence may be attained. The difference lies here in that the complexity of the
problem is related to the behavior of n(x) in the vicinity of p (instead of 1/2). Under the
following extension of Massart’s noise condition, stipulating that there exists some constant
¢ > 0 such that, almost surely,

In(X) — pl=c,

a rate bound of order O(n~") can be obtained using concentration results involving the
variance of the AUC deficit. The proof can be derived as in the classification setup. We
point out that this condition is incompatible with the regularity conditions for the curve
ROC* listed in Sect. 2.1, insofar as it entails that G* and H* both jump at p. It is possible
to weaken the condition by considering a modified version of Tsybakov’s noise condition:

P{n(X)—pl<t} <M -t

for some a € [0, 1]. Following the argument in Tsybakov (2004), this leads to a rate of order
n'/@=a_Qbserve that this condition may be rewritten as:

F(p+t)—F*(p—t) <M 174,

where F* = pG* + (1 — p) H* denotes the cumulative distribution function of 7(X). There-
fore, if it is assumed that G* and H™* are differentiable with bounded derivatives and
H*' > 0, one necessarily has a = 1/2 and gets a rate bound of order n=2/3

Remark 8 (A UNION STABLE COLLECTION OF CANDIDATES) By construction, the collec-
tion P, ; is union stable. Hence, in the case where the Optimization step is implemented
by means of the partition-based splitting rule from the P, ;, the empirical ROC curve
R/O\C(sD, .) output by TREERANK is concave and sp yields the same ranking of the Cp ;’s
as the plug-in scoring rule 7p,,, see Remark 5.

The LEAFRANK splitting algorithm.  As soon as the dimension ¢ of the feature space X’ is
large, one faces significant computational problems when using uniform partitions. In this
case, the partition on which the split is based should naturally be chosen depending on the
data. The strategy we propose is to start with the partition adaptively generated by TREER-
ANK based on a simple splitting criterion and then implement the splitting rule described
above (see Fig. 5).

Even though the implementation of TREERANK is implemented from a naive splitting
rule such as the one based on perpendicular splits, one may expect that the partition produced
is sufficiently rich to form a good approximant of the set {x € X' : n(x) > p} by the union of
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LEAFRANK ALGORITHM

1. (INpUT) Cell: CC X
Data points in C: D, (C) ={(X;,Y;): 1 <i <n,X; € C}
Depth d > 1.

2. (GROWING STEP) Run TREERANK with a naive splitting rule at depth d, yielding a
ranking tree with terminal leaves:

Cak, k=0,...,2¢-1.

3. (PARTITION-BASED SPLITTING RULE) Apply the partition-based splitting rule from
the partition Py ={Cy  :0 <k < 29}, Find o and k* as before.
4. (OuTtpUT) Form the leaves:

L=L and R=C\L.

Fig. 5 Pseudo-code for the LEAFRANK algorithm

certain cells, if the depth d is chosen large enough. Alike the resolution level j for dyadic
partitions, the parameter d rules the complexity of the splitting rule. The subsequent analysis
provides a remarkable interpretation of this procedure.

3.3 A cost-sensitive classification problem with data-dependent cost

Here we show that the Optimization step of the TREERANK algorithm may be interpreted as
a ‘weighted’ or ‘cost-sensitive’ classification problem, where the cost depends on the data
lying in the node to split, through the local empirical rate of positive instances.

Following in the footsteps of Clémenc¢on and Vayatis (2008), the level set {n(x) > p}
may be viewed as the solution of a weighted classification problem. Define the weighted
classification error:

Lo(C)=2p(l —w) (1 =B(C)) +2(1 = p)w a(C),

with w € (0, 1) being the asymmetry factor. Its empirical counterpart is given by:

-~ 20 « 2(1 — o) ¢
Lw(C)=7wZ]I{Yi=—1,X,»eC}—i—%ZH{K:—i—I,XﬂéC}.
i=1

i=1

Proposition 5 (Clémencon and Vayatis 2008) The optimal set for this error measure is
Cr={x : n(x) > w}. We have indeed, for all C C X:

L,(C) < L,(C).
More precisely, the excess risk for an arbitrary set C can be written:
L,(C) = L,(CH)=2E[|n(X) — | I{X € CAC}}].
The optimal error is given by:

L,(C;) =2E[min{w (1 — n(X)), (1 — @)n(X)}].
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WEIGHTED ERM ALGORITHM

1. (INpUT) Cell: CC X
Data points in C: D, (C) ={(X;,Y;): 1 <i <n,X; € C}
Class C of candidate subsets.

2. (ASYMMETRY FACTOR) Compute:

i. The number of positive instances in C: ny = Y% | I{X; € C,Y; = +1}
ii. The total number of instances in C: n¢ = Z?:l I{X; € C}.

Take w =n4 /nc as the asymmetry factor.
3. (WEIGHTED ERM) Compute the weighted empirical risk minimizer:

L= argrninfw(a)
CeC

andset R=C\ L.

Fig. 6 Pseudo-code for the WEIGHTED ERM algorithm

As shown by the Proposition above, when choosing w = p, the optimal set is given by
C* ={x € X : n(x) > p}. In addition, we point out that, in this case, the weighted classifi-
cation error may be expressed as:

Ly(C)=4p(1 —p){l - AUC(s)}, (C))

where s(x) =2-I{x e C} +{x e X\ C}.
As the theoretical proportion of positive instances within the sample is unknown, an em-
pirical counterpart of the weighted classification error £,(C) can be obtained by replacing

pby p=ni/n:
L) =4p(1 — p) {1 —KIE(s)].

This leads to consider the weighted empirical risk minimizer over a class C of candidate
sets, or equivalently the empirical AUC maximizer over the corresponding set of binary
scoring functions {2 - I¢ +Ix\¢ : C € C} (see Fig. 6).

The interpretation of the splitting issue for the purpose of AUC maximization as a cost-
sensitive classification problem sheds some light on possible ways of performing the Opti-
mization step. Indeed, from any binary classification algorithm a practical splitting rule for
empirical AUC maximization may be straightforwardly derived. In particular, when using
the LEAFRANK routine with perpendicular splits for performing the Optimization step, the
TREERANK algorithm may then be viewed as a recursive implementation of the weighted
CART growing procedure (see Fig. 7), in which the weight is locally updated at each it-
eration, chosen as the rate of positive instances within the cell to split. This AUC splitting
procedure could be refined by applying a pruning procedure to the classification tree ob-
tained, see Breiman et al. (1984) or Nobel (2002) for instance.

In Sect. 2.3, we mentioned that the heuristics underlying the TREERANK algorithm rely
on the recursive construction of estimates of bi-level sets of the regression function with
the very levels being adaptively chosen through the approximation scheme applied to the
ROC curve. Indeed, it is known from Clémencon and Vayatis (2010) that the performance
of bipartite ranking methods crucially depends on their ability to capture the geometry of
level set boundaries of the regression function 7. For instance, scoring methods deriving
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Fig. 7 Schematic of the
TREERANK algorithm, where
each split is obtained through the
LEAFRANK procedure: a naive
TREERANK implementation,
followed by concavification and
merging steps. The final ranking
is read at the bottom of the tree
from the left to the right

Node split produced by LeafRank

from linear logistic regression or linear discriminant analysis only account for decision sets
made of shifted affine subspaces. From a practical perspective, and in the absence of prior
knowledge of the form of these level sets, other strategies should be developed. We claim
that the TREERANK approach provides a powerful tool for the approximation of complex
level sets as it relies on the approximation/estimation of a finite collection of level sets which
are adaptively selected through the procedure and the fine choice of the classification method
used within the LEAFRANK splitting rule. With the analysis of the splitting rule depicted
above, the potential, in terms of approximation capacity, of the tree-based ranking rules we
propose increases dramatically. Indeed, this interpretation of the splitting rule conveys a
great amount of flexibility to the method since any classification algorithm could be used
for the Optimization step and it makes possible to try various splitting strategies in order to
determine which one is the most adapted to the data at hand.

4 Merging the cells—how to prune a ranking tree

Based on a training dataset D,,, the TREERANK procedure with fixed depth D allows for
growing a master ranking tree T = T, with 2P*! — 1 nodes, i.e. a binary tree, left-right
oriented and whose terminal leaves correspond to the cells of a partition P(7,) of the feature
space X, ordered according to 7,,’s orientation. The complexity of the resulting ranking rule
may be naturally described by the number of cells of the partition P(7) which is equal
to 2P. If the depth D is chosen too small, the ROC curve associated to the ranking tree
produced will not permit to mimic the variability of the optimal curve ROC*, while if it is
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too large, the ranking tree produced may clearly overfit the data. It is the purpose of this
section to investigate possible ways of optimally choosing the size of the ranking tree. From
a practical perspective, the design of the ranking tree is done in two steps, as for binary
classification (Nobel 2002). One first grows a large ranking tree 7 in a “greedy” fashion,
and then, using a cost-complexity pruning scheme, one selects a certain (tree-structured)
ordered subpartition of P(7) ={Cps,0 <k < 203 by the means of a ‘bottom-up’ search
strategy through the tree-structure 7 on which the C,;’s are aligned. One naturally hopes
that the expected AUC of the resulting scoring function is larger than the one of sp (x).

In the following subsections, we propose two approaches for pruning a ranking tree. In
order to describe them precisely, we introduce further definitions and notations. For 0 < d <
D and 0 < k < 2P, to each cell C,, one assigns a scalar weight w(Cy ;) in a way that the
following constraints are both satisfied.

(i) (KEEP-OR-KILL) For all d € {0, ..., D} and k € {0, ...,2P — 1}, the weight @ (Cy )
belongs to {0, 1}.

(i) (HEREDITY) If w(C,4 ) = 1, then for each cell Cy y such that C;; C Cy v, we have
o(Cyp)=1.

Any collection of weights » obeying these two constraints will be said admissible and
determines the nodes of a subtree 7 (w) of the original tree 7. A cell C, is said terminal
when w(Cy ) =1 and w(Cy ) =0 for any cell Cy p» C Cy . Terminal cells correspond to
the outer leaves of the tree 7 (w) and form a partition P (7 (w)) of the feature space X. Given
two admissible sequences of weights w; and w;, P(7 (w;)) is a subpartition of P(7 (w,)),
see Definition 4, if and only if {Cy s : w1 (Cax) =0} C{Cyx : w2(Cs ) = 0}, one will then
write 7 (w;) € 7 (w,). The pruning stage consists of selecting those terminal leaves, i.e. an
admissible collection of weights w, and of building the scoring function (cf. Sect. 2.2)

so) = Y (27 =2"7k) T{x € Cau}- (10)
Ca k€P(T ()

Indeed one may check that the ordering defined by s, coincides with the one determined
by the tree 7 (w) when left-right oriented, see Fig. 8. In the ideal case where the class
distributions G and H are known, the best sub-ranking tree in the AUC sense is described
by

w* = argmax AUC(s,,), (11

where the maximum is taken over all admissible collections of weights w. Of course, the
class distributions are not available in practice and one must replace AUC(s,,) by an estimate

—_— 1
AUC (s,) = YooY HsoX) > su(X))}
1

N iYj=+1j:Yj=—
1 1
3 2 2o Hso(Xo) =s.(Xpl, 12
n+n7 v Y. —
l.Yi—+1]<Yj—_

based on a dataset D), = {(X/,Y)), ..., (X, Y)} formed of i.i.d. copies of the pair (X, Y),
where n', =Y | I{Y/ = +1} =n’ — n_. Ideally, D/, should be chosen independent from
the training dataset D, used for growing the ranking tree 7. If one takes the same dataset
for both the growing and pruning procedures, the estimator (12) will then naturally tend to
overestimate the ranking performance of the largest ranking trees and it is very likely that
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Fig. 8 (Color online) A pruned
ranking tree: terminal nodes are
in blue, top ranked cells are
closest to the bottom left corner
of the tree

one will obtain 7 (w*) = 7. However, in many applications, there is an insufficient amount
of data to split it into two large enough separated subsets and all available data are used in
the training stage. We next propose two approaches for model selection in this situation.

4.1 A cross-validation based procedure

We start off by adapting the pruning method proposed by Breiman et al. (1984) for the
original CART algorithm in the classification setup in order to prune ranking trees. The
idea is to add to the optimistic training performance estimate K[J\C(Sw) a linear complexity
term that penalizes large ranking trees. Thus, with

CPAUC(s,, ») = AUC(s,) — » - #P(T (w)), (13)

where A > 0 is a tuning parameter governing the trade-off between training performance
vs. model complexity, one seeks the subtree achieving the maximal complexity-penalized
empirical AUC:

w} = argmax CﬁC(sw, A).

It remains to choose A and we now discuss this issue. The next theorem first shows that there
exists a finite nested sequence of sub-ranking trees of the original ranking tree 7 containing
all 7(w}), A >0.

Theorem 3 For a given ranking tree T , there exists a finite increasing sequence of constants
0=MAop <Ay <--- <A, =00 such that

rooz=T(a)§m) c...C T(wxl) - ’T(a)io) =7,
and:Vje{l,...,m},Yr e [Aj_1, Ajl,
T (w}) = T(a):/_).

The proof is omitted since it is entirely similar to the one of Theorem 3.10 in Breiman
et al. (1984), see also Ripley (1996).

In order to compute the 7 (w})’s, it suffices to successively collapse the internal node that
produces the smallest per-node decrease in terms of empirical AUC and continue until the
root is obtained. Estimation of A € {A;}o<j<n is achieved by N-fold cross validation: one
picks the value A that maximizes the cross-validated AUC. The selected ranking tree is then
T ().
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4.2 Complexity regularization—structural AUC maximization

Nonparametric model selection procedures have been successfully developed in the statisti-
cal learning setup for binary classification, see Massart (2006), Nobel (2002) or Boucheron
et al. (2005). In addition to the pruning method described in the preceding subsection, we
also propose a similar strategy for selecting a sub- ranking tree 7 () in a data-driven fashion
and with largest possible AUC. Here the pruning scheme consists of maximizing:

CPAUC(s,) = AUC(s,,) — pen(#P(T (@), n),

where pen(K,n) is a fixed and explicit penalty term, so that no resampling or cross-
validation is required by the selection procedure. We set 5 = sp(r @) with

@) = argmax C/P-A_U/C(sw).

 admissible

Classically, the key to an adequate choice for the penalty term lies in establishing a
distribution-free bound for the quantity:

E [ sup  |AUC(s,) — AUC(sw)|:| :
w#P(T (0)=K

with K € {1,..., 2"}, see Proposition 6 in Appendix A.5. As shown in Clémencon et al.
(2008) (see also Clémengon et al. 2005), bounds for the uniform deviation between the
AUC and its empirical counterpart over a collection of scoring functions can be proved by
noticing that the empirical AUC may be expressed as a U-statistic (up to a multiplicative
factor) and applying results of the theory of U-processes.

In the subsequent analysis, we consider two situations, corresponding to distinct ways of
performing the Optimization step in the growing stage among those mentioned in Sect. 3
and yielding different, nonlinear this time, penalties for model selection.

O,: Splits are obtained through the LEAFRANK procedure with at most « perpendicular
cuts, k > 1.

O,: The feature space is X = [0, 1]¢ and splits are obtained through the partition-based rule
from the collection of dyadic cubes []? _, [k,277, (ks + 1)277) with 0 <k, <2/ for
allme{l,...,q}.

The following proposition describes the performance of the scoring rule §;f based on

structural AUC maximization in each of these situations.

Proposition 6 (ORACLE INEQUALITIES) Suppose that the proportion p belongs to an in-
terval [p, plwith0 < p < p <1 and forall K €{1,..., 2P} and n > 1 the penalty term is
picked as follows, depending on the strategy chosen for performing the Optimization step.

(i) If splits are optimized using the O rule, then set: Y(K , k) € N*2,

1 \/3210g(16((n + 1)g)2K<) + K.

pentlm = =5 "
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(ii) If splits are optimized using the O, rule, then set: Y(K, J) € N*2,

1 [log(4K?/9) + K
p(l—p) 2n

Then, there exists a positive constant C such that the expected deficit of AUC of the
ranking sub-tree maximizing the complexity-penalized area under the ROC curve is bounded
as follows:

1<k =<2P W HP (T (0))=K

AUC* —E(AUCG;)) < inf {c. pen(K,n)+{AUC*— sup AUC(sw)”.
(14)

On AUC consistency of sub-ranking trees. The next results are immediate corollaries of
Proposition 6, they reveal that under mild assumptions, AUC-consistent sub-ranking trees
do exist. Its proof is left to the reader.

Corollary 1 (CONSISTENCY) Suppose that assumptions of Proposition 6 are fulfilled and
that there exists a sequence T, (w,) of subtrees of the master ranking trees T, produced by
TREERANK such that E[AUC(s,, )] — AUC", as n — co. Assume in addition that:

(1) if T, is grown through the Oy splitting rule with k = k (n) axis-parallel splits, then
kn) -E#P(7,(w,))] =o0(n/logn) asn— oo,

(ii) if 7, is grown through the O, splitting rule based on dyadic hypercubes of side length
277 with J = J(n), then

E[#P(7,(w,))]=o0(n) and J(n)=o(n/logn) asn— oo.
Then, the scoring rule based on structural AUC maximization is AUC consistent:

. ~x\] _ *
lim E[AUC (5;)] = AUC™.
In the O, case, it follows from Proposition 3 that, under additional constraints on the
size of the cells of the master ranking tree output by TREERANK, AUC consistency of the
pruning procedure can be proved by means of classical approximation results.

Proposition 7 Suppose that assumptions of Proposition 6 are satisfied and that the master
ranking tree T, is grown through the TreeRank algorithm with the O, splitting rule based
on dyadic hypercubes of side length 277, J = J(n) > 1, and depth D,. If in addition, as
n — 00, J(n) — oo and the sizes of the cells {C,E") tk=0,...,2P — 1} of the related
partition P(7,) uniformly shrink to zero in the sense that maxgy pa+1 M(C,E")) — 0, then
the pruned ranking trees T, (") obtained from T, are AUC consistent.

Remark 9 (EXTENSIONS TO MORE GENERAL SPLITS) Here, we have studied structural
AUC maximization in two situations, corresponding to simple ways of performing the grow-
ing stage: in the O, case, selection occurs over a finite number of models so that complex-
ity is simply described by the cardinality of the collection considered, whereas, in the O,

@ Springer



54 Mach Learn (2011) 83: 31-69

case, the final scoring rule is selected among a collection of models of which complex-
ity is described by shattering coefficients in a combinatorial fashion. More sophisticated
splitting rules could be naturally considered, leading to more complex collections of scor-
ing functions. We point out that, in some cases, explicit penalties, involving (conditional)
Rademacher averages, could be deduced from the very general bounds for the supremum of
U -processes established in Clémencon et al. (2008).

Remark 10 (ALTERNATIVE PRUNING SCHEMES) When data are not that expensive, one
may consider using a different dataset for the pruning stage. In such a case, bounds on the
expected AUC performance of complexity-based pruning schemes for ranking trees can be
established via similar arguments. Owing to space limitations, details are omitted here.

Remark 11 (MODEL SELECTION FOR BIPARTITE RANKING) In Clémengon and Vayatis
(2009), a model selection procedure has also been considered in the bipartite ranking con-
text. Although its analysis has been carried out using the same type of inequalities for
U -statistics, we highlight the fact that it is of a very different nature than the methods on
which we focus here. Indeed, related penalties are based on smoothness assumptions for the
regression function and selection operates on a collection of partitions fixed in advance.

5 Interpreting a ranking tree

Beyond the fact that they permit to handle missing data in a straightforward manner (by
assigning to a partially observed instance x the empirical mean of each unobserved compo-
nent within the cell where it currently lies) in the training stage or for prediction, a crucial
advantage of decision trees concerns interpretability. Indeed, a ranking tree may be easily
visualized in two dimensions, see Fig. 7, and the related scoring function may be described
through a chain of simple rules. In various applications, such as medical diagnosis or credit-
risk screening for instance, it is essential to interpret the “rank/score” s(x) and determine
which attributes contribute the most to its variation (provided an adequate measure of vari-
ability of the rank is given, see the discussion below). In the case where the ranking tree is
obtained through axis-parallel splits, we now propose some monitoring tools for interpreting
ranking trees.

5.1 Variable relative importance

When using the LEAFRANK procedure with perpendicular splits for performing the Opti-
mization step in the growing stage, each internal node N of the resulting ranking tree 7 is
splitted according to a sub-tree ¢y with perpendicular cuts providing a binary scoring rule
Spy ().

Following in the footsteps of the heuristics proposed in Breiman et al. (1984) for tree-
based classification, a measure of relevance in predicting the “cost-sensitive” classifier s, (x)
corresponding to such a sub-tree ¢ can be proposed for each component of the input vector
X =X, ..., XD), For each node m of the sub-tree, denote by v(m) the index of the
component serving as split variable and by Aﬁ(m) the gain in terms of empirical AUC
induced by this particular split. In this respect, recall that, if the cell C C X corresponding
to node m has left child C’, one may write A/TUTZ(m) = {&(C)E(C/) - ﬁ(C)EZ(C/)}/Z. We
set: Vje{l,...,d},

L= Y (AﬁJ\C(nn)2 Tu(m) = j).

m: internal nodes of ¢
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At the level of the global ranking tree, the squared relative importance of component X /)
is obtained by summing over all 7”’s internal nodes:

I, = > T (tn).

N: internal nodes of 7~

We point out that the computation of relative importance indicators is straightforward, since
it only involves quantities that are computed when fitting the ranking tree.

5.2 Partial dependence plots

After sorting the attributes X O XD according to their relevance, the next step to take
is to quantify the dependence of the scoring model on each of them. Consider a subvector
X' of the input vector X = (X, ..., X@) corresponding to a given subset of indexes
Ipc{l,...,q}.Denoteby I} ={1,..., g} \ Iy the complement set. Rather than renumbering
the components, suppose that X = (X%, X'1). In order to gain insight into the way the
ranking defined by the stepwise scoring function s(x) depends on the set of components
X', one may investigate the variability of the partial dependence function s(x' | I}) =
E[s(x%, X)], through its statistical counterpart

-~ BN
xS 1) = = 3 s X,

i=1

which can be visualized when #1; = 2. One may refer to Appendix A.2 in Friedman (2001)
for a discussion on the relevance of partial dependence plots and further details on compu-
tational aspects in the case of a tree-structured piecewise-constant function.

6 Numerical experiments

In order to illustrate some of the ideas developed throughout the article, we now present a
few simulation results. In this respect, two bi-dimensional toy models have been considered.
The first one involves mixtures of uniform distributions, so that the target curve ROC* has
exactly the same form as the estimate produced by TREERANK (i.e. linear-by-parts), while
conditional Gaussian distributions with different covariance matrices are considered in the
second one, yielding level sets with quadratic frontiers.

In both examples, we take p = 1/2. From an empirical perspective, the impact of the
order of magnitude of the proportion of positive instances among the pooled sample will be
investigated in a forthcoming paper, entirely devoted to a systematic comparison of various
ranking methods over a number of datasets. Here, in each example, the artificial data sim-
ulated are split into a training sample, used for the growing and pruning stages both at the
same time, and a test sample, used for plotting the “test ROC curve”. The master ranking
tree is grown by means of the LEAFRANK procedure with perpendicular splits (each split
is built from less than 5 terminal nodes) and next pruned via the N-fold cross-validation
procedure described in Sect. 4.1 with N = 10.

6.1 First example—mixtures of uniform distributions

The artificial data sample represented in Fig. 9a has been generated as follows. We have
split the unit square X = [0, 1]? into four quarters: X; = [0, 1/2]%, X, =[1/2, 1] x [0, 1/2],
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Fig. 9 First example—mixtures of uniform distributions

X;=[1/2,1])? and X, =[0, 1/2] x [1/2, 1]. Denoting by U the uniform distribution on a
measurable set C C X, the class distributions are given by

H(dx) = 0.2'“}(1 +01 'qu +03 'Z/{X3 +O.4-LIX4,
G(dx) = 0.4'2/[;(1 +03 'qu —I—OZU& +01 'Z/{X4.

In this setup, optimal scoring functions are piecewise constant, like the regression function
n=0.7 Iy +0.75 Iy, + 0.4 Iy, + 0.2 Iy,

leading to a linear-by-parts optimal ROC curve.

Results produced by the TREERANK algorithm, followed by a cross-validation based
pruning procedure are displayed in Fig. 9. Note that the display (b) shows the sets of the
form {x : a < n(x) < b} while the display (c) shows the sets of the form {x : a < §(x) < b}
where § is the scoring rule given by the algorithm. In the growing stage, splits have been
obtained through the LEAFRANK method by constraining the number of terminal nodes to
be less than 5.

In spite of the simplicity of this first example, it is comforting to observe that the four
bi-level sets of n are almost perfectly retrieved by the algorithm, so that the test ROC curve
and the optimal one can hardly be distinguished.
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Fig. 10 Second example—mixture of conditional Gaussian distributions

6.2 Second example—conditional Gaussian distributions

Considering a g-dimensional Gaussian random vector Z, drawn as A/(m, '), and a Borelian
set C C RY weighted by A'(m, I'), we denote by N¢(m, I') the conditional distribution of
Z given Z € C. Equipped with this notation, the class distributions used in this example can

be written as:
2 1 0.25
H(dX):-N’[O,l]Z(<O.5>’(O,25 1.15))’

—1 1 0.15
G(dx) = Ny, 112 <<() ) (0.15 1.25>>'

When p = 1/2, the regression function is then given by:

1.02 - exp(0.02x7 + 0.05x7 — 3.08x; + 0.53x; — 0.11x1x, + 1.32)
1+ 1.02 - exp(0.02x7 + 0.05x3 — 3.08x; + 0.53x — 0.11x1x; + 1.32)

n(x) =

The simulated dataset is plotted in Fig. 10(a), while the level sets of the regression
function related to the approximation scheme mimicked by TREERANK are represented
in Fig. 10(b). For comparison purpose, the level sets of the piecewise scoring function out-
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Fig. 11 Results on the tougher Gaussian mixture model

put by the learning method are displayed in Fig. 10(c) and its test ROC curve is plotted in
Fig. 10(d), together with the optimal one.

Although the frontiers of the target level sets of  are quadratic, they look almost linear,
due to the scale effect caused by the large distance between the centers of the two normal
distributions. However, this does not suffice for explaining the performance of the scoring
function in terms of ROC curve. Indeed, as shown by the example represented in Fig. 10,
results are still satisfactory when taking Gaussian with closer centers.

We have also considered another example with two Gaussian distributions where the
frontier between the two classes is more difficult to approximate with partitions made of
orthogonal splits. Figure 11 reveals that performance still is satisfactory based on the ROC
curves and the estimated level sets attempt to follow the geometry of the true level sets.

6.3 Influence of the number of terminal nodes and pruning

We now propose to focus on the sensitivity with respect to complexity parameters of the
TREERANK algorithm with node splitting achieved by LEAFRANK. We consider the simu-
lation example introduced previously with Gaussian distributions and evaluate performance
on two fixed samples, one for training (500 points) and one for testing (10000 points). De-
note by #Prrgx and #P gk the cardinality of partitions (or the number of terminal nodes)
obtained respectively by TREERANK and LEAFRANK. We applied our procedure in four
distinct situations:
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Fig. 12 Gaussian mixtures modelization

— (i) #Prrgx < 3 and #Pgx < 3 (severe pruning—Ilow complexity)

— (i) #Prrx < 15 and #Pgx < 15 (mild pruning—intermediate complexity)

— (iii) #Prrx < 00 and #Pgx < 0o (no pruning—very high complexity)

— (iv) the master ranking tree and the splitting trees are both pruned using 10 fold-cross-
validation.

The results are summarized in Fig. 12. We observe some amount of overfitting in the
case of (ii) and (iii), while the choice (i) leads to underfitting, and cross-validation seems to
lead to the more stable ranking rule. We point out that the difference between the different
pruning levels is overwhelming when observing the resulting level sets (Fig. 13).

7 Comparison of TreeRank with other methods on real data sets

The aim of this section is to establish a first comparison between different ranking meth-
ods on real data. The TREERANK procedure previously described will be compared
to a classical plug-in approach, the logistic regression, and to the RANKBOOST pro-
cedure proposed by Freund et al. (2003), an algorithm based on the combination of
weak rank learners. We considered two data sets: (i) Breast Cancer data set from the
UCI Repository—569 observations, 63% of positive instances, (ii) Credit Scoring data
set (available at http://www.cmla.ens-cachan.fr/fileadmin/Membres/vayatis/Files/Datasets/
ReviewCreditScoringDataset.txt)—216 observations, 50% of positive instances.

In these experiments, the training sample is about 80% of the observations both data sets.
The plots in Fig. 14 display the results based on a random test sample. The RANKBOOST
procedure was run with 7' = 30 weak learners (step functions), the model selection proce-
dure used for the logistic regression is based on the Bayesian Information Criterion and the
size of the master tree and of the subtrees obtained through the TREERANK procedure, have
been optimally selected by a pruning stage based on 8-fold cross validation.
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Breast Cancer data | 0.923 +0.048 | 0.967 +0.012 0.856 £0.185
Credit Scoring data | 0.733+0.060 | 0.788 40.053 0.718 £ 0.064

Fig. 14 Experimental results on two real data sets
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In order to study the variability of these methods, 50 bootstrap replications of the original
sample were generated. The table in Fig.14 give the mean and the standard deviation of the
AUC computed using the 50 bootstrap replications.

These two examples show that TREERANK and RANKBOOST clearly surpass the logis-
tic regression implementation both in terms of average performance and robustness. The
RANKBOOST algorithm leads to slightly better results but this is not surprising as it benefits
of the nice properties of aggregation. We expect to boost the performance of TREERANK by
using bagging and other aggregation techniques.

8 Conclusion

In the present paper, two major issues related to the implementation of the TREERANK
approach proposed in Clémencon and Vayatis (2009) for bipartite ranking have been ad-
dressed, namely splitting and pruning. We described the interpretation of the splitting task
as a cost-sensitive classification problem (with a cost locally depending on the data within
the cell to split). This observation paves the way for considering a wide variety of techniques
for performing the Optimization step. We also carried out a theoretical analysis of pruning
strategies, providing hints on how to choose the right size for the ranking trees produced.
We thus developed concrete algorithms for nonparametric scoring of high dimensional data
with strong arguments for their practical and theoretical interest. A variety of tree-based
procedures can then be considered with many possible options for splitting and pruning.
One of the key ideas for splitting relies on a recursive call of a naive version of the TREER-
ANK algorithm proposed in a previous work (Clémencon and Vayatis 2008). Two pruning
methods are described and analyzed in the paper: penalties based on structural AUC max-
imization splitting and cross-validation techniques. However, complexity-based penalties
cannot be used straightforwardly since further studies are needed to calibrate the numerical
constants involved. We refer to a recent paper by Arlot (2009) where resampling strategies
are depicted in the classification setup in order to address this issue. The simulation study
we performed reveals the potential but also the limitations of these scoring algorithms. The
main drawbacks of trees are their instability and those due to the hierarchical structure of
the ranking trees (pileup of error when growing the tree). Future work will be devoted to the
design of search and aggregation strategies in order to overcome these limitations.

Acknowledgements We thank the referees and the Action Editor for their constructive suggestions.

Appendix A: Proofs

A.1 Proof of Theorem 1

The proof is based on the next lemma.

Lemma 2 Let P = {Ci}i<k<k be apartition with K > 2 non empty cells. Consider o € G,
fixke{l,..., K — 1} and let Ty, € Gk be the transposition exchanging k and k + 1.Then, if

(o(k) —ok+ 1)) (o5(k) — o5k +1)) >0, we have

AUC(SP,U) = AUC(SP,O'O'[[()'
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Proof Without any restrictions, one may suppose that o (k) — o(k + 1) and o (k) —
o7 (k + 1) are both nonnegative. It follows from the expression of the AUC stated in Propo-
sition 2 that

1
AUC(sp o) — AUC(sp g0, ) = 3 {B(Cos1)(Cowy) — B(Cot)t(Coges)} »

and the latter quantity is negative by definition of o}. O

Observing that any permutation o may be decomposed as o o T, where 7 is a com-
pound of a finite number of transpositions i, k € {1, ..., K — 1}, the proof of the first part
of the theorem immediately follows from the lemma stated above. The second part straight-
forwardly results from (4) in Proposition 2.
A.2 Proof of Proposition 3

We first establish the following preliminary result.

Lemma 3 Suppose that the rv. n(X) has a continuous distribution. Then, for any partition
P ={Ci}1<k<kx with K > 2 non empty cells, we have: Vs € Sp,

Elln(X) = n(XOIHX XY €0} Zg(cu

AUC* — AUC(s) =
2p(1 —p) 4p(1

where Ty = {(x, x') € X2 : (n(x) — n(x")) - (s(x) — s(x")) < 0}.

Proof Notice first that, for all scoring function s:

AUC(s) =P{s(X) > s(X) | (Y, Y)=(+1, =D} + %]P){S(X) =s(X) | (Y, Y)=(+1, - 1)}

1 , , L(s)
=—§]P>{s(X)=s(X)|(Y,Y)=(1,—1)}+1—7, (15)

2p(1=p)

where L(s) =P{(s(X)—s(X"))- (Y —Y') < 0}. As L(s) may be expressed as the expectation
of n(X)(1 — n(X)NHs(X) < s(XN} + (1 = n(X)n(X){s(X) > s(X")} and n(X) has a
continuous distribution, one may check that

’ / 1
L(s) — L(n) =E[|In(X) — n(X"|{(X, X') e T;}] + EE[H{S(X) =s(X)}Hn(X) —n(X")]]
—P{s(X) =s(X"), (Y, Y)=(1,-D}.
Observe in addition that, when s(x) admits a (P, o)-representation, one may write
the second term on the right hand side of the equation above as %ZCEP E(n(X) —
n(X)|I{(X, X) € C?}), which eventually concludes the proof. O
Now, observe that: if (X, X’) € T'y, then
In(X) = (X" < n(X) =7(X)| + [n(X") = 7(X)]|.

Combined to Lemma 3, this establishes the desired bound.
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A.3 Proof of Lemma 1

Observe first that:
p(1 = p){2AUC(s) — 1} = p(1 = p){B(C) —a(C)}
=E[( - pnX)- KX eC}+p(l —n(X)) - I{X ¢ C}
—p(l=p).
Now the lemma results from the fact that:
2p(1 = p){AUC(s7) — AUC(s)} = E[(1 — p)n(X) - {X € C*} —{X € C})]
+E[p(1 —nX)  {X ¢ C*} —I{X ¢ CP]
=E[In(X) — p|-I{X € CAC*}].
A.4 Proof of Theorem 2

For any j > 1, define C; the collection of (non empty) subsets of X" that may be formed from
the 2/¢ dyadic cubes of side length 27/, except X = [0, 1]¢ itself. Denote also by P,,; the
set partitions of X’ formed of two (non empty) elements of C;. We set: Vj > 1, L7 the true

left cell based on the partition C; of the set X’ and Z’; the empirical counterpart. We denote
the related binary scoring functions by:

S =2-IxeLli}}—1 and 57(x)=2-I{xeL}} -1

Classically, we bound the deficit of AUC by the sum of a bias component and a variance
term:

AUC(s}) — AUCG}) = {AUC(s}) — AUCG?)} + {AUCG?) — AUCG)))
+ {KU\CG}‘) - KU\Cﬁj‘)} + {XU\C(?;*) — AUCG)))

< AUC(s}) — AUCG}) +2 sup |AUC(s) — AUC(s)|.

xeszj

Considering the variance term, we first express the empirical AUC(s) as:

AUC(s) = "Z(Z—_n”ﬁn(sx
where
~ 2
Ono) = oy 20 bl Y (X ¥p)

I<i<j<n

is a U-statistic of order 2 with bounded symmetric kernel
1
hs ((x1, 1), (%2, y2)) = H{(y1 — y2) (s (x1) — 5(x2)) > 0} + E]I{s(xl) =s5(x2), y1 # y2}
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and expectation U(s) = 2p(1 — p)AUC(s). By applying the version of Hoeffding’s ex-
ponential inequality for U-statistics stated in Theorem A of Sect. 5.6 of Serfling (1980)
combined with the union bound, one gets that, for all § € (0, 1), with probability larger than

1-8:Vn>1,
U, log(8/ (24P, ;
sup |T,(s) — U(s)| < w
SeES n

P2, j

The desired bound then follows by noticing that

1 n

1—-p n—ny

AUC(S)—AUC(S)‘ = m |Un(S) —U(S)| +§ H; - Z +

}

and applying the standard Hoeffding probability inequality in order to control the fluctua-
tions of n./n around p € [p, p].

A.5 Proof of Proposition 6

In order to prove the desired oracle inequality, we first establish the lemma below. Let K >
1, we denote by P7(K) the collection of all tree-structured partitions of the feature space
X C R? with K > 1 non empty cells and by Sy (K) = UpePT(K) Sp the set of piecewise
constant scoring functions associated to such partitions. We also introduce the empirical
AUC maximizer over S (K):

. .
s, g = argmax AUC(s).
sesST(K)

Lemma 4 Assume that the hypotheses of Proposition 6 are fulfilled.

(1) If splits are optimized using the O rule and the penalization is chosen accordingly,
then: V(K , k) € N*2,

P ! sup AUC(s) — AUCG)) > e}

seSt(K)

<16((n + 1)q)2KK 87;132(17,3)252/512 +e—n£2(17[3)252/128'

(i) If splits are optimized using the O, rule and the penalization is chosen accordingly,
then: V(K, J) € N*2,

]P’{ sup AUC(s) — AUCG;)) 26} < AR UTIPES g =R,
seST(K)

Proof We follow the argument of Lugosi and Zeger (1996), see also Sect. 18.1 in Devroye
et al. (1996). Write: Ve > 0, VK > 1,

seS7(K)

P { sup AUC(s) — AUC())) > 6]

<P {sup CPAUCG,) — AUCGY) > %}

>1
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+P{ sup AUC(s)— supCPAUCG)) > < | .
s€ST(K) 1>1 ’ 2

Therefore, the first term on the right hand side of the inequality above may be rewritten and
bounded as follows:

P {C?XGC@*) ~AUCG) = %}
<P {}nf{cﬁc@’f,) — AUCG; )| = %}

<Y rflavce;) - AUCG; )| = % +pentt.m)|

>1

< ZIP’! sup ‘AUC(S) —ﬁ(s)‘ > % +pen(l,n)] : (16)

=1 seSt(K)

€
4

<Pl sup ﬁJ\C(s)—AUC(s)‘ > 5}, (17)
seST(K) 4

Turning to the second term, observe that

N m

IP{ sup AUC(s) — supCPAUCG)) >
SeST(K) =1

<P{ sup AUC(s) — CPAUCG! ) >
seST(K) '

|

NSRNG}

<P{ sup AUC(s) — AUCG ) >

seSt(K) -

since we assumed pen(K, n) < e€/4.

In both cases, we are thus lead to establish a sharp bound for the tail probability of
SUP;es, (k) [AUC(s) — AUC(s).

We first place ourselves in the situation Oy, where Optimization steps are performed
using at most « perpendicular splits. We follow the approach developed in Clémengon et al.
(2008) in the context of empirical “ranking risk” minimization. We recall the following
lemma, based on Hoeffding’s representation of U -statistics (see Lemma Al in Clémengon
et al. 2008).

Lemma 5 (Clémencgon et al. 2008) Let g, : X x X — R be real-valued functions indexed

by v € T where T is some set. If X1, ..., X, are i.i.d. then for any convex nondecreasing
function ¥,
1 ln/2]
Elysup——") ¢ (X, X)) | |=E| Y |sup—F ) ¢:(Xi, Xpnpy+0) ]|,
fern(n—n;’ ! feTLn/zjg con T

assuming the suprema are measurable and the expected values exist.
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The n-th VC shattering coefficient of the class A= UPGPT(K){A x B: (A, P) e P?} of
subsets of X x X is thus bounded as follows:

S(A,n) < ((n+ Dg)**.

Combined with Vapnik-Chervonenkis inequality and the lemma above applied to the collec-
tion of kernels {h; — U (s)}ses;(k), this yields: Ve, Vn > 1,

P{ sup U, (s) — U(s)] 26} <8((n+ 1)g)*Kx e/,

seST(K)

Thus, for n large enough, we have
P { sup |AUC(s) — AUC(s)| > e] < 16((n + 1)g)2Kx e n2?1=P232 (1)
seST(K)

the extra multiplicative factor in the AUC bound above accounting for the fluctuations of the
empirical rate of positive instances among the pooled sample around the proportion p for n
large enough. Combined with (16), we get

P {cﬁﬁc@j) — AUCG)) > %}

D
< 22 16 ((1n + 1)q)2K* g (A=p (5 +pen(K.m)?/32
=1
2D
< e (=PRI Z 16 ((n + 1)q)* o2 1=PPpen(Kom? /32
1=1
< PP 1= /18 N K

< e—nzz(l—ﬁ)zez/ng
by replacing pen(K, n) by its explicit expression. Combining (18) with (17), we obtain

Py sup AUC(S)—supCFXU/C(gjl)Zf
seST(K) I>1 , 2

} <16((n+ 1)q)21(x efngz(l—ﬁ)zez/SIZ'
The first assertion of the lemma is thus proved.

Suppose now that X = [0, 1]7 and cells are obtained as unions of dyadic cubes of side
length 2=/ J e N. In the situation O,, it suffices to observe that a version of Hoeffding’s
inequality for U-statistics (see Theorem A in Sect. 5.6 of Serfling 1980) combined with the
union bound and the fact that #{h, : s € S7(K)} < K2 gives us: Ve, Vn > 1,

IF’{ sup |U,(s) = U(s)| = e} <2k,

seSt(K)
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and for n large enough:
P ! sup ’ﬁj\cm - AUC(S)‘ > e} < 4K -
seSt(K)

The remainder of the argument is omitted, since it is completely similar to the one in the O,
situation. 0

‘We have
AUC* — E[AUCG;)]

- Ii(r;f}{(AUC*— sup AUC(s))+( sup AUC(s)—IE[AUC(s‘,;")])}.

seS7(K) seS7(K)
Therefore,

2
( sup AUC(s)—IE[AUC('En*)])

seSt(K)
- 2
<u +/ P sup AUC(s) — AUC(s)) | >t ¢dt.
t=u seST(K)

Now, the oracle inequalities for the expected deficit of AUC follow by integrating the tail
bounds stated in Lemma 4, taking u = C (pen(K , n))?.

A.6 Proof of Proposition 7

We consider the O, case. Given Corollary 1, it suffices to show that

lim sup AUC(s) = AUC*.

=0 seS,

Let {Cp, kJo<k<2pn be the cells of the partition Pp, corresponding to the master ranking
tree 7, output by TREERANK and sp, the related scoring function. Recall that, in the O,
situation, sp, and ﬁpDn produce the same ranking, cf. Remark 8. By virtue of Proposition 3,
we thus have:

BINCO ~ Ty, CON) |
AUC* — AUC L C,. 19
o AUCE) = ) 4p(1 Zg( o 09

where G(C, 1) = E[|n(X) — n(X")| - I{(X, X') € Czk}] Observe that

Dp—1 Dp—1
> G(Cu0 = 3 (G’ = max w(Cop).
k=0 k=0

It follows from the stipulated assumptions and the bound above that the term on the right
hand side of (19) vanishes as n — co. As the argument of Theorem 6.1 in Devroye et al.
(1996) ensures that the term on the left hand side also goes to 0 as n — oo, the result is then
proved.
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