
Mach Learn (2011) 83: 1–29
DOI 10.1007/s10994-010-5189-4

Inductive equivalence in clausal logic and nonmonotonic
logic programming

Chiaki Sakama · Katsumi Inoue

Received: 24 September 2007 / Revised: 9 July 2009 / Accepted: 27 April 2010 /
Published online: 20 May 2010
© The Author(s) 2010

Abstract This paper provides a logical framework for comparing inductive capabilities
among agents having different background theories. A background theory is called induc-
tively equivalent to another background theory if the two theories induce the same hypothe-
ses for any observation. Conditions of inductive equivalence change depending on the logic
of representation languages and the logic of induction or inductive logic programming (ILP).
In this paper, we consider clausal logic and nonmonotonic logic programs as representation
languages for background theories. Then we investigate conditions of inductive equivalence
in four different frameworks of induction, cautious induction, brave induction, learning
from satisfiability, and descriptive induction. We observe that several induction algorithms
in Horn ILP systems require weaker conditions of equivalence under restricted problem set-
tings. We address that inductive equivalence can be used for verification and evaluation of
induction algorithms, and argue problems for optimizing background theories in ILP.

Keywords Inductive equivalence · Inductive logic programming · Nonmonotonic logic
programs

1 Introduction

Equivalence relations between logical theories have been studied in many ways in artifi-
cial intelligence and logic programming. In knowledge representation, a theory represents
knowledge of a problem domain. The same problem would be represented in different ways
by different experts. Equivalence of two theories is then used for evaluating information

Editor: David Page.

C. Sakama (�)
Department of Computer and Communication Sciences, Wakayama University, Sakaedani, Wakayama,
640-8510, Japan
e-mail: sakama@sys.wakayama-u.ac.jp

K. Inoue
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
e-mail: ki@nii.ac.jp

mailto:sakama@sys.wakayama-u.ac.jp
mailto:ki@nii.ac.jp

2 Mach Learn (2011) 83: 1–29

content and identifying different information sources. In program development, one pro-
gram may give a declarative specification of some problem and another program may give
an efficient coding of it. In this case, equivalence of two programs guarantees a correct
implementation of the given specification. In the context of logic programming, various
criteria for equivalence relations are proposed in the literature (Maher 1988; Sagiv 1988;
Lifschitz et al. 2001; Eiter and Fink 2003; Inoue and Sakama 2004). Among them, weak
equivalence and strong equivalence of two programs are particularly important. Two logic
programs P1 and P2 are (weakly) equivalent if they have the same declarative meaning.
On the other hand, two programs P1 and P2 are strongly equivalent if they preserve the
equivalence relation by the introduction of arbitrary rules R to them.

Equivalence relations presented above compare capabilities of deductive reasoning be-
tween programs. For instance, two Horn logic programs are weakly equivalent if they have
the same least model that is the logical consequences of each program. When we con-
sider realizing intelligent agents that can perform commonsense reasoning, however, com-
paring capabilities of non-deductive reasoning between programs is also necessary and
important. Recently, Inoue and Sakama (2005, 2006a, 2006b) argue equivalence in ab-
ductive logic. They introduce two different types of abductive equivalence: explainable
equivalence and explanatory equivalence. The former considers whether two theories have
the same explainability for any observation, while the latter considers whether two theo-
ries have the same explanation contents for any observation. These two notions compare
capabilities of abductive reasoning among agents, and they provide necessary and suffi-
cient conditions for abductive equivalence in first-order logic and abductive logic program-
ming (ALP) (Denecker and Kakas 2002). Induction is also known as non-deductive rea-
soning, which is often distinguished from abduction (Flach and Kakas 2000). In computa-
tional logic, induction is realized by inductive logic programming (ILP) (Muggleton 1992;
Nienhuys-Cheng and De Wolf 1997). A typical induction problem is to build a hypothesis
which covers a given observation with respect to a background theory. Then, there are some
questions concerning equivalence issues in induction.

1. When can we say that induction with a background theory is equivalent to induction with
another background theory?
Two different background theories B1 and B2 are considered equivalent if they induce
the same hypothesis H for any observation O . This equivalence measure is useful for
comparing “information contents” of different background theories.

2. When can we say that induced hypotheses are equivalent to another induced hypotheses?
Two hypotheses H1 and H2 are considered equivalent if they account for the same obser-
vation O with respect to a background theory B . This equivalence measure is useful for
comparing “explanation power” of different hypotheses.

3. When can we say that induction from an observation is equivalent to induction from an-
other observation?
Two observations O1 and O2 are considered equivalent if they produce the same hypoth-
esis H with respect to a background theory B . This equivalence measure is useful for
comparing “evidential power” of different observations.

4. Do conditions for these equivalence differ by underlying logics?
The results of induction and equivalence conditions generally depend on a logic on which
induction is based. Moreover, those conditions differ among individual induction algo-
rithms. Then, we can compare different logics or algorithms for estimating their induction
capabilities.

These issues are important and meaningful for comparing different induction tasks, but
few studies have argued the problems so far. In this paper, we focus on the question (1) above

Mach Learn (2011) 83: 1–29 3

and study the problem of equivalence of background theories in induction. To answer the
question (4), we also investigate conditions of equivalence in different logics and induction
algorithms. Other problems, concerning the questions (2) and (3), are studied in a different
paper (Sakama and Inoue 2009a).

To formalize the problem, we introduce the notion of inductive equivalence between
background theories. A background theory B1 is said inductively equivalent to another back-
ground theory B2 if B1 and B2 induce the same hypothesis H for an arbitrary observation O .
Intuitively, if an agent has a background theory B1 which is inductively equivalent to another
background theory B2 of another agent, then these two agents are considered equivalent with
respect to inductive capability. In this case, we can identify those two agents as far as induc-
tion is concerned. From the viewpoint of program development, if a theory B1 is transformed
to another syntactically different B2, inductive equivalence of two theories guarantees iden-
tification of results of induction from each theory. This provides guidelines for optimizing
background theories in ILP. The problem of interest is logical conditions for inductive equiv-
alence in ILP. Conditions for inductive equivalence differ depending on logics of represen-
tation languages and logics of induction. This paper considers two logics for representation
languages – clausal logic and nonmonotonic logic programming. These logics are widely
used in knowledge representation and ILP (Muggleton 1992; Baral and Gelfond 1994). On
the other hand, we consider four different frameworks of induction, cautious induction,
brave induction (Sakama and Inoue 2009b), learning from satisfiability (De Raedt 1997;
De Raedt and Dehaspe 1997a), and descriptive induction (Lachiche 2000). These frame-
works capture different aspects of induction problems. We show necessary and sufficient
conditions for inductive equivalence under different semantics in respective induction. We
also observe that some induction algorithms in Horn ILP systems require weaker condi-
tions of inductive equivalence. We address that inductive equivalence is used for testing
correctness/completeness of an induction algorithm and comparing capabilities of differ-
ent algorithms. We also argue problems for optimizing background theories in ILP through
appropriate program transformations.

This paper is a revised and extended version of (Sakama and Inoue 2005). The differences
between the present work and the previous one are follows. First, we apply the framework
of inductive equivalence to different types of induction, and investigate formal properties
among them. Inductive equivalences for cautious induction, brave induction, and learning
from satisfiability are new in this paper. Second, inductive equivalences in particular induc-
tion algorithms are also revised and extended. Inductive equivalences in FOIL and BRAINnot

are new in this paper. Third, previous results for inductive equivalence in nonmonotonic
logic programs are generalized to background theories which possibly contain disjunctions.
Fourth, new considerations and additional arguments are added throughout the paper.

The rest of this paper is organized as follows. Section 2 presents logical frameworks
used in this paper. Section 3 introduces the notion of inductive equivalence and investigates
formal properties in clausal logic. Section 4 verifies conditions of inductive equivalence in
some Horn ILP systems. Section 5 applies inductive equivalence to nonmonotonic logic
programs. Section 6 discusses related issues and potential applications. Finally, Section 7
concludes the paper.

2 Logical framework

2.1 Clausal theories

A first-order language consists of an alphabet and all formulas defined over it. The defini-
tion is the standard one in the literature (Nienhuys-Cheng and De Wolf 1997, for instance).

4 Mach Learn (2011) 83: 1–29

A first-order theory is a set of formulas. A clause is a formula of the form

A1 ∨ · · · ∨ Am ∨ ¬Am+1 ∨ · · · ∨ ¬An (1)

where Ai (1 ≤ i ≤ n) are atoms and every variable appearing in (1) is universally quantified
at the front. A clausal theory (or simply a theory) is a set of clauses. The clause (1) is also
written as

A1 ∨ · · · ∨ Am ← Am+1, . . . ,An (2)

in the context of logic programming. The disjunction A1 ∨ · · · ∨ Am is the head and the
conjunction Am+1, . . . ,An is the body of the clause. In particular, a clause (2) having at most
one atom in its head is a Horn clause and a set of Horn clauses is a Horn logic program.
A Horn clause is called a definite clause if it contains exactly one atom in its head. A definite
logic program is a set of definite clauses. A clause A ← is called a fact and is identified with
the atom A. A theory is identified with the conjunction of clauses included in the theory.
A theory, a clause or an atom is ground if it contains no variable. A theory or a clause with
variables is identified with the set of its ground instances. A propositional theory is a finite
set of ground clauses. Clausal theories and Horn logic programs are subsets of first-order
theories, while nonmonotonic logic programs, which are handled in Sect. 4, are outside of
first-order logic.

The domain of a theory is given as the Herbrand universe and interpretations are defined
as subsets of the Herbrand base HB. An interpretation M satisfies the ground clause of the
form (2) if {Am+1, . . . ,An} ⊆ I implies {A1, . . . ,Am } ∩ I �= ∅. M satisfies a theory T if
M satisfies every ground instance of any clause in T . An interpretation M is a model of a
theory T if M satisfies T . The set of all models of T is written as Mod(T). The semantics
of a theory T is represented as a subset SEM(T) of Mod(T), i.e.,

SEM(T) ⊆ Mod(T).

The set SEM(T) represents models that are selected from Mod(T) based on some prefer-
ence criterion. In particular, SEM(T) = Mod(T) holds under the classical model theory of
first-order logic. A theory T is consistent under SEM if SEM(T) �= ∅; otherwise, T is incon-
sistent. A theory T satisfies a clause C (written as T |= C) if C is satisfied in every model
of T . T satisfies a set S of clauses (written as T |= S) if T |= C for any clause C in S. There
are several criteria for selecting models as SEM(T). Among them, minimal models are often
considered in the literature. The set of all minimal models of T (denoted by MM(T)) is
defined as

MM(T) = {M ∈ Mod(T) | ¬∃N ∈ Mod(T) such that N ⊂ M}.
Every consistent clausal theory has a minimal model (Bossu and Siegel 1985).

2.2 Logics of induction

There are several definitions of induction. In this paper, we consider the following four
different frameworks of induction:

– Cautious induction (Sakama and Inoue 2009b)
– Brave induction (Sakama and Inoue 2009b)
– Learning from satisfiability (De Raedt 1997; De Raedt and Dehaspe 1997a)
– Descriptive induction (Lachiche 2000)

Mach Learn (2011) 83: 1–29 5

Let B , H , and O be sets of formulas respectively representing a background theory, a hy-
pothesis, and an observation. Then, each induction is defined as follows.1

Cautious induction: Given B and O , find H such that O is satisfied by every M ∈
SEM(B ∪ H) where B ∪ H is consistent.

Brave induction: Given B and O , find H such that O is satisfied by some M ∈
SEM(B ∪ H) where B ∪ H is consistent.

Learning from satisfiability: Given B and O , find H such that B ∪ H ∪ O is consistent
under SEM.

Descriptive induction: Give B and O , find H such that H is satisfied by every M ∈
SEM(B ∪ O) where B ∪ O is consistent.

In each case, we say that a hypothesis H covers (or explains) O with respect to B (under
SEM) in the induction framework I . H is also called a solution in I . Here, I is one of the four
induction frameworks presented above. In this paper, cautious induction, brave induction,
learning from satisfiability, and descriptive induction is respectively abbreviated as CauInd,
BraInd, LFS, and DesInd.

Cautious induction requires an observation to be satisfied in every model in SEM(B ∪H).
In particular, when SEM(B ∪ H) = Mod(B ∪ H) in first-order logic, it is written as

B ∪ H |= E.

In this case, cautious induction is also called explanatory induction (abbreviated as ExpInd)
(Flach 1996), which is known as usual setting in ILP (Muggleton 1992; Nienhuys-Cheng
and De Wolf 1997). Brave induction, on the other hand, requires that an observation is
satisfied in some models in SEM(B ∪ H). By the definition, brave induction is weaker than
cautious induction, that is, if H is a solution of cautious induction, it is also a solution
of brave induction, but not vice versa. Learning from satisfiability is weaker than brave
induction, so that it provides the weakest form of induction among those three frameworks.
Brave induction and learning from satisfiability coincide when SEM(B) = Mod(B). That is,
O is satisfied in some model of B ∪ H iff B ∪ H ∪ O is consistent. Descriptive induction,
which is also called confirmatory induction (Flach 1996), prescribes that a hypothesis is
satisfied in a background theory and an observation. In contrast to explanatory induction, it
does not intend to learn classification rules but seek regularities over observed data. When an
observation is given as a set of interpretations, descriptive induction is also called learning
from interpretations (De Raedt 1997; De Raedt and Dehaspe 1997b).

Example 2.1 (Sakama and Inoue 2009b) Suppose that there are 30 students in a class, of
which 20 are European, 7 are Asian, and 3 are American. The situation is represented by the
background theory B and the observation O:

B = {student(1), . . . , student(30)},
O = {euro(1), . . . , euro(20),asia(21), . . . ,asia(27),usa(28), . . . ,usa(30)}

where each number represents individual students. Put the semantics of the background
theory as the minimal model semantics, SEM(B) = MM(B). First, consider the set H1 of

1Observations defined here are positive observations. In the literature, negative observations are often con-
sidered as well as positive ones. For simplicity reasons, we consider only positive observations in this paper.

6 Mach Learn (2011) 83: 1–29

the following clauses

euro(x) ← student(x),

asia(x) ← student(x),

usa(x) ← student(x).

Then, H1 is a solution of BraInd, CauInd, and LFS, but it is not a solution of DesInd.
Next, consider the set H2 which consists of the single clause

euro(x) ∨ asia(x) ∨ usa(x) ← student(x).

H2 is a solution of BraInd, LFS, and DesInd, but it is not a solution of CauInd.
Finally, consider the set H3 which consists of the single clause

student(x) ← euro(x).

H3 is a solution of DesInd and LFS, but it is not a solution of BraInd nor CauInd.

Thus, four induction frameworks provide different solutions in general.

2.3 Equivalence relation

Two different theories are equivalent in many ways. In this paper, we handle three different
notions of equivalences. Consider two theories T1 and T2 which have the common underly-
ing language. Then, T1 and T2 are

– logically equivalent (written as T1 ≡ T2) if Mod(T1) = Mod(T2).
– weakly equivalent (written as T1 ≡w T2) if SEM(T1) = SEM(T2).
– strongly equivalent (written as T1 ≡s T2) if T1 ∪ U ≡w T2 ∪ U for any theory U under the

same language.

By the definition, T1 ≡s T2 implies T1 ≡w T2. In particular, three equivalence relations coin-
cide in first-order logic under the condition SEM(T) = Mod(T) (Eiter and Fink 2003).

We first show that logical equivalence coincides with strong equivalence when
SEM(T) = MM(T) in clausal logic.

Proposition 2.1 Let T be a clausal theory and HB its Herbrand base. For any M(⊆ HB),
put M∗ = M ∪{¬A | A ∈ HB\M}. Then, M is a model of a theory T iff T ∪M∗ is consistent.

Proof If M is a model of T , so is M∗. Then, T ∪M∗ is consistent. Conversely, when T ∪M∗
is consistent, assume that M is not a model of T . Then, there is a clause C in T which is not
satisfied by M . In this case, M∗ ∪ {C} is inconsistent. This contradicts the fact that T ∪ M∗
is consistent. �

Proposition 2.2 (Logical equivalence vs. strong equivalence under MM) Let T1 and T2 be
two clausal theories. Then, T1 ≡ T2 iff MM(T1 ∪U) = MM(T2 ∪U) for any clausal theory U .

Proof The only-if part is obvious. Assume MM(T1 ∪ U) = MM(T2 ∪ U) for any U . If
T1 �≡ T2, there is either M ∈ Mod(T1) \ Mod(T2) or M ∈ Mod(T2) \ Mod(T1). Consider

Mach Learn (2011) 83: 1–29 7

the case M ∈ Mod(T1) \ Mod(T2). Since M is not a model of T2, T2 ∪ M∗ is inconsis-
tent (Proposition 2.1). Thus, MM(T2 ∪ M∗) = ∅. On the other hand, M ∈ Mod(T1) implies
M ∈ Mod(T1 ∪ M∗). Since T1 ∪ M∗ is a clausal theory, M ∈ Mod(T1 ∪ M∗) implies the
existence of minimal models. Hence, MM(T1 ∪ M∗) �= ∅. This contradicts the assumption.
The case of M ∈ Mod(T2) \ Mod(T1) is proved in the same manner. Hence, T1 ≡ T2. �

Proposition 2.3 (Logical equivalence vs. weak equivalence under MM) Let T1 and T2 be
two clausal theories. Then, T1 ≡ T2 implies T1 ≡w T2 under the minimal model semantics.

The converse of Proposition 2.3 does not hold in general.

Example 2.2 Consider three clausal theories:

T1 = {a ∨ b, c ∨ ¬a, c ∨ ¬b},
T2 = {a ∨ b, c},
T3 = {a ∨ b, ¬a ∨ ¬b, c}.

First, set SEM(Ti) = Mod(Ti) for i = 1,2,3. Then,

Mod(T1) = Mod(T2) = {{a, c}, {b, c}, {a, b, c}} and Mod(T3) = {{a, c}, {b, c}}.
In this case, the following relations hold: T1 ≡ T2, T1 �≡ T3 and T2 �≡ T3.

Next, set SEM(Ti) = MM(Ti) for i = 1,2,3. Then,

MM(T1) = MM(T2) = MM(T3) = {{a, c}, {b, c}}.
In this case, the following relations hold: T1 ≡w T2 ≡w T3, T1 ≡s T2, T1 �≡s T3 and T2 �≡s T3.
Here, T2 �≡s T3 because the addition of Q = {a, b} makes T3 inconsistent.

3 Inductive equivalence in clausal logic

3.1 Inductive equivalence

We first provide a general framework of inductive equivalence between two theories.

Definition 3.1 (Inductive equivalence) Let B1 and B2 be two background theories having
the same Herbrand base HB. For any observation O , suppose that a hypothesis H covers O

with respect to B1 under SEM in induction I iff H covers O with respect to B2 under SEM
in induction I . In this case, B1 and B2 are said to be inductively equivalent under SEM in I

(written B1 ≡ SEM
I B2).

By the definition, inductive equivalence presents that two background theories have the
same explanation contents for any observation. Note that there are at least three different
parameters on which inductive equivalence depends—(i) syntax of B , H and O , (ii) the
underlying semantics SEM, (iii) and the framework of induction I . In this paper, we study
several cases of inductive equivalence with different parameters.

The notion of inductive equivalence is applied to four induction frameworks as follows.

8 Mach Learn (2011) 83: 1–29

Definition 3.2 (Inductive equivalence in different frameworks of induction) Let B1 and B2

be two theories having the same Herbrand base HB. Then,

1. B1 and B2 are inductively equivalent under SEM in cautious induction (written
B1 ≡ SEM

CauIndB2) if for any O and any H , O is satisfied by every M ∈ SEM(B1 ∪ H)

iff O is satisfied by every M ∈ SEM(B2 ∪ H), where B1 ∪ H and B2 ∪ H are consistent.
2. B1 and B2 are inductively equivalent under SEM in brave induction (written

B1 ≡ SEM
BraIndB2) if for any O and any H , O is satisfied by some M ∈ SEM(B1 ∪ H)

iff O is satisfied by some M ∈ SEM(B2 ∪ H), where B1 ∪ H and B2 ∪ H are consistent.
3. B1 and B2 are inductively equivalent under SEM in learning from satisfiability (written

B1 ≡ SEM
LFS B2) if for any O and any H , B1 ∪ H ∪ O is consistent iff B2 ∪ H ∪ O is

consistent.
4. B1 and B2 are inductively equivalent under SEM in descriptive induction (written

B1 ≡ SEM
DesIndB2) if for any O and any H , H is satisfied by every M ∈ SEM(B1 ∪ O)

iff H is satisfied by every M ∈ SEM(B2 ∪ O), where B1 ∪ O and B2 ∪ O are consistent.

Proposition 3.1 (Relations between different inductive equivalences) For any SEM, the
following relations hold.

1. B1 ≡ SEM
CauIndB2 implies B1 ≡ SEM

BraIndB2.

2. B1 ≡ SEM
BraIndB2 implies B1 ≡ SEM

LFS B2.

3. B1 ≡ SEM
CauIndB2 iff B1 ≡ SEM

DesIndB2.

Proof The results of (1) and (2) hold by their definition. To see (3), the definition of induc-
tive equivalence in descriptive induction is obtained by exchanging the positions of O and
H in the definition in cautious induction. Since both O and H are arbitrary sets of formulas,
the result holds. �

Proposition 3.1(1) and (2) show that the implication relations among three induction
frameworks are inherited to equivalence relations. On the other hand, Proposition 3.1(3)
represents that in the context of inductive equivalence, distinction between cautious induc-
tion and descriptive induction is unimportant. With this reason, we mainly consider inductive
equivalence in cautious induction, brave induction, and learning from satisfiability, hereafter.

3.2 Inductive equivalence between clausal theories

In this section, we consider the following problem setting:

– a background theory B is given as a clausal theory
– an observation O is a set of clauses
– a hypothesis H is a set of clauses

We first set SEM(B) = Mod(B), i.e, the classical semantics in first-order logic. In this case,
cautious induction coincides with explanatory induction, and brave induction coincides with
learning from satisfiability, as presented in Sect. 2.2. Necessary and sufficient conditions for
inductive equivalence are stated below.

Theorem 3.2 (Condition for inductive equivalence in explanatory induction) For any two
clausal theories B1 and B2, B1 ≡ Mod

CauIndB2 iff B1 ≡ B2.

Mach Learn (2011) 83: 1–29 9

Proof Let O and H be arbitrary sets of clauses. Then, B1 and B2 are inductively equivalent
in cautious induction
iff B1 ∪ H |= O ⇔ B2 ∪ H |= O for any O and H such that B1 ∪ H and B2 ∪ H are
consistent
iff B1 |= H → O ⇔ B2 |= H → O for any O and H such that B1 ∪ H and B2 ∪ H are
consistent
iff B1 ≡ B2. �

Theorem 3.3 (Condition for inductive equivalence in brave induction)
For any two clausal theories B1 and B2, B1 ≡ Mod

BraIndB2 iff B1 ≡ B2.

Proof Let O and H be arbitrary sets of clauses. Then, B1 and B2 are inductively equivalent
in brave induction
iff B1 ∪ H ∪ O is consistent ⇔ B1 ∪ H ∪ O is consistent for any O and H

iff B1 ∪ O is consistent ⇔ B1 ∪ O is consistent for any O

iff B1 �|= ¬O ⇔ B2 �|= ¬O for any O

iff B1 |= F ⇔ B2 |= F for any formula F

iff B1 ≡ B2. �

By Theorems 3.2 and 3.3, the following result follows.

Corollary 3.4 (Inductive equivalence in cautious induction and brave induction) For any
two clausal theories B1 and B2, B1 ≡ Mod

CauIndB2 iff B1 ≡ Mod
BraIndB2.

By the fact that descriptive induction is identified with cautious induction (Proposi-
tion 3.1), we conclude that the inductive equivalence relations in four different induction
frameworks coincide under the classical semantics.

Next, we set SEM(B) = MM(B) for the semantics of a clausal theory B . This setting is
considered as the minimal model semantics of disjunctive logic programs (Minker 1982) or
circumscription (McCarthy 1980). In this case, we have the next result.

Theorem 3.5 (Condition for inductive equivalence under MM in cautious induction) For
any two clausal theories B1 and B2, B1 ≡ MM

CauIndB2 iff B1 ≡ B2.

Proof Suppose that B1 and B2 are inductively equivalent under the minimal model se-
mantics in CauInd. Then, for any set O and for any set H of clauses, O is satisfied by
any M ∈ MM(B1 ∪ H) iff O is satisfied by any N ∈ MM(B2 ∪ H) where B1 ∪ H and
B2 ∪ H are consistent. By putting O = B1 ∪ H , it holds that B1 ∪ H is satisfied by any
M ∈ MM(B1 ∪H) iff B1 ∪H is satisfied by any N ∈ MM(B2 ∪H). By putting O = B2 ∪H ,
it holds that B2 ∪ H is satisfied by any M ∈ MM(B1 ∪ H) iff B2 ∪ H is satisfied by any
N ∈ MM(B2 ∪H). As B1 ∪H is satisfied by any M ∈ MM(B1 ∪H) and B2 ∪H is satisfied
by any N ∈ MM(B2 ∪ H), it holds that B1 ∪ H is satisfied by any N ∈ MM(B2 ∪ H) and
B2 ∪ H is satisfied by any M ∈ MM(B1 ∪ H). Since any minimal model M of B1 ∪ H sat-
isfies every clause in B2 ∪ H , M ∈ Mod(B2 ∪ H). If M �∈ MM(B2 ∪ H), there is a minimal
model I ∈ MM(B2 ∪H) such that I ⊂ M and I satisfies B2 ∪H . Since any minimal model I

of B2 ∪H satisfies every clause in B1 ∪H , I ∈ Mod(B1 ∪H). But this is impossible because
M is a minimal model of B1 ∪ H . Hence, M ∈ MM(B2 ∪ H). Likewise, N ∈ MM(B2 ∪ H)

implies N ∈ MM(B1 ∪ H). Therefore, MM(B1 ∪ H) = MM(B2 ∪ H), so that B1 ≡ B2 by
Proposition 2.2.

10 Mach Learn (2011) 83: 1–29

Conversely, if B1 ≡ B2, MM(B1 ∪ H) = MM(B2 ∪ H) holds for any set H of clauses
(Proposition 2.2). Then, for any set H and for any set O of clauses, O is satisfied by any
M ∈ MM(B1 ∪ H) iff O is satisfied by any N ∈ MM(B2 ∪ H), and B1 ∪ H is consistent iff
B2 ∪H is consistent. Hence, B1 and B2 are inductively equivalent under the minimal model
semantics in CauInd. �

Theorem 3.6 (Condition for inductive equivalence under MM in learning from satisfiability)
For any two clausal theories B1 and B2, B1 ≡ MM

LFSB2 iff B1 ≡ B2.

Proof Suppose that B1 and B2 are inductively equivalent under the minimal model seman-
tics in LFS. Then, for any set H and for any set O of clauses, B1 ∪ H ∪ O is consistent iff
B2 ∪ H ∪ O is consistent. This condition reduces to that B1 ∪ H is consistent iff B2 ∪ H

is consistent for any set H of clauses (∗). If B1 �≡ B2, there is a ground clause C such that
B1 |= C but B2 �|= C. Then, B1 ∪ {¬C} is inconsistent, while B2 ∪ {¬C} is consistent. As
¬C is a conjunction of ground literals and is identified with a set of clauses, this contradicts
the fact (∗). Thus, the condition implies the equivalence relation B1 ≡ B2. The converse
implication clearly holds. �

Theorem 3.7 (Condition for inductive equivalence under MM in brave induction) For any
two clausal theories B1 and B2, B1 ≡ MM

BraIndB2 iff B1 ≡ B2.

Proof As inductive equivalence in CauInd implies inductive equivalence in BraInd (Proposi-
tion 3.1), B1 and B2 are inductively equivalent under the minimal model semantics in BraInd
if B1 ≡ B2 by Theorem 3.5. On the other hand, inductive equivalence in BraInd implies in-
ductive equivalence in LFS (Proposition 3.1), so B1 and B2 are inductively equivalent under
the minimal model semantics in BraInd only if B1 ≡ B2 by Theorem 3.6. �

By the results of Theorems 3.5, 3.6 and 3.7, together with those results under the classical
semantics, we conclude that

Theorem 3.8 (Identification of inductive equivalence in clausal theories) For any two
clausal theories B1 and B2, B1 ≡ SEM

I B2 iff B1 ≡ B2 where SEM is either Mod or MM
and I ∈ {CauInd,BraInd,LFS,DesInd}.

Deciding the inductive equivalence of two theories is intractable in general.2

Proposition 3.9 (Complexity for deciding inductive equivalence between clausal theories)
Deciding inductive equivalence of two propositional clausal theories is coNP-complete un-
der both the classical semantics and the minimal model semantics in four different induction
frameworks. The task is done in polynomial time when two theories are Horn.

Proof Given two propositional clausal theories B1 and B2, the problem of testing B1 ≡ B2

is equivalent to the problem of testing unsatisfiability of (B1 ∧ ¬B2) ∨ (¬B1 ∧ B2), which
is coNP-complete. Then, the result follows by Theorem 3.8. Next, given two Horn logic
programs B1 and B2, B1 ⊃ B2 is checked by testing unsatisfiability of B1 ∪ {¬ c} for each
clause c ∈ B2. As Horn SAT is linear, this is done in quadratic time. The converse implication
is checked in the same manner. �

2Throughout the paper, complexity results are stated in terms of the size of input background theories.

Mach Learn (2011) 83: 1–29 11

4 Inductive equivalence in Horn ILP systems

There are many ILP systems which use Horn logic programs as background theories. In
these systems, the condition of inductive equivalence is often relaxed. In this section, we
investigate inductive equivalence in some Horn ILP systems which are widely studied in the
literature.

4.1 FOIL

FOIL (Quinlan 1990) induces function-free definite clauses which cover a positive observa-
tion and uncover a negative observation together with a background theory. Given a predi-
cate p to be learned, it starts with the fact p(x1, . . . , xn) ← which is then specialized using
refinement operators that adds new literals to the body of the clause. FOIL repeatedly applies
a refinement operator until the clause does not imply any fact included in a negative obser-
vation for the predicate. Once a clause is added to a hypothesis, every ground fact implied
by that clause is deleted from a positive observation. The algorithm repeats the step until
all facts in a positive observation are covered. FOIL uses an information-based heuristic to
guide its search for hypotheses.

The logic for induction in FOIL is explanatory induction with a restricted problem setting.
Given a function-free definite logic program B (called a Datalog) and a set O of ground
facts, a hypothesis H covers O with respect to B in FOIL if

B ∪ H |= O (3)

where H is a set of function-free definite clauses satisfying the condition3:

H = {C | the predicate appearing in the head of a clause C appears in O}.

The declarative semantics of a definite logic program B is given by the unique minimal
model MB , called the least model. The least model has the model intersection property
(Van Emden and Kowalski 1976) such that

MB =
⋂

M∈Mod(B)

M.

Thus, the relation (3) is rewritten as

E ⊆ MB∪H

where MB∪H is the least model of B ∪ H . Note that B ∪ H is a definite logic program and
is always consistent. By this fact, inductive equivalence in FOIL is defined as follows.

Definition 4.1 (Inductive equivalence in FOIL) Two Datalog programs B1 and B2 are in-
ductively equivalent in FOIL if it holds that O ⊆ MB1∪H iff O ⊆ MB2∪H for any observation
O and for any hypothesis H .

3In Quinlan (1990), H contains non-Horn clauses having negative literals in its body, but the author explains
FOIL as a system for learning Horn clauses from data expressed as relations. To avoid ambiguity, here we
assume H as a set of Horn clauses which contain only atoms in their bodies.

12 Mach Learn (2011) 83: 1–29

Let H be a set of ground definite clauses and M a set of ground atoms. Then, define

TH (M) = {A | A ← A1, . . . ,An is in H and {A1, . . . ,An} ⊆ M}.

Theorem 4.1 (Condition for inductive equivalence in FOIL) Let B1 and B2 be two Datalog
programs. Then, B1 and B2 are inductively equivalent in FOIL iff B1 ≡w B2.

Proof For any O and H , O ⊆ MB1∪H iff O ⊆ MB2∪H

⇔ MB1∪H = MB2∪H . (∗)

Putting H = ∅, (∗) implies MB1 = MB2 . Hence, B1 ≡w B2.
Conversely, if B1 ≡w B2, then MB1 = MB2 . Suppose any set H of ground clauses

such that H = {A ← A1, . . . ,An | A ∈ E}. Then, MB1 ∪ TH (MB1) = MB2 ∪ TH (MB2).
Since MBi

∪ TH (MBi
) = MBi∪H for i = 1,2, MB1∪H = MB2∪H . Hence, O ⊆ MB1∪H iff

O ⊆ MB2∪H for any O and H . �

Example 4.1 Two programs

B1 = {p(x) ← q(x), r(a) ←},
B2 = {r(a) ←}

have the same least model {r(a)}, thereby weakly equivalent. Hence, B1 and B2 are induc-
tively equivalent in FOIL.

In Example 4.1, B1 and B2 are not inductively equivalent in explanatory induction in gen-
eral. In fact, for the observation O = {p(a)}, the hypothesis H = {q(x) ← r(x)} explains
p(a) in B1, but not in B2. The hypothesis H is not produced in FOIL, however, because the
predicate q appearing in the head does not appear in O .

4.2 GOLEM

GOLEM (Muggleton and Feng 1990) realizes explanatory induction in definite logic pro-
grams. It uses the algorithm of relative least generalization under subsumption (Plotkin
1971). We first review basic terms and results. A clause C1 subsumes another clause C2

relative to a program B , denoted by C1 �B C2, if there is a substitution θ such that
B |= C1θ → C2. A clause D is a relative least generalization under subsumption (rlgs)
of C1 and C2 with respect to B if D is the least upper bound of C1 and C2 under the order-
ing �B over the clausal language. The rlgs does not always exist but exists when B is a set
of ground atoms (Nienhuys-Cheng and De Wolf 1997).

Given a definite logic program B and a set O of ground facts, GOLEM constructs a
hypothesis H as follows:

B ∪ H |= O

⇔ H |= B → O

⇔ |= H → (¬B ∨ O).

At this point, GOLEM replaces B with the conjunction of ground atoms included in a finite
subset of the least model MB of B . For simplicity reasons, we suppose that the least model
MB is finite and replace B with MB . Let O = {A1, . . . ,Ak}. Then,

H → ¬MB ∨ O

Mach Learn (2011) 83: 1–29 13

where

¬MB ∨ O = (A1 ∨ ¬MB) ∧ · · · ∧ (Ak ∨ ¬MB)

with ¬MB = ∨
Ai∈MB

¬Ai . Next, the rlgs of O with respect to MB (written as rlgs(MB,O))
is computed as the least generalization under subsumption (lgs) of clauses (A1 ∨
¬MB), . . . , (Ak ∨ ¬MB) (written as lgs(A1 ∨ ¬MB, . . . ,Ak ∨ ¬MB)). A hypothesis H is
then put as

H = rlgs(MB,O)

which is a set of definite clauses.
Inductive equivalence in GOLEM is now defined as follows.

Definition 4.2 (Inductive equivalence in GOLEM) Let B1 and B2 be two definite logic pro-
grams such that each program has the least model as a finite set. Then, B1 and B2 are
inductively equivalent in GOLEM if rlgs(MB1 ,O) = rlgs(MB2 ,O) for any set O of ground
facts.

We then have the following result.

Theorem 4.2 (Condition for inductive equivalence in GOLEM) Let B1 and B2 be two defi-
nite logic programs. Then, B1 and B2 are inductively equivalent in GOLEM iff B1 ≡w B2.

Proof Suppose that B1 and B2 are inductively equivalent in GOLEM. Then, for any
set O = {A1, . . . ,Ak} of ground facts, rlgs(MB1 ,O) = rlgs(MB2 ,O) implies lgs(A1 ∨
¬MB1 , . . . ,Ak ∨ ¬MB1) = lgs(A1 ∨ ¬MB2 , . . . ,Ak ∨ ¬MB2). Put O = {A} for any ground
atom A. Then, lgs(A ∨ ¬MB1) = lgs(A ∨ ¬MB2) implies A ∨ ¬MB1 = A ∨ ¬MB2 thereby
MB1 = MB2 . Hence, B1 ≡w B2.

Conversely, if B1 ≡w B2, MB1 = MB2 . Then, for any set O = {A1, . . . ,Ak} of ground
facts, lgs(A1 ∨ ¬MB1 , . . . ,Ak ∨ ¬MB1) = lgs(A1 ∨ ¬MB2 , . . . ,Ak ∨ ¬MB2), so
rlgs(MB1 ,O) = rlgs(MB2 ,O). Hence, the result holds. �

Example 4.2 Consider two programs:

B1 = {has_wings(joe) ← bird(joe),

bird(tweety) ←,

bird(polly) ←},
B2 = {bird(tweety) ←,

bird(polly) ←}.

Given the observation O = {flies(tweety),flies(polly)}, both rlgs(MB1 ,O) and rlgs(MB2 ,O)

contain the single clause:

flies(x) ← bird(x).

This means that the first clause of B1 is of no use for induction in GOLEM. Note that B1 and
B2 are weakly equivalent, but they are not logically equivalent.

14 Mach Learn (2011) 83: 1–29

In the process of constructing inductive hypothesis H , GOLEM approximates B to a finite
subset of MB . However, rlgs(B,O) �= rlgs(MB,O) in general. In fact, in Example 4.2, given
O = {has_wing(joe)}, the hypothesis H = {bird(joe)} is obtained in B1 but not in B2. This
means that some hypotheses which are computed under rlgs might be lost by GOLEM.

4.3 PROGOL

PROGOL is also known as a Horn ILP system which realizes explanatory induction. It is
based on the inverse entailment algorithm developed in Muggleton (1995). Given a Horn
logic program B and a ground Horn clause O as an observation, suppose a Horn clause H

satisfying

B ∪ {H } |= O.

By inverting the entailment relation it becomes

B ∪ {¬O} |= ¬H.

Put ¬bot(B,O) as the conjunction of ground literals which are true in every model of B ∪
{¬O}. Then, a clause H is induced by inverse entailment (IE) if H |= bot(B,E) where
bot(B,E) is a clause called a bottom clause.4

Inductive equivalence in PROGOL is defined as follows.

Definition 4.3 (Inductive equivalence in PROGOL) Two Horn logic programs B1 and B2

are inductively equivalent in PROGOL if bot(B1,O) = bot(B2,O) for any ground Horn
clause O .

Then, we have the following result.

Theorem 4.3 (Condition for inductive equivalence in PROGOL) Two Horn logic programs
B1 and B2 are inductively equivalent under PROGOL iff B1 ≡ B2.

Proof B1 and B2 are inductively equivalent under PROGOL iff bot(B1,O) = bot(B2,O) for
any O . Then, ¬bot(B1,O) = ¬bot(B2,O), and B1 ∪ {¬O} |= L iff B2 ∪ {¬O} |= L for
any ground Horn clause O and for any ground literal L. Put O = ← A1, . . . ,An. Then,
B1 ∪ {A1, . . . ,An} |= L iff B2 ∪ {A1, . . . ,An} |= L for any {A1, . . . ,An}. Thus, for any finite
set F of ground atoms, B1 ∪F |= L iff B2 ∪F |= L. So, B1 |= F ⊃ L iff B2 |= F ⊃ L for any
finite set F of ground atoms and any ground literal L. This implies B1 ≡ B2. Conversely,
B1 ≡ B2 implies bot(B1,O) = bot(B2,O), hence the result holds. �

In PROGOL, weak equivalence of two programs is not sufficient for inductive equiva-
lence.

4Strictly speaking, PROGOL does not produce every clause satisfying the relation H |= bot(B,E) and is in
this sense incomplete (Badea and Stanciu 1999). But here we proceed our discussion by assuming an ideal
algorithm which computes every H satisfying the relation. CF-induction (Inoue 2004) realizes a sound and
complete induction algorithm based on IE in full clausal theories.

Mach Learn (2011) 83: 1–29 15

Example 4.3 Consider two programs:

B1 = {white_swan(c) ←}
B2 = {abnormal(x) ← black_swan(x),

white_swan(c) ←}.
Given the observation O = ← black_swan(c), it becomes

¬bot(B1,O) = white_swan(c) ∧ black_swan(c).

Then,

H1 = ← white_swan(x),black_swan(x)

becomes a hypothesis satisfying H1 |= bot(B1,E). By contrast,

¬bot(B2,O) = white_swan(c) ∧ black_swan(c) ∧ abnormal(c).

Then,

H2 = ← abnormal(x)

becomes a hypothesis satisfying H2 |= bot(B2,E). Note that B1 �≡ B2 but B1 ≡w B2.

4.4 CLAUDIEN

The system CLAUDIEN (De Raedt and Bruynooghe 1993; De Raedt and Dehaspe 1997b)
realizes descriptive induction under the completion semantics (Clark 1978). Given a definite
logic program B and a set O of definite clauses, CLAUDIEN produces a set H of clauses
satisfying

Comp(B ∪ O) |= H

where Comp represents Clark’s predicate completion.

Example 4.4 Let B = {human(s)} and O = {mortal(s)}. Then, the following clauses are all
possible solutions:

H1 = {mortal(x) ← human(x)},
H2 = {human(x) ← mortal(x)},
H3 = {human(x) ∨ mortal(x) ←}.

Note that in descriptive induction it is assumed that the universe defined by an observa-
tion together with a background theory is completely specified (De Raedt and Lavrač 1993).

Definition 4.4 (Inductive equivalence in CLAUDIEN) Let B1 and B2 be two definite logic
programs. Then, B1 and B2 are inductively equivalent in CLAUDIEN if it holds that

Comp(B1 ∪ O) |= H iff Comp(B2 ∪ O) |= H

for any observation O and for any hypothesis H such that B1 ∪O and B2 ∪O are consistent.

16 Mach Learn (2011) 83: 1–29

Table 1 Comparison of Horn
ILP systems System Language Induction Condition

FOIL Datalog ExpInd B1 ≡w B2

GOLEM Definite LP ExpInd B1 ≡w B2

PROGOL Horn LP ExpInd B1 ≡ B2

CLAUDIEN Definite LP DesInd B1 ≡ B2

Theorem 4.4 (Condition for inductive equivalence in CLAUDIEN) Two definite logic pro-
grams B1 and B2 are inductively equivalent in CLAUDIEN iff B1 ≡ B2.

Proof It is shown that B1 ≡ B2 iff Comp(B1 ∪ O) ≡ Comp(B2 ∪ O) for any clausal the-
ory O . The proof is similar to Proposition 2.2. �

The results of Sect. 4 are summarized in Table 1. Observe that the conditions of inductive
equivalence in FOIL and GOLEM are weaker than the condition of inductive equivalence in
explanatory induction (Theorem 3.2). This is due to the fact that these systems impose some
restrictions on the syntax of background theories, observations and hypotheses. By contrast,
the condition of inductive equivalence in PROGOL and CLAUDIEN is identical to the one in
clausal logic.

5 Inductive equivalence in nonmonotonic logic programs

5.1 Nonmonotonic logic programs

Nonmonotonic logic programs are logic programs with negation as failure (Baral and Gel-
fond 1994). We consider the class of extended disjunctive programs (Gelfond and Lifschitz
1991) in this paper. An extended disjunctive program (EDP) (or simply a program) is a set
of rules of the form:

L1; · · · ; Ll ← Ll+1 . . . ,Lm, not Lm+1, . . . , not Ln (n ≥ m ≥ l ≥ 0) (4)

where each Li is a positive/negative literal, i.e., A or ¬A for an atom A, and not is negation
as failure (NAF). not L is called an NAF-literal. The symbol “;” represents disjunction.
The left-hand side of “←” is the head, and the right-hand side is the body. For each rule
r of the form (4), head(r), body+(r) and body−(r) denote the sets of literals {L1, . . . ,Ll},
{Ll+1, . . . ,Lm}, and {Lm+1, . . . ,Ln}, respectively. Also, not_body−(r) denotes the set of
NAF-literals {not Lm+1, . . . , not Ln}. A disjunction of literals and a conjunction of (NAF-)
literals in a rule are identified with its corresponding sets of literals. A rule r is disjunctive
if head(r) contains more than one literal. A rule r is a constraint if head(r) = ∅; and r is a
fact if body(r) = ∅. A program is basic if no rule contains NAF-literals. A program, rule, or
literal is ground if it contains no variable. A propositional program is a finite set of ground
rules. A program P with variables is a shorthand of its ground instantiation ground(P), the
(possibly infinite) set of ground rules obtained from P by substituting variables in P by
elements of its Herbrand universe in every possible way. A program is called an extended
logic program (ELP) if it contains no disjunctive rule. An ELP is called a normal logic
program (NLP) if every literal Li appearing in the program is an atom.

Mach Learn (2011) 83: 1–29 17

A primary difference between nonmonotonic logic programs and clausal theories is that
a rule (4) is not a clause even if it contains no NAF-literal. For instance, a rule L1 ← L2 has
meaning different from ¬L2 ← ¬L1 or L1 ∨¬L2. The rule (4) is interpreted as an inference
rule rather than an implication formula (Gelfond and Lifschitz 1991). Thus, induction in
nonmonotonic logic programs is different from induction in clausal theories.

The semantics of an EDP is defined by the answer set semantics (Gelfond and Lifschitz
1991). The literal base Lit is the set of all ground literals in the language of a program.
Suppose a program P and a set of literals S(⊆ Lit). Then, the reduct P S is the program
which contains the ground rule head(r) ← body+(r) iff there is a rule r in ground(P) such
that body−(r) ∩ S = ∅. Given a basic program P , let S be a set of ground literals that is
(i) closed under P , i.e., for every ground rule r in ground(P), body(r) ⊆ S implies head(r)∩
S �= ∅; and (ii) logically closed, i.e., it is either consistent or equal to Lit. An answer set of
a basic program P is a minimal set S satisfying both (i) and (ii). Given an EDP P and a
set S of ground literals, S is an answer set of P if S is an answer set of P S . A program
has none, one, or multiple answer sets in general. The set of all answer sets of P is written
as AS(P). Here AS(P) is an antichain set, i.e., no element S ∈ AS(P) is a proper subset
of another element T ∈ AS(P). An answer set is consistent if it is not Lit. A program P

is consistent if it has a consistent answer set; otherwise, P is inconsistent. In normal logic
programs, answer sets are also called stable models (Gelfond and Lifschitz 1988). A set S

of ground literals satisfies a ground rule r if either S ∩ head(r) �= ∅, body+(r) \ S �= ∅ or
body−(r) ∩ S �= ∅. When a rule r contains variables, S satisfies r if S satisfies every ground
instance of r . S satisfies a set R of rules if S satisfies every rule in R. A program P satisfies
a set R of rules if every answer set of P satisfies every rule in R. A program P is consistent
if it has an answer set; otherwise P is inconsistent.

Example 5.1 Let P be the program:

p(x) ← not q(x),

q(x) ← not p(x),

r(a) ←

where AS(P) = {{p(a), r(a)}, {q(a), r(a)}}. Then, every answer set satisfies the rule
p(a) ; q(a) ←, while p(a) ← r(a) is satisfied by {p(a), r(a)}, but not by {q(a), r(a)}.

5.2 Inductive equivalence between EDPs

Four different induction frameworks in Sect. 2.2 are applied to induction in nonmonotonic
logic programs. In this section, we consider the following problem setting:

– a background theory B is given as an EDP under the answer set semantics SEM(B) =
AS(B)

– an observation O is a set of rules
– a hypothesis H is a set of rules

Note that in case of nonmonotonic logic programs, a background theory B could be in-
consistent. In this case, the introduction of H to B makes B ∪ H consistent. This is the
difference from the case of monotonic background theories. In case of monotonic theories,
an inconsistent B cannot become consistent by introducing any H .

18 Mach Learn (2011) 83: 1–29

Example 5.2 Let B be the program:

p ← not p.

Then, B is inconsistent, i.e., AS(B) = ∅. Putting H = {p ←}, B ∪ H becomes consistent,
i.e., AS(B ∪ H) = {{p}}.

Four different definitions of inductive equivalence are then considered under the answer
set semantics.

Definition 5.1 (Inductive equivalence in different frameworks of induction) Let B1 and B2

be two programs having the same literal base Lit. Then,

1. B1 and B2 are inductively equivalent under the answer set semantics in cautious induction
(written B1 ≡ AS

CauIndB2) if for any O and any H , O is satisfied by every S ∈ AS(B1 ∪ H)

iff O is satisfied by every S ∈ AS(B2 ∪ H), where B1 ∪ H and B2 ∪ H are consistent.
2. B1 and B2 are inductively equivalent under the answer set semantics in brave induction

(written B1 ≡ AS
BraIndB2) if for any O and any H , O is satisfied by some S ∈ AS(B1 ∪ H)

iff O is satisfied by some S ∈ AS(B2 ∪ H), where B1 ∪ H and B2 ∪ H are consistent.
3. B1 and B2 are inductively equivalent under the answer set semantics in learning from

satisfiability (written B1 ≡ AS
LFSB2) if for any O and any H , B1 ∪ H ∪ O is consistent iff

B2 ∪ H ∪ O is consistent.
4. B1 and B2 are inductively equivalent under the answer set semantics in descriptive

induction (written B1 ≡ AS
DesIndB2) if for any O and any H , H is satisfied by every

S ∈ AS(B1 ∪ O) iff H is satisfied by every S ∈ AS(B2 ∪ O), where B1 ∪ O and B2 ∪ O

are consistent.

In each case, we say that a hypothesis H covers (or explains) O with respect to B under
the answer set semantics in the induction framework I . Here, I is one of the four induction
frameworks presented above.

Next we provide a program transformation which is useful for subsequent discussion.
Given a set O of ground rules, any rule r in O is transformed to the set � of rules:

Gr ← Li for every Li ∈ head(r),

Gr ← not Lj for every Lj ∈ body+(r),

Gr ← Lk for every Lk ∈ body−(r),

where Gr is a new ground atom appearing nowhere in B and uniquely associated with
each r . With this setting, the next result holds.

Proposition 5.1 O is satisfied by an answer set of B ∪ H iff for any r ∈ O , Gr is included
in an answer set of B ∪ H ∪ �.

Proof O is satisfied by an answer set S of B ∪ H

iff for any r in O , either S ∩ head(r) �= ∅, body+(r) \ S �= ∅ or body−(r) ∩ S �= ∅ for some
S ∈ AS(B ∪ H)

iff B ∪ H ∪ � has an answer set T = S ∪ {Gr | r ∈ O} for some S ∈ AS(B ∪ H). �

Thus, any observation O as a set of rules is instantiated to its ground instances
ground(O), which is then transformed to a semantically equivalent observation as a set
of ground atoms.

Mach Learn (2011) 83: 1–29 19

Proposition 5.2 (Relations between different inductive equivalences) The following rela-
tions hold between equivalence relations in different induction.

1. B1 ≡ AS
CauIndB2 implies B1 ≡ AS

BraIndB2.

2. B1 ≡ AS
BraIndB2 iff B1 ≡ AS

LFSB2.

3. B1 ≡ AS
CauIndB2 iff B1 ≡ AS

DesIndB2.

Proof The results (1) and (3) follow from definitions. We show (2). If B1 ≡ AS
LFSB2, for any

H and any O , B1 ∪H ∪�∪{← not Gr | r ∈ ground(O)} is consistent iff B2 ∪H ∪�∪{←
not Gr | r ∈ ground(O)} is consistent. Put U = {Gr | r ∈ ground(O)}. Then, for any H and
any U , U ⊆ S for some consistent answer set S of B1 ∪H ∪� iff U ⊆ T for some consistent
answer set T of B2 ∪ H ∪ �. Hence, B1 ≡ AS

BraIndB2. The only-if part clearly holds. �

Proposition 5.2(2) presents that the notions of inductive equivalence in brave induction
and learning from satisfiability coincide under the answer set semantics.

We proceed to build conditions for inductive equivalence between EDPs.

Theorem 5.3 (Condition for inductive equivalence under AS in cautious induction) Let B1

and B2 be any EDPs. Then, B1 ≡s B2 implies B1 ≡ AS
CauIndB2. The converse implication also

holds for any H such that AS(B1 ∪ H) and AS(B2 ∪ H) are finite sets.5

Proof If B1 ≡s B2, AS(B1 ∪H) = AS(B2 ∪H) holds for any set H of rules. In this case, O

is satisfied by every answer set of B1 ∪H iff O is satisfied by every answer set of B2 ∪H for
any O and H such that B1 ∪H and B2 ∪H are consistent. Hence, B1 and B2 are inductively
equivalent in cautious induction.

Conversely, suppose that B1 and B2 are inductively equivalent in cautious induction.
Then, it holds that O is satisfied in every answer set of B1 ∪ H iff O is satisfied in every
answer set of B2 ∪ H for any O and any H such that B1 ∪ H and B2 ∪ H are consistent.
Suppose that there is a set S such that S ∈ AS(B1 ∪ H) \ AS(B2 ∪ H) for some H . For any
answer set Ti of B2 ∪ H , put

⋃

i

(S \ Ti) = U and
⋃

i

(Ti \ S) = V.

For some non-empty finite subset of U ′ ⊆ U and V ′ ⊆ V , construct the constraint

C : ← U ′, not V ′

where U ′ or V ′ is identified with the conjunction of literals included in each set. By U ′ ⊆ S

and V ′ ∩ S = ∅, S does not satisfy C.
If every answer set Ti of B2 ∪ H satisfies C, this contradicts the assumption that B1

and B2 are inductively equivalent. Else if some answer set Ti of B2 ∪ H does not satisfy
C, U ′ ⊆ Ti and V ′ ∩ Ti = ∅. For every such Ti , either S \ Ti �= ∅ or Ti \ S �= ∅ holds by
S �∈ AS(B2 ∪ H). For every Ti satisfying S \ Ti �= ∅, take one literal Li from S \ Ti and
collect such a literal from each Ti . Put the collection as W1:

W1 =
⋃

i

{Li | Li ∈ S \ Ti where S \ Ti �= ∅}.

5At the moment, the result is open when a program has an infinite number of answer sets.

20 Mach Learn (2011) 83: 1–29

Similarly, for every Ti satisfying Ti \ S �= ∅, take one literal Li from Ti \ S and collect such
a literal from each Ti . Put the collection as W2:

W2 =
⋃

i

{Li | Li ∈ Ti \ S where Ti \ S �= ∅}.

Here, W1 and W2 are finite set, because B2 ∪ H has a finite number of answer sets. Suppose
the constraint

D : ← U,W1, not V, not W2.

As W1 �⊆ Ti or W2 ∩ Ti �= ∅ holds for any Ti , Ti satisfies D. Thus, D is satisfied by every
answer set of B2 ∪ H . On the other hand, W1 ⊆ S and W2 ∩ S = ∅ imply that S does not
satisfy D. Then, D is not satisfied by some answer set of B1 ∪ H . This contradicts the
assumption that B1 and B2 are inductively equivalent. �

Theorem 5.4 (Condition for inductive equivalence under AS in brave induction) Let B1 and
B2 be any EDPs. Then, B1 ≡ AS

BraIndB2 iff B1 ≡s B2.

Proof When B1 and B2 are inductively equivalent in brave induction, it holds that O is
satisfied in an answer set of B1 ∪ H iff O is satisfied in an answer set of B2 ∪ H for any
O and any H such that B1 ∪ H and B2 ∪ H are consistent. Then, for any set O of ground
literals, O ⊆ S for an answer set S of B1 ∪ H iff O ⊆ T for an answer set T of B2 ∪ H .
Putting O = S, S is an answer set of B1 ∪ H iff S ⊆ T for an answer set T of B2 ∪ H (∗).
Putting O = T , T is an answer set of B2 ∪ H iff T ⊆ S ′ for an answer set S ′ of B1 ∪ H (†).
By (∗) and (†), S is an answer set of B1 ∪ H iff S ⊆ T ⊆ S ′ for an answer set T of B2 ∪ H

and for an answer set S ′ of B1 ∪ H . Since AS(B1 ∪ H) is an antichain set, S = T . Thus, S

is an answer set of B1 ∪ H iff S is an answer set of B2 ∪ H for any H . Hence, B1 and B2

are strongly equivalent.
Conversely, if B1 ≡s B2, AS(B1 ∪ H) = AS(B2 ∪ H) for any set H of rules. Then, O is

satisfied in an answer set of B1 ∪ H iff O is satisfied in an answer set of B2 ∪ H for any set
O of rules. Hence, B1 ≡ AS

BraIndB2 holds. �

Theorem 5.5 (Condition for inductive equivalence under AS in learning from satisfiability)
Let B1 and B2 be any EDPs. Then, B1 ≡ AS

LFSB2 iff B1 ≡s B2.

Proof The result holds by Theorems 5.2(2) and 5.4. �

The complexity of testing strong equivalence of two propositional EDPs is coNP-
complete (Turner 2003). Hence we have the next result.

Proposition 5.6 (Complexity for deciding inductive equivalence between EDPs) Deciding
inductive equivalence of two propositional EDPs is coNP-complete under the answer set
semantics in four different induction frameworks.

5.3 Inductive equivalence in nonmonotonic ILP systems

In this section, we investigate inductive equivalence in two nonmonotonic ILP systems.

Mach Learn (2011) 83: 1–29 21

5.3.1 Induction of stable models

Otero (2001) characterizes induction problems in normal logic programs (NLPs) under the
stable model semantics. Recall that an NLP is a set of rules of the form:

A0 ← A1, . . . ,Am, not Am+1, . . . , not An (n ≥ m ≥ 0) (5)

where each Ai is an atom. Answer sets coincide with stable models in NLPs, so that Otero’s
framework is considered a special case of induction under the answer set semantics. Otero
introduces different types of induction for positive/negative observations, but here we con-
sider the so-called induction from non-complete sets which is the usual ILP setting for posi-
tive observations.

Suppose a background theory B as an NLP, and a set O of ground atoms as a positive
observation such that O is not satisfied by B . The goal is to find a set H of rules satisfying
the condition that O is satisfied by every stable model of B ∪ H . Thus, Otero’s frame-
work realizes cautious induction in nonmonotonic logic programs. An interpretation M is a
monotonic model of an NLP if M satisfies every rule in B . A stable model is a monotonic
model, but not vice versa. Given an observation O , an interpretation M is an extension of O

iff O ⊆ M . He then captures the computation of H as an extension M of O that becomes a
stable model of B ∪ M . That is, H = M satisfying O ⊆ M and M ∈ AS(B ∪ M) becomes
a solution. Note that in this definition a hypothesis H is given as a set of ground atoms.

Let ISM(B,O) be the collection of H defined as above. Then, inductive equivalence in
induction of stable models (ISM) is defined as follows.

Definition 5.2 (Inductive equivalence in ISM) Two NLPs B1 and B2 are inductively equiv-
alent in ISM if ISM(B1,O) = ISM(B2,O) for any set O of ground atoms.

Proposition 5.7 (Otero 2001) Given an NLP B , M is a monotonic model of B iff M is a
stable model of B ∪ M .

Let MonMod(B) be the set of monotonic models of B . Then we have the following result.

Theorem 5.8 (Condition for inductive equivalence in ISM) Two NLPs B1 and B2 are in-
ductively equivalent in ISM iff MonMod(B1) = MonMod(B2).

Proof Suppose that B1 and B2 are inductively equivalent in ISM. For any M ∈ ISM(B1,O),
M is a stable model of B1 ∪ M and a monotonic model of B1 (Proposition 5.7).
Then, ISM(B1,O) = ISM(B2,O) implies MonMod(B1) = MonMod(B2). Conversely, if
MonMod(B1) = MonMod(B2), for any set M of atoms, M is a stable model of B1 ∪ M iff
M is a stable model of B2 ∪ M . Then, for any set O of ground atoms, M(⊇ O) is a stable
model of B1 ∪ M iff M is a stable model of B2 ∪ M . Hence, ISM(B1,O) = ISM(B2,O). �

Example 5.3 Let B1 = {p ← not q} and B2 = {q ← not p}. For O = {p}, put its extension
as M = {p}. Then, H = {p ←} becomes a solution in both B1 and B2. Note that B1 �≡w B2

but MonMod(B1) = MonMod(B2).

Since AS(B) ⊆ MonMod(B), the above result implies that inductive equivalence in
ISM does not require the condition of strong nor weak equivalence. It is worth noting

22 Mach Learn (2011) 83: 1–29

that induction in ISM can be reformulated using classical logic. Given an NLP B , con-
sider a clausal theory Cl(B) which is obtained from B by replacing every NAF-literal
not A in (5) with a negative literal ¬A. Then, monotonic models of B coincide with Her-
brand models of Cl(B). Thus, the inductive equivalence in ISM is translated into the prob-
lem of inductive equivalence under the classical semantics, and Theorem 5.8 implies that
ISM(B1,E) = ISM(B2,E) iff Cl(B1) ≡ Cl(B2).

5.3.2 Brave induction from answer sets

Sakama and Inoue (2009b) introduce an algorithm for brave induction in nonmonotonic
logic programs. Given a background theory B as an EDP and a set O of ground literals as
an observation, the algorithm BRAINnot computes a set H of rules as a hypothesis. Before
presenting an algorithm, a couple of notions are in order. Given a literal L, pred(L) and
const(L) represent the predicate of L and the constants appearing in L, respectively. Let
L0 be a ground literal and S a set of ground literals. Then, L1 ∈ S is relevant to L0 if either
(i) const(L0)∩ const(L1) �= ∅, or (ii) for some literal L2 ∈ S, const(L1)∩ const(L2) �= ∅ and
L2 is relevant to L0. Otherwise, L1 ∈ S is irrelevant to L0. Rules r1, . . . , rk are comparable
if there is a predicate appearing in every head(r1), . . . ,head(rk).

BRAINnot constructs hypotheses in the following two steps.6 First, for a consistent answer
set S of B , construct a finite and consistent set RS of ground rules satisfying the following
conditions. For any rule r ∈ RS ,

1. head(r) ⊆ O and for any L ∈ O , there is a rule r ∈ RS such that head(r) = {L},
2. body+(r) ⊆ P where P = {L | L ∈ S and L is relevant to the literal in head(r)},
3. body−(r) ⊆ N where N = {L | L ∈ Lit \ (S ∪ �) and L is relevant to the literal

in head(r) and appears in ground(B)}
where � = {L | L ∈ Lit and pred(L) appears in O}. In the second and third conditions, we
put body+(r) = P and body−(r) = N if P and N are finite sets.

Second, for the set RS of rules obtained as above, RS is partitioned as RS = R1 ∪· · ·∪Rn

where each Ri (1 ≤ i ≤ n) is a comparable set of ground rules. Then, the least generalization
under subsumption of each Ri is computed and collected as7

lgs(RS) = {lgs(R1), . . . , lgs(Rn)}.

lgs(RS) is a solution of brave induction if B ∪ lgs(RS) is consistent.

Example 5.4 Suppose the background theory B:

innocent(x) ← not guilty(x),

guilty(x) ← not innocent(x),

suspect(a) ←,

suspect(b) ←,

6The algorithm in Sakama and Inoue (2009b) has additional two steps for constructing weak hypotheses and
optimization, but we omit these steps here for simplicity reasons.
7The lgs of rules is computed in the same way as the case of clauses.

Mach Learn (2011) 83: 1–29 23

which has four answer sets:

S1 = {suspect(a), suspect(b),guilty(a),guilty(b)},
S2 = {suspect(a), suspect(b),guilty(a), innocent(b)},
S3 = {suspect(a), suspect(b), innocent(a),guilty(b)},
S4 = {suspect(a), suspect(b), innocent(a), innocent(b)}.

Given the observation O = {charged(a), charged(b)}, the set of ground rules

RS1 = {charged(a) ← suspect(a),guilty(a),not innocent(a),

charged(b) ← suspect(b),guilty(b),not innocent(b)}
is constructed using the answer set S1. The lgs of RS1 becomes

lgs(RS1) = {charged(x) ← suspect(x),guilty(x), not innocent(x)},
then B ∪ lgs(RS1) has the answer set S1 ∪ {charged(a), charged(b)} which satisfies O .

By the definition, different hypotheses are constructed by different answer sets. Now we
define inductive equivalence in BRAINnot as follows.

Definition 5.3 (Inductive equivalence in BRAINnot) Two EDPs B1 and B2 are inductively
equivalent in BRAINnot if for any set O of ground literals, lgs(RS) = lgs(RT) holds for
some consistent S ∈ AS(B1) and some consistent T ∈ AS(B2) such that B1 ∪ lgs(RS) and
B2 ∪ lgs(RT) are consistent.

Then we have the following result.

Theorem 5.9 (Condition for inductive equivalence in BRAINnot) Two EDPs B1 and B2 are
inductively equivalent in BRAINnot iff B1 ≡s B2.

Proof Suppose two ground programs B1 and B2 which are not strongly equivalent. Put
O = {L} such that L appears nowhere in B1, but B2 contains the constraint ← L. With
this setting, for some answer set S of B1, RS includes a rule r such that head(r) = L,
body+(r) ⊆ S and body−(r) ∩ S = ∅. Also, for some answer set T of B2, RT includes a
rule r such that head(r) = L, body+(r) ⊆ T and body−(r) ∩ T = ∅. In this case, however,
B1 ∪ RS is consistent, but B2 ∪ RT is inconsistent. Hence, B1 and B2 are not inductively
equivalent. The converse implication clearly holds. �

6 Discussion

6.1 Comparison of conditions for inductive equivalence

The results of this paper are summarized in Table 2. When the representation language
is clausal logic, logical equivalence is necessary and sufficient for inductive equivalence
between two background theories in each induction under both classical and the minimal

24 Mach Learn (2011) 83: 1–29

Table 2 Comparison of
conditions for inductive
equivalence

Induction Representation language (semantics)

Clausal logic (Mod, MM) Nonmonotonic LP (AS)

CauInd B1 ≡ B2 B1 ≡s B2

BraInd B1 ≡ B2 B1 ≡s B2

LFS B1 ≡ B2 B1 ≡s B2

DesInd B1 ≡ B2 B1 ≡s B2

model semantics. By contrast, when the representation language is nonmonotonic logic pro-
gramming, strong equivalence is necessary and sufficient for inductive equivalence between
two background theories in each induction under the answer set semantics. Since B1 ≡ B2 iff
B1 ≡s B2 in clausal logic under both SEM(B) = Mod(B) and SEM(B) = MM(B), we can
conclude that strong equivalence of two background theories is necessary and sufficient for
inductive equivalence in each induction. On the other hand, the condition of strong equiv-
alence is sometimes relaxed to weak equivalence or other weaker equivalence relations in
particular induction algorithms under restricted problem settings.

From the computational viewpoint, testing strong equivalence of propositional EDPs is
converted to the problem of propositional entailment in classical logic (Lin 2002). The prob-
lem of testing strong equivalence is then solved using existing SAT solvers. For predicate
programs with a finite domain, testing strong equivalence is also possible by instantiating
a program into a finite propositional one. There is a system for testing strong equivalence
of function-free finite nonmonotonic logic programs (Janhunen and Oikarinen 2004). Exis-
tence of no procedure for testing strong equivalence of logic programs with functions would
restrict practical application of inductive equivalence in ILP. Nevertheless, inductive equiva-
lence is efficiently testable when background theories are given as function-free finite Horn
logic program (or Datalog) or a database that is a collection of propositional sentences.

6.2 Relation to abductive equivalence

Inoue and Sakama (2005, 2006a, 2006b) have studied equivalence relations in abductive
frameworks. Given a background theory B and a set A of candidate hypotheses (called ab-
ducibles), an abductive framework is defined as a tuple 〈B,A〉. Two abductive frameworks
〈B1,A1〉 and 〈B2,A2〉 are called explainable equivalent if, for any observation O , there is
an explanation of O in 〈B1,A1〉 iff there is an explanation of O in 〈B2,A2〉. On the other
hand, two programs are called explanatorily equivalent if, for any observation O , O is an
explanation of O in 〈B1,A1〉 iff O is an explanation of O in 〈B2,A2〉. The former compares
explainability of observations in different background theories, while the latter compares
explanation contents of observations. Explanatory equivalence is stronger than explainable
equivalence, and the former implies the latter. The paper (Inoue and Sakama 2005) intro-
duces two equivalence notions for first-order abduction and abductive logic programming
(ALP), and the paper (Inoue and Sakama 2006a) applies the notion to extended abduction
of (Inoue and Sakama 1995). The paper (Inoue and Sakama 2006b) also argues equivalence
between minimal explanations.

Comparing (Inoue and Sakama 2005, 2006a, 2006b) with our present work, some inter-
esting connections are observed. When underlying logic is first-order logic, logical equiva-
lence of two theories is a necessary and sufficient condition for explanatory equivalence in
abduction. When a background theory is represented by a nonmonotonic logic program, on
the other hand, 〈B1,A1〉 and 〈B2,A2〉 are explanatorily equivalent iff B1 and B2 are strongly

Mach Learn (2011) 83: 1–29 25

equivalent. Those results have connection to the results of Theorems 3.3, 3.7, and 5.4 of this
paper. However, there are some important differences between the previous studies on ab-
ductive equivalence and the results of this paper. First, the framework of ALP in Inoue and
Sakama (2005, 2006a, 2006b) characterizes equivalence relations in brave abduction. That
is, given a logic program B , a hypothesis H explains an observation G if G is true in an
answer set of B ∪H . This paper characterizes the problem of inductive equivalence not only
in brave induction, but also in other forms of induction. Second, in abductive frameworks a
hypothesis space A is prespecified as abducibles and possible explanations for a given obser-
vation are constructed as a subset of abducibles. The existence of A in abductive logic pro-
grams results in characterization by relative strong equivalence, i.e., two programs B1 and
B2 are explanatory equivalent iff they are strongly equivalent with respect to A. Moreover, in
abductive logic programming, abducibles and observations are usually restricted to (ground)
literals. In ILP, on the other hand, hypotheses and observations are general rules rather than
facts. Besides these differences, both abduction and induction require strong equivalence
of two (nonmonotonic) logic programs to identify the results of abductive/inductive infer-
ence. The essence of this lies in the fact that abduction and induction are both ampliative
reasoning and extend theories. Strong equivalence takes the influence of addition of a rule
set to each program into account, so that it succeeds in characterizing the effect of abduc-
tion/induction that are not captured by weak equivalence of programs. In Lifschitz et al.
(2001), it is argued that strong equivalence is useful to simplify a part of a program without
looking at the other parts. On the other hand, a series of studies (Inoue and Sakama 2005,
2006a, 2006b) and the result of this paper reveal that strong equivalence has another impor-
tant applications for testing equivalence of background theories in abductive and inductive
logic programming.

6.3 Program development in ILP

As presented in Sect. 4, there are many ILP systems which handle Horn logic programs
as background theories. In Horn logic programs, program transformations which pre-
serve weak equivalence of programs are popularly used for optimizing programs. Par-
tial evaluation or unfold/fold transformations are of this kind (Tamaki and Sato 1984;
Pettorossi and Proietti 1994). For instance, given the program

B1 = {p(x) ← q(x), q(x) ← r(x), r(a) ←},

unfolding the first clause by the second one results in the program

B2 = {p(x) ← r(x), q(x) ← r(x), r(a) ←}.

On the other hand, in B2 folding the first clause by the second one results in the program B1.
B1 and B2 have the same least model thereby weakly equivalent, but not logically equivalent.
In ILP, unfolding is often used as an operator for specialization (Boström and Idestam-
Almquist 1994), and folding is used as an operator for generalization under the name of
inverse resolution (Muggleton and Buntine 1992).

In Sect. 3.2 we observe that logical equivalence of two clausal theories is necessary
and sufficient to guarantee inductive equivalence under the minimal model semantics. Since
weak equivalence provides a weaker condition than logical equivalence (Proposition 2.3),
the condition of weak equivalence of two clausal theories is not sufficient for preserving
inductive equivalence under the minimal model semantics in general. This result brings

26 Mach Learn (2011) 83: 1–29

an important implication in program development in ILP that basic program transforma-
tions, such as unfold/fold transformations, are not applicable for optimizing background
theories in ILP. If used, those transformations change solutions of induction in general. In
the above example, B1 and B2 are not inductively equivalent in explanatory induction as
H = {q(a) ←} explains p(a) in B1 but does not in B2. Nevertheless, those transformations
are still effective as far as one uses induction algorithms that require the condition of weak
equivalence. In Sect. 4, we observe that FOIL and GOLEM are of this kind, but PROGOL and
CLAUDIEN are not. It is also known that unfold/fold transformations do not preserve strong
equivalence of nonmonotonic logic programs (Osorio et al. 2001), so that those transfor-
mations cannot be used for program optimization in nonmonotonic ILP without changing
solutions in general.

6.4 Verification of algorithms

If an induction algorithm produces different hypotheses from two different background the-
ories, those theories are considered to be inductively inequivalent. It may happen, how-
ever, that some algorithm may produce different hypotheses from two background theories
due to its incompleteness/incorrectness. If two strongly equivalent programs induce dif-
ferent hypotheses in face of some observation, it indicates that the induction algorithm is
incomplete or incorrect. In this way, inductive equivalence would be used for testing cor-
rectness/completeness of induction algorithms. We consider that any induction algorithm
should compute the same hypotheses from two different background theories as far as they
are inductively equivalent. With this regard, inductive equivalence has an application to ver-
ification of induction algorithms.

For another application, inductive equivalence would be used for comparing capabilities
of different induction algorithms. Let α(B,O) be the set of hypotheses induced by an algo-
rithm α using a background theory B and an observation O . For two different induction al-
gorithms α1 and α2 under a common problem setting, suppose that α1(B1,O) = α1(B2,O)

implies α2(B1,O) = α2(B2,O), but not vice versa. In this case, α1 is considered induc-
tively more sensitive than α2 in the sense that α1 may distinguish different background
theories that are not distinguished by α2. For instance, suppose any ground Horn logic pro-
gram B and any set O of ground atoms. In this problem setting, we can say that PRO-
GOL is inductively more sensitive than GOLEM, since bot(B1,E) = bot(B2,O) implies
rlgs(MB1 ,O) = rlgs(MB2 ,O) but not vice versa. (This is due to the fact that B1 ≡ B2 im-
plies B1 ≡w B2 but not vice versa.) Thus, inductive equivalence is also useful for evaluating
capabilities of induction algorithms.

7 Concluding remarks

This paper has studied equivalence issues in induction and inductive logic programming.
We introduced the notion of inductive equivalence which compares hypotheses that explain
observations with respect to different background theories. Two different logics for rep-
resentation languages – clausal theories and nonmonotonic logic programming, and four
different frameworks of induction – cautious induction, brave induction, learning from sat-
isfiability, and descriptive induction, were considered. The results of this paper show that
logical equivalence is necessary and sufficient for inductive equivalence in clausal theories,
while strong equivalence is necessary and sufficient in nonmonotonic extended disjunctive
programs. On the other hand, we also observed that existing Horn ILP systems sometimes

Mach Learn (2011) 83: 1–29 27

require weaker conditions of equivalence under restricted problem settings. We addressed
that inductive equivalence has potential applications for verification and evaluation of induc-
tion algorithms. We also argued that program transformations which are popularly used in
logic programming generally do not preserve inductive equivalence of programs. This is an
important caution for program development in ILP which has been receiving little attention
in the field.

Inductive equivalence considered in this paper guarantees coincidence of every hypoth-
esis induced by different background theories. In practice, however, the exact coincidence
of whole hypotheses is not always requested and one may be interested in preserving some
preferred hypotheses. The criteria of preference of hypothesis depends on applications and
it is often specified under the name of induction bias. In the context of abduction, pre-
ferred hypotheses are referred to “best explanations”. In Inoue and Sakama (2006b), it is
proved that two abductive theories are explanatory equivalent iff they have the same mini-
mal explanations for any observation. Sakama and Inoue (1995) introduce several program
transformations which preserve best explanations in abductive logic programming. Induc-
tive equivalence of preferred hypotheses and program transformations for preserving those
hypotheses are left for future research.

References

Badea, L., & Stanciu, M. (1999). Refinement operators can be (weakly) perfect. In Lecture notes in artificial
intelligence: Vol. 1634. Proceedings of the 9th international workshop on inductive logic programming
(pp. 21–32). Berlin: Springer.

Baral, C., & Gelfond, M. (1994). Logic programming and knowledge representation. Journal of Logic Pro-
gramming, 19/20, 73–148.

Bossu, G., & Siegel, P. (1985). Saturation, nonmonotonic reasoning and the closed-world assumption. Artifi-
cial Intelligence, 25, 13–63.

Boström, H., & Idestam-Almquist, P. (1994) Specialization of logic programs by pruning SLD-trees. In Pro-
ceedings of the 4th international workshop on inductive logic programming (pp. 31–48).

Clark, K. L. (1978). Negation as failure. In H. Gallaire, & J. Minker (Eds.), Logic and data bases (pp. 293–
322). New York: Plenum.

De Raedt, L. (1997). Logical settings for concept-learning. Artificial Intelligence, 95, 187–201.
De Raedt, L., & Bruynooghe, M. (1993). A theory of clausal discovery. In Proceedings of the 13th interna-

tional joint conference on artificial intelligence (pp. 1058–1063). San Mateo: Morgan Kaufmann.
De Raedt, L., & Dehaspe, L. (1997a) Learning from satisfiability. In Proceedings of the 9th Dutch conference

on artificial intelligence (pp. 303–312).
De Raedt, L., & Dehaspe, L. (1997b). Clausal discovery. Machine Learning, 26(2–3), 99–146.
De Raedt, L., & Lavrač, N. (1993). The many faces of inductive logic programming. In Lecture notes in com-

puter science: Vol. 689. Methodologies for intelligent systems, 7th international symposium (pp. 435–
449). Berlin: Springer.

Denecker, M., & Kakas, A. C. (2002). Abductive logic programming. In A. C. Kakas, & F. Sadri (Eds.), Lec-
ture notes in artificial intelligence: Vol. 2407. Computational logic: logic programming and beyond—
essays in honour of Robert A. Kowalski, Part I (pp. 402–436). Berlin: Springer.

Eiter, T., & Fink, M. (2003). Uniform equivalence of logic programs under the stable model semantics. In
Lecture notes in computer sciences: Vol. 2916. Proceedings of the 19th international conference on logic
programming (pp. 224–238). Berlin: Springer.

Flach, P. A. (1996). Rationality postulates for induction. In Proceedings of the 6th international conference
on theoretical aspects of rationality and knowledge (pp. 267–281). San Mateo: Morgan Kaufmann.

Flach, P. A., & Kakas, A. C. (2000). Abductive and inductive reasoning: background and issues. In P. A. Flach,
& A. C. Kakas (Eds.), Abduction and induction—essays on their relation and integration (pp. 1–27).
Norwell: Kluwer Academic.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In Proceedings of
the 5th international conference and symposium on logic programming (pp. 1070–1080). Cambridge:
MIT Press.

28 Mach Learn (2011) 83: 1–29

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New
Generation Computing, 9, 365–385.

Inoue, K. (2004). Induction as consequent finding. Machine Learning, 55, 109–135.
Inoue, K., & Sakama, C. (1995). Abductive framework for nonmonotonic theory change. In Proceedings

of the 14th international joint conference on artificial intelligence (pp. 204–210). San Mateo: Morgan
Kaufmann.

Inoue, K., & Sakama, C. (2004). Equivalence of logic programs under updates. In Lecture notes in artificial
intelligence: Vol. 3229. Proceedings of the 9th European conference on logics in artificial intelligence
(pp. 174–186). Berlin: Springer.

Inoue, K., & Sakama, C. (2005) Equivalence in abductive logic. In Proceedings of the 19th international joint
conference on artificial intelligence (pp. 472–477).

Inoue, K., & Sakama, C. (2006a). On abductive equivalence. In L. Magnani (Ed.), Model-based reasoning in
science and engineering: cognitive science, epistemology, logic. Studies in logic (pp. 333–352). London:
College Publications.

Inoue, K., & Sakama, C. (2006b). Abductive equivalence in first-order logic. Logic Journal of the IGPL.
Special Issue: Abduction, Practical Reasoning, and Creative Inferences in Science, 14(2), 333–346.

Janhunen, T., & Oikarinen, E. (2004). LPEQ and DLPEQ—translators for automated equivalence testing of
logic programs. In Lecture notes in artificial intelligence: Vol. 2923. Proceedings of the 7th international
conference of logic programming and nonmonotonic reasoning (pp. 336–340). Berlin: Springer.

Lachiche, N. (2000). Abduction and induction from a non-monotonic reasoning perspective. In P. A. Flach, &
A. C. Kakas (Eds.), Abduction and induction—essays on their relation and integration (pp. 107–116).
Norwell: Kluwer Academic.

Lifschitz, V., Pearce, D., & Valverde, A. (2001). Strongly equivalent logic programs. ACM Transactions on
Computational Logic, 2, 526–541.

Lin, F. (2002). Reducing strong equivalence of logic programs to entailment in classical propositional logic.
In Proceedings of the 8th international conference on principles of knowledge representation and rea-
soning (pp. 170–176). San Mateo: Morgan Kaufmann.

Maher, M. J. (1988). Equivalence of logic programs. In J. Minker (Ed.), Foundations of deductive databases
and logic programming (pp. 627–658). San Mateo: Morgan Kaufmann.

McCarthy, J. (1980). Circumscription—a form of nonmonotonic reasoning. Artificial Intelligence, 13, 27–39.
Minker, J. (1982). On indefinite data bases and the closed world assumption. In Lecture notes in computer

science: Vol. 138. Proceedings of the 6th international conference on automated deduction (pp. 292–
308). Berlin: Springer.

Muggleton, S. (Ed.) (1992). Inductive logic programming. San Diego: Academic Press.
Muggleton, S. (1995). Inverse entailment and progol. New Generation Computing, 13, 245–286.
Muggleton, S., & Buntine, W. (1992). Machine invention of first-order predicate by inverting resolution. In

S. Muggleton (Ed.), Inductive logic programming (pp. 261–280). San Diego: Academic Press.
Muggleton, S., & Feng, C. (1990). Efficient induction algorithm. In S. Muggleton (Ed.), Inductive logic

programming (pp. 281–298). San Diego: Academic Press.
Nienhuys-Cheng, S.-H., & De Wolf, R. (1997). Lecture notes in artificial intelligence: Vol. 228. Foundations

of inductive logic programming. Berlin: Springer.
Osorio, M., Navarro, J. A., & Arrazola, J. (2001). Equivalence in answer set programming. In Lecture notes

in computer science: Vol. 2372. Proceedings of the 11th international workshop on logic based program
synthesis and transformation (pp. 57–75). Berlin: Springer.

Otero, R. P. (2001). Induction of stable models. In Lecture notes in artificial intelligence: Vol. 2157. Pro-
ceedings of the 11th international conference on inductive logic programming (pp. 193–205). Berlin:
Springer.

Pettorossi, A., & Proietti, M. (1994). Transformation of logic programs: foundations and techniques. Journal
of Logic Programming, 19/20, 261–320.

Plotkin, G. D. (1971). A further note on inductive generalization. In B. Meltzer, & D. Michie (Eds.), Machine
intelligence (Vol. 6, pp. 101–124). Edinburgh: Edinburgh University Press.

Quinlan, R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
Sagiv, Y. (1988). Optimizing datalog programs. In J. Minker (Ed.), Foundations of deductive databases and

logic programming (pp. 659–668). San Mateo: Morgan Kaufmann.
Sakama, C., & Inoue, K. (1995). The effect of partial deduction in abductive reasoning. In Proceedings of the

12th international conference on logic programming (pp. 383–397). Cambridge: MIT Press.
Sakama, C., & Inoue, K. (2005). Inductive equivalence of logic programs. In Lecture notes in artificial in-

telligence: Vol. 3625. Proceedings of the 15th international conference on inductive logic programming
(pp. 312–329). Berlin: Springer.

Sakama, C., & Inoue, K. (2009a). Equivalence issues in abduction and induction. Journal of Applied Logic,
7(3), 318–328.

Mach Learn (2011) 83: 1–29 29

Sakama, C., & Inoue, K. (2009b). Brave induction: a logical framework for learning from incomplete infor-
mation. Machine Learning, 76(1), 3–35.

Tamaki, H., & Sato, T. (1984). Unfold/fold transformation of logic programs. In Proceedings of the 2nd
international conference on logic programming (pp. 127–138).

Turner, H. (2003). Strong equivalence made easy: nested expressions and weight constraints. Theory and
Practice of Logic Programming, 3(4–5), 609–622.

Van Emden, M. H., & Kowalski, R. A. (1976). The semantics of predicate logic as a programming language.
Journal of the ACM, 23(4), 733–742.

	Inductive equivalence in clausal logic and nonmonotonic logic programming
	Abstract
	Introduction
	Logical framework
	Clausal theories
	Logics of induction
	Equivalence relation

	Inductive equivalence in clausal logic
	Inductive equivalence
	Inductive equivalence between clausal theories

	Inductive equivalence in Horn ILP systems
	Foil
	Golem
	Progol
	Claudien

	Inductive equivalence in nonmonotonic logic programs
	Nonmonotonic logic programs
	Inductive equivalence between EDPs
	Inductive equivalence in nonmonotonic ILP systems
	Induction of stable models
	Brave induction from answer sets

	Discussion
	Comparison of conditions for inductive equivalence
	Relation to abductive equivalence
	Program development in ILP
	Verification of algorithms

	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

