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Abstract We develop a general theoretical framework for statistical logical learning with
kernels based on dynamic propositionalization, where structure learning corresponds to in-
ferring a suitable kernel on logical objects, and parameter learning corresponds to function
learning in the resulting reproducing kernel Hilbert space. In particular, we study the case
where structure learning is performed by a simple FOIL-like algorithm, and propose alter-
native scoring functions for guiding the search process. We present an empirical evaluation
on several data sets in the single-task as well as in the multi-task setting.
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1 Introduction

Inductive logic programming research has focused on concept-learning from examples.
Within the field of machine learning, ILP has stressed the need for producing hypotheses that
can be readily interpreted by human experts and that can be used for providing explanations
for predictions. This explains why traditional ILP methods have not always incorporated
statistical robustness principles needed to handle noise. The recently emerged field of prob-
abilistic ILP, also known as statistical relational learning (SRL) (Getoor and Taskar 2007;
De Raedt et al. 2008) attempts to alleviate this situation while retaining the ability to explain
the data. Most efforts in SRL have focused on extensions of various probabilistic graphical
models, and lifting them to first-order logic. These approaches typically separate the struc-
ture learning aspect, which aims at identifying the underlying logical description of the data,
from the parameter learning, by which adjustable numerical values are attached to logical
symbols (e.g., ground clauses). Although this is a very natural and promising direction, the
efficiency of inference and structure learning procedures remains a major issue.

Another dominating paradigm in current machine learning research is based on learn-
ing linear functions in a suitable reproducing kernel Hilbert space (RKHS), mostly by
means of convex optimization procedures. Undoubtedly, this setting has offered remark-
able advantages, including the simplicity due to the uniqueness of the solution, the ef-
ficiency of well understood optimization procedures, the ability to control overfitting by
means of regularization, and the flexibility of abstracting away the type of the data points
via implicit feature mappings. This well established framework, unfortunately, also comes
with some limitations. One is that the kernel function needs to be carefully designed
for the problem at hand. Significant efforts have been devoted to devising effective ker-
nels for specialized data types, especially structured or relational types (Gärtner 2003;
Gärtner et al. 2004; Leslie et al. 2002; Lodhi et al. 2002). Designing the right kernel, how-
ever, requires a sufficient understanding of the application domain so that one can figure out
the relevant and important features for the problem at hand. While it is possible to define
“universal” kernels defining arbitrarily complex hypothesis spaces (Micchelli et al. 2006;
Caponnetto et al. 2008), this may seriously affect the generalization and representation
efficiency. Undesired effects have been described in many ways, such as diagonal domi-
nance (Weston et al. 2003), hardness of finding a large margin in the feature space (Ben-
David et al. 2002), or inefficiency in terms of the number of examples needed to repre-
sent highly varying functions (Bengio et al. 2005). Ideally, the kernel function, or the set
of relevant features, should be learned from data, rather than designed by hand. Research
on kernel learning has mainly focused on methods for combining existing base kernels
with appropriate weights (Argyriou et al. 2007; Lanckriet et al. 2004; Ong et al. 2005;
Micchelli and Pontil 2005). Base kernels can be manually designed by domain experts or
represent families of continuously parameterized kernels such as Gaussians with varying
covariance (Argyriou et al. 2006). However, little research exists in learning kernels from
scratch in a fully relational domain. Learning the kernel function arguably stands at a higher
level of abstraction, as compared to function learning in a given RKHS. The relationship
between kernel learning and function learning actually shares some similarities with the
relationship between structure and parameter learning in probabilistic ILP and statistical
relational learning. This suggests that discrete-space search algorithms (such as those em-
ployed in structure learning for probabilistic ILP) may also be useful for inducing kernel
functions in a logical setting.

Following this suggestion, this paper explores a combination of ILP and kernel meth-
ods building upon the kFOIL algorithm initially presented in Landwehr et al. (2006). More
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specifically, we use ILP as a form of structure learning for inducing a suitable kernel function
from data in a dynamic propositionalization framework (Landwehr et al. 2005). Dynamic
propositionalization means that the feature set and the kernel machine are optimized jointly;
this is in contrast to static propositionalization techniques that select a feature set a priori to
propositionalize the data and afterwards apply a statistical classifier. We show that this ap-
proach is practically viable and that our most recent versions of kFOIL are efficient enough
to handle data sets of moderately large size. We also show that the approach can be easily
adapted to perform multi-task learning (Caruana 1997), a setting that has received signifi-
cant attention within the statistical learning community but has only rarely been addressed
within the ILP setting. Interestingly, the multi-task version of kFOIL is advantageous both
in terms of accuracy and efficiency.

The rest of the paper is organized as follows: in Sect. 2 we give some background on
ILP and kernel machines for statistical learning; in Sect. 3 we introduce our framework for
statistical relational learning with kernels, and present kFOIL as a simple instantiation within
such framework; Sect. 4 discusses related work; and Sect. 5 presents some efficiency-related
algorithmic details. Finally, an extensive experimental evaluation is reported in Sect. 6, and
some conclusions are drawn in Sect. 7.

2 Background

2.1 Inductive logic programming

Traditional inductive logic programming addresses the task of inducing a concept which
explains a set of examples. Logic is used to represent both examples and concepts to be
learned (for an introduction to logic see, for example, Lloyd 1987 and for ILP, De Raedt
2008). More specifically, definite clauses, which form the basis for the programming lan-
guage Prolog, are used to represent examples and concepts. A definite clause is an expression
of the form h ← b1, . . . , bn, where h and the bi are atoms, that is, they are expressions of
the form p(t1, . . . , tn) where p/n is a predicate symbol of arity n and the ti are terms. Terms
are constants, variables, or structured terms. Structured terms are expressions of the form
f (t1, . . . , tk), where f/k is a functor symbol of arity k and t1, . . . , tk are terms. h is also
called the head of the clause, and b1, . . . , bn its body. Intuitively, a clause represents that the
head h will hold whenever the body b1, . . . , bn holds. As an example, consider the definite
clause

mutagenic(M) ← aromatic_ring(M,R),atom(M,A, cl),

which indicates that a molecule is mutagenic if it contains an aromatic ring structure and a
chlorine atom. Clauses with an empty body (n = 0) are called facts, as in mutagenic(m1),
indicating that the molecule m1 is mutagenic.

Typically, ILP systems start from a set of positive and negative examples D in the form
of true and false facts, and a background theory B in the form of a set of definite clauses.
The goal is then to induce a hypothesis H (a set of definite clauses) belonging to some
hypothesis space H, such that H covers all the positive and none of the negative examples
in D. Various notions of coverage can be employed. The most widely used setting is learning
from entailment, where an example e is covered if and only if B ∪ H |= e, that is, if the
example is logically entailed by the hypothesis and the background knowledge.
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Example 1 Consider representing the graph structure of molecules—as, for example, in the
mutagenicity experiments presented by Srinivasan et al. (1996)—by the following back-
ground theory:

Labels for the examples m1, m2 could be D = {mutagenic(m1),mutagenic(m2)}. A possible
hypothesis H = {c1, c2, c3} for this domain is given by the following three clauses:

c1 : p(M) ← aromatic_ring(M, [A0,A1,A2,A3,A4,A5]),bond(M,A5,A6,1),atm(M,A6,o),

c2 : p(M) ← atm(M,A,o),bond(M,A,2),

c3 : p(M) ← atm(M,A1,cl),bond(M,A1,A0,1),

atm(M,A2,cl),bond(M,A2,A0,1),atm(M,A3,cl),bond(M,A3,A0,1)

where aromatic_ring(M, [A0,A1,A2,A3,A4,A5]) is a background predicate indicating
an aromatic ring structure, and we have abbreviated mutagenic(M) with p(M). The hy-
pothesis H covers both examples: example m1 is covered by the clauses c1 and c2, and
example m2 is covered by the clauses c1 and c3 (highlighted in red, blue and green in the
figure above).

The outlined ILP learning setting can be summarized as follows:

Problem 1 (Learning from Entailment)

Given

– a background theory B, in the form of a set of definite clauses h ← b1, . . . , bn;
– a set of positive and negative examples D, in the form of positive and negative facts;
– a language of hypotheses H, which specifies the allowed hypotheses;

Find a hypothesis H ∗ ∈ H that covers all positive and no negative examples from D.

Noise in the data can be handled by relaxing the perfect coverage requirement for the
hypothesis into the following maximization problem: find

H ∗ = max
H∈H

S(H, D, B) (1)

where S is an appropriate scoring function evaluating the quality of candidate hypotheses,
such as accuracy.
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Learning in ILP thus involves a search in a discrete space H of hypotheses, which is
a computationally hard problem in general. However, one can exploit that the hypothesis
space is structured by a (partial) generality relation �: a hypothesis H1 is more general than
a hypothesis H2 (H1 � H2) if and only if any example covered by H2 is also covered by H1.
We can thus distinguish more general and more specific hypotheses, and this information
can be used to prune the search space. For instance, no specializations of a hypothesis h

should be considered if we have determined that h is already too specific. More gener-
ally, search in the hypothesis space can be conducted in a general-to-specific or specific-to-
general fashion, using an appropriate refinement operator (Muggleton and De Raedt 1994;
De Raedt 2008) that generalizes or specializes hypotheses. Finally, the computational cost
of searching in a discrete space typically forces one to resort to heuristic search algorithms,
such as (variations of) greedy search (see De Raedt 2008 for more details). As an example
for a greedy general-to-specific ILP learner, we will discuss the FOIL algorithm in Sect. 3.4
(see also Algorithm 1).

The main advantage of ILP techniques is the use of an expressive general purpose rep-
resentation formalism that enables us (1) to deal with complex structured data, (2) to incor-
porate prior domain knowledge in the learning process, and (3) to obtain hypotheses which
are easily understood by human experts.

2.2 Statistical learning with kernels

In the usual statistical learning framework (see, e.g., Cucker and Smale 2002 for a thorough
mathematical introduction) a supervised learning algorithm is given a training set of input-
output pairs D = {(x1, y1), . . . , (xm, ym)}, with xi ∈ X and yi ∈ Y . The set X is called the
input (or instance) space and can be any set. The set Y is called the output (or target) space;
in the case of binary classification Y = {−1,1} while in the case of regression Y is the set
of real numbers. A fixed (but unknown) probability distribution P on X × Y links input
objects to their output target values. The learning algorithm outputs a function f : X → Y
that approximates the probabilistic relation between inputs and outputs. A loss function
� : Y × Y → R

+ measures the loss incurred in predicting f (x) for an example pair (x, y),
and its integral over X×Y (weighted according to P ) measures the expected risk or general-
ization error of f . Such expected risk cannot be employed for training as P is unknown, and
learning algorithms usually minimize a (regularized) empirical risk measured on the train-
ing examples. Furthermore, the desired loss can result in a too hard optimization problem,
though approximations can sometimes be used instead. For instance, the 0-1 classification
loss often leads to NP-hard problems (Höffgen et al. 1995), but it can be upper-bounded
by various convex loss functions such as the hinge (max(0,1 − yf (x))) or the exponential
(exp(−yf (x))) loss (Bartlett et al. 2006).

Kernel-based approaches are one of the most popular techniques within the statisti-
cal learning framework. A (Mercer) kernel is a positive semi-definite symmetric function1

K : X × X → R that generalizes the notion of inner product to arbitrary domains (see, e.g.,
Shawe-Taylor and Cristianini 2004 for details). When using kernel methods in supervised
learning, the space of candidate functions, denoted FK , is the so-called reproducing ker-
nel Hilbert space (RKHS) associated with K . Learning consists of solving the following

1A symmetric function K : X × X → R is called a positive semi-definite kernel iff ∀m ∈ N, ∀x1, . . . , xm ∈ X ,
∀a1, . . . , am ∈ R,

∑m
i,j=1 aiaj K(xi , xj ) ≥ 0.
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Tikhonov regularized problem:

f = argmin
h∈FK

C

m∑

i=1

�(yi, h(xi)) + ‖h‖2
K (2)

where �(y,h(x)) is a positive function measuring the loss incurred in predicting h(x) when
the target is y, C is a positive regularization constant, ‖ · ‖K is the norm in the RKHS,
and Ω : [0,∞) → R is a strictly monotonic increasing function acting as regularizer. The
representer theorem (Kimeldorf and Wahba 1970) shows that the solutions to the above
problem can be expressed as a linear combination of the kernel between individual training
examples xi and x as follows:

f (x) =
m∑

i=1

ciK(x, xi). (3)

By choosing both the loss function � and the regularizer Ω to be convex, a convex opti-
mization problem is obtained. Popular algorithms in this framework include support vec-
tor machines (SVM) (Cortes and Vapnik 1995) and kernel ridge regression (Poggio and
Smale 2003; Shawe-Taylor and Cristianini 2004). Equation (3) also encompasses the solu-
tion found by other algorithms such as the kernel perceptron (Freund and Schapire 1999).

Advantages of statistical learning with kernels include (1) a principled and robust ap-
proach to handling noisy data, (2) effective and efficient techniques to solve the convex
optimization problem (Platt 1999; Joachims 1999), and (3) theoretical insight into the
generalization performance of certain classes of statistical classifiers (Cortes and Vapnik
1995).

3 Learning logical kernels

3.1 A framework for statistical logical learning

The integration of ILP and statistical learning has the appealing potential of combining the
advantages of the respective approaches, namely the expressivity and interpretability of ILP
with the effectiveness and efficiency of statistical learning as well as its ability to deal with
other tasks than standard binary classification. The integration usually consists of represent-
ing examples as input-output pairs as in Sect. 2.2 and replacing the covers definition with a
generic function f (x;H, B) : X → Y , mapping input to output values. This implies that the
covers function is no longer binary and rather than representing examples as facts p(x) for
a predicate p/n that can be true or false, we now use the identifier x to refer to examples.
The generic maximization problem can be stated as:

max
H∈H

max
f ∈FH

S(f, D, B) (4)

where FH is the set of all functions that can be represented based on the hypothesis H .
Standard learning from entailment can be recovered by fixing f to be the coverage function,

f (x;H, B) =
{

1 if B ∪ H |= p(x),

−1 otherwise
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where p(x) is the representation of the example x as a fact, and setting

S(f, D, B) = − 1

m

m∑

i=1

I[f (xi;H, B) �= yi]

where I is a 0-1 value indicator function that computes the 0-1 loss.
Note that Problem (4) consist of jointly optimizing the logical hypothesis and the func-

tion f (x;H, B) that replaces logical coverage. In the following, we will refer to the outer
optimization problem as hypothesis learning and the inner optimization problem as func-
tion learning. As discussed in Sect. 2.1, hypothesis learning implies searching in a discrete
space of candidates, which is a complex task. Thus, heuristic strategies will be employed.
In contrast, function learning takes place in a continuous space, for which principled search
techniques are available. It is thus unclear whether the scoring function employed for func-
tion learning is also suitable for hypothesis learning. In fact, statistical relational learning
systems often employ different scoring functions for learning the logical model structure
and the statistical part of the model. Problem (4) should therefore be generalized to the
following formulation:

max
H∈H

SO

(
argmax

f ∈FH

SI (f, D, B), D, B
)

(5)

where SO and SI are the scoring functions used for hypothesis and function learning re-
spectively. Generally speaking, this decomposition of the overall optimization problem into
a structural and a parameter/function learning problem appears in many statistical relational
learning systems. Examples for outer scoring functions SO proposed in the literature include
likelihood (Kersting and De Raedt 2007), pseudo-likelihood (Kok and Domingos 2005),
conditional likelihood (Landwehr et al. 2005), AUC-PR (Davis et al. 2005), and AUC-ROC
(Frasconi et al. 2008). Examples for proposed inner scoring functions include likelihood
(Davis et al. 2005), pseudo-likelihood (Kok and Domingos 2005), and hinge loss (Landwehr
et al. 2006). We will discuss in more detail how existing approaches can be cast in the for-
mulation of (5) in Sect. 4.1.

3.2 Logical kernel machines

We now discuss how kernel methods can be naturally used to represent the statistical cover-
age function f (x;H,B) defined above. The idea is to write f , as in (3), as a linear combi-
nation of kernel functions over pairs of training examples, given the hypothesis2 and back-
ground knowledge:

f (x;H, B) =
m∑

i=1

ciK(x, xi;H, B). (6)

The only prerequisite at this point is a kernel function K : X × X → R for the relational
example space X . The proposed setting allows us to employ ILP techniques to address
any learning task amenable to kernel machine algorithms, including binary and multi-class
classification, regression, ranking and novelty detection. For instance, using the standard

2Note that f is typically named hypothesis in the statistical setting, while we will adhere to ILP terminology
and refer to the set of clauses H induced by the algorithm as the hypothesis.
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support vector method for classification, the decision function is expressed as

sign(f (x;H, B)) = sign

(
m∑

i=1

αiyiK(x, xi;H, B) + b

)

(7)

where we generalize (6) to include a bias term b, and take the sign of the function to out-
put a binary decision. Similarly, using support vector regression, the regression function is
expressed as

f (x;H, B) =
m∑

i=1

(αi − α∗
i )K(x, xi;H, B) + b. (8)

3.3 Kernel functions based on definite clause sets

The simplest way to introduce kernels K(x1, x2,H, B) based on a set H of definite clauses
is to propositionalize the examples x1 and x2 using H and B and employ existing kernels on
the resulting vectors. We will thus map each example x onto a vector ϕH,B(x) over {0,1}n

with n = |H |, having ϕH,B(x)i = 1 if B ∪ {ci} |= p(x), where ci is the i-th clause ci ∈ H ,
and 0 otherwise.

Example 2 Reconsider the background theory given in Example 1, describing the structure
of the following two molecules,

and the hypothesis H = {c1, c2, c3} for this domain given in Example 1:

c1 : p(M) ← aromatic_ring(M, [A0,A1,A2,A3,A4,A5]),bond(M,A5,A6,1),atm(M,A6,o),

c2 : p(M) ← atm(M,A,o),bond(M,A,, 2),

c3 : p(M) ← atm(M,A1,cl),bond(M,A1,A0,1),

atm(M,A2,cl),bond(M,A2,A0,1),atm(M,A3,cl),bond(M,A3,A0,1).

Clauses c1, c2 succeed on the first example and clauses c1, c3 on the second (highlighted
above in red, blue and green). Consequently, in the feature space spanned by the clauses
c1, c2 and c3, the examples are represented as

ϕH,B(m1) =
⎛

⎝
1
1
0

⎞

⎠ , ϕH,B(m2) =
⎛

⎝
1
0
1

⎞

⎠ .

Let us now look at the effect of defining kernels on the propositionalized representation.
A simple linear kernel KL gives the following results:

KL(m1,m2;H, B) = 〈ϕH,B(m1), ϕH,B(m2)〉 = 1,
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KL(m1,m1;H, B) = 〈ϕH,B(m1), ϕH,B(m1)〉 = 2,

KL(m2,m2;H, B) = 〈ϕH,B(m2), ϕH,B(m2)〉 = 2.

This kernel can be interpreted as the number of clauses in H that succeed on both examples.

The linear kernel introduced in the above example can be formalized in terms of logical
entailment:

KL(x1, x2;H, B) = #entH,B(p(x1) ∧ p(x2))

where #entH,B(q) = |{c ∈ H |B ∧{c} |= q}| denotes the number of clauses in H that together
with B logically entail the formula q . Intuitively, this implies that two examples are similar
if they share many structural features. Which structural features to look at when computing
similarities is encoded in the hypothesis H .

This formalism can be generalized to standard polynomial (KP ) and Gaussian (KG) ker-
nels. Using a polynomial kernel, the interpretation in terms of logical entailment is

KP (x1, x2;H, B) = (#entH,B(p(x1) ∧ p(x2)) + 1)d,

which amounts to considering conjunctions of up to d clauses that logically entail the two
examples, as can easily be shown by explicitly computing the feature space induced by the
kernel. Using a Gaussian kernel turns out to implement the similarity

KG(x1, x2;H, B) = exp

(

−#entH,B((p(x1) ∨ p(x2)) ∧ ¬(p(x1) ∧ p(x2)))

2σ 2

)

where the argument of entH,B can be interpreted as a kind of symmetric difference between
the two examples.

3.4 The kFOIL learning algorithm

We now propose a simple approach for solving the outer optimization problem defined by
Problem (5) using ILP techniques. As a hypothesis H defines a kernel function in terms of a
set of definite clauses, learning H corresponds to learning a kernel function for relational ex-
amples. We thus propose to exploit the expressive power of first-order logic to automatically
learn an appropriate relational kernel for a given domain. Specifically, Problem (5) requires
jointly learning the kernel function and solving the function approximation problem in the
resulting RKHS.

The kFOIL algorithm will now be presented as a simple instance of the proposed ap-
proach. To learn the hypothesis H , kFOIL employs an adaptation of the well-known FOIL
algorithm (Quinlan 1990). FOIL essentially implements a separate-and-conquer rule learn-
ing algorithm in a relational setting, and is one of the most basic and widely used ILP
algorithms.

The generic FOIL algorithm is sketched in Algorithm 1. It repeatedly searches for clauses
that score well with respect to the data set and the current hypothesis and adds them to
the current hypothesis. The examples covered by a learned clause are removed from the
training data (in the update function). In the inner loop, FOIL greedily searches for a clause
that scores well. To this aim, it employs a general-to-specific hill-climbing search strategy.
Let p/n denote the predicate that is being learned. Then the most general clause, which
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Algorithm 1 Generic FOIL algorithm
Initialize H := ∅
repeat

Initialize c := p(X1, . . . ,Xn) ←
repeat

c := argmaxc′∈ρ(c) S(H ∪ {c′}, D, B)

until stopping criterion
H := H ∪ {c}
D := update(D,H)

until stopping criterion
output H

succeeds on all examples, is “p(X1, . . . ,Xn) ←”. The set of all refinements of a clause c

within the language bias is produced by a refinement operator ρ(c). For our purposes, a
refinement operator specializes a clause h ← b1, . . . , bk by adding new literals bk+1 to the
clause, though other refinements have also been used in the literature. This type of algorithm
has been successfully applied to a wide variety of problems in ILP. Many different scoring
functions and stopping criteria have been employed as well.

Search in standard FOIL is based on the notion of logical coverage: the goal is essen-
tially to cover all positive and no negative examples. In the setting developed here, coverage
is replaced by a hybrid statistical-logical model. Consequently, Algorithm 1 needs to be
adapted. Specifically, three key modifications need to be made. First, the scoring function
S(H ∪ {c′}, D, B) is changed: S is replaced by the outer scoring function SO as defined
by (5), that is,

S(H ∪ {c′}, D, B) = SO

(
argmax
f ∈FH∪{c′}

SI (f, D, B), D, B
)
. (9)

Second, kFOIL cannot use a separate-and-conquer approach. Because the final model in
FOIL is the logical disjunction of the learned clauses, (positive) examples that are already
covered by a learned clause can be removed from the training data (in the update(D,H)

function in Algorithm 1). In a joint statistical-logical model, this notion of coverage is lost,
and the training set is not changed between iterations. Therefore, update(D,H) returns D.
Finally, FOIL stops when it fails to find a clause that covers additional positive examples.
As an equally simple stopping criterion, learning in kFOIL is stopped when there is no
improvement in score between two successive iterations.

Adapting Algorithm 1 in this way yields a “wrapper” approach in which candidate
clauses are successively evaluated according to the scoring function SO . This is similar
in spirit to hypothesis search in the nFOIL system (Landwehr et al. 2005). By replacing a
generative statistical model with a consistent discriminative one, kFOIL improves over its
predecessor nFOIL, as shown in Sect. 6.3, while retaining most of the interpretability in-
herent in selecting a small set of relevant features. However, a disadvantage of kFOIL as
compared to nFOIL is the increased computational complexity of the search procedure, as
evaluating a candidate hypothesis now requires one to solve the function optimization prob-
lem. Two techniques to improve computational complexity will be discussed later. First,
computational complexity can be reduced significantly if the wrapper approach is replaced
by an incremental learning procedure, which exploits similarities in the optimization prob-
lems that need to be solved during search (Sect. 5). Second, we explore directly scoring
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the kernel function defined by a candidate hypothesis according to kernel target alignment,
and postpone solving the function optimization problem until the final hypothesis is found
(Sect. 3.5). Section 6 will show empirically that for a combination of these two techniques
scoring in kFOIL can be performed in linear time in the number of examples.

3.5 Scoring functions for learning logical kernel machines

The natural inner scoring function SI for (logical) kernel machines is the negated Tikhonov
regularized risk as reported in (2). The choice of the loss function � depends on the learning
task; for instance, hinge loss for classification or ε-insensitive loss for regression. These
scoring functions lead to convex optimization problems, and retaining them in the hybrid
statistical-logical setting has the advantage that existing highly optimized software packages
can be used.

Joint learning of kernels and function parameters has been addressed in a purely statis-
tical setting by learning combinations of simpler kernel functions, whose coefficients are
learned by gradient descent (Chapelle et al. 2002), semidefinite programming (Lanckriet
et al. 2004; Ong et al. 2005) or regularization (Micchelli and Pontil 2005). In a hybrid
statistical-logical setting like the one we propose here, a constructive approach has to be
pursued instead, trading optimality for expressiveness and interpretability of the learned re-
lational rules. Preliminary experiments showed that a straightforward use of the inner scor-
ing function SI also as outer scoring function SO produced a highly unstable search and bad
overall results. This could be due to the difficulty of directly comparing the minima of dif-
ferent optimization problems as defined by the different hypotheses spaces, but the problem
deserves further investigation. Anyhow, the hypothesis search space is discrete, and efficient
optimization procedures exploiting convexity cannot be applied in the outer optimization in
any case. Therefore, we are free to employ as SO directly the loss function we are ultimately
interested in.

Natural choices for SO are the 0-1 loss or the area under the ROC curve (AUC) for clas-
sification problems, and root mean squared error for regression problems. To account for
unbalanced class distributions in classification problems we focus on AUC in this paper (see
also Provost et al. 1998 for a comparative analysis of accuracy and AUC in classifier evalu-
ation). Interestingly, there are close connections between the hinge loss function (as in SI )
and AUC (as in SO ). It has been observed that standard SVMs, which optimize hinge loss,
achieve very good AUC values, indicating that the two optimization criteria are closely re-
lated (Rakotomamonjy 2004). More recently, this has also been supported by a theoretical
analysis. Steck (2007) introduced a ranking version of the hinge loss function called the
hinge rank loss, and showed that minimizing hinge rank loss coincides with maximizing
AUC in the limit. Standard hinge loss, which is computationally more convenient to opti-
mize, can be seen as the parametric counterpart of the (discrete) hinge rank loss. Empirically
it has been shown that optimizing standard hinge loss instead of rank hinge loss (or AUC
directly) often yields near-optimal solutions in terms of AUC performance (Steck 2007).

3.5.1 Direct optimization of the kernel function

The computational bottleneck in the approach proposed so far is the training of a kernel
machine for each candidate hypothesis. As an alternative, we propose to score a candidate
hypothesis H directly by evaluating the kernel function K(·, ·,H, B) it defines, and post-
pone solving the support vector machine problem until the final hypothesis is found. By
encoding similarity between pairs of examples, the kernel function already contains valu-
able information concerning the potential performance of a learning machine that uses it.
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More specifically, in a binary classification setting the relatedness of a certain kernel func-
tion to the target can be measured by Kernel Target Alignment (KTA) (Cristianini et al.
2001), defined as the normalized Frobenius product between the kernel matrix and the ma-
trix representing pairwise target products:

A(K,y) = 〈K,yyT 〉F
√〈K,K〉F 〈yyT , yyT 〉F

(10)

where y ∈ {−1,1}m is the target vector for m examples, yT is the transpose of y, and the
Frobenius product is defined as 〈M,N〉F = ∑

ij MijNij . The alignment of a kernel matrix
is also related to bounds on the maximum performance of a classifier using this kernel (in
terms of generalization error) (Cristianini et al. 2001). In the spirit of (5), we will thus treat
the alignment score of a kernel function as an indication of the performance a support vector
machine can reach using this kernel, and use it to drive the search for hypotheses. A naive
computation of the kernel target alignment as given in (10) has complexity O(n2) where n

is the number of examples. However, in Sect. 5 incremental approaches to computing KTA
scores for all candidate clauses encountered during clause search will be discussed, which
yield significant computational savings.

3.6 Multi-task statistical logical learning with kernels

Multi-task learning is a technique for solving multiple related tasks in a given domain by
learning a joint model for all tasks (Argyriou et al. 2007; Caruana 1997; Evgeniou et al.
2005). The rationale behind multi-task learning is the following. Given limited training
data for each individual task, there are typically many (single-task) models that fit the data
equally well, and the learner has to rely on its built-in bias to choose between them. By
learning a joint model for all tasks, an additional bias is introduced, as the model now has to
fit the observed data from all tasks simultaneously. This can significantly alleviate problems
associated with sparse training data such as overfitting and unstable search. Empirically, it
has been shown that multi-task learning often leads to significantly improved generalization
on unseen examples (Caruana 1997).

In our framework for learning logical kernels, we explicitly learn a feature representation,
and thus a kernel function, by means of the induced hypothesis H . A natural approach for
multi-task learning in the spirit of Caruana (1997) is therefore to share this representation
(or, equivalently, the kernel function) across tasks. This can be achieved by an appropri-
ate multi-task scoring function, which is obtained as a combination of single-task scoring
functions on the individual tasks. Assume that SO(f, D, B) is an (outer) scoring function as
introduced in Sects. 3.1 and 3.5, and that D1, . . . , DT are the available training data for M

tasks T1, . . . , TM . A simple but effective multi-task scoring function is obtained by averaging
single-task scores, that is, by replacing (5) with

max
H∈H

1

T

T∑

t=1

SO

(
argmax

f ∈FH

SI (f, Dt , B), Dt , B
)
. (11)

Experimental results presented in Sect. 6 show three advantages of multi-task learning in
the proposed setting. First, they show a consistently improved generalization performance,
confirming the advantages of multi-task learning observed in the literature (Caruana 1997).
Second, in our setting learning a shared clause set for multiple tasks leads to a more compact
representation of the learned concept, as the multi-task clause set is significantly smaller than
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the union of the task-specific clause sets. In terms of the similarity/kernel function learned,
this yields a generic definition of similarity that is shared between tasks and should be easier
to interpret than a number of task-specific similarity functions. Third, multi-task learning
also results in significant computational savings.

Finally, traditional approaches to multi-class learning with support vector machines
can be considered from a multi-task perspective. Traditionally, multi-class classification in
SVMs is performed by solving several binary classification tasks, either in a one-vs-one or
one-vs-rest setup, using a shared representation for the examples which is fixed in advance.
Test examples are then classified into the class with the highest margin. In such a setting,
we propose to pursue a multi-task approach, by jointly learning the shared representation
of examples which best fits all binary tasks. In this case, the average of single-task scoring
functions (11) can also be replaced by multi-class accuracy. Multi-class accuracy can thus
be seen as an additional multi-task scoring function in this setting. Section 6 shows that also
for multi-class classification, multi-task approaches can improve over standard single-task
(i.e., one-vs-all) approaches.

4 Related work

4.1 Structure learning in statistical relational learning

Many approaches for structure learning in the statistical relational learning setting can be
cast into the framework presented in Sect. 3.1. The framework defines a decomposition
of the overall optimization problem into a structural and a parameter or function learning
part, with respective scoring functions SO and SI . Let us briefly discuss other instantiations
of this setting proposed in the literature. Stochastic Logic Programs are learned in Mug-
gleton (2000) by maximizing the Bayesian posterior probability of the program given the
examples (SO ), assuming uniform probability distribution for each predicate (SI ), but re-
fining predicate probabilities for the final program according to smoothed counts of their
occurrence in example proofs. Bayesian Logic Programs (BLPs) are learned by a proba-
bilistic extension of learning from interpretations (Kersting and De Raedt 2007). Search
in the hypothesis space is conducted with a greedy hill-climbing strategy, driven by maxi-
mum likelihood for both SO and SI . Structure learning in Markov Logic Networks (Kok and
Domingos 2005) is conducted either in a best-first or shortest-first fashion, where the latter
implies adding all “good” clauses of length � before trying any of length �+ 1. Both SO and
SI rely on a weighted pseudo-log-likelihood, in which the probability of each grounding of
each first-order atom, given its Markov Blanket, is downweighted by the number of ground-
ings. An additional regularization term penalizes large deviations from the initial structure.
The nFOIL system uses maximum likelihood for SI and maximum conditional likelihood
for SO (Landwehr et al. 2005). SAYU uses maximum likelihood for SI and area under the
precision-recall curve for S0 (Davis et al. 2005). Structural Logistic Regression employs
a general-to-specific search strategy driven by a regularized maximum likelihood measure
for both scores (Popescul et al. 2003). In the RUMBLE margin-based rule learner, the in-
ner score SI is named margin minus variance, and is computed as the difference between
the empirical mean and variance of the classification margin over training examples, while
the outer score SO is a generalization bound combining the margin minus variance with a
capacity term (Rückert and Kramer 2007). Type Extension Trees (TET) are learned using
a kind of pseudo-maximum-likelihood for SI , and a generic score such as the area under
the ROC curve for SO (Frasconi et al. 2008). Finally, in a regression setting, the First-Order
Regression System relies on mean squared error for both (negated) outer and inner scores
(Karalič and Bratko 1997).
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4.2 Logical kernel machines

A number of recent works have addressed the problem of developing relational kernels
with logic. Cumby and Roth (2003) described a family of relational kernels defined using
a simple description logic. Gärtner et al. (2004) defined kernels over complex individuals
using higher order logic. Passerini et al. (2006) introduced the notion of visiting predicates
that are used to explore relational objects given background knowledge, and they defined
kernel between objects as similarities between proof trees obtained for the visitor predicates.
Declarative kernels rely on topological and parthood relations to define object similarity in
terms of parts and connections between parts (Frasconi et al. 2005). Recently, Wachman
and Khardon (2007) proposed a kernel on relational data by upgrading walk-based graph
kernels to hypergraphs. Complementary research has focused on defining distances in a
relational setting (see Ramon and Bruynooghe 1998; Kirsten et al. 2001 or Ramon 2002 for
an extensive treatment). While retaining much of the expressivity granted by logic, these
approaches need to pre-define an appropriate kernel function or distance measure for the
domain at hand. In contrast, the kernel we introduced here defines similarity in terms of a
small set of clauses that are learned from data by leveraging ILP-style search techniques.

4.3 Static and dynamic propositionalization

In static propositionalization, a set of features is first computed from the relational data and
a propositional learner is then trained on the resulting feature space. The feature set can be
computed by an ILP system (as in the SVILP system of Muggleton et al. 2005) or a pattern
miner (as by Kramer and De Raedt 2001), or it can be pre-defined without any additional
feature construction/selection phase (as in the LINUS system of Lavrac and Dzeroski 1994).
The main drawback of static propositionalization approaches is that the feature construction
step is decoupled from the actual statistical modeling, and uses a different selection crite-
rion. Thus, the selected feature set will not be optimal for the particular statistical model
in which the features are used. Static propositionalization typically also results in large fea-
ture sets, reducing the interpretability of the final model. In contrast, we propose a dynamic
propositionalization approach, in which the feature set defining the kernel and the statistical
classifier are optimized jointly. The approach is related to other dynamic propositionaliza-
tion systems such as SAYU (Davis et al. 2005), nFOIL (Landwehr et al. 2005), and Struc-
tural Logistic Regression (Popescul et al. 2003), but relies on kernel methods instead of
probabilistic models. This enables us to tackle different learning tasks such as classification
or regression in a uniform framework. Also, the resulting kFOIL system has been shown
to improve upon nFOIL in terms of predictive accuracy in our experimental study. Trading
interpretability and efficiency for effectiveness, the RUMBLE (Rückert and Kramer 2007)
margin-based rule learner uses a large set of features encoded by mathematical expressions,
frequent substructures, definite clauses and their combinations, adding them one at a time,
and keeps the subset achieving the best results, removing features with low weight. On the
other hand, kFOIL aims at keeping a simple and parsimonious approach, that can be easily
applied to other ILP systems.

Finally, dynamic approaches to propositionalization have also recently been considered
in the graph mining community, where the goal is to learn a set of subgraphs that propo-
sitionalize graph data. In this context, Saigo et al. (2009) consider a boosting approach to
collect a set of informative patterns, which can be seen as a dynamic propositionalization
approach combining graph patterns and kernel machines.
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4.4 Kernel learning

The technique we propose can also be seen as a kernel learning approach, in that it constructs
the kernel based on the available data. Joint learning of kernels and function parameters has
been addressed in a purely statistical setting by learning combinations of simpler kernel
functions, whose coefficients are learned by gradient descent (Chapelle et al. 2002), semi-
definite programming (Lanckriet et al. 2004; Ong et al. 2005) or regularization (Micchelli
and Pontil 2005). Ong et al. (2005) propose a general framework where kernels are chosen
from a hyper-RKHS induced by hyperkernels based on an appropriately regularized scor-
ing function. These approaches are typically more principled than our approach (as they
learn the kernel by solving well-posed optimization problems). However, the formulation
by which the kernel is obtained as a convex combination of other kernel functions would
be difficult or impossible to apply in the context of dynamic feature construction in a fully-
fledged relational setting. Furthermore, to the best of the authors’ knowledge, kFOIL is the
first system that can learn kernels defined by small sets of interpretable first-order rules.

4.5 Multi-task learning

Multi-task learning is traditionally addressed by learning a common representation of an ex-
ample for different tasks. For instance, in feedforward neural networks this can be achieved
by sharing the hidden layers across tasks. Multi-task learning with kernel machines was
first introduced by Evgeniou et al. (2005), by including in the regularization term a ma-
trix which encodes the relation between tasks. Evgeniou et al. (2005) showed how to
convert the resulting problem into an equivalent single-task problem via an appropriate
multi-task kernel function. However, this method requires to explicitly encode task rela-
tionships, which have to be known in advance. Multi-task kernel learning was later intro-
duced using a generalization of single-task 1-norm regularization (Obozinski et al. 2006;
Argyriou et al. 2007), which minimizes the number of non-zero features across tasks, or
relying on maximum entropy discrimination (Jebara 2004).

The setting considered in this paper is different, as we are learning a hybrid statistical-
logical model. We propose to exploit multi-task information for learning the relational model
structure, by constructing a relational kernel function that is shared across tasks. As shown
in Sect. 6, this leads not only to better generalization but also yields a more compact rep-
resentation of the learned concept. To the best of the authors’ knowledge, multi-task kernel
learning has never been addressed in a statistical relational learning context before. Indeed,
multi-task structure learning itself has received little attention in the statistical relational
learning setting, a notable exception being a recent work by Deshpande et al. (2007) on
learning multi-task probabilistic relational rule sets.

Multi-task learning has also received attention in the ILP community, in the form of
learning several related concepts simultaneously. Different approaches have been pursued.
Related to our approach is the work by Reid (2004), where the assessment of candidate
clauses on the primary task is augmented with the performance of similar rules on a sec-
ondary task. Furthermore, a scenario resembling multi-task learning has been studied in
Datta and Kibler (1993), where (sub)structures of concepts already learned are used as
building blocks when learning a new concept. A further related scenario is that of repeat
learning and multiple predicate learning (Khan et al. 1998; De Raedt et al. 1993), where an
ILP learner has to discover a series of related concepts drawn from some (initially unknown)
distribution. Moreover, predictive clustering trees have been used in an ILP setting. These
trees can be used in a multi-task setting, where predictions for several tasks are made at
every leaf (Blockeel et al. 1998, 2004).
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5 Computational complexity and incremental optimization

The computational bottleneck in kFOIL learning is the successive evaluation of candidate
clauses. Assume the current theory is H with |H | = n. Candidate clauses are obtained as
refinements of the currently best clause c (see Algorithm 1). Thus, assume we are evaluating
a candidate clause c′ ∈ ρ(c), and let H ′ = H ∪ {c′} denote the hypothesis including c′.
Evaluation consists of the following three steps:

1. ∀x ∈ D, compute the feature space representation ϕH ′,B(x) of x.
2. Compute the kernel matrix M , i.e., ∀x, x ′ ∈ D compute K(x,x ′,H ′, B).
3. Compute S(H ′, D, B). Here, two cases have to be distinguished.

(3a) S is a scoring function that requires training a support vector machine, such as 0-1
loss or AUC. In this case, a (soft margin) SVM optimization needs to be performed.
In binary classification, for instance, this amounts at maximizing:

L(α) =
k∑

i=1

αi − 1

2

∑

i,j

αiαjyiyjK(xi, xj ,H
′, B)

subject to C ≥ αi ≥ 0 and
k∑

i=1

αiyi = 0 (12)

where x1, . . . , xm are the examples in D and y1, . . . , ym the corresponding labels.
(3b) S is defined by kernel target alignment (cf. Sect. 3.5). In this case, we have to com-

pute the alignment A(K,y) between the kernel K = K(·, ·,H ′, B) and the examples
as defined by (10).

In the following, we show how significant computational savings can be obtained in all of the
outlined steps by incrementally updating the relevant pieces of information. The pseudocode
and detailed description of the corresponding algorithms can be found in the Appendix.

5.1 Incrementally computing the feature space representation

In order to compute the feature space representation ϕH ′,B(x) for every example x ∈ D,
kFOIL has to first retrieve the set of examples cov(c′) covered by the clause c′, a task that
typically has to be carried out in any ILP system. This task can be solved more efficiently in
an incremental way. First, we compute cov(c) for the current best clause c before evaluating
coverage of all refinements c′ ∈ ρ(c). As c′ is a refinement of c, cov(c′) ⊆ cov(c). Thus,
coverage of c′ only has to be checked on x ∈ cov(c). Second, coverage calculations in kFOIL
are sped up additionally by remembering for every free variable V in c and every example
x ∈ cov(c) the set of constant bindings

const(V , x) = {a ∈ C | cθ covers x, θ = {V/a}}

making c cover the example x, where C is the set of all (type-conform) constants that can
be bound to V . Assume that c′ is obtained from c by adding literal l, that is, c′ = c, l, and
V1, . . . , Vr are the shared variables between l and c. Now, c′ can only cover x if there is a
tuple (a1, . . . , ar ) ∈ const(V1, x) × · · · × const(Vr , x) such that lθ covers x for substitution
θ = {V1/a1, . . . , Vr/ar}. As shown empirically in Sect. 6, this yields significant computa-
tional savings. Similar strategies have been used in other ILP systems, for instance, the
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original FOIL algorithm also keeps track of tuple assignments satisfying clauses (Quinlan
1990).

A further major speedup can be obtained from the way the kernel function in our ap-
proach is defined in terms of a set of clauses. Note that the complex relational example set
D is mapped to the much simpler (feature) space ϕH ′,B(D) ⊆ {0,1}n in which the kernel
function is computed. Two examples x, x ′ ∈ D of the same class are indistinguishable in
the feature space representation if ϕH,B(x) = ϕH,B(x ′), i.e., they exhibit the same structural
features. Thus, a hypothesis H partitions D into clusters of examples that share the same
feature space representation. For the subsequently employed kernel method, the examples
in one cluster can be merged to one example with a weight corresponding to the cluster size.

We will refer to the number m̄ of clusters as the effective number of examples, because
this number determines the complexity of the kernel method (including the size of the kernel
matrix). A detailed empirical analysis of the computational savings achievable in this way
is presented in Sect. 6.8.

5.2 Incrementally computing the kernel matrix

A lower-triangular representation of the kernel matrix M is kept in memory, and incremen-
tally updated as clauses are added to the current hypothesis H . Note that the size of the
kernel matrix is quadratic only in the number of effective examples m̄.

Initially, H = ∅, m̄ = 1 and K(x,x ′,H, B) = 0 for all x, x ′ ∈ D. For scoring a candidate
clause c′, its contribution to the kernel function is computed and a number of cells in M

needs to be incremented. If the clause does not cause any cluster in D to be split, that is, it
does not change m̄, this can be done easily in time O(|ϕ(cov(c))|2), where |ϕ(cov(c))| is
the effective number of examples covered by c. If c splits a cluster in D, the dimensionality
m̄ of the kernel matrix increases, and some of the cells need to be split. Splitting an effective
example i implies: adding a row of length m̄ + 1 to the lower triangular representation of
the kernel matrix; copying m̄+1 kernel values into it, setting Mm̄j ← Mij for j ∈ [0, m̄−1]
and Mm̄m̄ ← Mii ; updating the number of effective examples m̄ ← m̄ + 1; incrementing the
row entries corresponding to covered effective examples by one. A single split can thus be
done in O(m̄) time, and a full update in time O(|ϕ(cov(c))|m̄), where m̄ is the number of
effective examples after all splits. Note that this number will typically be much smaller than
the overall number of examples, and Sect. 6.8 empirically shows that it indeed grows with
its square root in a real world data set.

5.3 Incremental SVM optimization

If S is a scoring function that requires training a support vector machine during clause
evaluation, efficiently solving the optimization problem given by (12) is crucial. Well-known
algorithms for this problem include the sequential minimal optimization algorithm by Platt
(1999) or other chunking techniques (Joachims 1999), and more recently introduced online
optimization approaches such as LaSVM (Bordes et al. 2005) or stochastic gradient descent
(Shalev-Shwartz et al. 2007). Optimization in the kFOIL implementation is carried out using
the SVMlight package, which is based on the technique described by Joachims (1999) (see
Sect. 6). Assume we have already solved the optimization problem for the currently optimal
clause c, and are evaluating a refinement c′ ∈ ρ(c). That is, we have maximized (12) for the
feature space representation resulting from the hypothesis H ∪{c}. Let α0 denote an optimal
solution. Typically, the optimization problem resulting from the hypothesis H ∪ {c′} will be
very similar: in the feature space representation of the data, only one of the attributes has
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been changed, and only on a subset of the examples (as only one feature has been refined).
One can thus expect that also the optimal solution α∗ for the new problem will be close to the
old solution α0. A straightforward but effective approach to incremental optimization is thus
to restart the optimization at the old maximum α0, and continue optimizing until the new
optimality criterion (Karush-Kuhn-Tucker conditions) is met. Intuitively, this corresponds to
starting from the old separating hyperplane and slightly adapting it until it defines the max-
margin solution of the new optimization problem. Section 6 will show significant benefits
of this technique compared to re-starting the optimization procedure from scratch.

5.4 Incrementally computing kernel target alignment

Finally, also the kernel target alignment score as defined in (10) can be computed incre-
mentally. The key observation is that as a clause c is added to H , it produces an additional,
incremental contribution to the kernel matrix M . This contribution can be propagated to the
three Frobenius norms from which KTA is computed (see (10)). For all examples covered
by the candidate clause c, their contribution to the previously computed norms should be
first removed, and then replaced with the contribution due to their updated kernel values.

6 Experimental evaluation

This section presents an experimental evaluation of the proposed kFOIL algorithm in several
domains. The goal of the experimental study is two-fold. In a first part, the algorithm is com-
pared to several related systems that employ ILP and propositionalization approaches, in a
similar setup as reported in Landwehr et al. (2006). In a second part, we present a detailed
analysis of the performance of the algorithm in different learning settings and with differ-
ent scoring functions. Specifically, we compare multi-task and single-task learning, evaluate
different scoring functions with regard to accuracy of inferred models and computational
cost, and explore different approaches to multi-class classification. Finally, the computa-
tional complexity and scaling behavior of kFOIL will be investigated, and the clause sets
returned by the algorithm will be inspected.

6.1 Experimental domains and data sets

Table 1 gives an overview of the different data sets used in the experimental evaluation.
Most of the domains are concerned with structure-activity relationship (or SAR) problems.
SAR problems are of central importance in many areas of bio- and chemoinformatics: given
information about the chemical structure of a substance, the task is to predict its activity
with regard to a certain property of interest. This property can be to activate or block a re-
ceptor in the human body, toxicity, suppression of tumor growth or more generally activity
as a pharmacological agent. The search for substances with such properties currently relies
on large-scale screening trials (so-called bioassays), which measure the activity of thou-
sands of chemical compounds. They generate large quantities of experimental data, which
are stored in centralized, easily accessible public databases such as PubChem3 (Wheeler
et al. 2008). Such data provides interesting opportunities for machine learning, particularly
for techniques that can learn from structured data: if good models that relate compound

3The PubChem database is available at http://pubchem.ncbi.nlm.nih.gov/sources/.

http://pubchem.ncbi.nlm.nih.gov/sources/
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Table 1 Overview of all data sets used in experiments, including the number of classes, number of available
examples, accuracy of majority class predictor, number of relations that are used in rules, and the number of
facts in the Prolog database

Data Set #Classes #Examples Maj. Class #Relations #Facts

Mutagenesis r.f. 2 188 66.5% 4 10324

Mutagenesis r.u. 2 42 69.1% 4 2109

Alzheimer amine 2 686 50.0% 20 3754

Alzheimer toxic 2 886 50.0% 20 3754

Alzheimer acetyl 2 1326 50.0% 20 3754

Alzheimer memory 2 642 50.0% 20 3754

NCTRER 2 232 56.5% 3 9283

BioDeg—classification 2 328 56.4% 36 27236

BioDeg—regression n.a. 328 n.a. 36 27236

NCGC BJ (AID 421) 2 1285 96.2% 29 89929

NCGC Jurkat (AID 426) 2 1242 89.1% 29 89929

NCGC Hek293 (AID 427) 2 1250 94.1% 29 89929

NCGC HepG2 (AID 433) 2 1282 96.1% 29 89929

NCGC MRC5 (AID 434) 2 1289 96.2% 29 89929

NCGC SK-N-SH (AID 435) 2 1281 93.3% 29 89929

MTDP E.coli (AID 365) 2 206 51.2% 23 23734

MTDP Human (AID 366) 2 206 79.5% 23 23734

MTDP HIV-2 (AID 367) 2 206 73.7% 23 23734

NCI BT_549 2 2778 50.4% 30 283612

NCI HCC_2998 2 3177 56.8% 30 283612

NCI HS_578T 2 2870 54.0% 30 283612

NCI SR 2 3006 62.2% 30 283612

NCI T_47D 2 2909 53.3% 30 283612

WebKB 6 1089 51.2% 6 86392

structure to activity can be built, some of the tests currently performed in laboratories could
be replaced by automatic classification, greatly accelerating the screening process. Bioassay
data is also a natural application area for multi-task learning, as substances have often been
tested for several related properties, and thus come with several class labels. Jointly building
a model for all properties can yield increased predictive accuracy, as will be shown below.

The individual data sets will now be described in more detail, and their use in the study
will be motivated. The Mutagenesis data sets are concerned with predicting the mutagenic-
ity of small molecules based on their chemical structure, and are one of the best known
ILP benchmark data sets (Srinivasan et al. 1996). We use the version in which only atom
and bond structure is available. For Alzheimer (King et al. 1995), the aim is to compare ana-
logues of Tacrine, a drug against Alzheimer’s disease, according to four desirable properties:
inhibit amine re-uptake, low toxicity, high acetyl cholinesterase inhibition, and good rever-
sal of scopolamine-induced memory deficiency. Examples consist of pairs (c1, c2) of two
analogues, and are labeled positive if and only if c1 is rated higher than c2 with regard to the
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property of interest. The relation is transitive and anti-symmetric but not complete (for some
pairs of compounds the result of the comparison could not be determined). The NCTRER
data set has been extracted from the EPA’s DSSTox NCTRER Database (Fang et al. 2001).
It contains structural information (atoms and bonds) for a diverse set of natural, synthetic
and environmental estrogens, and classifications with regard to their binding activity for the
estrogen receptor. In the Biodegradability domain the task is to predict the biodegradabil-
ity of chemical compounds based on their molecular structure and global molecular mea-
surements (Blockeel et al. 2004). The original (numeric) target variable is the half-life for
aerobic aquenous biodegradation of the particular chemical compound. Alternatively, the
problem can be treated as a classification task by thresholding this target variable. Mutage-
nesis, Alzheimer, NCTRER and Biodegradability were included in the study because they
are well-known benchmark data sets for ILP and relational learning methods, and to build
upon the experiments reported in Landwehr et al. (2006). Furthermore, Alzheimer can be
cast as a multi-task domain, with tasks corresponding to the four properties of interest.

The following additional SAR problem domains were chosen because they are natural
test-cases for multi-task learning. The NCGC data sets contain results of high throughput
screening assays to determine in vitro cytotoxicity of small molecules. Experiments have
been performed multiple times with cell lines derived from different tissue types: BJ cell
line (human foreskin fibroblasts), Jurkat cell line (human T cell leukemia), Hek293 cell line
(human embryonic kidney cells), HepG2 cell line (hepatocellular carcinoma), MRC5 cell
line (human lung fibroblasts) and SK-N-SH cell line (human neuroblastoma). Test results
for different cell lines will typically be different but related, thus it is natural to treat them as
different prediction tasks in a multi-task learning setting. The MTDP data sets contain results
of enzymatic assays for inhibition of ribonuclease H activity. Individual data sets represent
assay results for ribonuclease H enzymes from different organisms: E. coli ribonuclease H,
human ribonuclease H1, and HIV-2 ribonuclease H. Again, they can be treated as different
but related prediction tasks. Both the NCGC and MTDP data sets have been extracted from
the PubChem database. Compound descriptions and class labels, as well as more details
about the experimental protocol, are available from this database by looking up the bioassay
ID (denoted AID XXX in Table 1). Finally, the NCI data sets provide screening results for
the ability of compounds to suppress or inhibit the growth of tumor cells (Swamidass et al.
2005). Screening results are available for 60 different cell lines; however, not all compounds
have been tested against all cell lines. We selected five cell lines (BT_549, HCC_2998,
HS_578T, SR, T_47D) that result in relatively small data sets but together contain test results
for most compounds used in the study. The NCI data sets are also significantly larger than
the other domains considered, and thus serve as a benchmark to evaluate the computational
efficiency of kFOIL. In the NCGC, MTDP and NCI domain, background knowledge is
supplied encoding potentially relevant molecular substructures, such as rings and common
functional groups (carboxyl, hydroxyl, nitro, etc.).

WebKB is a multi-class domain which has a different background and will be discussed
in more detail in Sect. 6.6.

6.2 kFOIL implementation and experimental setup

The kFOIL algorithm, with computational improvements as discussed in Sect. 5 and support
for multi-task learning as described in Sect. 3.6 has been implemented based on YAP Pro-
log4 and the support vector machine package SVMlight.5 The implemented system will be

4For more information, see http://www.dcc.fc.up.pt/~vsc/Yap/.
5For more information, see http://svmlight.joachims.org/.

http://www.dcc.fc.up.pt/~vsc/Yap/
http://svmlight.joachims.org/
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denoted as KFOIL,6 and in general we use small caps font to denote implemented systems
(in contrast to their underlying algorithms).

Experiments with a prototype implementation of kFOIL were already presented in
Landwehr et al. (2006), in a single-task setting and using the first 9 of the 24 data sets listed
in Table 1. Besides using additional (and larger) data sets, the present study also considers
multi-task learning, different scoring functions, multi-class classification, and an analysis
of the computational complexity of our approach. Moreover, in the experiments presented
in Landwehr et al. (2006), several algorithm parameters were pre-specified: a threshold for
detecting convergence, a limit on the number of clauses allowed in a model, and a fixed
regularization parameter C for the SVM training. It is not obvious how these parameters in-
teract, especially in controlling overfitting, and how they could be jointly optimized. Thus,
we have made an effort to reduce the number of parameters that need to be pre-specified
in the new experiments. There is no limit on the number of clauses that can be used in a
model, and no convergence threshold. Instead, the model is refined as long as the training
score improves (even by a small margin). To avoid overfitting, we perform model selection
to choose the regularization parameter C by (repeatedly) splitting the available training data
into a training and a validation set. As in the earlier experimental study, a polynomial ker-
nel of degree d = 2 is used in all experiments, and a beam size of 5 is used unless noted
otherwise.

Evaluation of algorithms is performed by cross-validation or more generally multiple
splits into train/test data. As kFOIL can produce a ranking (via example margins in the SVM
model), area under the ROC curve (AUC) can be computed on the test data. For binary clas-
sification problems, performance is mostly evaluated by AUC, except when directly com-
paring against accuracy results from the literature. The motivation for using AUC instead of
accuracy is that some of the data sets used in the study are very unbalanced, and there are
in general arguments for preferring AUC over accuracy as an evaluation measure (Provost
et al. 1998). For regression problems, performance is evaluated by root mean squared error
(RMSE).

6.3 Comparison to ILP and propositionalization approaches

We begin by comparing KFOIL to other relational learning approaches, replicating the ex-
periments presented in Landwehr et al. (2006). More specifically, we considered the fol-
lowing systems. NFOIL (Landwehr et al. 2005) is a dynamic propositionalization system
that combines naive Bayes and FOIL in a similar spirit as KFOIL combines kernels and
FOIL. ALEPH is a state-of-the-art ILP system developed by Ashvin Srinivasan.7 It is based
on the concept of bottom clauses, which are maximally specific clauses covering a certain
example. Furthermore, we consider a static propositionalization baseline based on a variant
of the relational frequent query miner WARMR (Dehaspe et al. 1998), as WARMR patterns
have shown to be effective propositionalization techniques on similar benchmarks (Srini-
vasan et al. 1999). The variant used was C-ARMR (De Raedt and Ramon 2004), which
focuses on so-called free patterns (more details about the experimental setup can be found
in Landwehr et al. 2006). Table 2 presents cross-validated accuracy results for KFOIL,
NFOIL, ALEPH and C-ARMR. To facilitate comparison to Landwehr et al. (2006), KFOIL
is run with accuracy scoring. Results clearly show that KFOIL outperforms ALEPH and

6The implementation is available from http://www.cs.uni-potsdam.de/~landwehr/kfoil/kfoil.tgz.
7More information on Aleph can be found at http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/
Aleph/aleph_toc.html.

http://www.cs.uni-potsdam.de/~landwehr/kfoil/kfoil.tgz
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html
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Table 2 Average predictive accuracy on Mutagenesis, Alzheimer and NCTRER for KFOIL with accuracy
scoring, nFOIL, Aleph and static propositionalization. On Mutagenesis r.u. a leave-one-out cross-validation
was used (which, combined with the small size of the data set, explains the high variance of the results), on
all other data sets a 10 fold cross-validation. • indicates that the result for kFOIL is significantly better than
for other method (paired two-sided t-test, p = 0.05)

Data Set KFOIL NFOIL ALEPH C-ARMR

Muta. r.f. 77.0 ± 14.5 75.4 ± 12.3 73.4 ± 11.8 73.9 ± 11.2

Muta. r.u. 85.7 ± 35.4 78.6 ± 41.5 85.7 ± 35.4 76.2 ± 43.1

Alz. amine 89.8 ± 5.7 86.3 ± 4.3 70.2 ± 7.3• 81.2 ± 4.5•
Alz. toxic 90.0 ± 3.85 89.2 ± 3.4 90.9 ± 3.5 71.6 ± 1.9•
Alz. acetyl 90.6 ± 3.4 81.2 ± 5.2• 73.5 ± 4.3• 72.4 ± 3.6•
Alz. mem. 80.5 ± 6.2 72.9 ± 4.3• 69.3 ± 3.9• 68.7 ± 3.0•
NCTRER 78.5 ± 9.3 78.0 ± 9.1 50.9 ± 5.9• 65.1 ± 13.2•

Table 3 Result on the Biodegradability data set. The results for Tilde and S-CART have been taken from
Blockeel et al. (2004). 5 runs of 10 fold cross-validation have been performed, on the same splits into training
and test set as used by Blockeel et al. (2004). For classification, average accuracy is reported, for regression,
root mean squared error. • indicates that the result for KFOIL is significantly better than for other method
(unpaired two-sided t-test, p = 0.05)

Data Set KFOIL TILDE S-CART

Classification

BioDeg GR 73.4 ± 1.63 73.6 ± 1.1 72.6 ± 1.1

BioDeg GP1P2R 73.5 ± 0.95 72.9 ± 1.1 71.3 ± 2.3

Regression

BioDeg GR 1.139 ± 0.036 1.265 ± 0.033• 1.290 ± 0.038•
BioDeg GP1P2R 1.182 ± 0.038 1.335 ± 0.036• 1.301 ± 0.049•

static propositionalization. Moreover, it consistently improves upon its predecessor NFOIL,
indicating that in a hybrid statistical-relational setting kernel methods can improve over a
simple naive Bayes model.

Table 3 compares KFOIL to the relational tree-induction algorithms TILDE and S-CART
on the Biodegradability classification and regression data sets. KFOIL has been run with
accuracy (classification problem) and RMSE (regression problem) scoring. As in the ex-
periments reported in Blockeel et al. (2004), results are averaged over five runs of a ten-
fold cross-validation, and the same splits into training and test sets have been used. KFOIL
clearly outperforms the other two approaches in the regression setting, while yielding com-
parable accuracy in the classification setting.

6.4 Evaluation of different scoring functions

As discussed in Sect. 3.2, different scoring functions can be considered for classification
problems. From a computational perspective, the main difference is between 0-1 loss or
AUC on the one hand and kernel target alignment on the other hand. The former scores
require to solve the SVM optimization problem (12), while kernel target alignment can be
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Table 4 Average cross-validated prediction accuracy of KFOIL with accuracy scoring and standard beam
size 5 (Acc[5]) and KFOIL with KTA scoring and beam sizes 5, 10, 20 and 30 (KTA[5], KTA[10], KTA[20],
KTA[30])

Data Set Acc[5] KTA[5] KTA[10] KTA[20] KTA[30]

Mutag. r.f. 77.0 ± 13.7 74.9 ± 12.1 74.4 ± 12.0 77.7 ± 11.7 78.8 ± 6.6

Mutag. r.u. 85.7 ± 35.0 83.3 ± 37.3 83.3 ± 37.3 85.7 ± 35.0 85.7 ± 35.0

Alzh. amine 89.8 ± 5.4 72.7 ± 6.3 75.5 ± 5.8 82.5 ± 6.1 83.1 ± 5.2

Alzh. toxic 90.0 ± 3.7 80.9 ± 4.3 88.9 ± 4.1 92.3 ± 1.6 93.7 ± 1.1

Alzh. acetyl 90.6 ± 3.2 74.7 ± 3.6 75.0 ± 3.0 81.7 ± 4.3 83.2 ± 3.5

Alzh. memory 80.5 ± 5.9 66.8 ± 8.0 63.9 ± 7.6 75.1 ± 4.2 77.4 ± 3.9

NCTRER 78.5 ± 8.8 78.5 ± 8.8 78.5 ± 8.8 78.0 ± 9.3 77.6 ± 8.9

BioDeg GR 73.4 ± 1.6 63.5 ± 1.7 64.8 ± 0.8 65.1 ± 1.9 69.1 ± 1.6

BioDeg GP1P2R 73.5 ± 0.9 68.1 ± 2.1 68.5 ± 1.1 68.6 ± 2.1 68.6 ± 2.0

directly computed given the kernel matrix (10), which is typically much more efficient (see
also Sect. 6.8).

Table 4 compares KTA scoring to accuracy scoring on the data sets used in Landwehr
et al. (2006). Results show that if the standard beam size of 5 is used, KTA is substantially
less accurate. There are two possible explanations for this result: either kernel target align-
ment is generally not a good scoring function in our context, or it does not work well together
with the greedy search strategy employed in KFOIL. In the latter case, the clause set truly
maximizing KTA would result in a good joint model, but only a (strongly) suboptimal clause
set is found during search. To test this hypothesis, the system was run with increased beam
sizes (10, 20, and 30). This improves relative performance, indicating that the weak results
for beam size 5 are at least partly due to local search issues. For the rest of the experimental
study, we thus use a beam size of 20 rather than the standard 5 for KFOIL with KTA scoring.
Even with the increased beam size KTA scoring is typically more efficient than accuracy or
AUC scoring (see Sect. 6.8).

6.5 Single-task vs. multi-task learning

For the four multi-task domains (Alzheimer, NCGC, MTDP and NCI), the benefits of si-
multaneously learning a joint model for all tasks were explored. In these domains, there are
between three and six different target labels available, although not all labels are necessar-
ily known for all examples (cf. Table 1). We compare a multi-task (MT) approach against
a single-task (ST) approach using the following methodology. All examples available in a
given domain are first split into a training set (80%) and test set (20%). In the MT approach,
a joint model is built from the training set using the technique described in Sect. 3.6. In the
ST approach, one model is built for each task using those examples for which label infor-
mation for that task is available. For every example in the test set, both approaches return
a predicted class label for every task. This prediction is compared to the true label for that
task if it is known, and resulting area under the ROC curve (AUC) is computed. To obtain
reliable estimates, results are averaged over 50 random splits into training and test set.

Table 5 shows average AUC results on Alzheimer, NCGC, MTDP and NCI for KFOIL
in the single-task and multi-task setting, using KTA and AUC scoring. For the NCI data
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Table 5 Average AUC ± standard deviation on Alzheimer, NCGC, MTDP and NCI for KFOIL with KTA
and AUC scoring, using a single-task (ST) or multi-task (MT) learning setting. Results are averaged over 50
random 80%/20% train/test splits of the data. For NCI, models are learned from only 25% of the available
training data in every split. Bold font indicates whether single-task or multi-task learning yielded better results

Data Set KFOIL

KTA Scoring AUC Scoring

ST MT ST MT

Alzheimer amine 91.1 ± 2.4 90.1 ± 2.8 93.9 ± 3.6 95.6 ± 2.2

Alzheimer toxic 98.1 ± 0.8 98.3 ± 0.7 95.9 ± 3.4 96.6 ± 2.0

Alzheimer acetyl 89.8 ± 2.2 90.0 ± 2.6 92.1± 4.6 93.8 ± 1.9

Alzheimer memory 82.5 ± 5.0 86.3 ± 2.7 86.5 ± 5.8 85.1 ± 4.8

NCGC BJ 68.0 ± 9.3 69.9 ± 9.9 72.4± 10.0 72.2 ± 8.7

NCGC Jurkat 64.7 ± 5.3 66.2 ± 5.6 69.9 ± 6.0 71.7 ± 5.6

NCGC Hek293 67.2 ± 7.6 68.7 ± 7.2 71.0 ± 7.7 72.0 ± 6.8

NCGC HepG2 71.5 ± 8.7 74.6 ± 8.8 74.2 ± 8.8 77.6 ± 8.2

NCGC MRC5 65.3 ± 10.0 68.8 ± 9.4 67.0 ± 9.6 69.8 ± 9.3

NCGC SK-N-SH 63.6 ± 7.1 66.0 ± 7.8 66.4 ± 7.4 67.2 ± 7.0

MTDP E.coli 61.5 ± 9.3 62.6 ± 8.0 61.8 ± 8.0 64.5 ± 7.0

MTDP Human 56.8 ± 9.7 61.2 ± 10.5 62.5 ± 11.7 66.7 ± 10.7

MTDP HIV-2 58.8 ± 8.8 61.7 ± 8.8 61.0 ± 10.1 63.5 ± 10.1

NCI BT_549 25% 69.7 ± 2.3 71.1 ± 2.2 70.5± 2.6 71.8 ± 2.5

NCI HCC_2998 25% 65.3 ± 2.5 65.8 ± 2.1 64.1 ± 2.5 67.5 ± 2.6

NCI HS_578T 25% 70.5 ± 2.2 71.1 ± 2.2 70.3± 2.5 71.9 ± 2.6

NCI SR 25% 70.3 ± 3.1 71.2 ± 2.4 69.9 ± 2.9 71.3 ± 2.4

NCI T_47D 25% 71.1 ± 2.3 72.2 ± 2.1 70.9 ± 3.0 72.5 ± 2.5

sets, only 25% of the available training data was used to infer a model to reduce the total
computational cost of experiments. Results indicate that multi-task learning provides small
but consistent improvements in test set AUC over single-task learning. This is particularly
evident on the NCGC, MTDP and NCI data sets, while the result for the Alzheimer data sets
is less clear. A likely explanation is that the different tasks in Alzheimer—predicting a com-
pounds amine re-uptake, toxicity, acetyl cholinesterase inhibition, and reversal of memory
deficiency—are not as strongly related as for the other domains. Moreover, results confirm
the earlier observation that evaluating clause sets by the performance of the corresponding
support vector machine (in this case, by its AUC) yields slightly better results than evaluat-
ing them by kernel target alignment.

We furthermore investigate how the gains from multi-task learning depend on the amount
of training data available. Figure 1 shows average AUC of KFOIL in the single-task and
multi-task learning setting for different numbers of training examples on NCI, averaged
over the five available tasks. The system has been run with KTA scoring and beam size 5 to
achieve maximum computational efficiency for these larger data sets. To obtain stable AUC
estimates, the following methodology was used. A 5-fold cross-validation is performed.
However, for each fold, 10 models are built on bootstrapped samples of the fold’s training
set, and their results on the fold’s test set are averaged. As in standard cross-validation, this
yields one datapoint (AUC result) per fold. Figure 1 also reports one-standard-deviation er-



Mach Learn (2010) 78: 305–342 329

Fig. 1 Learning curve for KFOIL in the NCI domain, with KTA scoring and beam size 5 in a single-task
and multi-task learning setting (test set AUC as a function of training set size). Results are averaged over a
5-fold cross-validation, and over individual tasks. For each fold, 10 models are built on bootstrapped samples
of the fold’s training set and their results on the test set averaged (see text)

ror bars, and for every fraction of training data the significance of the difference between
single- and multi-task learning according to a paired two-sided t -test on the fold results. Re-
sults again indicate an advantage of multi-task (MT) over single-task (ST) learning. More
specifically, MT learning from 50% of the available training data reaches about the same ac-
curacy as ST learning from the whole data set. The difference between MT and ST learning
is significant or borderline significant for small training set sizes, but becomes less pro-
nounced if more training data is available.

6.6 Multi-class problems

As a relational multi-class problem, we consider the “University Computer Science Depart-
ment”, or WebKB, data set. This data set consists of web pages collected from four computer
science departments: Cornell University, University of Texas, University of Washington and
University of Wisconsin. Web pages are classified into six categories: course, depart-
ment, faculty, research project, staff and student. Pages not belonging to
any of these classes are assigned to a default other class. Table 6 reports class statistics
for each of the four Universities. We relied on a relational version of the data set which in-
cludes hyperlink and anchor word information (Slattery and Craven 1998). Table 7 reports
the predicates we employed in our experimental evaluation.8 In order to decrease class skew

8All predicates where taken from Slattery and Craven (1998) except for dirs_after_tilde_in_url/2
which was our addition.
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Table 6 Class statistics for the
“University Computer Science
Department” data set

Class Cornell Texas Washington Wisconsin

course 44 38 77 85

department 1 1 1 1

faculty 34 46 31 42

research project 20 18 21 25

staff 21 3 10 12

student 128 148 126 156

other 619 573 940 946

Table 7 Description of the relational predicates employed for the “University Computer Science Depart-
ment” data set

Predicate Description

has_word(page,word) word is contained in the page text

has_anchor_word(anchor,word) word is contained in the anchor text

all_words_capitalized(anchor) all words in the anchor text are capitalized

has_alphanumeric_word(anchor) the anchor text contains an alphanumeric word

linktopage(page1,page2,anchor) anchor identifies a link from page1 to page2

dirs_after_tilde_in_url(page,num) The URL of page contains a tilde followed by num
directories

and to obtain simpler and more readable models, we removed the other class in all ex-
periments. In a preprocessing phase, we furthermore selected for each training set the first
50 words and 50 anchor words with highest information gain, and restricted clauses to only
contain these informative words.

As outlined in Sect. 3.6, multi-class problems can be cast in the multi-task setting by
identifying classes with tasks. We compare a single-task approach (that is, a standard one-
vs-rest setup) against multi-task approaches using average single-task scores or multi-class
accuracy. Table 8 reports experimental results for these three settings and different scoring
functions, in a leave-one-university-out cross-validation (that is, Web pages of one univer-
sity are classified using a model trained on the remaining three universities). The evaluation
measure on the test set is multi-class accuracy. Results confirm the advantage of multi-task
learning with respect to single-task, as multi-task scoring functions achieve better results
in all cases. It is interesting to note that while multi-task KTA achieves the overall best re-
sults, its single-task counterpart performs very badly for the two Universities with the least
number of examples, Cornell and Texas. Such performance degradation is due to a very
low recall on the student class, which is mostly predicted as course and faculty in
the Cornell and Texas cases respectively. Note also that directly using multi-class accuracy
as a scoring function does not improve over average accuracy which achieves slightly bet-
ter overall results. However, the former function tends to learn simpler kernels, with 22.5
clauses on average, with respect to 42.5 learned by average accuracy. KTA also learns quite
simple kernels, with 25.25 clauses on average, while achieving the same results as average
accuracy.



Mach Learn (2010) 78: 305–342 331

Table 8 Leave-one-university out results for the “University Computer Science Department” data set. Eval-
uation measure is multi-class accuracy, while scoring measures are single- and multi-task accuracy, AUC and
KTA, and multi-class accuracy

Test University Accuracy AUC KTA Multi-Class
AccuracyST MT ST MT ST MT

Cornell 69.8 75.4 77.4 77.4 31.9 75.8 72.6

Texas 74.8 75.2 80.7 81.9 34.6 83.1 81.1

Washington 75.2 74.4 68.8 74.4 75.2 70.3 70.7

Wisconsin 78.2 82.9 78.8 84.1 76.3 80.4 78.8

Micro Average 74.7 77.3 76.5 79.7 56.2 77.5 75.9

6.7 Interpreting learned models

A major advantage of the proposed methodology for learning relational kernels compared
to other relational kernel-based approaches (such as pre-defined kernels for structured data,
cf. Gärtner 2003) is that it retains some of the interpretability of its underlying inductive
logic programming approach. After training, KFOIL returns a relatively small set of first-
order logical clauses that define a similarity measure between examples in the given domain.
These clauses are typically easy to read by human experts, especially as they can build
on human-supplied background knowledge (such as known functional groups for chemical
compounds). Figure 2 shows example clauses learned in the NCTRER, NCI and WebKB
domains, and visualizes how these clauses match on examples.

The key part in understanding a final learned model is to understand the similarity func-
tion defined by the kernel. The kernel function k(e1, e2) is defined by the number of clauses
that match both e1 and e2, or some non-linear transformation thereof (cf. Sect. 3.3). That is,
the kernel counts how many structural features are shared by the two examples. Examples
that share a large number of features will be considered similar, and are thus likely to re-
ceive the same classification. If clauses are understandable the human experts, the resulting
similarity function will be understandable as well as long as the number of features shared
between two examples is not overwhelmingly large. Figure 3 shows a histogram represen-
tation of the average number of clauses matching an example, and the average number of
features shared by a pair of examples. It can be observed that for most pairs of examples
the number of shared features is very small, thus it will be easy to manually inspect their
similarity. Figure 4 visualizes a learned kernel function on the WebKB data set, for the
single-task (left) and multi-task (right) case respectively. In the single-task case, student
is the positive class, as it leads to the most balanced task. Lighter colors correspond to larger
kernel values. Examples are grouped according to classes, and classes ordered so to maxi-
mize similarity between neighboring one. Within each class, examples are sorted according
to their principal component, in order to cluster together similar examples. In the single-task
case, it can be observed that positive examples (bottom left) are roughly grouped together
into block-like clusters by the structural features they exhibit. Negative examples have lower
kernel values in general, meaning that the predictor tends to rather model the positive class,
a common behavior when negative examples come from many possible sources. Anyhow,
a slight tendency for negative examples to cluster together on a per-class basis can still be
recognized. In the multi-task case, on the other hand, two main differences can be observed:
first, the matrix exhibits a coarser grain structure, with larger clusters on average. Indeed,
the multi-task predictor tends to learn much smaller sets of clauses, as showed in Table 9.
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Fig. 2 Examples for clauses learned by KFOIL on the NCTRER (upper), NCI (middle) and WebKB (lower)
data sets. Additionally, examples on which the clauses match are shown, with the sub-structure defined by
the clauses highlighted in red. Note that for NCTRER, only low-level atom/bond structure is given, and
the algorithm automatically infers that aromatic rings with a phenol group are relevant for the classification
problem at hand. For NCI a library of high-level chemical structures was supplied as background knowledge,
such that small clauses can encode relatively complex sub-structures

Second, even if the student class is still much more represented, being by far the majority
one (see Table 6), other classes are modeled as well, and their clusters are more evident than
in the single-task case. However, note that there is a tendency for staff and faculty
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Fig. 3 Histogram representation of the average number of clauses matching an example (left), and the aver-
age number of features shared between a pair of examples, that is, value of the corresponding kernel matrix
element (right). Note the logarithmic scale in the second plot. Statistics are collected from NCI-BT_549
(25%), building a model on all of the training data, AUC scoring

Fig. 4 Visualization of learned kernel functions on the WebKB data set, in a single-task (left) and multi-task
(right) case respectively. Kernel values are shown for webpages at Cornell University for a model trained
on the remaining three universities (Washington, Wisconsin, and Texas). In the single-task case, student
is the positive class as it leads to the most balanced task. Examples are grouped by class, classes are sorted
so to maximize similarity between pairwise ones. Examples within each class are sorted by their principal
component, in order to cluster together similar ones. Note that there were two “staff” pages from the Cornell
CAC (instead of CS department) which did not contain any informative words, and are not matched by any
clause, leading to kernel entries of zero. These are visible as black lines in the kernel matrix

classes to share a common representation, and to share features with some of the student
examples. This is quite intuitive given that all such classes represent personal homepages.

Table 9 shows the number of clauses obtained on the Alzheimer, EPA, MTDP, NCI,
and WebKB data sets for single-task and multi-task learning. Results show that multi-task
learning yields a more compact representation than single-task learning: the set of clauses
obtained is significantly smaller than the union of the task-specific clause sets. This indicates
that it is possible to infer a clause set (and thus, similarity measure) that generalizes over the
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Table 9 Number of clauses obtained for single-task and multi-task learning on the Alzheimer, NCGC,
MTDP, NCI, and WebKB data sets (AUC scoring). The clause set for single-task learning is the union of
the clause set obtained on the individual tasks (that is, duplicate clauses have been removed). For Alzheimer,
NCGC, MTDP, and NCI, results are averaged over a 50 train-test splits as in Table 5. For WebKB, results are
averaged over a leave-one-university-out cross-validation as in Table 8

Data Set Number of Clauses

ST MT

Alzheimer 79.5 34.7

NCGC 195.7 76.0

MTDP 84.0 59.7

NCI 414.5 175.3

WebKB 127.5 37.8

individual tasks. Interpreting such a generalized representation will typically be easier than
looking at all task-specific clause sets individually.

6.8 Computational complexity

Computational complexity in KFOIL is dominated by the evaluation of candidate clauses
within the greedy top-down refinement search (cf. Algorithm 1). More specifically, for every
candidate clause under consideration it has to be determined (1) which examples are covered
by the clause and (2) how adding the clause to the current model affects the score. Task (1)
consists of running a Prolog query against the current database that holds the description of
the examples and the background knowledge. This is a standard task that has to be carried
out in ILP systems, and thus constitutes a “computational baseline” in the sense that it is
the minimum effort any system has to perform. Task (2) is the additional effort required
to score the hybrid statistical-logical model defined by KFOIL, and thus constitutes the
computational “overhead” compared to a purely logical approach. Note that the complexity
of the second task will strongly depend on the particular scoring function used.

Figure 5 shows the scaling behavior of KFOIL with AUC scoring (beam size 5) and
KTA scoring (beam sizes 5 and 20). Complexity is broken down into time spent on Task (1)
and Task (2). Results clearly show that KTA scoring scales better than AUC scoring, even
taking into account the larger beam size. For KTA scoring coverage calculations clearly
dominate overall runtime, and computing kernel target alignment for a candidate clause only
constitutes a small overhead. In contrast, for AUC scoring the actual score update strongly
dominates the total computational effort. Overall, KFOIL with KTA scoring scales roughly
linear in the number of examples, while AUC scoring exhibits clearly non-linear scaling.
Note that scoring by classification accuracy has essentially the same complexity as scoring
by AUC, as in both cases the full SVM model has to be built.

Additional computational savings are obtained in a multi-task setting: coverage compu-
tations only have to be carried out once (as only one clause set is learned). For KTA scoring,
where coverage calculations dominate computational cost, multi-task learning thus yields
significant computational savings compared to building an individual model for every task.

The (roughly) linear scaling behavior of KFOIL with KTA scoring is surprising, as even
the incremental algorithm for computing the alignment of a clause set involves operations
which are non-linear in the number of examples (cf. Algorithms 2, 4, and 3). However, note
that the relevant factor is the number of effective examples, i.e., examples that are mapped
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Fig. 5 Runtime in seconds for building a single model on NCI-BT_549 as a function of the number of
training instances for different scoring functions and beam sizes. Graphs show (1) time spent on determining
the coverage of a clause (“Coverage”), (2) time spent to determine the score of the combined model given
the coverage (“Scoring”), and (3) overall time spent in the evaluation of the clause (“Overall”). Results are
averaged over 50 random samples for each data set size

to different propositional vectors by the clause set (see Sect. 5). Figure 6, left plot, shows
the number of effective examples as a function of the overall number of examples. A least-
squares curve fit of the function f (x) = xa to the (normalized) curve yields a ≈ 0.5187.
Thus, the number of effective examples grows approximately with the square root of the
total number of examples, explaining the overall linear scaling behavior observed in Fig. 5.

6.9 Summary of experimental results

As already reported in Landwehr et al. (2006), KFOIL compares favorably against well-
known ILP systems and static propositionalization approaches. New results were obtained
with more efficient incremental algorithms, kernel target alignment scoring, and in multi-
task and multi-class learning settings.

The comparison between AUC and accuracy scoring on the one hand and alignment
scoring on the other hand has been shown to be a classical accuracy-efficiency trade-off.
Alignment scoring yields slightly lower accuracy, but offers a much better scaling behav-
ior, making the proposed algorithm practical for large-scale relational learning problems.
According to our experiments, linear scaling can be expected—a surprising result. The ex-
planation is that the number of effective examples that are fed to the support vector machine
only grows with the square root of the original number of examples.

Multi-task learning has been shown to offer three key benefits compared to single-task
learning. First, our experiments confirm the observation that multi-task learning can offer
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Fig. 6 Left plot: number of effective examples as a function of the overall number of examples for KFOIL
with KTA scoring and beam size 5. Both axis are normalized to the interval [0,1], that is, values divided
by their corresponding maximum. A least-squares curve fit of the function f (x) = xa yields a constant
a ≈ 0.5187. Results are averaged over all tasks in NCI and 50 random splits into training (80%) and test
(20%) data. Right plot: Cumulative runtime of KFOIL training as a function of the algorithm iteration for
AUC scoring, with and without incremental optimization of the support vector machine (NCI BT_549 dataset)

advantages in terms of generalization performance (Caruana 1997). Second, the resulting
representation of the learned model in terms of a clause set is more compact, as the joint
clause set is smaller than the union over the task-specific clause sets induced. Finally, to-
gether with alignment scoring multi-task learning offers additional computational benefits,
as coverage calculations are shared between tasks.

7 Conclusions

We developed a general framework for statistical relational learning with kernels, and in-
troduced kFOIL as a simple implementation within such framework. We showed how to
efficiently learn relational kernels retaining much of the interpretability of ILP systems. Ex-
perimental comparisons show the advantages of the proposed approach over ILP systems
as well as both static and dynamic propositionalization approaches. Our formulation allows
one to naturally handle multi-task learning problems, resulting in a novel structural multi-
task learning algorithm. An extensive experimental evaluation proves the advantage of the
multi-task learning approach over its single-task counterpart, both in efficiency and effec-
tiveness. We also showed the advantage of multi-task learning in dealing with multi-class
classification problems.

kFOIL can be extended in a number of directions. Greedy search, for instance, produces
a small but suboptimal set of features, and more complex strategies can be employed, trad-
ing efficiency and interpretability for effectiveness. Concerning multi-task learning, while
kFOIL currently learns a feature space representation which is common across tasks, it is
possible to extend it with task-specific components accounting for the specificity of each
task, as is done with hierarchical Bayesian models (see e.g. Deshpande et al. 2007). Finally,
it would be interesting to verify if the advantage we observed addressing multi-class classi-
fication as a multi-task problem is confirmed with different multi-task learning algorithms.
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Appendix: kFOIL incremental algorithm

Algorithm 2 summarizes how relevant information is incrementally updated when scoring a
candidate clause. To implement merging examples with the same feature representation (i.e.,
examples within the same cluster), we keep a mapping of examples to an ID representing
their cluster (E2I), and a mapping from cluster IDs to the set of examples within this cluster
(I2E). These mappings, as well as the current kernel matrix M and the examples covered
by the candidate clause form the input. The algorithm relies on a local structure of active
clusters (AI2E). An active cluster is a cluster containing at least one example covered by the
candidate clause. AI2E maps each active cluster ID to the subset of examples in that cluster
which are covered by the clause. Such structure is filled in lines 2–4. Then, the algorithm
cycles over active clusters, and determines whether an active cluster is split by the current
clause (line 6). This happens when the size of the active cluster is different from the size of
the full cluster, implying that some of the examples in the cluster were not covered by the
clause, which leads to a different feature space representation. If a split does not occur, the
active site ID is simply added to a local set (U ) of clusters for which kernel values should
be updated (line 7). Otherwise, a split implies getting a new cluster ID (line 9), adding it

Algorithm 2 Procedure to update information needed to score candidate clause
1: procedure ADDCLAUSE(Ex, I2E,E2I,M)

Input:
Ex set of examples covered by the candidate clause
E2I map from example to feature space id
I2E map from feature space id to set of examples collapsed into it
M kernel matrix in lower triangular form

2: for all i ∈ Ex do � group covered examples by feature space id
3: INSERT(AI2E[E2I[i]], i)
4: end for
5: for all (id, id2E) ∈ AI2E do
6: if SIZE(id2E) = SIZE(I2E[id]) then � all id-mapped examples are covered
7: INSERT(U, id) � add id to set of ids to update
8: else � id has to be splitted
9: newid ← SIZE(I2E) � generate a new id

10: INSERT(U,newid) � add newid it to ids to update
11: INSERT(I2E[newid], id2E) � add newid with covered examples to I2E
12: for all j ∈ id2E do
13: E2I[j ] ← newid � map example to new id
14: REMOVE(I2E[i], j ) � remove example from old id
15: SPLITALPHAS(id2E, I2E[i]) � split alpha between old and new ids
16: end for
17: COPYROW(M, id,newid) � init new id matrix entries to old id ones
18: M[INDEX(newid,newid)] ← M[INDEX(id, id)]
19: end if
20: REMOVEFROMKTA(id, id2E) � remove id contribution to KTA
21: end for
22: INCREMENTMATRIX(M,U) � increment matrix entries of all ids to update
23: ADDTOKTA(U ) � add new id contributions to KTA
24: end procedure
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Algorithm 3 Procedure for removing obsolete contributions from KTA
1: procedure REMOVEFROMKTA(id, id2E, I2E, I2Eold,KTA)

Input:
id, id2E id to be (partially) removed from KTA, and examples mapped into it
I2E, I2Eold feature space id to examples maps, current and before adding clause
KTA kernel-target, kernel-kernel and target-target Frobenius norms

2: for all ti ∈ {−1,1} do
3: tiS ← SIZE(id2E, ti) � recover size of examples with target ti
4: for all (idj, idj2E) ∈ I2Eold do � iterate over original ids
5: k ← KERNEL(id, idj)
6: for all tj ∈ {−1,1} do
7: T ← ti · tj
8: tjS ← SIZE(idj2E, tj)
9: if id = idj and ti = tj then � Treat diagonal entry differently

10: S ← tiS(2 · tjS − tiS)

11: else if idj < id or tj < ti then � Only remove left idj size
12: S ← 2 · tiS · SIZE(I2E[idj], tj)
13: else
14: S ← 2 · tiS · tjS
15: end if
16: DECREASEKTA(k · T · S, k · k · S,T · T · S)
17: end for
18: end for
19: end for
20: end procedure

to the set U of clusters to update (line 10) and updating the mapping I2E (lines 11 and 14)
and E2I (line 13). Kernel values from the old cluster ID should be copied on a new row
of the kernel matrix (line 17), and a new diagonal entry should be set equal to that of the
old id (line 18). Finally, kernel values corresponding to a pair of cluster IDs which are both
covered by the new clause (U ) are incremented by 1 to account for the contribution of the
new clause (line 22).9

Depending on the scoring function employed, additional updates are also performed: if
scoring involves solving a minimization problem (Case 3), computational savings can be
obtained by restarting from a previously obtained solution (see Sect. 5.3). Note that if a split
occurs, the corresponding alpha value has to be distributed among splitted IDs (line 15), so
that the starting point is consistent with constraints.

On the other hand, if scoring involves KTA computation, the algorithm simply updates
the contribution of covered examples to the previously computed KTA. This is done by up-
dating the three Frobenius norms from which KTA is computed (see (10)). For each cluster
ID, the contribution of the corresponding examples which are covered by the clause is first
removed from the norms (line 20, see Algorithm 3) and then replaced with the contribution
according to their updated kernel value (line 23, see Algorithm 4).

Consider Algorithm 3, which removes contribution of cluster id with corresponding ex-
amples id2E, i.e., the examples which are covered by the candidate clause, from the norms.

9This is assuming a linear kernel; combinations with polynomial or Gaussian kernels can be easily imple-
mented given the linear kernel matrix.
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Algorithm 4 Procedure for adding new contributions to KTA
1: procedure ADDTOKTA(Ids, I2E,KTA)

Input:
Ids ids to be added to KTA
I2E map from feature space id to corresponding set of examples
KTA kernel-target, kernel-kernel and target-target Frobenius norms

2: for all id ∈ Ids do
3: for all ti ∈ {−1,1} do
4: tiS ← SIZE(I2E[id], ti)
5: for all (idj, idj2E) ∈ I2E do
6: k ← KERNEL(id, idj)
7: for all tj ∈ {−1,1} do
8: T ← ti · tj
9: S ← tiS · SIZE(idj2E, tj)

10: if !FIND(Ids, idj) then
11: S ← S · 2
12: end if
13: INCREASEKTA(k · T · S, k · k · S,T · T · S)
14: end for
15: end for
16: end for
17: end for
18: end procedure

Additional inputs to the algorithm, which were omitted from the call for the sake of readabil-
ity, are the current mapping from cluster IDs to examples (I2E), and the original mapping
(I2Eold) before adding the clause, as well as the current three Frobenius norms (in the KTA
structure). Removing the contribution of id from the norms amounts at removing the values
of the corresponding row (and column) in the kernel-target, kernel-kernel and target-target
matrices (see (10)). In two out of three cases, we have to distinguish between positive and
negative examples. Let tiS+ and tiS− be the positive and negative examples in id2E (line 3).
By iterating over cluster identifiers idj (line 4), the algorithm scans the row (and column) to
be removed. First it computes kernel kij = K(idi, idj) (line 5), and target T = ti · tj (line 7)
matrix entries, the latter for both positive and negative case of idj. Then, it computes the
number of times such matrix entries should be counted (remember that a matrix entry cor-
responds to a cluster of examples with same feature representation). When multiple IDs are
affected by a clause, care must be taken in not removing the contribution of the same set
of examples multiple times. This is accomplished by considering both the original size (tjS,
line 8) of cluster idj, i.e., before adding the clause, and the current size (SIZE(I2E[idj], tj),
see line 12), which can be smaller if a split on idj has occurred before the current call of the
algorithm. Three cases should be considered. (1) diagonal entry (line 10): here idj = id, tiS is
the amount to move (examples covered by the clause) and tjS the original size. If we split the
original size in moved (tiS) and left (tlS) parts, we have (tlS+ tiS)2 = tlS2 + tiS2 +2 · tlS · tiS,
and as only the contribution of the moved examples should be removed from the norms, we
obtain tiS2 + 2 · tlS · tiS = tiS(tiS + 2(tjS − tiS)) = tiS(2 · tjS − tiS). (2) part of contribution
already removed (line 12), either by previous calls (idj < id) or previous iterations within
the current call (tj < ti): only consider the current size for idj. (3) novel removal (line 14):
remove the entire original size for idj. Finally, the correct amount is removed from the free
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Frobenius norms (line 16), combining the values computed in the previous steps. In a sim-
ilar but simpler fashion, Algorithm 4 adds the contribution of the covered examples to the
norms. Note that the procedure ADDCLAUSE is called for every candidate clause to update
the model by the contribution of that clause. After the candidate clause has been scored,
a simple procedure REMOVECLAUSE (not shown) is called to remove its contribution be-
fore evaluating an alternative refinement, basically by decrementing the kernel matrix and
restoring previous mappings and either alphas or Frobenius norms depending on the scoring
function employed.
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