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Abstract We consider a class of structured prediction problems for which the assumptions
made by state-of-the-art algorithms fail. To deal with exponentially sized output sets, these
algorithms assume, for instance, that the best output for a given input can be found ef-
ficiently. While this holds for many important real world problems, there are also many
relevant and seemingly simple problems where these assumptions do not hold. In this paper,
we consider route prediction, which is the problem of finding a cyclic permutation of some
points of interest, as an example and show that state-of-the-art approaches cannot guarantee
polynomial runtime for this output set. We then present a novel formulation of the learn-
ing problem that can be trained efficiently whenever a particular ‘super-structure counting’
problem can be solved efficiently for the output set. We also list several output sets for which
this assumption holds and report experimental results.

Keywords Structured prediction · Combinatorial structures · Kernel methods

1 Introduction

State-of-the-art structured prediction algorithms can be applied using off-the-shelf tools by
implementing a joint kernel for inputs and outputs, and an algorithm for inference. The
kernel is used for mapping the data to an appropriate feature space, while the inference
algorithm is used for successively adding violated constraints to the optimisation problem.
While this approach leads to efficient learning algorithms for many important real world
problems, there are also many cases in which successively adding violated constraints is
infeasible. Our main results are: (i) We show that the usual assumptions do not hold for many
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output sets, even if we restrict the class of structures to those for which a particular counting
problem can be solved efficiently; (ii) We devise an alternative optimisation problem that
can be solved efficiently whenever this counting problem can be.

As a simple yet relevant problem, we consider the prediction of routes over given points
of interest. Solving this problem has many potential applications. For car drivers, prediction
of individual routes can be used for intelligent car sharing applications or help optimise a
hybrid vehicle’s charge/discharge schedule (hybrid fuel economy can be improved by up
to 8% if the route is known in advance or predicted accurately—see Froehlich and Krumm
2008 and references therein). Such applications are gaining more importance as more hybrid
cars are being used and as the traffic density is increasing nowadays.

Structure of this paper After fixing notation and recalling the basic structured prediction
setting, we review the usual training approach (Sect. 2). We then show that the usual assump-
tions do not hold for route prediction and also for a large class of other problems (Sect. 3).
After that, we show how ‘super-structures’ can be counted efficiently for the case of route
prediction and derive an efficient structured output training algorithm under this assumption
(Sect. 4). To make this alternative approach applicable to a wider class of problems, we then
introduce super-structure counting for a wide class of output sets (Sect. 5). After discussing
related work (Sect. 6), we empirically compare our algorithm to special purpose algorithms
on multi-label classification and hierarchical classification, and to a general structured out-
put training algorithm on route prediction (Sect. 7).

2 Preliminaries

2.1 Notation

We use [[n,m]] to denote the set of integers {n,n + 1, . . . ,m}, [[n]] to denote the set [[1, n]],
and 〈·, ·〉 to denote inner products. Let X and Y be the input and output set, respectively,
and let {(xi, yi)}i∈[[m]] ⊆ X × Y be a set of observations. In general, X is an arbitrary set
for which we only assume the presence of an appropriate positive definite kernel function
kX : X × X → R. The set Y is parameterised by a finite alphabet �. We assume that a
polynomial time computable map φ : Y → R

d is defined and will refer to the inner product
under this map by kY : y, y ′ �→ 〈φ(y),φ(y ′)〉. For the joint kernel of inputs and outputs, we
consider the tensor product kernel k[(x, y), (x ′, y ′)] = kX (x, x ′)kY (y, y ′), which has found
application in many important domains (Jacob and Vert 2008; Erhan et al. 2006). We refer
to the Hilbert spaces corresponding to kX , kY , k as HX , HY , H, respectively. In our route
prediction problem, each xi represents a set of features such as an individual person, a day,
and a time of the day; �cyc is a set containing points of interest; Y cyc is the set of cyclic per-
mutations of subsets of � containing at least three points (we are interested in cyclic permu-
tations as we assume that each individual starts and ends each route in the same place, e.g.,
his/her home); k

cyc
X is the linear kernel; and dcyc = � × �. We represent a cyclic permuta-

tion by the set of (predecessor, successor)-pairs. For instance, the sequences {abc, bca, cab}
are equivalent and we use {(a, b), (b, c), (c, a)} to represent them. Furthermore, we define
φ

cyc
(u,v)(y) = 1 if (u, v) ∈ y, i.e., v follows directly after u in y; φ

cyc
(u,v)(y) = −1 if (v,u) ∈ y,

i.e., u follows directly after v in y; and 0 otherwise.
Throughout this paper, we call an algorithm efficient if it has runtime polynomial in |�|

and the size of the observations.
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2.2 Regularised risk minimisation for structured output training

Assuming for simplicity uniform misclassification costs, regularised risk minimisation
based approaches aim at minimising an upper bound on the expected error

argmin
h∈H

λ�[h] +
∑

i∈[[m]]
|{z ∈ Y | h(xi, z) > h(xi, yi)}|,

where λ ≥ 0 is the regularisation parameter and � : H → R is a convex regularisation func-
tion such as ‖ · ‖2.

As the above problem is non-convex, state-of-the-art large margin approaches (Tsochan-
taridis et al. 2005; Taskar et al. 2005) minimise a convex upper bound; for instance, using
hinge loss we obtain Q({(xi, yi) | i ∈ [[m]]}) =

argmin
h∈H

λ�[h] +
∑

i∈[[m]]

∑

z∈Y\{yi }
ξiz

subject to h(xi, yi) − h(xi, z) ≥ 1 − ξiz (∀i ∈ [[m]], z ∈ Y)

ξiz ≥ 0 (∀i ∈ [[m]], z ∈ Y) .

(1)

In the following, we are also interested in the set of hypotheses potentially occurring as
solutions to this optimisation problem and denote it as Hopt = {Q(D) | D ⊆ X × Y}.

3 Hardness results

In this section, we discuss the assumptions under which state-of-the-art structured output
learning algorithms can be applied efficiently and show that these assumption do not hold
for several relevant output sets. This is for instance the case for route prediction.

3.1 Motivation

The key challenge in solving the convex optimisation problem (1) is that the number of
constraints grows proportional to |Y| and thus usually exponentially with |�|. To ensure
polynomial time complexity, different assumptions need to be made and depending on the
nature of �, different methods are used that iteratively optimise and add violated constraints.
With linear � the ellipsoid algorithm can be used if an efficient separation oracle exists
(Korte and Vygen 2008), otherwise cutting-plane methods can be employed under similar
assumptions. The strongest assumption is the existence of an efficient algorithm for finding
the ‘best’ structure given a hypothesis and an input (Tsochantaridis et al. 2005; Collins
2002). A weaker assumption, which is in fact sufficient for the proof of the main result in
Collins (2002), is the existence of an efficient algorithm for finding a ‘better’ structure than
the given one, i.e., an efficient separation oracle. An even weaker assumption is that there is
a short certificate for the ‘best’ structure (Taskar et al. 2005).

In the following, we will first show that these assumptions do not hold if the sub-
optimality decision problem for a given (Y, Hopt) is NP-hard. This decision problem is
defined as deciding if for a given h ∈ Hopt, x ∈ X and y ∈ Y , a z ∈ Y exists such that
h(x, z) > h(x, y). We then show that for the specific case of route prediction, sub-optimality
is indeed NP-complete. Our hardness result gains further significance as we can also show
that this case can indeed occur for a specific set of observations. We then turn to a class of
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problems for which the output forms particular set systems, show that in this case the above
assumptions are polynomially equivalent, and note that they are often hard by relating them
to edge-deletion problems.

3.2 Representation in output space

State-of-the-art structured output training algorithms assume (at least) that deciding if an
output structure with higher score than a given one exists is in NP. With the definitions given
above, we formally define (Y, Hopt)-OPTIMALITY as:

h ∈ Hopt, x ∈ X , y ∈ Y �→ (�z ∈ Y : h(x, z) > h(x, y)) .

The strong representer theorem (Schölkopf et al. 2001) holds for all minimisers h∗ ∈ Hopt

of the optimisation problem (1). It shows that h∗ ∈ span{k[(xi, z), (·, ·)] | i ∈ [[m]], z ∈ Y}.
That is,

h∗(x, y) =
∑

i∈[[m]],z∈Y

αizk[(xi, z), (x, y)] =
∑

i∈[[m]],z∈Y

αizkX (xi, x) 〈φ(z),φ(y)〉

=
〈

∑

i∈[[m]],z∈Y

αizkX (xi, x)φ(z),φ(y)

〉
.

This motivates us to first consider (Y, φ)-OPTIMALITY, defined as:

w ∈ span{φ(y) | y ∈ Y}, y ∈ Y �→ (�z ∈ Y : 〈w,φ(z)〉 > 〈w,φ(y)〉) .

To show that (Y, φ)-OPTIMALITY is not in NP, it suffices to show that (Y, φ)-SUB-
OPTIMALITY is NP-hard. Formally, we define (Y, φ)-SUB-OPTIMALITY as:

w ∈ span{φ(y) | y ∈ Y}, y ∈ Y �→ (∃z ∈ Y : 〈w,φ(z)〉 > 〈w,φ(y)〉) ,

and correspondingly (Y, Hopt)-SUB-OPTIMALITY.

3.3 Route prediction—hardness of finding cyclic permutations

We now consider the route prediction problem as an instance for which (Y, Hopt)-SUB-
OPTIMALITY is NP-complete and for which thus the assumptions made by state-of-the-art
structured prediction algorithms do not hold.

Lemma 1 With all constants and functions defined as above, (Y cyc, φcyc)-SUB-OPTIMAL-
ITY is NP-complete.

Proof We suppose a polynomial time algorithm for (Y cyc, φcyc)-SUB-OPTIMALITY exists
and show how it could be used to solve the Hamiltonian path problem for an arbitrary graph
G = (V ,E). Without loss of generality, we assume that V ∩ [[2|V | − 1]] = ∅. Let � = V ∪
(V × V ) ∪ [[2|V | − 1]] and let y× = {(1,2), (2,3), . . . , (2|V | − 2,2|V | − 1), (2|V | − 1,1)}.
With

w× = φcyc(y×) +
∑

{u,v}∈E

φcyc ({(u, (u, v)), ((u, v), v), (v, (v,u)), ((v,u),u)}) ,



Mach Learn (2009) 76: 227–242 231

we have
〈
w×, φcyc(y×)

〉 = ‖φcyc(y×)‖2 = 4|V | − 2 and

G has a Hamiltonian cycle ⇔ (∃z ∈ Y cyc : 〈w×, φcyc(z)
〉
>

〈
w×, φcyc(y×)

〉)

⇔ (Y cyc, φcyc)-SUB-OPTIMALITY(w×, y×).

Observing that by definition w× ∈ span{φcyc(z) | z ∈ Y cyc} completes this part of the proof.
It now remains to observe that any z ∈ Y cyc with 〈w×, φcyc(z)〉 > 〈w×, φcyc(y×)〉 can serve
as a short certificate of sub-optimality. �

Theorem 1 With all constants and functions defined as above, (Y cyc, Hcyc
opt )-SUB-OPTIMAL-

ITY is NP-complete.

Proof For an arbitrary graph G = (V ,E), let �,y×,w× be defined as above and let X = 2E

with kX (e, e′) = |e ∩ e′|. With m = |E| + 1, {xi | i ∈ [[|E|]]} = E and xm = E, we choose
the training data D as

{({{u,v}}, {(u, (u, v)), ((u, v), v), (v, (v,u)), ((v,u),u)}) | {u,v} ∈ E} ∪{(E,y×)},
and let αiz = 1/2 for z = yi and αiz = 0 otherwise. That is, each edge in the original, undi-
rected graph is represented by a directed cycle of length four. For i ∈ [[|E|]] we then have

h(xi, yi) =
〈

∑

i∈[[m]],z∈Y

αizkX (xi, x)φ(z),φ(yi)

〉
= 4,

h(xi, z) = 3 if |z ∩ yi | = 3, and h(xi, z) < 3 if |z ∩ yi | < 3. Thus there are no violated
constraints for i ∈ [[|E|]] and h is indeed optimal on this part of the data. Furthermore,

h(xm, ym) =
〈

∑

i∈[[m]],z∈Y

αizkX (xi, x)φ(z),φ(ym)

〉
= 〈

w×, φ(y×)
〉
.

Together with Lemma 1 this gives the desired result. �

3.4 Connections to other assumptions

The strongest assumption made in related work is the existence of a polynomial time algo-
rithm for (Y, H)-DECODING (Tsochantaridis et al. 2005; Collins 2002):

h ∈ H, x ∈ X �→ argmax
z∈Y

h(x, z).

A weaker assumption which is in fact sufficient for the proof in Collins (2002) is the
existence of a polynomial time algorithm for (Y, H)-SEPARATION:

h ∈ H, x ∈ X , y ∈ Y �→
{

z for some z ∈ Y with h(x, z) > h(x, y)

∅ otherwise.

An even weaker assumption is that optimality is in NP (Taskar et al. 2005). Formally
(Y, H)-OPTIMALITY is

h ∈ H, x ∈ X , y ∈ Y �→ �z ∈ Y : h(x, z) > h(x, y).
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Proposition 1
(Y, H)-SUB-OPTIMALITY is NP-complete.

⇒ (Y, H)-OPTIMALITY is coNP-complete.
⇒ (Y, H)-SEPARATION is coNP-hard.
⇒ (Y, H)-DECODING is coNP-hard.

Proof The result follows immediately by observing that (1) optimality is the complement
of sub-optimality, (2) any separation oracle can be used to decide optimality, and (3) any
algorithm for decoding can be used as a separation oracle. �

Corollary 1 Unless coNP = NP, (Y cyc, Hcyc)-OPTIMALITY is not contained in NP. Unless
P = coNP, there is no polynomial time algorithm for

1. (Y cyc, Hcyc)-SEPARATION, and
2. (Y cyc, Hcyc)-DECODING.

Proof The result follows immediately from Theorem 1 and Proposition 1. �

Lastly, the decision problem (Y, H)-OPTIMAL-VALUE

β ∈ R, h ∈ H, x ∈ X , y ∈ Y �→ (β = max{h(x, z) | z ∈ Y})
is also of interest. Following the proof that EXACT-TSP is DP -complete (Papadimitriou
1994), it can be shown that also (Y cyc, Hcyc)-OPTIMAL-VALUE is DP -complete. The sig-
nificance of this result is that optimality-value can be reduced to separation and decoding,
providing even stronger evidence that neither of these problems can be solved in polynomial
time.

3.5 Set systems

We now consider set systems (�, Y π ) with Y π = {y ∈ 2� | π(y) = 1} where π : 2� → {±1},
and let φ∈ : Y → {0,1}� be the indicator function φ∈

e (y) = 1 if e ∈ y and 0 otherwise. An
independence system is a set system for which y ′ ⊆ y ∈ Y π implies y ′ ∈ Y π , i.e., for which
π is monotone. In this section, we often need to make the dependence of Y on the alphabet
� explicit and therefore denote the parameterised output set as Y(�).

We call a set system (�, Y π (�)) addable if for each 	 ∈ N there is a �	 ⊃ �, such
that y	 = argmax{|y| | y ∈ Y π (�	 \ �)} can be found efficiently and |y	| = 	 = max{|y| |
y ∈ Y π (�	) \ Y π (�)}. For instance, all independence systems are addable, whereas anti-
monotone set systems are not.

Proposition 2 For addable set systems, if we restrict our setting such that w ∈ {0,1}d , then
(Y π ,φ∈)-DECODING, (Y π ,φ∈)-SEPARATION, and (Y π ,φ∈)-OPTIMALITY are polynomi-
ally equivalent.

Proof It remains to show that a polynomial time algorithm for deciding optimality could
be used to solve the decoding problem in polynomial time. First note that 〈w,φ(y)〉 can
assume only d different values.

Beginning with the empty set as the current estimate, if the current estimate is optimal,
then we are done. Otherwise, we remove in succession each element of the alphabet that is
not contained in the current estimate. If removal of an element makes the current estimate



Mach Learn (2009) 76: 227–242 233

optimal, we add it back in and mark it as an element of the next estimate. Once all edges
have been processed, we have a new estimate �	 of size 	 equal to the number of marked
elements. We add �	 to the original set system, and repeat this procedure with the new set
system and y	 as the new estimate. �

A particularly interesting case is hereditary properties on the edges of a graph
G = (V ,E) where we let � = E ⊆ {U ⊆ V | |U | = 2}. A property is called hereditary
if ∀F,F ′ ⊆ E we have F ⊆ F ′ implies π(F ) ≥ π(F ′), i.e., hereditary properties corre-
spond to independence systems. In this case, sub-optimality corresponds to minimum edge
deletion problems, which are NP-hard for several important hereditary graph properties like
planar, outerplanar, line-invertible, comparability graph, bipartite graph, and many more
(Yannakakis 1978). In this case again optimality is not in NP (unless coNP = NP), and a
polynomial time algorithm cannot be expected for either separation or decoding.

4 Counting-based structured output training algorithm

We have thus far shown that state-of-the-art structured output learning algorithms cannot
be applied efficiently to predict several relevant output structures. We now propose an op-
timisation problem that admits efficient algorithms under an orthogonal assumption. This
assumption holds, for instance, for the case of route prediction.

4.1 Motivation

The major difficulty in structured output learning is to handle the exponentially many con-
straints that occur in all state-of-the-art algorithms (1). While successively adding violated
constraints is feasible under several assumptions, in the previous section we discussed cases
like route prediction where none of these assumptions hold.

In the following, we will first show, considering again cyclic permutations as an example,
that counting the number of super-structures can be feasible even if there are exponentially
many and even if the assumptions made by state-of-the-art structured output learning algo-
rithms do not hold. In particular, it is possible to efficiently compute

|Y cyc|, 
cyc =
∑

y∈Y cyc

φcyc(y), and Ccyc =
∑

y∈Y cyc

φcyc(y)
[
φcyc

]�
(y).

Following this insight, we aim at a structured output learning algorithm that is effi-
cient whenever super-structure counting is feasible. Indeed, whenever we are minimising
a quadratic upper bound on the loss, we can derive an unconstrained optimisation problem
accessing the output set only by means of |Y cyc|, 
cyc and Ccyc. To solve this optimisation
problem, we give the gradient as well as the Hessian-vector multiplication.

The remainder of this paper is concerned with output sets for which |Y|, ∑
y∈Y φ(y) and∑

y∈Y φ(y)φ�(y) can be computed efficiently.

4.2 Route prediction—counting cyclic permutations

For a given alphabet �, we are now interested in computing |Y cyc|, the number of cyclic
permutations of subsets of �. For a subset of size i there are i! permutations of which i
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represent the same cyclic permutation. That is, there are (i − 1)! cyclic permutations of each
subset of size i, and for an alphabet of size N = |�| there are

|Y cyc| =
N∑

i=3

(
N

i

)
(i − 1)!

different cyclic permutations of subsets of �.
Computing 
cyc is even simpler. Observe that, for each cyclic permutation containing a

(predecessor, successor)-pair (u, v), there is also exactly one cyclic permutation containing
(v,u). Hence the sum over each feature is zero and 
cyc = 0 (where 0 is the vector of all
zeros).

It remains to compute Ccyc. Each element of this matrix is computed as

C
cyc
(u,v),(u′,v′) =

∑

y∈Y cyc

φ
cyc
(u,v)(y)φ

cyc
(u′,v′)(y).

As seen above, for u = u′ and v = v′ there are as many cyclic permutations for which
φ

cyc
(u,v) = +1 as there are cyclic permutations for which φ

cyc
(u,v) = −1. In both cases,

φ
cyc
(u,v)(y)φ

cyc
(u′,v′)(y) = +1, and to compute C

cyc
(u,v),(u,v) it suffices to compute the number of

cyclic permutations containing (u, v) or (v,u). There are (i − 2)! different cyclic permuta-
tions of each subset of size i that contain (u, v). We thus have

C
cyc
(u,v),(u,v) = 2

N∑

i=3

(
N − 2
i − 2

)
(i − 2)!.

Similarly, for u = v′ and v = u′, we have φ
cyc
(u,v)(y)φ

cyc
(u′,v′)(y) = −1 and

C
cyc
(u,v),(v,u) = −2

N∑

i=3

(
N − 2
i − 2

)
(i − 2)!.

For u �= u′ �= v �= v′ �= u, we observe that there are as many cyclic permutations con-
taining (u, v) and (u′, v′) as there are cyclic permutations containing (u, v) and (v′, u′),
and hence in this case C

cyc
(u,v),(u′,v′) = 0. Finally, we need to consider C

cyc
(u,v),(u,v′), C

cyc
(u,v),(u′,v)

,
C

cyc
(u,v),(v,v′), and C

cyc
(u,v),(u′,u)

. Here we have

C
cyc
(u,v),(u,v′) = C

cyc
(u,v),(u′,v)

= −2
N∑

i=3

(
N − 3
i − 3

)
(i − 3)! and

C
cyc
(u,v),(v,v′) = C

cyc
(u,v),(u′,u)

= +2
N∑

i=3

(
N − 3
i − 3

)
(i − 3)!

We are now ready to investigate structured output training algorithms based on these
counting formulae.

4.3 Loss function

We consider structured output ranking, i.e., given a set of training examples (x1, Y1), . . . ,

(xm,Ym) ∈ X × 2Y , the goal is to learn a scoring function h : X × Y → R that, for each
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xi ∈ X , orders (ranks) Y in such a way that it assigns a higher score to all y ∈ Yi than to all
z ∈ Y \ Yi . We use the following quadratic upper bound on the ranking loss R(h, i) =:

∑

y∈Yi

z∈Y\Yi

[
h(xi, z) − h(xi, y) + 1

2
h2(xi, z) − h(xi, z)h(xi, y) + 1

2
h2(xi, y)

]
. (2)

While other quadratic upper bounds can be used (Suykens and Vandewalle 1999;
Suykens 1999), our particular choice of loss function is motivated by being the second order
Taylor expansion at zero of the exponential ranking loss (Altun et al. 2002). We now aim at
finding

h∗ = argmin
h∈H

λ‖h‖2 +
∑

i∈[[m]]
R(h, i). (3)

4.4 Tensor representation

The standard representer theorem states that there is a minimiser h∗ with h∗ ∈ F =
span{k[(xi, z), (·, ·)] | i ∈ [[m]], z ∈ Y}. It also holds in our case (3): Without loss of gen-
erality, we consider h = f + g where f ∈ F and g ∈ H with g⊥F . Now h(xi, z) =
〈h(·, ·), k[(xi, z), (·, ·)]〉 = 〈f (·, ·), k[(xi, z), (·, ·)]〉 + 0 = f (xi, z) and (2) is independent of
g. Furthermore ‖h(·, ·)‖2 = ‖f (·, ·)‖2 + ‖g(·, ·)‖2 showing that for each h ∈ H there is an
f ∈ F for which the value of the objective function (3) is no larger.

As usually |Y| grows exponentially with the input of our learning algorithm, it is in-
tractable to optimise over functions in F directly. Let e1, . . . , ed be the canonical or-
thonormal bases of R

d . We then have that {kX (xi, ·) ⊗ 〈el, .〉 | i ∈ [[m]], l ∈ [[d]]} spans
{kX (xi, .) ⊗ 〈φ(z), .〉 | i ∈ [[m]], z ∈ Y}. Therefore it is sufficient to optimise over only md

variables. We hence consider

α∗ = argmin
α∈Rm×d

λ‖fα‖2 +
∑

i∈[[m]]
R(fα, i) (4)

with

fα(x, z) =
∑

i∈[[m]],l∈[[d]]
αilkX (xi, x) 〈el, φ(z)〉 .

4.5 Optimisation

Denote f i
α = ∑

j∈[[m]],l∈[[d]] αj lkX (xi, xj )el . Let Y be the matrix Y ∈ R
m×d such that Yi· =∑

y∈Yi
φ�(y) and K be the kernel matrix such that Kij = kX (xi, xj ). We then have f i

α =
α�Ki· and can now express R(fα, i) using 
, C,

∑

z∈Y

f (xi, z) = 〈
f i

α,

〉
,

∑

z∈Y\Yi

f (xi, z) =
∑

z∈Y

f (xi, z) −
∑

y∈Yi

f (xi, y),

∑

z∈Y

f 2(xi, z) = f i
αCf i

α, and
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∑

z∈Y\Yi

f 2(xi, z) =
∑

z∈Y

f 2(xi, z) −
∑

y∈Yi

f 2(xi, y).

With F i
α = Yi·f i

α we obtain

R(fα, i) = 1

2
f i

αCf i
α + 〈

f i
α,


〉 − 2F i
α − F i

α

(〈
f i

α,

〉 − F i

α

)
.

Let tr denote the trace operator, and let diag be the operator that maps a square matrix
to the column vector corresponding to its diagonal as well as a column vector to the cor-
responding diagonal matrix. We use 1 to denote the vector of all ones and I to denote the
identity matrix. Using the canonical orthonormal basis of R

d , we can write the optimisation
problem (4) as

argmin
α∈Rd×m

λ trαKα� + 1

2
trKα�CαK + 2
�αK1 + |Y|

2
‖diag(YαK)‖2

− 2|Y| trYαK − 
�αKdiag(YαK).

We can use iterative methods like Newton conjugate gradient with the gradient

2λαK +CαK2 + 2
1�K −Y �diag(
�αK)K − 2|Y|Y �K + (|Y|Y � −
1�)(I ◦YαK)K

and the product of the Hessian with vector v

2λvK + CvK2 + |Y|Y �(I ◦ YvK)K − 
diag(YvK)K − Y �diag(
�vK)K.

5 Counting super-structures

Having introduced an algorithm that can be trained whenever super-structure counting is
feasible, we now show that this assumption not only holds for route prediction but also
for a large class of other output sets. For some of these output sets efficient decoding is
trivial, whereas for others decoding is infeasible, showing that our super-structure counting
assumption is orthogonal to the assumptions made in the structured prediction literature.

5.1 Simple set system cases

We first consider the general 	-label prediction problem where Y = {Z ⊆ � | |Z| = 	} with
φ : Y → R

� defined as φi(Z) = 1 if i ∈ Z and 0 otherwise. This setting generalises the
usual multiclass (	 = 1) and multilabel (by summing over all 	 ≤ |�|) settings. For general
	 ∈ [[�]] we have (with |�| = d),

|Y| =
(

d

	

)
; 
 = 1

(
d − 1
	 − 1

)
; C = 1

(
d − 2
	 − 2

)
+ I

(
d − 1
	 − 1

)
.

As special cases we have for multiclass (Y = �) that 
 = 1,C = I, and for multilabel
(Y = 2�) that 
 = 2|�|−11,C = 2|�|−2I + 2|�|−21.

For both of these simple cases, exact decoding is very simple. For a given (test) instance
x, let κ ∈ R

m with κi = kX (xi, x). For the multiclass case decoding is ŷ = argmaxe∈�[ακ]e .
For the multilabel case it is ŷ = {e ∈ � | [ακ]e ≥ 0}. Hence, we could in this case also apply
separation based learning algorithms.
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5.2 Simple non-set system cases

We now consider poset regression. Let Y ⊂ �, φ : Y → R
� and let (�,�) be a poset.

With φi(z) = 1 if z � i and φi(z) = 0 otherwise, we have 
i = |{k ∈ � | k � i}| and
Cij = |{k ∈ � | k � i ∧ k � j}|. As a special case, we have the ordinal regression prob-
lem where Y = � = [[d]] (with d ordinal values), φ : Y → R

� with φi(z) = 1 if z ≥ i and
φi(z) = 0 otherwise. In this case 
i = |�| − i and Cij = |�| − max(i, j). Note that hierar-
chical classification is also a special case of poset regression where � forms a directed tree.
In both cases, decoding can be done by exhaustively testing only |�| alternatives.

5.3 Permutations

Let Y be the set of permutations of � and let φ : Y → R
�×� . Then |Y| = |�|! and with

φ(uv)(z) = 1 if u �z v, φ(uv)(z) = −1 if v �z u, and φ(uv)(z) = 0 otherwise, we have 
 = 0,
and

C(uv)(u′v′) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−|�|! if u = v′ ∧ u′ = v

+|�|! if u = u′ ∧ v = v′
+|�|!

3 if u = u′ xor v = v′
−|�|!

3 if u = v′ xor v = u′

0 otherwise

The assumptions made in the literature do not hold in this case as the ‘without any cycle
of length ≤ 	’ edge deletion problem is NP-complete (Yannakakis 1978).

5.4 Posets and partial tournaments

Consider � = [[N ]] × [[N ]]; Y ⊆ 2� such that all y ∈ Y form a poset (an acyclic directed
graph closed under transitivity) ([[N ]], y); as well as φ : Y → R

Y with φuv(z) = 1 if (u, v) ∈
z, φuv(z) = −1 if (v,u) ∈ z, and φuv(z) = 0 otherwise. To the best of our knowledge, no
exact way to compute Ce,e′ is known. However, we can relax Y to Ỹ ⊆ 2� such that all
y ∈ Y form a partial tournament (a directed graph with no cycles of length two). With η =
N(N − 1)/2 we have |Ỹ| = 3η , 
 = 0, and

C̃(uv),(u′v′) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−2 · 3|η|−1 if u = v′ ∧ u′ = v

+2 · 3|η|−1 if u = u′ ∧ v = v′

+2 · 3|η|−2 if u = u′ xor v = v′

−2 · 3|η|−2 if u = v′ xor v = u′

0 otherwise

The assumptions made in the literature do not hold in this case as the ‘transitive digraph’
edge deletion problem is NP-complete (Yannakakis 1978).

5.5 Graph prediction

Consider graphs on a fixed set of vertices, that is � = {U ⊆ [[N ]] | |U | = 2} and a property
π : 2� → � such as acyclicity, treewidth bounded by a given constant, planarity, outerpla-
narity bounded by a constant, clique etc. Let Y π and φ∈ be defined as in Sect. 3.5. For
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properties like clique, we can compute Y,
,C:

|Y clique| = 2N, 

clique
{u,v} =

N∑

i=2

(
N − 2
i − 2

)
, C

clique
e,e′ =

N∑

i=|e∩e′|

(
N − |e ∩ e′|
i − |e ∩ e′|

)
.

For other properties, no way to compute C might be known but we can always relax Y
to Ỹ = 2� . We then have 
̃ = 2|�|−1 and C̃e,e′ = 2|�|−|e∪e′|.

6 Related work

Discriminative (non-probabilistic) methods for structured prediction were proposed by
Collins (2002), Taskar et al. (2005) and Tsochantaridis et al. (2005). To ensure efficient
optimisation, these methods make different assumptions and were discussed in Sect. 3.4.
Weston et al. (2002) used kernel-PCA on output spaces with arbitrary kernel to obtain a
finite dimensional embedding. Then, regularised least-squares regression was used to learn
the mapping from the input to the projection of the output onto each individual principal
direction. A so-called pre-image problem (Schölkopf et al. 1999) has to be solved for pre-
diction. Cortes et al. (2005) extended this setting and gave an algorithm that computes an
exact pre-image for n-gram kernels if one exists. For other cases we are not aware of any
guarantees; instead heuristics were used, e.g., for graphs (Bakir et al. 2004). Similar loss
functions to the one used in this paper (2) were considered in previous work on structured
prediction problems. Altun et al. (2002) introduced the ranking loss for structured prediction
and minimised an upper bound given by the exponential loss for discriminative sequence la-
beling.

Ricci et al. (2007) proposed to minimise the Z-score of the scoring function h. In their
formulation, only linear scoring functions h(x, y) = 〈w,φ(x, y)〉 were considered and reg-
ularisation was not used. For the special case of string outputs, they gave a polynomial time
algorithm for optimising the Z-score. For other structured prediction cases, we are not aware
of efficient algorithms for optimising the Z-score. Ricci et al. (2008) extended this setting
and designed other structured output training algorithms that can also be trained whenever

 and C can be computed efficiently. A structured prediction framework that bypasses the
decoding problem using search heuristics was proposed by Daumé and Marcu (2005). Re-
cently, Finley and Joachims (2008) analysed the performance of SVM-Struct when exact
decoding is intractable. In such cases, SVM-Struct still terminates in polynomial time, but
the resulting solution may be suboptimal or incorrect (Finley and Joachims 2008).

7 Empirical evaluation

In this section, we compare our counting-based structured prediction algorithm (CSOP) with
general as well as special purpose algorithms on three different problems. For two of these
problems efficient decoding is possible, and we show that on these problems our approach
is competitive with general as well as with special purpose state-of-the-art algorithms. The
last problem is a simulated route prediction task for which we focus on the training routine.
That is, the synthetic data is generated from a hidden policy and the learning algorithms aim
at reconstructing this policy. In all experiments, we fixed the regularisation parameter of our
algorithm λ = |Y| · ∑i∈[[m]] |Yi |/m.
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Fig. 1 Left: Comparison of multi-label SVM (MLSVM) and our algorithm (CSOP) on multi-label classifi-
cation. Right: Comparison of SVM-Struct and CSOP on dicycle policy estimation

7.1 Multi-label classification

We compared the performance of our algorithm with the kernel method proposed by Elis-
seeff and Weston (2001) that directly minimises the ranking loss (number of pairwise dis-
agreements). We followed the same experimental set up (dataset and kernels) as described
in Elisseeff and Weston (2001). We used the Yeast dataset consisting of 1500 training and
917 test genes with 14 labels, and trained our algorithm with polynomial kernel of varying
degree (2–9). Figure 1 shows the results for Hamming loss and ranking loss.

7.2 Hierarchical classification

We trained our algorithm on the WIPO-alpha patent dataset (Rousu et al. 2005) consisting
of 1352 training and 358 test documents. The number of nodes in the hierarchy is 188 with
maximum depth of 3. Each document belongs to exactly one leaf category.The performance
of several algorithms (results are taken from Rousu et al. 2005) is shown in Table 1. 	0/1 de-
notes the zero-one loss in percentage, 	
 is the average Hamming loss per instance, and 	H

is the hierarchical loss (average per instance). The hierarchical loss is based on the intuition
that if a mistake is made at node i, then further mistakes made in the subtree rooted at i are
unimportant (Cesa-Bianchi et al. 2004). Formally, for any pair of hierarchical labels z and y,

	H (z, y) =
|�|∑

i=1

I (φi(z) �= φi(y) ∧ φj (z) = φj (y), j ∈ ANC(i)),

where ANC(i) is the set of ancestors of i, and I (p) is 1 if p is true and 0 otherwise. In this
way the hierarchy or taxonomy of the problem domain is taking into account. SVM denotes
an SVM trained for each microlabel independently, H-SVM denotes an SVM trained for
each microlabel independently and using only those samples for which the ancestor labels
are positive, H-RLS is the hierarchical least-squares algorithm described in Cesa-Bianchi et
al. (2004) and H-M3 is the kernel-based algorithm proposed by Rousu et al. (2005) which
uses the maximum margin Markov network framework. The two different versions of this
algorithm correspond to using the Hamming loss and the hierarchical loss during training.
While the performance on the Hamming loss was comparable to the baseline SVM, our
algorithm resulted in best performance on the 	0/1 loss and the hierarchical loss.
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Table 1 Comparison of various
algorithms on hierarchical
classification

SVM H-SVM H-RLS H-M3 − 	
 H-M3 − 	
H̃

CSOP

	0/1 87.2 76.2 72.1 70.9 65.0 51.1

	
 1.84 1.74 1.69 1.67 1.73 1.84

	H 0.053 0.051 0.050 0.050 0.048 0.046

7.3 Route prediction

We experimented with an artificial setting due to the lack of real world data sets on route
prediction. We simulate the problem of predicting the cyclic tour of different people. We
assume that there is a hidden policy for each person and he/she takes the route that (ap-
proximately) maximises the reward of the route. In this setting of dicycle prediction, we
can check how well the estimated policy f i

α approximates the hidden policy in the test
set (i ∈ [[m + 1,m + m′]]). The data is constructed as follows: (i) generate M matrices
A(j) ∈ R

�×� uniformly at random with entries in the interval [−1,1] and A
(j)
uv = −A

(j)
vu ;

(ii) generate (m + m′)M random numbers uniformly between 0 and 1 to form the inputs
xi ∈ R

M ; (iii) create the output structures yi ≈ argmaxy∈Y
∑

(u,v)∈y,j∈[[M]] xijA
(j)
uv for train-

ing, that is for all i ∈ [[m]]. On the test set, we evaluated our algorithm by cosine similarity
of the learned policy and the true policy:

∑

i∈[[m+1,m+m′]]

〈
f i

α,
∑

j∈[[M]]
xijA

(j)

〉
· ∥∥f i

α

∥∥−1 ·
∥∥∥∥∥∥

∑

j∈[[M]]
xijA

(j)

∥∥∥∥∥∥

−1

Figure 1 shows a plot of the cosine measure on an experiment (m′ = 500, M = 15,
|�| = 10) for varying number of training instances. As expected, we see that our algorithm is
able to estimate the true policy with increasing accuracy as the number of training instances
increases. The plot also shows the performance of SVM-Struct using approximate decoding
during training. Approximate decoding is performed by randomly sampling a couple of
cyclic permutations and using the best scoring one (the number of repetitions used in our
experiments was 25). The results were unstable due to approximate decoding and the results
shown on the plot are averages from 5 trials. For SVM-Struct, we experimented with several
values of the regularisation parameter and report the best results obtained on the test set—
though this procedure gives an advantage to SVM-Struct, our approach still resulted in better
performance.

8 Conclusions

We investigated the assumptions underlying state-of-the-art structured output training algo-
rithms for several output sets. We showed that these assumptions do not hold for the relevant
problem of route prediction and for several other problems related to edge deletion. In par-
ticular, we showed that there is no polynomial time algorithm for finding violated constraints
in these cases (unless P = coNP) and that deciding if there is no violated constrained has no
short certificate (unless NP = coNP).

Despite these hardness results, we showed that for route prediction efficient formulae
for ‘super-structure’ counting can be derived and proposed an alternative structured output
training algorithm based on these counting formulae. By deriving ‘super-structure’ counting
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formulae for various combinatorial structures, we showed that our approach subsumes many
machine learning problems including multi-class, multi-label and hierarchical classification.
Furthermore, it can be used for training complex combinatorial output sets for which the
assumptions made in the literature do not hold.

For prediction, inference can naturally not be avoided. While in this work we focused
mainly on training algorithms, approximation algorithms for decoding set systems and inde-
pendence systems can be found in Gärtner and Vembu (2008). We note that it is non-trivial
to design approximation algorithms for the decoding problem of the combinatorial struc-
tures considered in this paper. Indeed, there are hardness of approximation results for the
maximum acyclic subgraph problem (Guruswami et al. 2008) and the problem of finding
longest directed cycles (Björklund et al. 2004). An interesting future direction would to ex-
plore techniques like simulated annealing (Kalai and Vempala 2006) to perform approximate
inference for the prediction step.

We empirically compared our algorithm with state-of-the-art general and special purpose
algorithms on different structures. For multi-label and hierarchical classification, decoding
is trivial and we showed that predictions from our approach are competitive or better than the
state-of-the-art. For route prediction, decoding is hard and we focused on the training part
of the algorithms, i.e., on synthetic data we compared the policy estimated by our approach
to the policy estimated by SVM-Struct using approximate decoding.

While in this work we minimised a quadratic loss function, we note that it is pos-
sible to train a probabilistic discriminative model by using the negative log-likelihood
as the loss function. The log-partition function and its gradient can then be approxi-
mated using sampling algorithms for combinatorial structures (Jerrum and Sinclair 1996;
Randall 2003). Some results in this direction can be found in the recent work of Vembu et
al. (2009).
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