Mach Learn (2009) 76: 179-193
DOI 10.1007/s10994-009-5126-6

Sparse kernel SVMs via cutting-plane training

Thorsten Joachims - Chun-Nam John Yu

Received: 12 June 2009 / Revised: 12 June 2009 / Accepted: 16 June 2009 / Published online: 23 July 2009
Springer Science+Business Media, LLC 2009

Abstract We explore an algorithm for training SVMs with Kernels that can represent the
learned rule using arbitrary basis vectors, not just the support vectors (SVs) from the training
set. This results in two benefits. First, the added flexibility makes it possible to find sparser
solutions of good quality, substantially speeding-up prediction. Second, the improved spar-
sity can also make training of Kernel SVMs more efficient, especially for high-dimensional
and sparse data (e.g. text classification). This has the potential to make training of Kernel
SVMs tractable for large training sets, where conventional methods scale quadratically due
to the linear growth of the number of SVs. In addition to a theoretical analysis of the algo-
rithm, we also present an empirical evaluation.

Keywords Support vector machines - Kernel methods - Sparse kernel methods - Cutting
plane algorithm - Basis pursuit

1 Introduction

While Support Vector Machines (SVMs) with kernels offer great flexibility and prediction
performance on many application problems, their practical use is often hindered by the
following two problems. Both problems can be traced back to the number of Support Vectors
(SVs), which is known to generally grow linearly with the data set size (Steinwart 2003).
First, training is slower than other methods and linear SVMs, where recent advances in
training algorithms vastly improved training time. Second, since the prediction rule takes
the form h(x) = sign[Zfi\l] o; K (x;, x)], it is too expensive to evaluate in many applications
when the number of SVs is large.

Editors: Aleksander Kotcz, Dunja Mladeni¢, Wray Buntine, Marko Grobelnik, and John Shawe-Taylor.

T. Joachims - C.-N.J. Yu (X))
Dept. of Computer Science, Cornell University, Ithaca, NY 14853, USA
e-mail: cnyu@cs.cornell.edu

T. Joachims
e-mail: tj@cs.cornell.edu

@ Springer

mailto:cnyu@cs.cornell.edu
mailto:tj@cs.cornell.edu

180 Mach Learn (2009) 76: 179-193

This paper tackles these two problems by generalizing the notion of Support Vector to
arbitrary points in input space, not just training vectors. Unlike Wu et al. (2006), who ex-
plore making the location of the points part of a large non-convex optimization problem, we
propose an algorithm that iteratively constructs the set of basis vectors from a cutting-plane
model. This makes our algorithm, called Cutting-Plane Subspace Pursuit (CPSP), efficient
and modular. We analyze the training efficiency and the solution quality of the CPSP algo-
rithm both theoretically and empirically. We find that its classification rules can be orders
of magnitude sparser than the conventional support-vector representation while providing
comparable prediction accuracy. The sparsity of the CPSP representation not only makes
predictions substantially more efficient, it also allows the user to control training time. Es-
pecially for large datasets with sparse feature vectors (e.g. text classification), the CPSP
methods is substantially faster than methods that only consider basis vectors from the train-
ing set.

2 Related work

Most existing algorithms for training kernel SVMs follow the Representer Theorem and
search for the optimal weight vector in the span of the training vectors w = Y /_, o ¢ (x;).
This includes decomposition methods (Platt 1999; Joachims 1999) and all other dual ap-
proaches. To overcome the problems resulting from the growing number of support vectors,
Burges and Scholkopf (1997) propose to post-process their solution and replace the support
vector expansion with an approximation that is more sparse. Clearly, this can improve only
the prediction efficiency, while it is still necessary to compute a full solution during training.
For large datasets, this is intractable.

An alternative to post-processing are methods for selecting a set of basis vectors a priori.
This includes sampling randomly from the training set in the NYSTROM method (Williams
and Seeger 2001), greedily minimizing reconstruction error (Smola and Schélkopf 2000),
and variants of the Incomplete Cholesky factorization (Fine and Scheinberg 2001; Bach and
Jordan 2005). However, these selection methods are not part of the optimization process,
which makes a goal-directed choice of basis vectors difficult. In fact, all but Bach and Jordan
(2005) ignore label information, and all methods are limited to selecting basis vectors from
the training set.

Methods like the Core Vector Machine (CVM) (Tsang et al. 2005), the Ball Vector Ma-
chine (BVM) (Tsang et al. 2007), and the active selection strategy of the LASVM method
(Bordes et al. 2005) greedily select which basis vectors to include in the classification rule.
While they allow the user to sacrifice solution quality to gain sparsity and training efficiency,
they are also limited to selecting basis vectors from the training set.

Another set of methods are basis pursuit approaches (Keerthi et al. 2006; Vincent and
Bengio 2002). They repeatedly solve the optimization problem for a given set of basis vec-
tor, and then greedily search for vectors to add or remove. The Cutting-Plane Subspace
Pursuit method we propose is similar in the respect that it iteratively constructs the basis
set. However, the construction of the basis set is part of the optimization algorithm itself,
and the cutting-plane model makes it straightforward to add basis vectors that are not in the
training set. It is not clear how to efficiently add such general basis vectors in other basis
pursuit approaches.

The method most closely related to ours was proposed in Wu et al. (2006). They treat the
basis vectors as variables in the SVM optimization problem, and solve the resulting non-
convex program via gradient descent to a local optimum. However, training efficiency is a

@ Springer

Mach Learn (2009) 76: 179-193 181

bottleneck in this approach and they focus only on small datasets in their evaluation. We will
consider datasets that are several orders of magnitude larger. Furthermore, we will provide
theoretical results giving insight into the quality of the CPSP solution.

3 Cutting-plane algorithm for SVMs

We first introduce the Cutting-Plane Algorithm for training SVMs (Joachims 2006;
Joachims et al. 2009), since it is the basis for the CPSP algorithm proposed in this pa-
per. For a training sample, (x;, y1), ..., (x,, y»), the following is a general formulation of
the large-margin training problem for learning a rule 4 : X — Y mapping from some in-
put space X' to some output space) (Tsochantaridis et al. 2005). For different choices of
the joint feature map ¥ (x, y) and the loss function A(y, ¥), it can be specialized to clas-
sification SVMs, to Maximum-Margin Markov Networks, or various structured prediction
problems.

. 1 C n
%}?E(W’WHZ;&)

st. Vi,V el (w, ¥ (x,v) =¥,)= A0,) —&

(., .) denotes an inner product. For the sake of simplicity, this paper only deals with the
special case of binary classification with X = %" and J) = {—1, +1}, where the joint feature
map is ¥ (x, y) = 3yx (or ¥ (x, y) = 3 y¢ (x) for the kernel K (x, x') = (¢ (x), ¢(x"))) and
where the loss function A(y, ¥) is the zero/one-loss. In this case, it is easy to verify that (1)
is equivalent to the following program, which corresponds to a binary classification SVM
without explicit offset.

1 C < ,
T}?E(w»w>+;§§i st Viiy(w,x;))>1-5§

3.1 Linear SVMs

Instead of solving (1) directly, Joachims (2006) proposes to solve the following equivalent
program.

1
q”l}gli(w,wHCS

st. Vy ...y, €Y
Vi Yn €Y ?)

1 < I —
<w, n Z(‘P(xi, yi) = ¥(x;, f’i))> = Y ZA()’I', yi)—&
i=1 i=1

This program has only a single slack variable &, and is therefore called the 1-slack formu-
lation. It is shown in Joachims (2006) that any w solving (2) is also a solution of (1), and
that £ = % Yo, &. While (2) has a huge number of constraints, Algorithm 1 is a cutting-
plane procedure that always constructs a solution of precision € with at most O(g) active
constraints (Joachims 2006; Teo et al. 2007; Joachims et al. 2009). In the experiments from
Sect. 6, the number of active constraints was typically around 30—independent of the size
of the training set.

Algorithm 1 maintains a working set of m constraints (w, v > A — & over which it
solves the QP in Line 4. In each iteration /, the algorithm finds the most violated constraint

@ Springer

182 Mach Learn (2009) 76: 179-193

Algorithm 1 Cutting-plane algorithm for structural SVM (primal)

1: Ir_1put: S? (X1, Y1)y e oey (X0, Y0)), Cl €

22 A<0,¥% «—0,m<«0

3: repeat

4 (w,§) < argmin, o3 (w, w) + C&

stVi:(w,W,)>A; —&

5 fori=1,...,ndo

6 9 < argmax;e, (AQ, 9) + 0T (i,)
7. end for
8
9

(W, A, m) = remove_inactive(¥, A, w, &)
. o m<m-+1
100 W, < 130 (W, y) — (i 0)]
1 Ay < 230 A 1)
12: until (w, ¥,,)> A,, —£ —¢
13: return(w, &)

from (2) (Lines 5-7) and adds it to the working set, so m < I. Typically, however, m < I,
since constraints become inactive in later iterations and can be removed from the working
set (Line 8). Therefore, the size m of the working set is roughly equal to the number of
active constraints (i.e. m & 30). The algorithm is known to need at most / € O(%) iterations
to converge to an e-accurate solution (Joachims 2006; Teo et al. 2007; Joachims et al. 2009).
This means that the number of iterations is independent of the number of training examples
n and the number of features N.

3.2 SVMs with kernels

While originally proposed for linear SVMs, the cutting-plane method can be extended to
the non-linear case with kernels. Since w now lies in the Reproducing Kernel Hilbert
Space (RKHS) of the kernel K (x,x) = (¢(x),»(x")), we need to move to the dual
representation. Algorithm 2 is this dual variant of Algorithm 1 and specialized to the
case of binary classification as implemented in the SVMP*" software. It replaces the pri-
mal QP with its Wolfe dual in Line 5, and the solution vector in the RKHS is w =
>, @;¥;. Note that sums cannot be computed efficiently in the RKHS. Therefore, the
assignment operator <— is replaced with a rewrite operator = where appropriate. How-
ever, it is easy to verify that all inner products (Lines 4, 9, 15) can be computed as
sums of kernel evaluations. The 0(%) bound on the number of iterations (Joachims 2006;
Joachims et al. 2009) holds independent of whether a kernel is used or not, but how does the
time complexity per iteration change when moving from a linear to a kernelized SVM?

Without kernels, any iteration in Algorithm 2 takes at most O (m?) for solving the QP,
O(m?) for £, O(mN) for w, O(mN) for computing the most violated constraint, O (n)
for A, OnN) for W, and O(mN) for adding a row/column to H. So the overall time
complexity is O(m> +mN +nN).

When using a kernel, however, computing (w, ¢ (x;)) and H becomes more expensive
than in the linear case. Denote with Y the matrix with Y;; = (y; — ;) for the j-the constraint
in . To find the most violated constraint, for each example one now needs to evaluate

(w, ¢(x)) = Z(Zank,)K(x,-,xk). 3)

k=1 \j=1

@ Springer

Mach Learn (2009) 76: 179-193 183

Algorithm 2 Cutting-plane algorithm for classification SVM (dual)
Lo Input: S = ((x1, y1), ..., (x¥n, ya)), C, €, K(x,x) = (¢ (x), p(x"))
22 A<0,¥ <« 0,H<«0,m<«0
3: repeat

4 H < (H;))i<i j<m, where H;j = (¥;, ¥)
5. a < argmax,_ge’A— ja”Hast.a'1<C
6: & <—%(aTA_—aTHa)

7 w=Y, ¥,

8 fori=1,...,ndo

9: Vi < sign({w, ¢ (x;)) — yi)

10: end for

11: (lI_l, A, m) = remove_inactive(ll_l, A, o)

122 m<m+1

13: .I-Im = % ;lzl(yi - }A}i)(p(xi)

14: Am <~ ﬁ ;l:] |Yz - j\)l|

15: until (w, ¥,,) > A,, —£ — ¢

16: return(w, &)

Over all n examples, this has a cost of O (n* + mn). Similarly, adding a row/column for the
new ¥, to the Gram matrix H now requires computing

n n

Vi:Hpyi=Hipy= (W, 9,)=>"Y Yi¥;, K x) “
k=1 I=1

This takes time O (mn?), counting a single kernel evaluation as O(1). So, the overall time
complexity of an iteration when kernels are used is O (m> + mn?). This O(n?) scaling is
not practical for any reasonably-sized dataset, and the algorithm has worse constants than
decomposition methods like SVM"$™ that also typically scale O (n?). However, Algorithm 2
does provide a path to a substantially more efficient algorithm that is explored in the next
section.

4 Cutting-plane subspace pursuit

Is it possible to remove the O(n?) scaling behavior? Here is the intuition for the approach
we take. A property of the cutting-plane algorithm is that it iteratively constructs a low-
dimensional subspace W = span(¥1, ..., ¥,,) = {> /-, B:;¥; : B € W™} in which the final
solution

w= ZO{[‘I_’,' (5)
i=1
is guaranteed to lie. Instead of using the Representer Theorem and considering the
larger subspace F = span(¢(x),...,¢(x,)) to express the optimal weight vector as
w=) ., a¢(x;), the cutting-plane method tells us that we only need to consider the
subspace W C F in each iteration, where m < n and m does not grow with n. Our core idea
is to find a small set of basis vectors by, ..., b; so that

W' =span(¢ (), ..., ¢ (b)) ® W (6)

@ Springer

184 Mach Learn (2009) 76: 179-193

Algorithm 3 Cutting-plane subspace pursuit (CPSP) algorithm
L: II_IPUt: S = (Cx1, yg)a coes (X0 0))s € €, kinaxs K(x,x) = (¢(x),p(x))
220 A0,V <« 0,¥V<«0H<«~0,B<~0m<0
3: repeat
4 H < (H;j)\<i j<m> where H;j = (¥, q‘/j)
o < argmax,_o@’A— ja’Hast.a’1<C

5

6: &<« (@ A—a’Ha)
7. w=Y, 0¥
g:
9

fori=1,...,ndo
: Ji < sign((w, ¢ (x;)) — vi)
10: end for

11: (¥, A, m) = remove_inactive(¥, A, &)

122 m <« m +1

13 W, = 2n =Y (i — 3¢ (xi)

14: Am <~ 35, Z[:l lyi —)A}l|

15: if | B| < kmax then B < extend_basis(B, ¥,,)
16: forz =1,....,kdo

17: lP- _pr0]ect('11,, B)

18: end for

19: until (w, ¥,,) > A,, — & —¢

20: return(w, &)

which means that we can express the final solution from (5) as

k
wr Y o bi) Q)

i=l

This enables efficient prediction using the rule i (x) = sign[Zf.‘:l a! K (b;, x)], given that k
is small. Furthermore, we will elaborate in the following how projecting into the subspace
W' allows computing H and (w, ¢(x)) in time independent of n.

To understand the intuition behind our approach, consider the ideal case where for every
¥, there exists a vector b; in input space (not necessarily from the training set) so that ¥; =
¢ (b;) (as it does in the linear case, where b; = % Z;f:l (y; — 9/)x). Then we could replace
each W; with ¢ (b;), and it is easy to verify that the time complexity of an iteration goes down
to O(m> + mn)—almost like in the linear case. Furthermore, the resulting classifier would
only have k = m ~ 30 “Support Vectors”—or, more generally named, “Basis Vectors”—,
making it much faster than conventional SVM classifiers that often have 10000’s of SVs.

Unfortunately, in most cases there will be no single pre-image b so that ¥ = ¢ (b).
However, in any iteration it suffices to find a set of pre-image vectors so that ¥, ..., W,
lie (approximately) in their span. In particular, we are looking for a set of basis vectors
B=(by,....by), b; € RV, s0 that for every W, inW

Zﬁ <z><b,>

for some (small) § > 0. When computmg H and (w, ¢ (x;)) in Algorithm 2, we then replace
W, with its projection v, = Z ;=1 B;®(b;). This is summarized in Algorithm 3, which we

m1n <$ (3)

@ Springer

Mach Learn (2009) 76: 179-193 185

call the Cutting-Plane Subspace Pursuit (CPSP) algorithm. It is easy to verify that H and all
(w, ¢ (x;)) can now be computed in time O (m>k?) (or O (k* +m?k+mk?)) and O (mk+kn),
respectively.

Using ¥ instead of ¥ in Algorithm 3 is straightforward. However, we still have to de-
fine how the function extend_basis(B,¥,,) (Line 15) computes the set of basis vectors
B=(,..., bk) and how the function project('l_/ i» B) (Line 17) computes the approximate

cutting-planes ¥;. This is addressed in the following.
4.1 Projecting cutting-planes ¥ onto B
For a gi\ien subspace span(¢ (b1), ..., ¢ (b)), the function project(lI_l,- ,B) computes the pro-

jection ¥; of a cutting-plane ¥; via the following least-squares problem:

2

k
v, :Zﬁjq&(bj) Whereﬂ:m‘}n)
j=1

k
W —> Bpb))
j=1

To accomodate kernels, we maintain the k x k-matrix G with G;; = K(b;,b;) and the
k x n-matrix K with K;; = K (b;, x;). The solution of the least-squares problem can then
be written as 8 = %G_IK Y.;. It is more efficient, however, to use the Cholesky decompo-
sition Lg of G (i.e. G = LGL(T;). With L, the solution can be computed via forward and
back-substitution from Lgy = ﬁKY*,- and Lgﬁ =y in time O (k> + kn). This excludes
the time for computing K, G, and its Cholesky decomposition L, since these need to be
computed only once and can then be used until B changes. This is further discussed in the
next section.

4.2 Constructing the set of basis vectors B

The method for constructing the set of basis vectors B is the final part of Algorithm 3 that
still needs to be specified. The goal is to find a set of basis vectors B = (by, ..., b;) such that
for some small § > 0, all ¥; that are active in the current iteration fulfill (8). Recomputing
B in each iteration would be costly, but fortunately it is unnecessary. Only ¥,, is new and
all other W; are already well approximated by the set of basis vectors from the previous
iteration. The function extend_basis(B,¥) therefore only adds some new basis vectors to
B that are required to fit ¥,,. Note that this can only improve the fit for the other ¥;.

To decide which basis vectors to add, we follow (Burges and Scholkopf 1997) and take
a greedy approach. We search for the basis vector by that minimizes the residual error
for ¥,,, where lI7m is the projection for the current B.

(B',b) = argmin |¥,, —¥,, — By 19 (b)) (10)

Br+1.bk+1

This optimization problem is commonly referred to as the “preimage” problem. While exact
solutions are difficult to obtain, approximate solutions can be found with gradient-based
methods (Burges 1996; Scholkopf and Smola 2002) or randomized search. In this paper, we
use the fix-point iteration approach described in Scholkopf and Smola (2002, Sect. 18.2.2)
for the RBF kernel to solve (10) to a local optimum. In this way we can efficiently produce
arbitrary vectors as basis vectors to add to B. We refer to the Cutting-Plane Subspace Pursuit
algorithm with this preimage method as “CPSP” in the following.

To evaluate in how far general basis vectors improve sparsity, we also explore a second
preimage method that is restricted to using basis vectors from the training set. We refer

@ Springer

186 Mach Learn (2009) 76: 179-193

to this method as “CPSP(tr)”. As proposed by Smola and Scholkopf (2000) (and used by
most of the methods we compare against), we randomly sample 59 feature vectors from the
training set and pick the one with maximum objective value in (10). Note that this alternative
strategy is introduced only to evaluate the benefit of selecting “support vectors” outside the
training set.

The number of new basis vectors to add for each ¥,, is a design choice. One could either
use a fixed number, or keep adding until a certain § is achieved. In the following experiments,
we use the simplest choice and add exactly one basis vector for each ¥,, until the maximum
size kmax specified by the user has been reached. At that point, no further vectors are added
and extend_ basis(B,¥,,) returns B unchanged.

After a new by is added to B, a column/row needs to be added to the kernel matrices
G and K. This takes O (n + k) kernel evaluations, and the Cholesky factorization of G can
be updated in time O (k?).

5 Theoretical analysis

Before evaluating the CPSP algorithm empirically, we first give a theoretical characteriza-
tion of the quality of its solutions and the number of iterations it takes until convergence.

The following theorem gives an upper bound on the number of iterations of Algorithm 3.
It extends the general results (Joachims 2006; Teo et al. 2007; Joachims et al. 2009) for
cutting-plane training of SVMs to the CPSP algorithm.

Theorem 1 For parameter C, precision €, training-set size n, and basis-set size kyax, Algo-
rithm 3 terminates after at most O (kyax + %) iterations.

Proof After the first ky,y iterations, the basis B becomes fixed, and from then on we are
essentially solving the optimization problem:

N
ggznwl+ 3
s.t. V&e{—l,l}":<w,2(y.-—9,-)¢(x,»>>zZA(y,-,&,»>—s and (1)
i=1 i=1
we Y Biob)

b;eB

Let Pp be the orthogonal projection operator onto the subspace spanned by B. Such an
orthogonal projection operator always exists in a Hilbert Space. After folding the subspace
constraint into the objective by replacing w with Pgw, the above optimization problem can
be re-written as (using the self-adjointness and linearity of Pg):

1
in—||Pgw|>+C
nguswn+ H

st. Vye(-1,1}" ¢<W, Z(yi -)A’i)PB¢(xi)> > ZA()% yi)—&
i=1

i=1

Finally the operator Pg in the objective can be dropped since if w contains any compo-
nent in B, it will only increase the objective without changing value of the LHS of the
constraints. This is in the form of the general Structural SVM optimization problem solved

@ Springer

Mach Learn (2009) 76: 179-193 187

by Algorithm 1, with the feature space changed from being spanned by ¢(x;) to being
spanned by Pg¢(x;). The 0(%) iteration bound from (Joachims 2006; Teo et al. 2007;
Joachims et al. 2009) therefore applies.]

The time complexity of each iteration was already discussed in Sect. 4, but can be sum-
marized as follows. In iterations where no new basis vector is added to B, the time com-
plexity is O (m> + mk® + kn), since only the new ¥,, needs to be projected and the re-
spective column be added to H. In iterations where B is extended, the time complexity is
O (m? + k*m + km? 4 kmn) plus the time it takes to solve the preimage problem (10). Note
that typical values are m ~ 30, k € [10..1000], and n > 10000.

The following theorem describes the quality of the solution at termination, accounting for
the error incurred by projecting on an imperfect B. Most importantly, the theorem justifies
our use of (10) for deciding which basis vectors to add.

Theorem 2 When Algorithm 3 terminates with |, — 'IAI,- | <6 forall ¥, and 'IAli, then the
primal objective value o of the solution found does not exceed the exact solution 0* by more

than o — 0* < C(6+/2C +¢€).

Proof Let w* be the optimal solution with value o*. We know that the optimal w* satisfies
llw*|| < +/2C. Hence for all i,

|(w, ;) — (w, ¥3)| < [wll|¥; — ¥, < 6v2C
Let Pp be the orthogonal projection on the subspace spanned by ¢ (b;) in the final ba-

sis B. Let v* be the optimal solution to the optimization problem (11) restricted to the
subspace B, we have:

1

<5l I+ C +e)

1 .

=5l |1 +C max [A (v*, W) + Ce
%HP w*|*+C max [A — (Pgw*, W;)] + Ce

[since v* is the optimal solution wrt the basis B]

:—||P3w I> + C max [A; — (w*, PgW;)] + Ce

1<i<m

1 . , .
E||PBw ||2+c1r221[4- —(w*, ;)] + Ce

- c A —(w*, o)+ C
=1 I* + fgi’fn[—(w*, ¥;)] + Ce
< Ljwr 2 4+ € max [4; — (w*, W)+ 6v2C] + Ce
2 1<i<m
<0+ C(6V2C +e) O

@ Springer

188 Mach Learn (2009) 76: 179-193

6 Experimental analysis

The following experiments are designed to evaluate how the CPSP method compares to
conventional training methods in terms of sparsity (i.e. prediction efficiency) and training
efficiency. In particular, they explore whether the use of general basis vectors outside the
training set improves prediction accuracy and training efficiency, and how both quantities
scale with basis set size Kpax.

Our implementation of the CPSP algorithm is available for download at http://svmlight.
joachims.org/svm_perf.html.

We compare the CPSP algorithm with the exact solution computed by SVM'e" as
well as approximate solutions of the NYSTROM method (NYSTROM) (Williams and Seeger
2001), the Incomplete Cholesky Factorization (INCCHOL) (Fine and Scheinberg 2001),
the Core Vector Machine (CVM) (Tsang et al. 2005), the Ball Vector Machine (BVM)
(Tsang et al. 2007), and LASVM with margin-based active selection and finishing (Bor-
des et al. 2005). Both the NYSTROM method and the Incomplete Cholesky Factorization
are implemented in SVMP* as described in Joachims et al. (2009). We use the RBF-Kernel
K (x,x") = exp(—y|lx —x'||%) in all experiments. The cache sizes of SVM'$", CVM, BVM,
and LASVM were set to 1 GB.

We compare on the following five binary classification tasks, each split into train-
ing/validation/test set. If not mentioned otherwise, parameters (i.e. C and y) are selected
to maximize performance on the validation set for each method and ky,,x individually. Both
C and y are explored on a log-scale. The first dataset is Adult as compiled by John Platt
with 123 features and using a train/validation/test split of 20000/6281/6280. Second is the
Reuters RCV1 CCAT text-classification dataset with 47236 features. We use 78127 exam-
ples from the original test set for training and split the original training set into validation
and test sets of sizes 11575 and 11574 respectively. Third and fourth, we classify the digit
“0” against the rest (OCRO), as well as classify the digits “01234” against the digits “56789”
(OCR¥*) on the MNIST dataset. The MNIST datasets have 780 features and we use a train-
ing/validation/test split of 50000/5000/5000. Finally, we use the IJCNN (task 1) dataset as
pre-processed by Chih-Jen Lin. It has 22 features and we use a training/validation/test split
of 113533/14169/14169.

How accurate are the solutions for a given sparsity budget? We first explore a scenario
where the application demands an upper bound on the number of support vectors to achieve
a desired computational efficiency at prediction time. Table 1 summarizes the results. The
first two lines show the performance of SVM'€" for the linear kernel and SVM"#™ for the
RBF kernel as baselines to compare against. All but the Adult dataset show substantial non-
linear structure, and the RBF kernel outperforms a linear SVM. The number of SVs when
using the RBF kernel is given in the third line. The remaining lines in Table 1 are for the
“sparse” methods, all of which use k., = 1000 basis vectors. Note that this is well below
the 2786 to 28748 support vectors required by the exact SVM.

The CPSP algorithm with the general preimage method matches the accuracy of SVM'€ht
up to £0.1. This means that the prediction accuracy is roughly the same as for the exact
method, while speeding up prediction by a factor between 2.7 to 28. We will see in Sect. 6
that far fewer than k., = 1000 basis vectors would have sufficed on some of the tasks for
the CPSP algorithm, leading to an even larger speedup.

Random sampling of the basis vectors in the NYSTROM method and the Incomplete
Cholesky Factorization (INCCHOL) perform consistently worse than the CPSP method, ex-
cept on the OCRO dataset where all methods do well with kp,,x = 1000 basis vectors. The

@ Springer

http://svmlight.joachims.org/svm_perf.html
http://svmlight.joachims.org/svm_perf.html

Mach Learn (2009) 76: 179-193 189

Table 1 Prediction accuracy with kmax = 1000 basis vectors (except SVMlight, where the number of SVs is
shown in the third line) using the RBF kernel (except linear)

ADULT CCAT OCRO OCR* IJCNN
SVM-light (linear) 84.4 94.2 99.4 87.6 922
SVM-light (RBF) 84.4 95.1 99.8 98.6 99.4
#SV 7125 28748 2786 19309 9243
CPSP 84.5 95.0 99.8 98.5 99.3
CPSP(tr) 84.1 93.5 99.8 97.9 99.2
NYSTROM 84.3 92.5 99.7 97.0 99.1
INCCHOL 84.0 92.1 99.7 97.0 98.9
CVM 78.4 88.1 99.8 96.9 98.2
BVM 77.1 56.1 99.8 89.1 97.7
LASVM 83.8 91.7 99.8 97.2 97.5

Core Vector Machine (CVM), the Ball Vector Machine (BVM), and the LASVM algorithm
with active selection are not competitive on most datasets.

How does accuracy scale with basis-set size? As mentioned above, a lower number of
basis vectors kyax << 1000 could have sufficed to get reasonable accuracy on some datasets.
The plots in Fig. 1 investigate this question and show by how much the test accuracies for a
given k. are lower than the accuracy of the exact SVM solution. In each plot, O corresponds
to the accuracy of the exact SVM solution.

Figure 1 shows that CPSP dominates all other methods not only for kp,x = 1000, but over
the whole range. For all datasets, the CPSP method using general preimages outperforms the
other methods especially for small numbers of basis vectors. In particular, on three of the five
datasets, CPSP already performs within 1% of the exact solution with only 50 basis vectors.
Similarly, on all five datasets does CPSP perform equivalent or better than the linear SVM
when using 50 basis vectors or more. Especially on ADULT, CCAT, and OCRO far fewer than
kmax = 1000 basis vectors would have sufficed to reach an acceptable level of performance.

What is the benefit of using general basis vectors? A key premise of the paper is that us-
ing basis vectors outside the training set is beneficial. To test its validity, Fig. 1 and Table 1
include the performance of the CPSP(tr) algorithm, which is identical to CPSP except for
selecting basis vectors only from the training set. Consistently over all dataset, Fig. 1 shows
that the general CPSP algorithm provides improved prediction accuracy over CPSP(tr) es-
pecially for small numbers of basis vectors. The difference is largest on the CCAT dataset,
where the general CPSP algorithm with 10 basis vectors already performs at an accuracy
for which CPSP(tr) requires about 1000 basis vectors. This confirms our hypothesis that
basis vectors outside the training set can lead to more accurate solutions at a given level of
sparsity.

How accurate is the objective value? The four methods CPSP, CPSP(tr), NYSTROM, and
INCcCHOL all optimize the same objective function as a regular SVM. How well do they
manage to minimize this objective? The plots in Fig. 2 show by what factor their primal
objective value is higher than the exact SVM solution. All methods use the same parameters
(i.e. C and y), which are picked to optimize validation set accuracy of the exact SVM.

@ Springer

190 Mach Learn (2009) 76: 179-193

5 adult 10 Reuters CCAT 5 MNIST 0-123456789
CPSP —— NN [
CPSP (tr) --3%-- 1
i Nystrom ---3---
4 IncChol —g—
- CVM —m—
§ BVM ---@---
3
o3} i
< X
£ |
[0}
@ 2
[
9]
[
a
1
0
1 100 1000 10 100 1000 10 100 1000
Number of Basis Vectors Number of Basis Vectors Number of Basis Vectors
5 MNIST 01234-56789
T
‘I
4}
3}
2
1tk
0
1 100 1000 10 100 1000
Number of Basis Vectors Number of Basis Vectors

Fig. 1 Decrease in accuracy w.r.t. exact SVM for different basis-set sizes kmax

Again, CPSP dominates the other methods, and the curves in Fig. 2 very much resemble
the curves in Fig. 1. This verifies that finding a subspace that contains a solution of low
objective value is indeed crucial for good prediction accuracy, and that the subspaces found
by CPSP are of superior fidelity (also compared to CPSP(tr)).

What is the training and test efficiency? While efficiency at test time may be the dominant
criterion for many applications, training has to be tractable as well. Since CPSP does more
work in each iteration (e.g. solve a pre-image problem), one superficial concern might be
that the training process is slow. However, the following shows that the increased sparsity
observed in Fig. 1 not only improves prediction efficiency, but also speeds up training. This
is a key difference to the Reduced Set method (Burges and Scholkopf 1997). The Reduced
Set method requires solving an exact SVM, making it intractable for large training sets.
Table 2 compares the training time and number of basis vectors that each method needs
to reach a certain prediction accuracy. The experiment simulates how a user may chose to
trade prediction accuracy for improved training and test efficiency. In particular, Table 2
shows the number of basis vectors (left) and the training time (right) to reach a test accuracy
that is not more than 0.5% below the test accuracy of the exact SVM. Basis set sizes knax €

@ Springer

Mach Learn (2009) 76: 179-193

191

Obj. Value (in mult. of exact solution)
w

adult 10 Reuters CCAT 10 MNIST 0-123456789
CPSP —+— IRV \ v
CPSP (ir) --3¢-- ol \
Nystrom ------ N
IncChol —g— 8t
7F

3}
2L
- 1 \ 1 \
100 1000 10 100 10 100
Number of Basis Vectors Number of Basis Vectors Number of Basis Vectors
10 MNIST 01'2‘:‘34-5‘6789 10 IJCI'\II\‘f1 :
‘I
9 9 A X
(IR
[n
st 8| Vo]
X 4
7t 7t \
6 [6 |
5t 5
4t 4+
K
3 3t
2t 1 2t S
1 L 1 L
10 10

100 1
Number of Basis Vectors

100
Number of Basis Vectors

Fig. 2 Primal objective value of the approximate solutions expressed as multiples of the exact SVM solution

Table 2 Number of SV (left) and training time (right) to reach an accuracy that is not more than 0.5% below
the accuracy of the exact solution of SVM-light (see Table 1). The RBF kernel is used for all methods. ‘>’
indicates that the largest tractable solution did not achieve the target accuracy

Number of SV Training Time (CPU-Seconds)

ADULT CCAT OCRO OCR* IICNN ApuLT CCAT OCRO OCR* IJCNN
SVM-light 7125 28748 2786 19309 9243 56 9272 400 4629 1175
CPSP 10 200 20 500 500 6 225 11 465 2728
CPSP(tr) 50 5000 50 2000 500 30 88873 57 8967 2178
NYSTROM 50 > 5000 100 5000 1000 10 >2281 37 2270 1572
INcCHOL 50 > 2000 100 >2000 2000 14 >21673 66 > 12330 59454
CVM 5000 20000 200 5000 2000 43 23730 2 497 29
BVM 5000 20000 200 5000 5000 67 11004 538 229
LASVM 2000 10000 100 2000 5000 51 3433 295 705

@ Springer

192 Mach Learn (2009) 76: 179-193

Fig. 3 Training times of CPSP 10000
for varying basis-set sizes (left)

and training-set sizes with

kmax = 1000 (right)

10000 . -

1000 1000
[0} ()
£ £
= " =
2100 4 2100
£ £
o o
= =
Adult ——
10 g 10 | Reuters CCAT --»--
MNIST 0:1-9 ---3%---
MNIST 0-4:5-9 —g—
IJCNN1 ———
1
X e
1 1 1 1 1
10 100 1000 1000 10000 100000
Number of Basis Vectors Number of Training Examples

{10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000} were tried for each method and
the results for the smallest kp,x that achieved the target accuracy are shown.

Table 2 shows that the solutions found by CPSP are typically substantially more sparse
than those of the other methods. Compared to the exact solution, they lead to an 18 to 712
fold speed-up at prediction time. Compared to the other approximate methods, the speed-up
is still typically between 5 and 10.

The increased sparsity also leads to very efficient training times for CPSP. While it is
difficult to rank methods by aggregated training times, CPSP is clearly among the fastest
methods in the comparison, especially on those tasks where general basis vectors provide
a substantial gain in sparsity. On the CCAT text-classification dataset, it is orders of mag-
nitude faster than any of the other methods (and CPSP(tr)). For such large and sparse data,
there simply does not appear to be a small subset of training vectors that can represent an
accurate classifier, and the increased sparsity from allowing general basis vectors greatly
improves training efficiency. More generally, all training methods for SVMs scale super-
linearly with the number of SVs, so that improving sparsity is the key to making large-scale
training tractable. The scaling properties of CPSP are explored in more detail in the follow-
ing section.

Comparing to the results published in Wu et al. (2006), our method is substantially faster.
They focus mostly on small training sets with less than 1000 examples. The USPS OCR
dataset with 7291 and 256 features is their largest dataset, and they report and average train-
ing time of ~2400 seconds. This dataset roughly compares to our OCRO task. However, the
OCRO dataset is an order of magnitude larger.

How does training time scale with basis-set size? Finally, let us investigate the efficiency
of CPSP in more detail. The left-hand plots in Fig. 3 show training time for different values
of kmax. Parameters (regularization C, RBF y) are individually picked via CV for each
method and k;,,,x. While the theoretical time complexity is O (kfnax), the actual scaling shown
in Fig. 3 (left) is much more benign. For k., < 1000, the time contribution of the cubic
parts of the algorithm (e.g. repeatedly updating the Cholesky factorization L) is still rather

small, and the scaling behavior is only modestly super-linear.

How does training time scale with training-sample size? Finally, the right-hand plot in
Fig. 3 shows training time of CPSP for different training set sizes. Parameters (regulariza-
tion C, RBF y) are individually picked via CV for each method and training set size. As

@ Springer

Mach Learn (2009) 76: 179-193 193

expected from the theoretical analysis, the scaling behavior is roughly linear, making CPSP
particularly attractive for large datasets.

7 Conclusions

We presented a training algorithm for kernel SVMs that constructs a sparse set of basis
vectors as part of the cutting-plane optimization process. The algorithm’s efficiency and
effectiveness is characterized theoretically, and an experimental comparison shows that is
produces solutions of a sparsity that is superior to NYSTROM, INCCHOL, CVM, BVM, and
LASVM. We find that the ability to use basis vectors outside the training set substantially
contributes to this gain in sparsity and efficiency, especially on large datasets with sparse
feature vectors.

Acknowledgements This work was funded in part under NSF award 1IS-0713483.

References

Bach, F.,, & Jordan, M. (2005). Predictive low-rank decomposition for kernel methods. In ICML (pp. 33-40).

Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel classifiers with online and active learning.
JMLR, 6, 1579-1619.

Burges, C. (1996). Simplified support vector decision rules. In ICML (pp. 71-77).

Burges, C., & Scholkopf, B. (1997). Improving the accuracy and speed of support vector learning machines.
NIPS, 9, 375-381.

Fine, S., & Scheinberg, K. (2001). Efficient SVM training using low-rank kernel representations. JMLR, 2,
243-264.

Joachims, T. (1999). Making large-scale SVM learning practical. In Scholkopf, B., Burges, C., Smola, A.
(Eds.), Advances in kernel methods—support vector learning (pp. 169-184). Cambridge: MIT Press.

Joachims, T. (2006). Training linear SVMs in linear time. In SIGKDD (pp. 217-226).

Joachims, T., Finley, T., & Yu, C. N. (2009). Cutting-plane training of structural SVMs. Machine Learning,
76(1).

Keerthi, S., Chapelle, O., & DeCoste, D. (2006). Building support vector machines with reduced classifier
complexity. JMLR, 7, 1493-1515.

Platt, J. (1999). Using analytic QP and sparseness to speed training of support vector machines. In NIPS
(pp. 557-563).

Scholkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge: MIT Press.

Smola, A., & Scholkopf, B. (2000). Sparse greedy matrix approximation for machine learning. In /ICML (pp.
911-918).

Steinwart, I. (2003). Sparseness of support vector machines. JMLR, 4, 1071-1105.

Teo, C. H., Smola, A., Vishwanathan, S. V., & Le, Q. V. (2007). A scalable modular convex solver for
regularized risk minimization. In SIGKDD (pp. 727-736).

Tsang, 1., Kwok, J., & Cheung, P. M. (2005). Core vector machines: Fast SVM training on very large data
sets. JMLR, 6, 363-392.

Tsang, I. W., Kocsor, A., & Kwok, J. T. (2007). Simpler core vector machines with enclosing balls. In /CML
(pp- 911-918).

Tsochantaridis, 1., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and
interdependent output variables. JMLR, 6, 1453—1484.

Vincent, P., & Bengio, Y. (2002). Kernel matching pursuit. Machine Learning, 48(1-3), 165-187.

Williams, C., & Seeger, M. (2001). Using the Nystrom method to speed up kernel machines. In NIPS.

Wu, M., Scholkopf, B., & Bakir, G. H. (2006). A direct method for building sparse kernel learning algorithms.
JMLR, 7, 603-624.

@ Springer

	Sparse kernel SVMs via cutting-plane training
	Abstract
	Introduction
	Related work
	Cutting-plane algorithm for SVMs
	Linear SVMs
	SVMs with kernels

	Cutting-plane subspace pursuit
	Projecting cutting-planes Psi onto B
	Constructing the set of basis vectors B

	Theoretical analysis
	Experimental analysis
	How accurate are the solutions for a given sparsity budget?
	How does accuracy scale with basis-set size?
	What is the benefit of using general basis vectors?
	How accurate is the objective value?
	What is the training and test efficiency?
	How does training time scale with basis-set size?
	How does training time scale with training-sample size?

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

