
Mach Learn (2009) 75: 3–35
DOI 10.1007/s10994-008-5086-2

Graph kernels based on tree patterns for molecules

Pierre Mahé · Jean-Philippe Vert

Received: 9 March 2007 / Revised: 28 July 2008 / Accepted: 4 September 2008 /
Published online: 4 October 2008
The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract Motivated by chemical applications, we revisit and extend a family of positive
definite kernels for graphs based on the detection of common subtrees, initially proposed by
Ramon and Gärtner (Proceedings of the first international workshop on mining graphs, trees
and sequences, pp. 65–74, 2003). We propose new kernels with a parameter to control the
complexity of the subtrees used as features to represent the graphs. This parameter allows to
smoothly interpolate between classical graph kernels based on the count of common walks,
on the one hand, and kernels that emphasize the detection of large common subtrees, on the
other hand. We also propose two modular extensions to this formulation. The first extension
increases the number of subtrees that define the feature space, and the second one removes
noisy features from the graph representations. We validate experimentally these new kernels
on problems of toxicity and anti-cancer activity prediction for small molecules with support
vector machines.

Keywords Graph kernels · Support vector machines · Chemoinformatics

1 Introduction

There is an increasing need for algorithms to analyze and classify graph data, motivated
in particular by various applications in chemoinformatics and bioinformatics. A promi-
nent example in chemoinformatics, which motivates this work, is the generic problem

Guest Editors: Thomas Gärtner, Gemma C. Garriga.

P. Mahé · J.-P. Vert (�)
Centre for Computational Biology, Ecole des Mines de Paris—ParisTech, 35 rue Saint Honoré,
77305 Fontainebleau, France
e-mail: Jean-Philippe.Vert@mines-paristech.fr

P. Mahé
e-mail: pierre.mahe@ensmp.fr

J.-P. Vert
Institut Curie, 75248 Paris, France

J.-P. Vert
INSERM, U900, 75248 Paris, France

mailto:Jean-Philippe.Vert@mines-paristech.fr
mailto:pierre.mahe@ensmp.fr

4 Mach Learn (2009) 75: 3–35

of predicting various properties of small molecules, such as toxicity or anti-cancer activ-
ity, given their molecular graph, that is, the graph representing the covalent bonds be-
tween atoms (Leach and Gillet 2003). Classification of graphs is often associated with
the problem of graph mining, which consists in detecting interesting patterns occurring
in the graphs, and using them as features to build predictive models (King et al. 1996;
Inokuchi et al. 2003; Helma et al. 2004; Deshpande et al. 2005). As an alternative to
this approach, kernel methods associated with graph kernels have recently emerged as
a promising approach for classification of graph data. Kernel methods such as support
vector machines (SVM) operate implicitly in a possibly high-dimensional Hilbert space
of features, in the sense that no explicit computation of the image of the input data
in the feature space is required. Instead, only the inner product between the images of
any two input data points, called the kernel, is required (Schölkopf and Smola 2002;
Shawe-Taylor and Cristianini 2004). Applying kernel methods to graph data therefore re-
quires the definition of a kernel between graphs, thereafter simply referred to as graph ker-
nel. Choosing a graph kernel implicitly amounts to defining a set of features to represent the
graphs and an inner product in the space of features.

Graph kernels were pioneered by Kashima et al. (2004) and Gärtner et al. (2003), who
showed how to map graphs to an infinite-dimensional feature space indexed by linear sub-
graphs, and compute an inner product in that space. The resulting graph kernels compare
two graphs through their common walks, weighted by a function of their lengths (Gärtner
et al. 2003) or by their probability under a random walk model on the graphs (Kashima et
al. 2004). While this representation might appear restrictive, these kernels led to promising
empirical results, often comparing to state-of-the-art approaches in the fields of chemoinfor-
matics (Mahé et al. 2005; Ralaivola et al. 2005) and bioinformatics (Borgwardt et al. 2005;
Karklin et al. 2005).

Nevertheless, Ramon and Gärtner (2003) highlighted the limited expressiveness of graph
kernels based on linear features, showing in particular that many different graphs can be
mapped to the same point in the corresponding feature space. Figure 1 illustrates this is-
sue on a simple example. On the other hand, they also showed that computing a complete
graph kernel, that is, a kernel mapping non-isomorphic graphs to distinct points in the fea-
ture space, is at least as hard as the graph isomorphism problem. This suggests that the
expressiveness of graph kernels must be traded for their computational complexity. Differ-
ent approaches have been proposed to refine the features used in walk-based graph kernels.
Horváth et al. (2004) introduced kernels based on the detection of common cyclic patterns,
Menchetti et al. (2005) derived a kernel from the comparison of neighborhoods of atoms, and
Ramon and Gärtner (2003) introduced a kernel comparing graphs on the basis of their com-
mon subtrees. This latter representation looks promising in particular in chemoinformatics,
because physicochemical properties of atoms are known to be related to their topological
environment that could be well captured by subtrees. However, the relationship between the
new subtree-based kernel and previous walk-based kernels was not analyzed in details, and
the relevance of the new kernel was not tested empirically.

Fig. 1 Two graphs having the
same walk content, namely
•: ×5; •→•: ×4 and •→•→•: ×2,
and consequently mapped to the
same point of the feature space
corresponding a kernel based on
the count of walks (Gärtner et al.
2003)

Mach Learn (2009) 75: 3–35 5

Our motivation in this paper is to study in detail, both theoretically and empirically, the
relevance of subtree features for graph kernels, and in particular to assess the benefits they
bring compared to walk-based graph kernels. For that purpose we first revisit the formulation
introduced by Ramon and Gärtner (2003) and propose two new kernels with an explicit de-
scription of their feature spaces and corresponding inner products. We introduce a parameter
in the formulations that allows to gradually increase the complexity of the subtrees used as
features to represent the graphs, the notion of complexity depending on the formulation. By
decreasing the parameter we recover classical walk-based kernels, and by increasing it, we
can empirically observe in detail the effect of increasing the number and the complexity of
the tree features used to represent the graphs. Both formulations can be efficiently computed
by dynamic programming, in the spirit of the kernel proposed by Ramon and Gärtner (2003).
When the size of allowed subtrees is increased, however, we observe that the practical use of
this kernel is limited by the explosion in the number of subtrees occurring in the graphs. In
a second step, we therefore introduce two extensions to the initial formulation of the kernels
that allow, on the one hand, to extend and generalize their associated feature space, and on
the other hand, to remove noisy features that correspond to unwanted subtrees. The different
kernels are compared experimentally on two small binary classification tasks consisting in
discriminating toxic from non-toxic molecules with an SVM, as well as on one large-scale
experiment to predict the anti-cancer properties of molecules on 60 cancer cell lines. In all
cases we show that graph kernels based on tree patterns can significantly outperform graph
kernels based on walks.

Although our main motivations are in chemical applications, we adopt the general frame-
work of graph kernels in this paper, because the kernels introduced may find different appli-
cations in domains where data have a natural graph structure, such as bioinformatics, natural
language processing or image processing. We assume that the reader is familiar with ker-
nel functions and SVMs, and refer him to Schölkopf and Smola (2002), Shawe-Taylor and
Cristianini (2004) and references therein for a background on the subject. The remaining of
the paper is organized as follows. Notations and definitions related to graphs and trees are
introduced in Sect. 2, followed in Sect. 3 by the definition of a general class of kernels based
on the detection of common subtrees. The next section (Sect. 4) revisits the framework in-
troduced in Ramon and Gärtner (2003), from which two particular graph kernels are derived
and further extended in Sect. 5. The kernels are validated experimentally in Sect. 6, and we
give concluding remarks in Sect. 7.

2 Notations and definitions

In this section we introduce notations and general definitions related to graphs and trees.

2.1 Labeled directed graphs

A labeled graph G = (VG, EG) is defined by a finite set of vertices VG, a set of edges EG ⊂
VG × VG, and a labeling function l : VG ∪ EG → A which assigns a label l(x) taken from
an alphabet A to any vertex or edge x. We let |VG| be the number of vertices of G, |EG| be
its number of edges, and we assume below that a set of labels A common to all graphs has
been fixed. In directed graphs, edges are oriented and to each vertex u ∈ VG corresponds a
set of incoming neighbors δ−(u) = {v ∈ VG : (v,u) ∈ EG} and outgoing neighbors δ+(u) =
{v ∈ VG : (u, v) ∈ EG}. We let d−(u) = |δ−(u)| be the in-degree of the vertex u, and d+(u) =
|δ+(u)| be its out-degree. A walk of length n in the graph G = (VG, EG) is a succession of

6 Mach Learn (2009) 75: 3–35

Fig. 2 A chemical compound
seen as a labeled graph

n + 1 vertices (v0, . . . , vn) ∈ V n+1
G , such that (vi, vi+1) ∈ EG for i = 0, . . . , n − 1. A path1 is

a walk (v0, . . . , vn) with the additional condition that i �= j ⇐⇒ vi �= vj . Finally, a graph
is said to be connected if there is a walk between any pair of vertices when the orientation
of edges is dropped.

For applications in chemistry considered below, we associate a labeled directed graph
G = (VG, EG) to the planar structure of a molecule. To do so, we let the set of vertices VG

correspond to the set of atoms of the molecule, the set of edges EG to its covalent bonds, and
label these graph elements according to an alphabet A consisting of the different types of
atoms and bonds. Note that since graphs are directed, a pair of edges of opposite direction
is introduced for each covalent bond of the molecule. Figure 2 shows a chemical compound
seen as a labeled directed graph.

2.2 Trees

A rooted tree t is a directed connected acyclic graph in which all vertices have in-degree
one, except one that has in-degree zero. The trees considered in the following will always
be rooted, and we will simply use the term “tree” to denote a rooted tree. The node with
in-degree zero is called the root r(t) of the tree. Nodes with out-degree zero are called leaf
nodes, others are called internal nodes. Trees are naturally oriented, edges being directed
from the root to the leaves. The outgoing neighbors of an internal node are called its children,
and the unique incoming neighbor of a node (apart from the root) is called its parent. If two
nodes have the same parent, their are said to be siblings. The size |t | of the tree t is its number
of nodes: |t | = |Vt |. The depth of a node corresponds to the number of edges connecting it
to the root plus one,2 and the depth of the tree is the maximum depth of its nodes. Finally,
we introduce a couple of definitions that will be useful in the following.

Definition 1 (Balanced tree) A perfectly depth-balanced tree of order h is a tree where the
depth of each leaf node is h. Perfectly depth-balanced trees are also called balanced trees
below.

Definition 2 (Branching cardinality) We define the branching cardinality of the tree t , noted
branch(t), as its number of leaf nodes minus one. More formally, for the tree t = (Vt , Et)

with Vt = (v1, . . . , v|t |), branch(t) is given by

branch(t) =
|t |∑

i=1

1(d+(vi) = 0) − 1,

where 1(.) is a binary function equal to one if its argument is true, and zero otherwise.

1What we call a path is sometimes called a simple path.
2Note that the depth of the root node is one.

Mach Learn (2009) 75: 3–35 7

Fig. 3 Left: a tree t1 of depth 5
with |t1| = 9 and branch(t1) = 3.
Right: a balanced tree t2 of order
3 with |t2| = 8 and
branch(t2) = 4. Top nodes are
root nodes, bottom nodes are leaf
nodes

This terminology stems from the observation that this quantity also corresponds to the
sum, over the non-leaf nodes of the tree, of how many extra children they have compared to
linear graph with only one child per non-leaf node. It therefore measures how many extra
branchings there are compared to a linear tree, which has branching cardinality 0. These
definitions are illustrated in Fig. 3.

The remaining of the paper introduces kernel functions between labeled directed graphs
based on the detection in the graphs of patterns corresponding to labeled trees. To lighten
notations, we simply refer below to labeled directed graphs and labeled trees as graphs and
trees.

3 The tree-pattern graph kernel

This section introduces a general class of graph kernel based on the detection, in the graphs,
of patterns corresponding to particular tree structures. We start by defining precisely this
notion of tree-pattern.

Definition 3 (Tree-pattern) Let a graph G = (VG, EG) and a tree t = (Vt , Et), with Vt =
(n1, . . . , n|t |). A |t |-tuple of vertices (v1, . . . , v|t |) ∈ V |t |

G is a tree-pattern of G with respect
to t , which we denote by (v1, . . . , v|t |) = pattern(t), if and only if the following holds:

⎧
⎪⎨

⎪⎩

∀i ∈ [1, |t |], l(vi) = l(ni),

∀(ni, nj) ∈ Et , (vi, vj) ∈ EG ∧ l
(
(vi, vj)

) = l
(
(ni, nj)

)
,

∀(ni, nj), (ni, nk) ∈ Et , j �= k ⇐⇒ vj �= vk.

In other words a tree-pattern is a combination of graph vertices that can be arranged in a
particular tree structure, according to the labels and the connectivity properties of the graph.
Note from this definition that vertices of the graph are allowed to appear several times in a
tree-pattern, under the condition that siblings nodes of the corresponding tree are associated
to distinct vertices of the graphs. We now introduce a functional to count occurrences of
these patterns.

Definition 4 (Tree-pattern counting function) A tree-pattern counting function returning
the number of times a tree-pattern occurs in a graph is defined for the tree t and the graph
G = (VG, EG), VG = (v1, . . . , v|VG|), as

ψt(G) = ∣∣{(α1, . . . , α|t |) ∈ [1, |VG|]|t | : (vα1 , . . . , vα|t |) = pattern(t)
}∣∣.

A restriction of ψt to patterns rooted in a specified vertex v is given by

8 Mach Learn (2009) 75: 3–35

Fig. 4 A molecular compound G (left) and its feature space representation φ(G) (right). Note that the
top and bottom trees are balanced. Note moreover that the bottom tree consists of a set of linearly connected
atoms, which is known as molecular fragment in chemoinformatics. Note finally that the same C atom appears
in the 3rd and 5th positions in the tree-pattern corresponding to the bottom tree

ψ
(v)
t (G) = ∣∣{(α1, . . . , α|t |) ∈ [1, |VG|]|t | :

(vα1 , . . . , vα|t |) = pattern(t) ∧ vα1 = v
}∣∣.

With this new definition at hand we can define a general graph kernel based on the de-
tection of common tree-patterns in the graphs.

Definition 5 (Tree-pattern graph kernel) The tree-pattern graph kernel K is given for the
graphs G1 and G2 by

K(G1,G2) =
∑

t∈T

w(t)ψt (G1)ψt (G2), (1)

where T is a set of trees, w : T → R+ is a non-negative tree weighting functional and ψt is
the tree-pattern counting function of Definition 4.

The kernel of Definition 5 is obviously positive definite since it can be written as a stan-
dard dot-product K(G1,G2) = 〈φ(G1),φ(G2)〉, where φ(G) is the mapping that maps any
graph G to the feature space indexed by the trees of the set T as φ(G) = (

√
w(t)ψt (G))t∈T .

It is only defined for graphs in which the possibly infinite sum in (1) converges. Figure 4
illustrates this mapping.

4 Examples of tree-pattern graph kernels

In a recent work, Ramon and Gärtner (2003) proposed a particular tree-pattern graph kernel
fitting the general Definition 5. In this section, we propose two different kernels with explicit
feature spaces and inner products, discuss their practical computation, and highlight their
differences with the kernel of Ramon and Gärtner (2003).

Mach Learn (2009) 75: 3–35 9

4.1 Kernel definition

According to Definition 5, two key elements enter in the definition of a tree-pattern graph
kernel. Firstly, the set of trees T indexing the feature space where the graphs are mapped
must be chosen. The kernels we consider in this section are based on the same feature space:
the space indexed by the set of balanced trees of order h introduced in Definition 1, labeled
according to the graphs labeling alphabet A. We will refer to this set as Bh in the following.
While the choice of balanced trees only may appear restrictive, it is convenient to derive
efficient algorithm and is generalized to larger sets of trees in Sect. 5.1. Second, the tree
weighting function w must be defined. A natural way to define such a functional is to take
into account the structure of the trees, and accordingly, we propose to relate the weight of a
tree to its size or its branching cardinality. In particular we propose to consider the following
kernels:

Definition 6 (Size-based balanced tree-pattern kernel) For the pair of graphs G1 and G2,
the size-based balanced tree-pattern kernel of order h is defined as

Kh
Size(G1,G2) =

∑

t∈Bh

λ|t |−hψt (G1)ψt (G2). (2)

Definition 7 (Branching-based balanced tree-pattern kernel) For the pair of graphs G1 and
G2, the branching-based balanced tree-pattern kernel of order h is defined as

Kh
Branch(G1,G2) =

∑

t∈Bh

λbranch(t)ψt (G1)ψt (G2). (3)

Note that the depth of a tree is a lower bound on its size, attained for a tree consisting of a
linear chain of vertices. For such a tree, at depth h, we have |t | −h = branch(t) = 0, and we
see that the corresponding tree-patterns are given a unit weight in the kernels of Definitions 6
and 7. The complexity of a tree naturally increases with its size and branching cardinality,
and the λ parameter entering the kernel Definitions 6 and 7 has the effect of favoring tree-
patterns depending on their degree of complexity. A value of λ greater than one favors the
influence of tree-patterns of increasing complexity over the trivial linear tree-patterns, while
they are penalized by a value of λ smaller than one. We can note, however, that while the
size of a tree increases with its branching cardinality, the converse is not true. For any tree
t of depth h, we therefore always have |t | − h ≥ branch(t), and the tree weighting is more
pronounced in the size-based than in the branching-based kernel. In the case of balanced
trees, this difference is particularly marked when the nodes with large out-degree are close
to the root node. This is due to the fact that every leaf must be at depth h, and while the size
of the tree necessarily increases by at least h − 1 along each path starting from the root, the
branching cardinality does not.3 The main difference in the feature space representations of
the graphs is therefore induced by this particular type of tree-patterns, that can be interpreted
as collections of regular subtree patterns merged in the root node. This suggests for instance
that, for λ < 1, the branching-based formulation of the kernel may to some extent tolerate
large, yet regular patterns, that would be strongly penalized in the size-based formulation.
Figure 5 illustrates these tree weightings based on the size and branching cardinality.

3At the extreme, we have |t | = 1 + (h − 1) × d+(r(t)) vs. branch(t) = d+(r(t)) − 1.

10 Mach Learn (2009) 75: 3–35

Fig. 5 A set of balanced trees of order 3, together with their size-based (left) and branching-based (right) λ

weighting

When λ tends to zero, the complexity of the patterns is so penalized that only tree-patterns
consisting of linear chains of graph vertices have non-vanishing weights, and the kernels of
Definitions 6 and 7 boil down to a kernel based on the detection of common walks (Gärtner
et al. 2003). More formally, if we define the set of walks of length n of the graph G as

Wn(G) = {(v0, . . . , vn) ∈ V n+1
G : (vi, vi+1) ∈ EG,0 ≤ i ≤ n − 1},

and define for the graphs G1 and G2 the following walk-count kernel:

Kn
Walk(G1,G2) =

∑

w1∈
Wn(G1)

∑

w2∈
Wn(G2)

1(l(w1) = l(w2)), (4)

where 1(l(w1) = l(w2)) is one if all pairs of corresponding edges and vertices are identically
labeled in the walks w1 and w2, and zero otherwise, one easily gets that:

lim
λ→0

Kh
Size(G1,G2) = lim

λ→0
Kh

Branch(G1,G2) = Kh−1
Walk(G1,G2).

Increasing the value of λ relaxes the penalization on complex subtree features, and can
therefore be interpreted as introducing tree-patterns of increasing complexity in the walk-
based kernel of (4).

It should be noted finally that the parameters h and λ are directly related to the nature of
the features representing the graphs and to their relative importance. Optimal values of the
parameters are therefore likely to be dependent on the problem and data considered, and can
hardly be chosen a priori. As an example, because of the variety of chemical compounds,
the graphs considered in a chemical application can have a great structural diversity. This
suggests that these parameters should be estimated from the data using, for example, cross-
validation techniques.

4.2 Kernel computation

We now propose two factorization schemes to compute the kernels of Definitions 6 and 7.
These factorizations are inspired by the dynamic programming (DP) algorithm proposed by
Ramon and Gärtner (2003) to compute a slightly different graph kernel, discussed in the
next subsection. The factorization relies on the following definition:

Definition 8 (Neighborhood matching set) The neighborhood matching set M(u, v) of two
graph vertices u and v is defined as

M(u, v) = {
R ⊆ δ+(u) × δ+(v) | R �= ∅
∧ (∀(a, b), (c, d) ∈ R : a = c ⇔ b = d

)

∧ (∀(a, b) ∈ R : l(a) = l(b) ∧ l((u, a)) = l((v, b))
)}

.

Mach Learn (2009) 75: 3–35 11

Each R ∈ M(u, v) consists of one or several pair(s) of neighbors of u and v that are
identically labeled and connected to u and v by edges of the same label. It follows from
Definition 1 that such an element R corresponds to a pair of balanced tree-patterns of order
2 rooted in u and v, found in the graph(s) u and v belong to. Moreover, provided u and v

have the same label, these patterns correspond to the same balanced tree. We can state the
following propositions, whose proofs are postponed in Appendix A:

Proposition 1 (Size-based kernel computation) The order h size-based tree-pattern kernel
Kh

Size of Definition 6 between two graphs G1 and G2 can be computed as:

Kh
Size(G1,G2) = 1

λh

∑

u∈VG1

∑

v∈VG2

kh(u, v), (5)

where kn, n = 1, . . . , h is defined recursively by

⎧
⎨

⎩

k1(u, v) = λ1(l(u) = l(v)),

kn(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

kn−1(u
′, v′), n = 2, . . . , h.

Proposition 2 (Branching-based kernel computation) The order h branching-based tree-
pattern kernel Kh

Branch of Definition 7 between two graphs G1 and G2 can be computed as:

Kh
Branch(G1,G2) =

∑

u∈VG1

∑

v∈VG2

kh(u, v), (6)

where kn, n = 1, . . . , h is defined recursively by

⎧
⎪⎨

⎪⎩

k1(u, v) = 1(l(u) = l(v)),

kn(u, v) = 1(l(u) = l(v))
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

λkn−1(u
′, v′), n = 2, . . . , h.

Not surprisingly, Propositions 1 and 2 show that the kernels Kh
Size and Kh

Branch of Defini-
tions 6 and 7 have the same complexity. More precisely, for the pair of graphs G1 and G2, it
follows from (5) and (6) that in both cases we need to evaluate kn(u, v) for all u ∈ G1, v ∈ G2

and n = 1, . . . , h. The computation of a single kn(u, v) involves a sum over subsets R of
matching pairs. The number of sets R of r matching pairs is upper bounded by P

d+(u)
r P

d+(v)
r ,

where P n
r = n!/(n − r)! counts the number of permutations of r elements of a sequence of

n elements. Moreover each such subset requires a multiplication of r terms and an addition.
If we denote by d an upper bound of the outer degrees of the vertices, the number of basic
operations to compute kn(u, v) is therefore upper bounded by:

d∑

r=1

(r + 1)(P d
r)2 = O(d2d).

For two graphs G1 and G2, the computational complexity of the kernels is therefore upper
bounded by

O(|VG1 | × |VG2 | × h × d2d), (7)

12 Mach Learn (2009) 75: 3–35

which shows a linear dependency with respect to the order h of the kernel. However, the
super-exponential dependency on d suggests that these kernels are only useful in practice
for graphs with very small connectivity. For example, in the case of chemical compounds, we
have d = 4. The factor d2d equals 65,536, and the complexity looks prohibitive. However
this is only a worst-case complexity which is strongly reduced in practice because (i) the
out-degree of the vertices is often smaller than four,4 and (ii) the size of M(u, v) is reduced
by the fact that vertices and edges can have distinct labels.

4.3 Relation to previous work

At this point, it is worth reminding the kernel formulation introduced by Ramon and Gärtner
(2003) in order to highlight the differences with the kernels proposed in Definitions 6 and 7.
In the context of graphs with labeled vertices and edges,5 at order h, the kernel introduced
in Ramon and Gärtner (2003), that we denote by Kh

Ramon, is formulated as follows:

Kh
Ramon(G1,G2) =

∑

u∈VG1

∑

v∈VG2

kh(u, v),

where kn is defined by

⎧
⎨

⎩

k1(u, v) = 1(l(u) = l(v))

kn(u, v) = 1(l(u) = l(v))λuλv

∑

R∈M(u,v)

∏

(u′,v′)∈R

kn−1(u
′, v′), n = 2, . . . , h.

The first important difference lies in the fact that in their original definition, the neighbor-
hood matching set M(u, v) includes the empty set as a special case. While this suggests
that unbalanced trees are as well taken into account in their kernel, it is not clear how the
product

∏
(u′,v′)∈R kn(u

′, v′) is defined when R = ∅. Under the convention that this product
is 0 if R = ∅, it turns out that only balanced-trees are taken into account in their kernel, as it
is the case in our formulation. On the other hand, adopting the convention that this product
is 1 if R = ∅, their formulation indeed makes it possible to take into account general trees.
In Sect. 5.1, we propose an extension to our formulation that enables to consider general
trees as well.

If we adopt our definition of the neighborhood matching set, given in Definition 8, it is
clear that Kh

Ramon and the kernels of Definitions 6 and 7 have the same feature space. The
second main difference with our formulations lies in the fact that here, a parameter λv is
introduced for each vertex v of each graph. It can be checked that under this parametrization,
each tree-pattern is weighted by the product of the parameters λv associated to its internal
nodes. In the special case where these parameters are taken equal to a single parameter
λ, each pattern is therefore weighted by λ raised to the power of its number of internal
nodes. While this bears some similarity with the size-based weighting proposed in the kernel
of Definition 6, we note for instance that the three leftmost trees of Fig. 5 are identically
weighted, namely by a factor λ2. As a result, the convergence to the walk-based kernel
of (4) observed when λ tends to zero for the kernels of Definitions 6 and 7 does not hold
with this formulation.

4For example, in the first dataset considered in our experiments in Sect. 6, the average out-degree of the
vertices is 2.14.
5The original formulation considered graphs with labeled vertices only, and the definition of the neighborhood
matching set is refined in this paper in order to handle labeled edges.

Mach Learn (2009) 75: 3–35 13

5 Extensions

The kernels introduced in the previous section arise directly from the adaptation of the algo-
rithm proposed in Ramon and Gärtner (2003). In this section we introduce two extensions
to this initial formulation. First, we extend the branching-based kernel of Definition 7 to
a feature space indexed by a larger, and more general, set of trees. Second, we propose to
eliminate a set of noisy tree-patterns from the feature space.

5.1 Considering all trees

The DP algorithms of Sect. 4.2 recursively extend the tree-patterns under construction until
they reach a specified depth. Because they are based on the notion of neighborhood matching
sets introduced in Definition 8, these algorithms add at least one child to every leaf node of
the patterns under extension at each step of the recursive process. When they reach the
specified depth, the patterns are therefore balanced, and the choice of the feature space
associated to the kernels of Definitions 6 and 7 was actually dictated by their computation.

Rather than focusing on features of a particular size, standard representations of mole-
cules involve structural features of different sizes. A prominent example is that of molecular
fingerprints (Ralaivola et al. 2005) that typically represent a molecule by its exhaustive list of
fragments of length up to 8, where a fragment is defined as a linear succession of connected
atoms (see Fig. 4). In this section, we note that a slight modification of the DP algorithm of
Proposition 2 generalizes the kernel of Definition 7 to a feature space indexed by the set of
general trees up to a given depth, instead of the set of balanced-trees of the corresponding
order. More precisely, if we let Th be the set of trees of depth up to h, and if we define the
until-N extension of the branching-based kernel of Definition 7 as

Kuntil-h
Branch(G1,G2) =

∑

t∈Th

λbranch(t)ψt (G1)ψt (G2), (8)

we can state the following proposition, whose proof is postponed to Appendix B.

Proposition 3 (Until-N kernel computation) The until-N extension Kuntil-h
Branch of the branch-

ing-based kernel of order h of Definition 7 is given for the graphs G1 and G2 by

Kuntil-h
Branch(G1,G2) =

∑

u∈VG1

∑

v∈VG2

kh(u, v),

where kn, n = 1, . . . , h is defined recursively by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k1(u, v) = 1(l(u) = l(v)),

kn(u, v) = 1(l(u) = l(v))

(
1 +

∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

λkn−1(u
′, v′)

)
,

n = 2, . . . , h.

The computation given in Proposition 3 follows that of Proposition 2, and this until-N
extension comes at no extra cost. The feature space corresponding to this extended kernel
has nevertheless a much larger dimensionality than that of the original branching-based ker-
nel. Actually, because the set of trees Th includes the set of balanced trees Bh as a special
case, the feature space associated to the branching-based kernel is a sub-space of the feature

14 Mach Learn (2009) 75: 3–35

Fig. 6 A graph G (middle), the set of balanced trees of order 3 (left) and general trees of depth up to 3
(right) for which a tree-pattern rooted in the dashed vertex is found in G, together with their kernel weighting
λbranch(t)

space associated to its until-N extension. Figure 6 illustrates the different mappings. The
behavior of this kernel with respect to λ follows that of the original branching-based kernel.
In particular, when λ tends to zero, the set of tree-patterns with non-vanishing weights re-
duces to linear chain of vertices and the kernel boils down to a kernel based on the detection
of common walks of length up to h − 1. More formally, one can easily check that, in this
case:

lim
λ→0

Kuntil-h
Branch(G1,G2) =

h−1∑

n=0

Kn
Walk(G1,G2),

where Kn
Walk is the kernel based on the detection of common walks of length n, defined in

Sect. 4.1 (4).
Finally, we note that this extension is not directly applicable to the size-based kernel

of Definition 6 because of a slight difference in the computations of Propositions 1 and 2.
Indeed, note from Proposition 1 that in order to get the λ|t |−h weighting of the tree t proposed
in Definition 6, the size-based kernel is initially computed from patterns weighted by their
sizes, and is subsequently normalized by a factor λ−h. As a result, while the above extension
would still have the effect of extending the feature space to the space indexed by trees of
Th, this λ−h normalization would affect every tree-pattern regardless of their size, and the
pattern weighting proposed in Definition 6 would be lost.

5.2 Removing tottering tree-patterns

The DP algorithms of Sects. 4.2 and 5.1 enumerate balanced tree-patterns of order h through
the recursive extension of balanced tree-patterns of order 2 defined by neighborhood match-
ing sets of pairs of vertices. According to Definition 8, the whole sets of neighbors of a pair
of vertices enter in the definition of their neighborhood matching sets. As a result, it can be
the case in a tree-pattern that a vertex appears simultaneously as the parent and a child of

Mach Learn (2009) 75: 3–35 15

Fig. 7 Left: tottering (light) and no-tottering (dark) walks. Right: tottering (light) and no-tottering (dark)
tree-patterns

a second vertex. This phenomenon is the tree counterpart of a phenomenon observed in the
context of walk-based graph kernels, where a random walk under extension could return to
a visited vertex just after leaving it. This behavior was called tottering in Mahé et al. (2005),
and following this terminology, we refer to a tree-pattern in which a vertex appears simul-
taneously as the parent and a child of a second vertex as a tottering tree-pattern. Figure 7
illustrates the tottering phenomenon.

In many cases these tree-patterns are likely to be uninformative features. In particular
they are not proper subgraphs of the initial graphs. Even worse, the ratio of the number of
tottering tree-patterns over the number of non-tottering tree-patterns quickly increases with
the depth h of the trees, suggesting that informative patterns corresponding to deep trees
might be hidden by the profusion of tottering tree-patterns. In order to tackle this issue we
now adapt an idea of Mahé et al. (2005) to filter out these spurious tottering tree-patterns in
the kernels presented in Sects. 3 and 4. Tottering can be prevented by adding constraints in
the tree-pattern counting function, according to the following definition.

Definition 9 (No-tottering tree-pattern counting function) From the tree-pattern counting
function of Definition 4, a no-tottering tree-pattern counting function can be defined for
the tree t = (Vt , Et), with Vt = (n1, . . . , n|t |), and the graph G = (VG, EG), with VG =
(v1, . . . , v|VG|), as

ψNT
t (G) = ∣∣{(α1, . . . , α|t |) ∈ [1, |VG|]|t | : (vα1 , . . . , vα|t |) = pattern(t)

∧ (ni, nj), (nj , nk) ∈ Et ⇒ αi �= αk

}∣∣.

Following Definition 5, a graph kernel based on no-tottering tree-patterns can be defined
from this no-tottering tree-pattern counting function.

Definition 10 (No-tottering tree-pattern kernel) A graph kernel KNT based on no-tottering
tree-patterns is given for the graphs G1 and G2 by

KNT(G1,G2) =
∑

t∈T

w(t)ψNT
t (G1)ψ

NT
t (G2), (9)

where T is a set of trees, w : T → R is a tree weighting functional and ψNT
t is the no-

tottering tree-pattern counting function of Definition 9.

16 Mach Learn (2009) 75: 3–35

Fig. 8 The graph transformation. (I) The original molecule. (II) The corresponding graph G = (VG, EG).
(III) The transformed graph. (IV) The labels on the transformed graph. Note that different widths stand for
different edges labels, and gray nodes are the nodes belonging to VG

This latter definition therefore extends the tree-pattern kernel of Definition 5 to the no-
tottering case. However, due to the additional constraints on the set of acceptable patterns,
the DP framework based on neighborhood matching set described in Sects. 4.2 and 5.1
does not hold any longer. In Mahé et al. (2005), the following graph transformation was
introduced in order to filter tottering walks.

Definition 11 (Graph transformation) For a graph G = (VG, EG), we let its transformed
graph G′ = (VG′ , EG′) be defined by:

– VG′ = VG ∪ EG,
– EG′ = E 1 ∪ E 2 with:

{
E 1 = {(v, (v, t)) |v ∈ VG, (v, t) ∈ EG} ,

E 2 = {((u, v) , (v, t)) | (u, v) , (v, t) ∈ EG,u �= t} ,

and labeled as follows:

– for a node v′ ∈ VG′ the label is either l(v′) = l(v′) if v′ ∈ VG, or l(v′) = l(v) if v′ =
(u, v) ∈ EG,

– for an edge e′ = (v′
1, v

′
2) between two vertices v′

1 ∈ VG ∪ EG and v′
2 ∈ EG, the label is

simply given by l(e′) = l(v′
2).

This graph transformation is illustrated in Fig. 8 for the graph corresponding to the chem-
ical compound of Fig. 2. Based on this graph transformation, Mahé et al. (2005) proved that
there is a bijection between the set of no-tottering walks of a graph and the set of walks of
its transformed graph that start on a vertex corresponding to a vertex of the original graph.
In a similar way, we show below that there is a bijection between the set of no-tottering
tree-patterns found in a graph and the set of tree-patterns found in its transformed graph
rooted in a vertex corresponding to a vertex of the original graph. This is summarized in the
following proposition, whose proof is postponed to Appendix C.

Mach Learn (2009) 75: 3–35 17

Proposition 4 If we let G′
1 (resp. G′

2) be the transformed graph of G1 (resp. G2), the no-
tottering tree-pattern kernel of Definition 10 is given by

KNT(G1,G2) =
∑

t∈T

w(t)ψNT
t (G1)ψ

NT
t (G2)

=
∑

t∈T

w(t)ψ
{VG1 }
t (G′

1)ψ
{VG2 }
t (G′

2),

where, if G′ is the transformed graph of G given by Definition 11, VG ⊂ VG′ is the set of
vertices of G′ corresponding to the vertices of G, and ψ

{v1,...,vn}
t (G) = ∑n

i=1 ψ
(vi)
t (G).

This proposition shows that we can compute no-tottering extensions of the kernels of De-
finitions 6 and 7, and of the until-N kernel extension of (8), using the graph transformation
of Definition 11 and the original DP algorithms of Sects. 4.2 and 5.1. However, this opera-
tion comes at the expense of an increase in the cost of computing the kernel. More precisely,
by definition of the graph transformation, we have |VG′ | = |VG|+ |EG|. Moreover, as noticed
by Mahé et al. (2005), the maximum out-degree of the vertices of the transformed graph is
equal to that of the original graph. As a result, the worst case complexity of evaluating the
functional kh(u, v) of Propositions 1, 2 and 3 is the same if u and v belong to VG′

1
and VG′

2
,

or VG1 and VG2 . It follows that for two graphs G1 and G2, the complexity of computing the
non-tottering extension of any of the kernels given in (2), (3) and (8) is upper bounded by
the complexity of computing the original kernel multiplied by the factor:

(|VG1 | + |EG1 |)(|VG2 | + |EG2 |)
|VG1 ||VG2 |

. (10)

6 Experiments

We performed two series of experiments to validate the kernels proposed in this paper and
test the effect of the extensions proposed. The first series is a small-scale experiment on two
benchmark problems of toxicity prediction. We performed extensive experiments in order to
assess the effects of the different parameters and extensions on this series. The second series
of experiments is meant to assess the performance of the proposed kernels on a large-scale
problem, that of predicting the anti-cancer effects of molecules on 60 cancer cell lines.

All classification experiments were carried out with a support vector machine as a learn-
ing algorithm, using the LibSVM implementation (Chang and Lin 2001) and the PyML
python machine learning framework.6 The kernels were pre-computed with the ChemCPP
software,7 a free and publicly available C++ toolbox for chemoinformatics where we im-
plemented all kernels used in this study. We report results in terms of area under the ROC
curve (AUC) for all datasets, as well as accuracy for the large-scale experiments. The per-
formance is assessed in a cross-validation setting, using ten folds for the first series of ex-
periments, and, for computational reasons, five folds for the second series of experiments.
Within each cross-validation fold, the regularization parameter C of the SVM is chosen
over the grid {10−3,10−2,10−1,100,101,102,103} as the value maximizing the mean AUC
obtained by cross-validation over the training set of the fold.

6Available at http://pyml.sourceforge.net.
7Available at http://chemcpp.sourceforge.net.

http://pyml.sourceforge.net
http://chemcpp.sourceforge.net

18 Mach Learn (2009) 75: 3–35

6.1 Toxicity prediction

For our first series of experiments, we consider two small public datasets of chemical com-
pounds together with informations about the toxicity of the molecules. Both datasets gather
results of mutagenicity assays, and while the first one (King et al. 1996) is a standard bench-
mark for evaluating chemical compounds classification, the second one (Helma et al. 2004)
was introduced more recently. The first dataset contains 188 chemical compounds tested for
mutagenicity on Salmonella typhimurium. The molecules of this dataset belong to the fam-
ily of aromatic and hetero-aromatic nitro compounds. They are split into two classes: 125
positive examples with high mutagenic activity (positive levels of log mutagenicity), and 63
negative examples with no or low mutagenic activity, and they are made of 26 atoms and 27.9
covalent bonds in average. The second database considered consists of 684 compounds clas-
sified as mutagens or non-mutagens according to a test known as the Salmonella/microsome
assay. This dataset is well balanced with 341 mutagens compounds for 343 non-mutagens
ones, made of 14.1 atoms and 14.6 covalent bonds in average. Although the biological prop-
erty to be predicted is the same, the two datasets are fundamentally different. While King
et al. (1996) focused on a particular family of molecules, the second dataset involves a set
of very diverse chemical compounds, qualified as noncongeneric in the original paper. To
predict mutagenicity, the model therefore needs to solve different tasks: in the first case it
has to detect subtle differences between homogeneous structures, while in the second case
it must seek regular patterns within a set of structurally different molecules. Our objective
with this first series of experiments is to study in detail the introduction of subtree patterns
in walk-based kernels. Walk-based kernels have notably been studied extensively in Swami-
dass et al. (2005) and Mahé et al. (2005). We refer the interested reader to these references
for a detailed comparison between walk-based kernels and alternative approaches.

We first tested the classification performance reached by the size-based (Definition 6)
and branching-based (Definition 7) formulations of the kernels. AUC values obtained for
different parameters 0 ≤ λ ≤ 1 and order h taken between 2 and 9 are displayed in Figs. 9
and 10 for both datasets, respectively. In both formulations, the parameter λ controls the
relative weights given to subtree patterns in the kernel. In particular, for λ = 0 only linear
subtrees are considered, and we recover the classical walk-based kernels. The fact that most
performance curves, for different orders h, start by increasing when λ increases from 0 sug-
gests that the introduction of subtree patterns is often beneficial to walk kernels. More pre-
cisely, an improvement can be observed for all orders h in the case of the size-based kernel
(except for h = 2 in the first dataset), and for orders h between 2 and 7 for the branching-
based kernel. For a given order h between 2 and 7, the optimal values obtained with the
size- and branching-based kernels are similar, although the optimal λ values are systemat-
ically smaller for the branching-based formulation. This is due to the fact that, as noted in
Sect. 4.1, the size-based penalization is stronger than the branching-based penalization. As
a result, optimal λ values observed using the size-based kernel are shifted towards zero us-
ing the branching-based kernel. We can also note that optimal values of λ tend to decrease
for increasing values of h. This is probably due to the fact that the number of tree-patterns
increases exponentially with h, and that the kernels therefore need to limit their individual
influence. We observe in fact that higher order patterns, with h > 7, can only be considered
for sufficiently small values of λ. For example, the size-based kernel computation did not
converge for patterns of order 9 and λ greater than 0.15. In the case of branching-based
kernel, due to the weaker pattern penalization, this phenomenon is even emphasized, and in
that case, 10−4 was the largest value acceptable for λ. Additionally, we note that because
the size- and branching-based penalization of balanced trees of order 2 is the same, the

Mach Learn (2009) 75: 3–35 19

Fig. 9 First toxicity dataset. Evolution of the AUC with respect to λ at different orders h. Left: size-based
kernel (2); Right: branching-based kernel (3)

Fig. 10 Second toxicity dataset. Evolution of the AUC with respect to λ at different orders h. Left: size-based
kernel (2); Right: branching-based kernel (3)

results obtained for h = 2 are identical with the two kernels. Interestingly, both datasets be-
have differently in that case: while the introduction of tree patterns brings no improvement
over the walk-based kernel for the first dataset, an important relative improvement of 12%
is observed for the second dataset. This suggests that different molecular substructures are
relevant within each dataset.

Figure 11 presents the results of the until-N extension (8) of the branching-based ker-
nel (3) for both datasets. No clear difference can be detected between these curves and the
curves corresponding to the kernels without the until-N extensions (right-hand side plots in
Figs. 9 and 10). The fact that the differences between the two kernel formulations are barely
noticeable is surprising since their associated feature spaces are intuitively quite different.
In Sect. 5.1, we mentioned that the feature space associated to the branching-based kernel
is a subspace of the feature space associated to its until-N extension. Figure 11 therefore
suggests that the extra features related to the until-N extension do not bear additional infor-
mation into the kernel. This hypothesis seems to be confirmed by the fact that the differences
between corresponding walk-based kernels, observed for λ = 0, are not significant neither.
This might be explained by the fact that the dimensions of the corresponding feature space

20 Mach Learn (2009) 75: 3–35

Fig. 11 Evolution of the AUC with respect to λ at different orders h, for the until-N extension (8) of the
branching-based kernel (3) for the first toxicity dataset (left) and the second one (right)

are probably strongly correlated due to the relation of inclusion existing between trees and
walks patterns of orders n, and those of order n + 1. Another possible explanation for the
lack of improvement of the until-N extension lies of course in the difficulty of learning in
high dimension, suggesting that discriminating patterns of a given order are lost within the
flood of patterns of greater orders taken into account by this until-N extension.

We finally tested the effect of filtering the tottering subtrees in the different kernel for-
mulations. Figures 12, 13 and 14 show the results of the no-tottering extension (9) of the
size-based (2), branching-based (3), and until-N branching-based kernels (8), respectively.
Each figure shows the plots corresponding to both datasets. If we compare the results of the
no-tottering extensions of the size-based and branching-based kernels (Figs. 12 and 13), we
can first note that the introduction of tree-patterns is now systematically beneficial for h > 2
in both formulations, and for both datasets. Moreover, we note that the kernel computations
remain feasible even for h = 9 and λ = 1, which means that the no-tottering extension limits
the combinatorial explosion observed in the original formulation, and therefore allows the
inclusion of larger subtree patterns in the feature space.

Both datasets clearly differ in terms of optimal order h. While optimal results were ob-
tained for h = 4 using the original kernels for the first dataset, we observe that after the
no-tottering extension the performance gradually increases from h = 3 to an optimum value
obtained for h = 8. In the case of the second dataset, however, the optimal value h = 3
remains the same after the no-tottering extension, confirming that the most discriminative
features are likely to be different between the two datasets. This is likely due to the fact that
the compounds are structurally similar in the first dataset, and different (or noncongeneric)
in the second dataset: while the kernel needs to detect subtle structural differences in the
first case, it must identify more regular patterns in the second one. This observation sup-
ports the intuition that the choice of the kernel order h is problem-dependent and should be
related to or learned from each particular dataset. In terms of absolute performance, optimal
AUC values are close to 96.5% for the first dataset and improve over the values around 95%
observed with the initial formulation. Importantly, we note that these optimal values are ob-
tained using parametrizations of the kernels that lead to a combinatorial explosion in their
initial formulation. For the second dataset, however, the best AUC are near 84%, bringing
no improvement over the initial formulation.

Figure 14 shows similar performance curves for the no-tottering extension (9) of the
until-N branching-based kernel (8). Analyzing the results for the first dataset (left-hand

Mach Learn (2009) 75: 3–35 21

Fig. 12 AUC as a function of λ for different orders h for the no-tottering extension (9) of the size-based
kernel (2) (first dataset on the left, second dataset on the right)

Fig. 13 AUC as a function of λ for different orders h for the no-tottering extension (9) of the branching-based
kernel (2) (first dataset on the left, second dataset on the right)

Fig. 14 AUC as a function of λ for different orders h for the no-tottering extension (9) of the until-N
branching-based kernel (2) (first dataset on the left, second dataset on the right)

22 Mach Learn (2009) 75: 3–35

side), we can first notice that conclusions similar to those related to the no-tottering exten-
sion of the branching-based kernel can be drawn: an improvement over the corresponding
walk-based kernel is systematically observed for tree-patterns of order greater than 2, the
kernel behaves more nicely (no combinatorial explosion), and the no-tottering extension
consistently improves over the initial until-N branching-based kernel. Interestingly how-
ever, we note that optimal results obtained for 4 ≤ h ≤ 9 tend to converge to an optimal value
around 95.5% (between 95.3 and 95.9%) for a λ value around 0.05. While this global opti-
mum is not as good as the overall optimal result obtained with the no-tottering branch-based
kernel (Fig. 13), it still remains competitive (95.5% vs 96.5%). This observation contrasts
with the results obtained with the until-N extension in the tottering case, where patterns of
a given order seemed to be lost in the amount of patterns of greater orders taken into ac-
count by the kernel. This is due to the fact the no-tottering extension limits the number of
patterns to be detected, and suggests that patterns of different orders can now be considered
simultaneously in the kernel. This fact therefore suggests that in the no-tottering case, the
until-N extension can help solving the problem of pattern order selection by taking a max-
imal pattern order large enough (here, h > 4). In the case of the second dataset (right-hand
side of Fig. 14), results are less clear. In that case, the introduction of the tree-patterns only
improves the results for patterns of limited order, and for patterns of order greater than 4, re-
sults systematically decrease. We can however note the interesting point that optimal results
obtained for patterns of order 5 to 9 converge to a global optimal value between 85 and 86%.
This therefore tends to confirm that in the no-tottering case, the until-N extension can help
solving the problem of pattern order selection by considering a maximal pattern order large
enough (here, h > 4). Nevertheless, the striking difference with the results obtained with
the first dataset is that in this case, when h > 4, the introduction of tree-patterns could not
further improve the results obtained by the until-N walk-based kernel, that constitute the
overall best performance we could observe for this dataset.

6.2 Anti-cancer activity prediction

The second series of experiments is meant to evaluate the performance of the subtree kernel
on the NCI anticancer activity dataset. This dataset, made available by the Developmental
Therapeutics Program (DTP) of the National Cancer Institute (NCI), provides screening re-
sults for the ability of about 70,000 compounds to suppress or inhibit the growth of a panel
of 60 tumor cell lines, collectively known as the NCI-60 cell lines. We used the dataset cor-
responding to the concentration parameter GI50, essentially the concentration that causes
50% growth inhibition. We retrieved this dataset from the ChemDB database (Chen et al.
2005). For each of the 60 cell lines, an average of about 3,500 molecules are available and
classified as inhibitory or not, depending on the GI50 value. The 60 datasets are well bal-
anced between positive and negative examples, and therefore provide an interesting bench-
mark to assess the performance of classification algorithms in a realistic situation. Across
the different cell lines, the molecules are made of 23.5 atoms and 25.4 covalent bonds on
average.

For the sake of computational burden we limited our investigations to a comparison be-
tween a baseline walk-based kernel with a subtree-based kernel. Preliminary experiments
with the walk-based kernel suggested that an order h = 6 gave good results.8 Following our
analysis on the small toxicity datasets, we therefore compared (i) the walk-based kernel,

8A walk-based kernel of order h is based on walks involving h vertices and h − 1 edges.

Mach Learn (2009) 75: 3–35 23

with h = 6 and the non-tottering extension, to (ii) the subtree-based kernel, with h = 6, the
non-tottering extension, λ = 0.4 and the size-based formulation. In other words we tested
whether, for a given order h = 6 observed to be good for the walk-based kernels, the in-
troduction of subtrees (with a parameter λ = 0.4) would increase performance. Of course
better results than the ones reported below may be obtained by a better tuning of the subtree
kernel parameters.

For each of the 60 cell lines we evaluated the AUC and accuracy of the classification
with both kernels. Results are shown in Fig. 15. They reveal the consistent improvement
brought by the introduction of subtree patterns: on each of the 60 experiments, the subtree
formulation outperforms the walk formulation, both in terms of AUC and accuracy. The
average accuracy over the 60 lines increases from 68.9% to 70.0% between the two kernels
(this improvement is significant with a P-value < 2 × 10−6 using a Wilcoxon paired one-
sided test), while the average AUC increases from 74.3% to 76.1% (improvement significant
with P-value < 4 × 10−11). This demonstrates the relevance of subtree patterns over linear
patterns.

On the same dataset, Swamidass et al. (2005) recently reported state-of-the-art results
using a voted perceptron coupled with various kernels based on linear fragments extracted
from the 2D structure of the molecules. These kernels are variants of the non-tottering walk
kernels that we investigated, with different ways to compute the kernels from the vectors
of walk features. With an average accuracy (resp. AUC) over the 60 lines of 72.3% (resp.
78.7%), the best results reported in that study were obtained using the so-called “Min-Max”
kernel, a variant of the Tanimoto coefficient that is widely used in the chemoinformatics
community, computed from fragments involving a maximum of 10 covalent bonds. The
Min-Max kernel is based on similar features as the walk kernel, namely the counts of occur-
rences of all linear fragments in a molecule. The only conceptual difference with the walk
kernel resides in the way the kernel is computed from the feature vector representation: in
the walk kernel a dot product between feature vectors is used, while in the Min-Max for-
mulation, the kernel between two graphs is a sum over features of the ratio between the
maximum and the minimum values of the features between the two graphs.

While the results of Swamidass et al. (2005) are better than those we obtained with the
subtree pattern kernel, we wanted to investigate whether the difference was mainly due to
the kernel itself, or to other features such as the algorithm used, the way parameters are
selected, or the experimental protocol. Therefore we re-implemented the Min-Max kernel
of Swamidass et al. (2005), using the exact same linear features as those we used in our
walk kernel, and simply replacing the dot product computation by a sum of min/max ra-
tios. We made this implementation publicly available in the ChemCpp toolbox.9 We then
ran classification experiments on the 60 cell lines for this Min-Max kernel with the same
fragment length (h = 6) and experimental protocol as those used for the walk-based and
subtree pattern kernels. Over the 60 experiments the Min-Max kernel reached an average
accuracy of 70.9% and an average AUC of 77.5%, outperforming the subtree pattern kernel
(respectively 70.0% and 76.1%). Although these results are slightly below those reported
by Swamidass et al. (2005), they show that the Min-Max formulation of the linear fragment
kernel outperforms the subtree pattern kernel both in accuracy (P-value < 2 × 10−5) and
AUC (P-value < 2 × 10−7).

The overall conclusions of this large-scale study are that, in a controlled experiment:
(i) the introduction of subtree patterns significantly improves the performance of the kernel

9http://chemcpp.sourceforge.net

http://chemcpp.sourceforge.net

24 Mach Learn (2009) 75: 3–35

Fig. 15 AUC and accuracy for the 60 NCI cancer cell lines benchmark. Cell lines are sorted by increasing
AUC of the walk kernel

Mach Learn (2009) 75: 3–35 25

based on the count of common linear walks when a dot product between feature vectors
is used in both cases; (ii) the Min-Max kernel formulation outperforms the inner product
formulation when linear pattern are considered, as already pointed out by Swamidass et
al. (2005); (iii) the Min-Max kernel formulation with linear fragments also outperforms
the inner product formulation for subtree patterns. These conclusions suggest that both the
kernel formulation (inner product or Min-Max) and the feature used (linear or subtree pat-
terns) have an influence on the final performance. An interesting direction for future research
would be to combine both improvements, i.e., to propose a Min-Max formulation based on
subtree patterns.

6.3 Computation times

We conclude this section discussing computation times. Our goal is to compare the time
required, on the one hand, to compute size-based (2) and branching-based (3) tree-pattern
kernels in their original and no-tottering formulations,10 and, on the other hand, to compute
such tree-pattern kernels and their walk-based counterparts (4). To do so we base our empir-
ical analysis on the time needed to compute Gram matrices associated to the second toxicity
dataset,11 using a computer equipped with an AMD-64 bi-opteron 2.2 GHz processor and 4
GB RAM.

The left part of Fig. 16 shows the evolution of the computation time of the size- and
branching-based tree-pattern kernels, in their original formulation, with respect to the or-
der of the kernel. This curve shows a linear dependency between the computation time and
the order of the kernel, which is consistent with the theoretical complexity derived in (7).
The right part of Fig. 16 shows the ratio between the times needed to compute the no-
tottering extension (9) and the original formulation of the size- and branching-based ker-
nels, as a function of their order. This curve shows that, in all cases, this ratio is between 6
and 7, in accordance with the complexity analysis of Sect. 5.2, stating that the kernel com-
plexities are proportional (10). More precisely, for a pair of graphs G1 = (VG1 , EG1) and

G2 = (VG2 , EG2), the theoretical proportionality factor equals
(|VG1 |+|EG1 |)(|VG2 |+|EG2 |)

|VG1 ||VG2 | . Tak-

ing VG1 and VG2 (resp. EG1 and EG2) to be the average number of vertices (resp. edges) of
the graphs of the dataset, this factor is approximately 9, which is consistent with the values
6 to 7 that are empirically observed.

Figure 17 is equivalent to Fig. 16 for the kernel based on the count of common walks (4),
which, as explained in Sect. 4.1, corresponds to the size-based (2) and branching-based (3)
kernels when the parameter λ entering their definition tends to zero.12 For moderate walk
lengths, this type of kernel can be computed efficiently using an algorithm derived from that
used in the implementation of spectrum string kernels, based on trie-tree structures (Leslie
et al. 2002; Shawe-Taylor and Cristianini 2004). Each internal node of a trie-tree has its
children indexed by a given alphabet. Taking the alphabet to be the set of vertex labels, it is
easy to see that if we consider such a trie-tree of depth n + 1, there is a direct correspon-
dence between its set of leaves and the set of walk labels of length n that can possibly be

10Recall from Sects. 4.2 and 5.1 that the size- and branching-based kernels have the same complexity, and
that the “until-N” extension comes at no extra cost.
11This dataset is made of 684 molecules, and the times reported correspond to the evaluation of 684×685

2 =
234,270 kernel values.
12Recall from Sect. 4.1 that, when λ = 0, the size-based and branching-based kernel of order n correspond
to the kernel based on the count of common walks of length n − 1.

26 Mach Learn (2009) 75: 3–35

Fig. 16 Computation times of the size-based (2) and branching-based (3) tree-pattern kernels, versus their
order. Left: computation time in their original formulation. Right: computation time with the no-tottering
extension (9), in comparison with their original formulation

Fig. 17 Computation times of walk-based kernels, versus the length of the walks considered. Left: compu-
tation time in the original formulation of the kernel (4). Right: computation time when tottering walks are
filtered, in comparison with the original formulation

found in the graphs.13 Computing the kernel amounts to recursively traversing the trie-tree
while maintaining, within each graph, a set of pointers referencing the occurrences of the
corresponding labeled walks. When reaching a leaf node, these pointers reference the oc-
currences of walks to be taken into account in the kernel, that is, walks of length n having a
particular label, and the entries of the kernel matrix can be updated. In practice, the number
of distinct walk labels that can be found among the graphs of a dataset is often smaller than
the number of possible walk labels. As a result, the whole trie-tree needs not be traversed,
and the complexity of this implementation is expressed as the number of leaves of the trie-
tree that need to be visited in order to compute the kernel. Making the assumption that the
graphs are fully connected, and letting α(G) (resp. β(G)) represent the number of distinct
vertex (resp. edge) labels of the graph G, it follows that the complexity of computing the

13For simplicity we forget about the edge labels. In reality, the children of a node are indexed by a pair vertex
label/edge label.

Mach Learn (2009) 75: 3–35 27

Fig. 18 Compared evolution of
the computation times of the
subtree and walk-based kernels
with respect to the order of the
kernel

kernel matrix for a set of graphs {Gi}1≤i≤l is upper bounded by

max
1≤i≤l

α(Gi)
n+1β(Gi)

n,

where n is the length of the walks considered. In the case of graphs representing chemical
compounds, the assumption of fully connectivity is obviously false, and the true complexity
is much smaller. Nevertheless, this analysis is consistent with the left hand side of Fig. 17,
that shows an exponential dependency between the computation time of the walk-based
kernel (4) and the length of the walks considered, in opposition to the linear dependency
observed in Fig. 16. Extending the above algorithm to filter tottering walks does not nec-
essarily involve the graph transformation introduced in Sect. 5.2. Indeed, this can be done
at almost no extra cost with the introduction of an additional condition to be verified when
updating the set of pointers along the trie-tree traversal process. Interestingly, this extension
has the effect of reducing the number of leaves of the trie-tree that need to be visited and,
as a result, the right hand side of Fig. 17 shows a drastic decrease of the computation time
in the no-tottering formulation of the kernel, which contrasts with what was observed in
Fig. 16.

Finally, Fig. 18 show the ratio between the time needed to compute tree-pattern and
walk-based kernel in their original formulations (that is, without no-tottering extensions),
with respect to the order of the kernels. This curve shows that for small orders, tree-patterns
kernels are much more costly to compute than their walk-based counterparts. However, be-
cause the complexity of the tree-pattern kernel increases linearly with the order, while it
increases exponentially for the walk-based kernel, the ratio becomes smaller at high orders.
At order 10 however, it is still nearly 6 times more costly to compute tree-patterns rather
than walk-based graph kernels in their original formulations, and this factor becomes 630 in
their no-tottering formulation.

7 Discussion

This paper introduces a family of graph kernels based on the detection of common tree pat-
terns in the graphs. In a first step, we revisited an initial formulation presented in Ramon and

28 Mach Learn (2009) 75: 3–35

Gärtner (2003), from which we derived two kernels with explicit feature spaces and inner
products. A parameter λ enters their definition and makes it possible to control the com-
plexity of the features characterizing the graphs. At the extreme, admissible tree-patterns
consist of linear chains of graph vertices, and the kernels resume to a classical graph kernel
based on the detection of common walks (Gärtner et al. 2003). Walk-based graph kernels
are therefore generalized to a wider class of kernels defined by features of increasing levels
of complexity. In a second step we introduced two modular extensions to this initial formu-
lation. On the one hand, the set of trees initially indexing the feature space is enriched by
the set of their subtrees with an until-N extension, leading to a wider and more general fea-
ture space. On the other hand, a no-tottering extension prevents spurious tree-patterns to be
detected, based on the notion of “tottering” initially introduced in the context of walk-based
graph kernels (Mahé et al. 2005).

With respect to chemical applications, experiments on two toxicity datasets and one large
anti-tumor activity dataset demonstrate that the tree-pattern graph kernels under their initial
formulation improve over their walk-based counterpart. The experiments on the two tox-
icity datasets allowed us to investigate in detail the effects of the various parameters and
extensions. In particular, while no significant difference was detected between the different
weighting schemes of the subtrees (size- or branching-based), the no-tottering extension al-
lowed the computation of the kernels for more parameters and improved the results in the
first toxicity dataset, where discriminative subtrees of order 8 seem to exist.

A problem often encountered with structure kernels is the problem of diagonal domi-
nance, i.e., the fact that the elements on the diagonal of the kernel Gram matrix are much
larger than other elements. We were not confronted with this issue in our experiments, in
spite of the large dimension of the feature spaces used, for several reasons. First, the graphs
used to represent molecules have usually a very small degree in average, and therefore a lim-
ited number of walk or tree patterns. Second, the no-tottering extension we proposed further
reduces the number of patterns present. On other applications where graphs with larger de-
grees may be analyzed, such as image or multimedia documents, diagonal dominance may
become a problem and require specific algorithmic solutions.

Among the possible extensions to our work, we note that it might be relevant in the
context of chemical applications to incorporate chemical knowledge in the graph represen-
tation of the molecules. For instance, it is well known that physico-chemical properties of
atoms are related to their position in the molecule, and as a first step in this direction, an
enrichment of atom labels by their Morgan indices led to promising results in the context of
walk-based kernels (Mahé et al. 2005). However, this particular approach is likely to have a
lesser impact in this context, because the information encoded by the Morgan indices is at
some extend already incorporated in the tree-patterns. Alternatively, we note that the kernel
implementation could easily be extended in order to introduce a flexible matching between
tree-patterns based on measures of similarity between pairs of vertices and edges, following
for instance the construction of the marginalized kernel between labeled graphs (Kashima et
al. 2004). Such an extension would induce an increase in the cost of computing the kernel,
but is likely to make sense for chemical applications, where atoms of different types can
exhibit similar properties.

Last but not least, we note that on the NCI dataset, subtree kernels were outperformed
by the state-of-the-art walk-based kernels of Swamidass et al. (2005). This suggests, as
a promising direction for future work, to introduce tree patterns in the family of kernels
presented in Swamidass et al. (2005), in particular in the so-called Min-Max formulation.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Mach Learn (2009) 75: 3–35 29

Appendix A: Proof of Propositions 1 and 2

In Propositions 1 and 2, we want to prove that for the graphs G1 and G2

∑

t∈Bh

w(t)ψt (G1)ψt (G2) = α(h)
∑

u∈VG1

∑

v∈VG2

kh(u, v), (11)

where in Proposition 1, α(h) = λ−h and w(t) = λ|t |−h, while in Proposition 2, α(h) = 1 and
w(t) = λbranch(t).

From Definition 4 we have ψt(G) =
∑

u∈VG

ψ
(u)
t (G). As a result,

∑

t∈Bh

w(t)ψt (G1)ψt (G2) =
∑

u∈VG1

∑

v∈VG2

(∑

t∈Bh

w(t)ψ
(u)
t (G1)ψ

(v)
t (G2)

)
,

and in order to prove (11) we just need to prove
∑

t∈Bh

w(t)ψ
(u)
t (G1)ψ

(v)
t (G2) = α(h)kh(u, v). (12)

A.1 Proof of Proposition 1

In order to prove Proposition 1, it follows from (12) that we just need to prove that

1

λh
kh(u, v) =

∑

t∈Bh

λ|t |−hψ
(u)
t (G1)ψ

(v)
t (G2),

or equivalently:

kh(u, v) =
∑

t∈Bh

λ|t |ψ(u)
t (G1)ψ

(v)
t (G2), (13)

where kh is defined recursively by k1(u, v) = λ1(l(u) = l(v)) and for h > 1:

kh(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

kh−1(u
′, v′). (14)

We prove (13) by induction on h. The case h = 1 is rather trivial. Indeed, a tree of depth
one is just a single node, and ψ

(u)
t (G1) is therefore equal to 1 if l(u) = l(r(t)), 0 otherwise.

It follows that
∑

t∈B1

λ|t |ψ(u)
t (G1)ψ

(v)
t (G2) =

∑

t∈B1

λ1(l(r(t)) = l(u))1(l(r(t)) = l(v))

= λ1(l(u) = l(v)),

which corresponds to k1(u, v).
Let us now assume that (13) is true at order h−1, and let us prove that it is then also true at

order h > 1. Combining the recursive definition of kh (14) with the induction hypothesis (13)
at level h − 1 we first obtain:

kh(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

t ′∈Bh−1

λ|t ′ |ψ(u′)
t ′ (G1)ψ

(v′)
t ′ (G2). (15)

30 Mach Learn (2009) 75: 3–35

Second, for any graph G, let us denote by P (u)
n (G) the set of balanced tree-patterns of

order n rooted in u ∈ VG, and for any tree-pattern p ∈ P (u)
n (G) let t (p) ∈ Bn denote the

corresponding tree. With these notations we can rewrite, for any n ≥ 1 and (u, v) ∈ G1 ×G2:
∑

t∈Bn

λ|t |ψ(u)
t (G1)ψ

(v)
t (G2) =

∑

p1∈P (u)
n (G1)

∑

p2∈P (v)
n (G2)

λ|t (p1)|1(t (p1) = t (p2)). (16)

Indeed both sides of this equation count the number of pairs of similar tree-patterns rooted
in u and v. Plugging (16) into (15) we get:

kh(u, v) = λ1(l(u)

= l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

p1∈P (u′)
h−1(G1)

∑

p2∈P (v′)
h−1(G2)

λ|t (p1)|1(t (p1) = t (p2)). (17)

Now we use the fact that any tree-pattern p of order h can be uniquely decomposed into a
tree-pattern p′ of order 2 and a set of tree-patterns of order h − 1 rooted at the leaves of p′.
We note that matching two tree-patterns is equivalent to matching the tree-patterns in their
decomposition, and that the sets of leaves of tree-patterns of order 2 rooted respectively in
u and v matching each other are exactly given by M(u, v). In other words, (17) performs a
summation over pairs of matching tree-patterns of depth h, rooted respectively in u and v:
the corresponding pairs of patterns of order 2 are implicitly matched by the summation over
M(u, v) and the condition 1(l(u) = l(v)), and the subsequent pairs of patterns (p1,p2) of
order h − 1 are matched by the product of conditions 1(t (p1) = t (p2)).

The tree-pattern p1 in G1 of such a matching pair of tree-patterns of order h rooted in
(u, v) decomposes as a pattern of depth 2 rooted in u with leaves in some R ∈ M(u, v),
and a set of patterns p1(u

′) of depth h − 1 rooted in the leaves u′ ∈ R. By (17), to each
such matching pair is associated the weight λ × ∏

(u′,v′)∈R λ|t (p1(u′))|, which is exactly equal
to λ|t (p1)| since we obviously have |t (p1)| = 1 + ∑

(u′,v′)∈R |t (p1(u
′))|. As a result, (17) can

be rewritten as:

kh(u, v) =
∑

p1∈P (u)
h

(G1)

∑

p2∈P (v)
h

(G2)

λ|t (p1)|1(t (p1) = t (p2)),

which combined with (16) proves (13).

A.2 Proof of Proposition 2

The proof of Proposition 2 is a straightforward variant of the proof of Proposition 1. By (12)
we need to show that

kh(u, v) =
∑

t∈Bh

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2), (18)

where kh is defined recursively by k1(u, v) = 1(l(u) = l(v)) and for h > 1:

kh(u, v) = 1(l(u) = l(v))

λ

∑

R∈M(u,v)

∏

(u′,v′)∈R

λkh−1(u
′, v′). (19)

We proceed again by induction over h to prove (18). The case h = 1 is easily done by
checking, using an argument similar to that of the previous proof, that (18) is one if l(u)

Mach Learn (2009) 75: 3–35 31

and l(v) are identical, zero otherwise, which corresponds to the definition of k1(u, v). If we
assume that (18) is true at the level h − 1, we can plug it in (19) to obtain:

kh(u, v) = 1(l(u) = l(v))

λ

×
∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

t ′∈Bh−1

λ1+branch(t ′)ψ(u′)
t ′ (G1)ψ

(v′)
t ′ (G2). (20)

We can then follow exactly the same line of proof as in the previous section and obtain
the following equations

∑

t∈Bn

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2)

=
∑

p1∈P (u)
n (G1)

∑

p2∈P (v)
n (G2)

λbranch(t (p1))1(t (p1) = t (p2)), (21)

and

kh(u, v) = 1(l(u) = l(v))

λ

×
∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

p1∈P (u′)
h−1(G1)

∑

p2∈P (v′)
h−1(G2)

λ1+branch(t (p1))1(t (p1) = t (p2)), (22)

that correspond respectively to (16) and (17). The only difference with the previous proof is
in the exponent of λ to form the weight of a matching pair of tree-patterns. By analogy with
the previous proof, we consider the tree-pattern p1 in G1 of a pair of matching tree-patterns
of depth h rooted in (u, v), that decomposes as a pattern of depth 2 rooted in u with leaves
in some R ∈ M(u, v), and a set of patterns p1(u

′) of depth h−1 rooted in the leaves u′ ∈ R.
By (22), to each such matching pair is associated the weight 1

λ

∏
(u′,v′)∈R λ1+branch(t (p1(u′))) =

λ−1+∑
(u′,v′)∈R 1+branch(t (p1(u′))). We observe that the number of leaves of a tree t , that we note

leaves(t), is equal to 1 + branch(t). The weight associated to the above pair of matching
tree-patterns can therefore be written as:

λ−1+∑
(u′,v′)∈R leaves(t (p1(u′))).

Finally, because the number of leaves of the tree-pattern p1 is equal to the sum of the leaves
of the patterns p1(u

′), it follows that this expression is equal to λ−1+leaves(t (p1)) = λbranch(t (p1)).
As a result, we can write (22) as

kh(u, v) =
∑

p1∈P (u)
h

(G1)

∑

p2∈P (v)
h

(G2)

λbranch(t (p1))1(t (p1) = t (p2)),

which, combined with (21), concludes the proof.

Appendix B: Proof of Proposition 3

The proof presented in this section is very similar to the proofs of Propositions 1 and 2.
Based on the observations made in the beginning of Appendix A, it follows from (12) that

32 Mach Learn (2009) 75: 3–35

in order to prove Proposition 3, we just need to prove that

kh(u, v) =
∑

t∈Th

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2), (23)

where kh is defined recursively by k1(u, v) = 1(l(u) = l(v)) and for h > 1

kh(u, v) = 1(l(u) = l(v))

(
1 +

∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

λkh−1(u
′, v′)

)
. (24)

We proceed again by induction over h to prove (23). The case h = 1 directly follows from
the proof of Proposition 2. If we assume that (23) is true at the level h − 1, we can plug it
in (24) to obtain:

kh(u, v) = 1(l(u) = l(v))

×
(

1 +
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

∑

t ′∈Th−1

λ1+branch(t ′)ψ(u′)
t ′ (G1)ψ

(v′)
t ′ (G2)

)
. (25)

By analogy with the construction of the previous proof, for any graph G, let us denote by
P (u)

n (G) the set of tree-patterns of depth 1 to n rooted in u ∈ VG, and for any tree-pattern
p ∈ P (u)

n (G) let t (p) ∈ Tn denote the corresponding tree. Note that P (u)
n (G) corresponds

here to general tree-patterns of depth 1 to n, in opposition to the balanced-tree patterns of
order n involved in the previous proofs. With these notations we obtain similarly, for any
n ≥ 1 and (u, v) ∈ G1 × G2:

∑

t∈Tn

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2)

=
∑

p1∈P (u)
n (G1)

∑

p2∈P (v)
n (G2)

λbranch(t (p1))1(t (p1) = t (p2)), (26)

and, plugging (26) into (25), we get:

kh(u, v) = 1(l(u) = l(v))

×
(

1 +
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

∑

p1∈P (u′)
h−1(G1)

∑

p2∈P (v′)
h−1(G2)

λ1+branch(t (p1))

× 1(t (p1) = t (p2))

)
, (27)

which can be further decomposed into:

kh(u, v) = 1(l(u) = l(v)) + 1(l(u) = l(v))

λ

×
∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

p1∈P (u′)
h−1(G1)

∑

p2∈P (v′)
h−1(G2)

λ1+branch(t (p1))1(t (p1) = t (p2)). (28)

The second term in the sum of the right-hand side of (28) matches pairs of tree-patterns of
depth 2 to n rooted in (u, v). It follows directly from the proof of Proposition 2 that such a

Mach Learn (2009) 75: 3–35 33

pair (p1,p2) of matching tree-patterns is weighted by λbranch(t (p1)). The first part of the right
member of (28) matches the trivial pair of tree-patterns of depth 1 rooted in (u, v) consisting
of the single nodes (u, v). The corresponding tree has a zero branching cardinality, and we
can therefore write

1(l(u) = l(v)) =
∑

t∈T1

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2).

Taken together, these two arguments show that (28) can be written as

kh(u, v) =
∑

t∈Th

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2),

which concludes the proof.

Appendix C: Proof of Proposition 4

The proof is derived from results presented in Mahé et al. (2005). The sets of walks
and no-tottering walks of the graph G = (VG, EG) are respectively defined by W(G) =⋃∞

n=0 Wn(G) and W NT(G) = ⋃∞
n=0 W NT

n (G), where

Wn(G) = {(v0, . . . , vn) ∈ V n+1
G : (vi, vi+1) ∈ EG,0 ≤ i ≤ n − 1}

is the set of walks of length n defined is Sect. 4.1, and

W NT
n (G) = {(v0, . . . , vn) ∈ Wn(G) : vi �= vi+2,0 ≤ i ≤ n − 2}

is the set of no-tottering walks of length n defined in Mahé et al. (2005). We start by stating
the following lemma.

Lemma 1 A tree-pattern p of the graph G associated to the tree t is no tottering if, and
only if, any walk of G defined as a succession of vertices of p corresponding to nodes of t

forming a path from its root to one of its leaves is no-tottering.

Proof of Lemma 1 According to Definition 9, let (v1, . . . , v|t |) ∈ V |t |
G be a no-tottering

tree pattern of the graph G = (VG, EG) corresponding to the tree t = (Vt , Et), where
Vt = (n1, . . . , n|t |). Let (ni0 , . . . , nik) ∈ V k+1

t be a path from the root of t to one of its leaves.
By Definition 3, it is clear that (vi0 , . . . , vik) ∈ W(G). Moreover, by the definition of paths
we have (nim, nim+1), (nim+1 , nim+2) ∈ Et for 0 ≤ m ≤ k − 2. By Definition 9, this implies
that vim �= vim+2 for 0 ≤ m ≤ k − 2, meaning that (vi0 , . . . , vik) ∈ W NT(G). Conversely, let

p ∈ V |t |
G be a tree-pattern of the graph G = (VG, EG) corresponding to the tree t = (Vt , Et).

Consider the set of walks of G defined as successions of vertices of p associated to nodes
of t forming paths from its root to its leaves. If these walks are not tottering, it is clear from
Definition 9 that the tree-pattern itself is not tottering. �

We can now state the proof of Proposition 4.

Proof of Proposition 4 If, according to Definition 11, we let G′ be the transformed graph of
G, Mahé et al. (2005) showed that there is a bijection between W NT(G) and the set of walks

34 Mach Learn (2009) 75: 3–35

of G′ starting in a vertex corresponding to a vertex of G, which can be formally defined as

W {VG}(G′) = {(v0, . . . , vn) ∈ W(G′) : v0 ∈ {VG}, n ∈ N},

if we let VG ⊂ VG′ be the subset of VG′ that corresponds to VG. It follows from Lemma 1
that there is a bijection between the set of no-tottering tree-patterns of G and the set of
tree-patterns of G′ rooted in a vertex of VG. Finally, Mahé et al. (2005) showed that a walk
in W NT(G) and its image in W {VG}(G′) are identically labeled, which enables to count no-
tottering labeled walks in G, by counting identically labeled walks in G′ starting in a vertex
of VG. It follows that counting no-tottering tree-patterns in G is equivalent to counting tree-
patterns in G′ rooted in a vertex of VG. As a result, we have ψNT

t (G) = ψ
{VG}
t (G′), which

concludes the proof. �

References

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S. V. N., Smola, A. J., & Kriegel, H.-P. (2005).
Protein function prediction via graph kernels. Bioinformatics, 21(Suppl. 1), i47–i56.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines.
Chen, J., Swamidass, S. J., Dou, Y., Bruand, J., & Baldi, P. (2005). ChemDB: a public database of small

molecules and related chemoinformatics resources. Bioinformatics, 21(22), 4133–4139.
Deshpande, M., Kuramochi, M., Wale, N., & Karypis, G. (2005). Frequent substructure-based approaches

for classifying chemical compounds. IEEE Transactions on Knowledge and Data Engineering, 17(8),
1036–1050.

Gärtner, T., Flach, P., & Wrobel, S. (2003). On graph kernels: hardness results and efficient alternatives. In
B. Schölkopf & M. Warmuth (Eds.), Lecture notes in computer science: Vol. 2777. Proceedings of the
sixteenth annual conference on computational learning theory and the seventh annual workshop on
kernel machines (pp. 129–143). Heidelberg: Springer.

Helma, C., Cramer, T., Kramer, S., & De Raedt, L. (2004). Data mining and machine learning techniques for
the identification of mutagenicity inducing substructures and structure activity relationships of noncon-
generic compounds. Journal of Chemical Information and Computer Sciences, 44(4), 1402–1411.

Horváth, T., Gärtner, T., & Wrobel, S. (2004). Cyclic pattern kernels for predictive graph mining. In Pro-
ceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining
(pp. 158–167). New York: ACM Press.

Inokuchi, A., Washio, T., & Motoda, H. (2003). Complete mining of frequent patterns from graphs: mining
graph data. Machine Learning, 50(3), 321–354.

Karklin, Y., Meraz, R. F., & Holbrook, S. R. (2005). Classification of non-coding RNA using graph represen-
tations of secondary structure. In Pacific symposium on biocomputing (pp. 4–15).

Kashima, H., Tsuda, K., & Inokuchi, A. (2004). Kernels for graphs. In B. Schölkopf, K. Tsuda, & J. P. Vert
(Eds.), Kernel methods in computational biology (pp. 155–170). Cambridge: MIT Press.

King, R. D., Muggleton, S. H., Srinivasan, A., & Sternberg, M. J. (1996). Structure-activity relationships
derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by
inductive logic programming. Proceedings of the National Academy of Sciences of the United States of
America, 93(1), 438–442.

Leach, A. R., & Gillet, V. J. (2003). An introduction to chemoinformatics. Dordrecht: Kluwer Academic.
Leslie, C., Eskin, E., & Noble, W. S. (2002). The spectrum kernel: a string kernel for SVM protein classifica-

tion. In R. B. Altman, A. K. Dunker, L. Hunter, K. Lauerdale, & T. E. Klein (Eds.), Proceedings of the
Pacific symposium on biocomputing 2002 (pp. 564–575). Singapore: World Scientific.

Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., & Vert, J.-P. (2005). Graph kernels for molecular structure-
activity relationship analysis with support vector machines. Journal of Chemical Information and Mod-
eling, 45(4), 939–951.

Menchetti, S., Costa, F., & Frasconi, P. (2005). Weighted decomposition kernels. In L. De Raedt & S. Wrobel
(Eds.), Proceedings of the twenty-second international conference on machine learning (ICML 2005)
(pp. 585–592). New York: Assoc. Comput. Mach.

Ralaivola, L., Swamidass, S. J., Saigo, H., & Baldi, P. (2005). Graph kernels for chemical informatics. Neural
Networks, 18(8), 1093–1110.

Mach Learn (2009) 75: 3–35 35

Ramon, J., & Gärtner, T. (2003). Expressivity versus efficiency of graph kernels. In T. Washio & L. De
Raedt (Eds.), Proceedings of the first international workshop on mining graphs, trees and sequences
(pp. 65–74).

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, opti-
mization, and beyond. Cambridge: MIT Press.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge
University Press.

Swamidass, S. J., Chen, J., Bruand, J., Phung, P., Ralaivola, L., & Baldi, P. (2005). Kernels for small molecules
and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics, 21(Suppl. 1), i359–
i368.

	Graph kernels based on tree patterns for molecules
	Abstract
	Introduction
	Notations and definitions
	Labeled directed graphs
	Trees

	The tree-pattern graph kernel
	Examples of tree-pattern graph kernels
	Kernel definition
	Kernel computation
	Relation to previous work

	Extensions
	Considering all trees
	Removing tottering tree-patterns

	Experiments
	Toxicity prediction
	Anti-cancer activity prediction
	Computation times

	Discussion
	Open Access
	Appendix A: Proof of Propositions 1 and 2
	Proof of Proposition 1
	Proof of Proposition 2

	Appendix B: Proof of Proposition 3
	Appendix C: Proof of Proposition 4
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

