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Abstract This paper studies model diagnostics for linear regression models. We propose
two tree-based procedures to check the adequacy of linear functional form and the appro-
priateness of homoscedasticity, respectively. The proposed tree methods not only facilitate
a natural assessment of the linear model, but also automatically provide clues for amending
deficiencies. We explore and illustrate their uses via both Monte Carlo studies and real data
examples.
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1 Introduction

The linear regression model has been widely used in data analysis. Its popularity can be
attributed to its simple form, sound theoretical support, fast computation in estimation, great
flexibility in incorporating interactions, dummy variables, and transformations, and easy
interpretation. Suppose that n independent observations {(y;, x), i = 1,...,n} were gener-
ated from the true model

yi=f&)+e.

The response y; is continuous, the predictor vector X{ = (x}}, ..., x])) is a mixture of con-
tinuous and discrete variables, and ¢; is random error. With slight abuse of notation, we use
&; to denote the random error across all models in the rest of paper.
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Suppose that the ‘best’ or ‘near to the best’ approximating linear model is

yi=xip+e, (1
where B € RY is the regression parameter vector, and the row vector X; = (X;1, ..., Xig)
contains the dummy variables, cross-product interactions, and transformations obtained
from x? Taking into account the intercept term, we assume x;; = 1.

There are four major assumptions involved in model (1), which can be summarized as
linearity, independence, normality, and homoscedasticity. Among these, the plausibility of
independence can be inspected during the data collection stage and the normality assump-
tion is usually of somewhat lesser concern for large data due to the robustness of linear
regression. However, the linear specification and homoscedasticity are closely related to the
bias and variance of the final estimation. The violation of either of these two assumptions
may result in misleading inferences and interpretations.

In regression analysis, diagnostic plots and significance tests have become routine pro-
cedures for assessing the appropriateness of model assumptions. Diagnostic plots provide
important and useful graphical evaluations of overall model plausibility and outlier identi-
fication. However, one often cannot make a decisive conclusion merely through graphical
inspections. In addition, graphical plots may result in a solid black display for large data
sets. Therefore, great care should be exercised when applying diagnostic plots. To comple-
ment graphical approaches, statistical significance tests are used to detect the violations of
model assumptions. For example, one commonly used method is to first group the residuals
and then construct chi-square type test statistics (see, e.g., Neter et al. 1996). However, the
resulting conclusions are sensitive to the number of groups as well as the approach used for
forming the groups. Furthermore, the testing methods usually provide little information re-
garding amendment of model deficiencies. Moreover, many concepts in significance testing
become less meaningful in the analysis of large data sets, which make them less attractive
to data miners (see Hand 1999).

To enhance diagnostic methods, we consider the tree method or recursive partitioning
originated by Morgan and Sonquist (1963). By recursively bisecting the predictor space,
a tree method provides a piecewise constant approximation to a targeted function. To ad-
dress tree size selection as well as many practical issues in tree construction, Breiman et al.
(1984) proposed the classification and regression trees (CART) algorithm. Since its incep-
tion, CART has greatly advanced the use of tree models in various fields. Their pruning idea
has become the current standard approach for developing optimally-sized trees.

In this paper, we propose two tree-based procedures to assess the linearity and ho-
moscedasticity assumptions of linear models, respectively. We start with the ‘best’ linear
regression model (1) and then construct diagnostic trees that center around it. If the non-
trivial final tree structure (i.e., containing more than one terminal node) is developed, then
the adequacy of a linear model is questionable. The diagnostic tree methods not only help
to check the appropriateness of linear regression, but also suggest useful clues for amending
model deficiencies.

Both proposed tree methods follow the CART algorithm, which consists of three major
steps: first growing a large initial tree via greedy search, then truncating it back to obtain a
nested sequence of subtrees, and finally selecting the optimal tree size. The rest of this paper
is organized as follows. In Sect. 2, we present a tree procedure to assess the adequacy of
linearity. The basic idea is to augment linear regression with a tree structure. The proposed
procedure adaptively picks up the binary split that furnishes the best augmentation to the
linear model (1). It is of interest to note that Miller’s (1996) employed the residual-based
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CART procedure to examine model adequacy. In Monte Carlo studies, we demonstrate that
our approach is often superior (or comparable) to Miller’s method. In Sect. 3, we propose
a tree procedure for assessing homoscedasticity. Simulated experiments are also presented
to investigate its performance in detecting homoscedasticity and to make comparison with
the treed variance (TV) procedure developed by (Su et al. 2006). Section 4 provides two
empirical examples, the 1987 baseball salary data and the Boston housing data, to illustrate
the proposed methods. Section 5 concludes the article with a brief discussion.

2 Checking adequacy of model specification
2.1 Model structure

To check whether or not the ‘best’ linear model, X8, provides an adequate approximation
to the true regression function f(x°), we consider the following hybrid model in which an
augmentation tree structure 7 is attached to the ‘best’ linear model (1):

T
vi=xB+7"y +s, 2
where zET) contains dummy variables induced from a tree structure 7 and y is the corre-
sponding parameter vector. Given a tree structure 7, let 7 and |T'| denote the set of all
terminal nodes and the size of T (i.e., the total number of terminal nodes of T'), respectively.
(T) _ N . . ~
Then z;" " = (z;1, ..., ;7)) is of dimension 1 x |T'|, where

o 1 if the i-th observation falls into the k-th terminal node of T,
%ik=10 otherwise,

fori=1,....n, k=1, ..., |T|, andy =y, ..., ym)/ subject to Yy = 0 for identifica-
tion. Heuristically speaking, tree 7 provides an augmentation to linear regression by making
a piecewise constant approximation to f(x?) — x; 8 (see the consistency of recursive parti-
tioning in Breiman et al. 1984).

It is worth noting that the linear regression and tree structure complement each other:
the linear model captures global patterns, while the tree structure excels in detecting local
properties, such as thresholds, nonlinear patterns, and complex interactions. This renders the
tree structure an excellent augmentation tool for linear regression. The tree T is expected
to pick up the signals overlooked by the linear model (1), and the splitting variables shown
in T can be regarded as those effects that have been under-represented by the linear model.
Based on the hybrid model (2), we employ the tree approach to check the adequacy of the
‘best’ linear model. If a nontrivial tree structure 7" with |7'| > 1 can be developed, then it
signifies the lack-of-fit of model (1). Otherwise, the linear model provides a reasonable fit.
Furthermore, the final tree structure provides useful diagnostic information for amendment.

To construct an optimal augmentation tree structure 7" in model (2), an intuitive approach,
as considered by Miller’s (1996), is to run a tree procedure such as CART (Breiman et al.
1984) directly on the residuals from fitting model (1). That is, the augmentation tree is
constructed by treating the residuals {r;, = y; — X,»ﬁo :i=1,...,n} as responses and the
components in x° as inputs, where /§ o is the least squares estimate of 8 in model (1).

In contrast to the above residual-based approach, we propose a tree method that attains
iterative adjustments to model (1). To this end, we select the best split by minimizing the
sum of squared errors (SSE) associated with a threshold model. Then, we adopt the pruning
idea of CART (Breiman et al. 1984) to determine the best tree size. We next present the
detailed procedure.
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2.2 Tree procedures

2.2.1 Growing a large tree

To split node %, we fit the following threshold model using data in node /:
yi=xiB+y-I{x;<cl+e, 3)

where the indicator function /{x;; < c} corresponds to a binary split, say, s, of the data
according to a continuous predictor X ;. Here, X ; is used as a generic notation for the j-th
predictor, where j =1,...,¢q. If X; is discrete with values in C = {cy, ..., ¢4}, then the
form of I{x;; € A} is considered for any subset A C C.

Given a split s, we compute the sum of squared errors (SSE) for model (3). The best split
s*, among all permissible splits, is the one associated with the smallest SSE. The data are
then partitioned into two child nodes according to the best split s*. Subsequently, the same
procedure is applied to partition both child nodes. Recursively doing so yields a large initial
tree Tj.

Because the splitting procedure requires evaluating model (3) for every allowable split at
each node, the Algorithm 1 based on QR decomposition of the design matrix X facilitates
fast computation of the SSE of model (3) with minor updating from the results of model (1).
As can be seen, the QR-decomposition, which is the most time-consuming part in the least
squares fitting, is performed only once when searching over all permissible splits in node 7.
More details of this algorithm are given in Appendix A.

Algorithm 1 Pseudo-code for finding the best split in node /.
Let X denote the matrix with elements x;;, for i in node 4.
Perform QR-decomposition on X. Obtain u = Qy.

Iterate over all permissible splits s.

— Define x; = 1{)(/5(7) and compute OXx;
— Obtain the Householder matrix H (see Appendix A for details).
— Compute u) = Hu and SSE®.

Obtain s* that minimizes SSE®.
2.2.2 Pruning

The pruning idea in CART (Breiman et al. 1984) is to narrow down the choices of subtrees
from which the best-sized tree will be selected. Su et al. (2004) revisited CART within
the maximum likelihood framework. They modified some major steps in tree construction
for sound statistical justification and easy generalization. In particular, they proposed the
AIC (Akaike 1973) pruning algorithm, which employs the widely used Akaike information
criterion to assess tree performance. We adopt their procedure to prune augmentation trees.

For model (2) with a given augmentation tree 7', the corresponding AIC is given by, up
to a constant,

AIC?T ocn - log {SSE} + 2(g +IT)),
where SSE = S{yi — (x,-ﬁ + ZET)ﬁ)}2 is the sum of squared errors and (¢ + ITI) is

the total number of parameters associated with model (2). The smaller AIC™, the more
favorable tree T'.
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The pruning algorithm starts with the large initial tree 7. For any link (i.e., internal
node) h € Ty, let T, denote the branch stemming from /4. To measure the quality of &, we
consider its complementary subtree Ty — T}, i.e., the subtree after pruning the branch 7. Let
AICT0~Tk) denote the AIC measure from fitting model (2) with Ty — 7}, being the augmen-
tation tree. Then the weakest link, h*, is the internal node that corresponds to the smallest
AICT0=T) e,

AICT~T*) = min_ AICT0~TW,
heTy—Ty
Here, the link 4* is the weakest on the ground that its complementary subtree Ty — T+
has the best AIC performance. Now we truncate the weakest link 4#* to obtain the subtree
T\ = Ty — Tj». Subsequently, the same pruning procedure is applied to prune 7;. Repeating
the above process arrives at a decreasing sequence of subtrees Ty < --- < Ty < Ty, where
Ty is the null tree with root node only and the notation < means “is a subtree of”.

2.2.3 Tree size selection

In this stage, a best-sized augmentation tree will be selected from the nested subtree se-
quence. It is convenient to use the same AIC measure to aid in tree selection. However, due
to the adaptive nature of recursive partitioning, a validation method is required to obtain an
honest estimate of SSE). Since tree-based methods are not very often recommended for
small samples, we assume that the available sample size is large enough so that the following
test sample method can be used to validate SSE™,

To determine the tree size, we divide the whole data £ randomly into two groups, the
learning (or training) sample £, and the test (or validation) sample £,, with the ratio of the
sample sizes n;/n, being approximately 2 : 1. A large tree is then grown and pruned using
the learning sample £; such that a decreasing sequence of subtrees {7}, : 0 <m < M} is
available. The test sample then is sent down to each subtree. The best-sized augmentation
tree T* is the subtree that provides the minimum AIC. That is,

AIC") =  min AICT™
{Tm:0<=m=<M}

i . (Tm) ~
* {Tmtl(}lﬁlilr}SM)n log SSE*™™” +2 (q + |Tm|) .

Note that SSE"™ given above is computed using data in the test sample £,,

SSETm) = Z Z i — 9%

heTy, li:(yi,x;)€L2Nh}

where J; = x; ﬁ + 7, is the predicted value of y;, and (ﬁ, 75,) are the least squares estimates
of (B, y») computed from the learning sample £;. To extend the above tree size selection
to small or moderate samples, one can resort to cross-validation or bootstrap resampling
techniques to validate SSE".

In addition to AIC, one may use Schwarz’s (1978) Bayesian information criterion (BIC)
to select the tree size. As demonstrated in Su et al. (2004), AIC (or BIC) is a good alternative
to the ad hoc 1-SE method in CART (Breiman et al. 1984), which is aimed at correcting the
overfitting problem often seen with the 0O-SE method. In cases with a large sample size and
strong signal, BIC tends to perform better than AIC.
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2.3 Simulation studies

In this section, we employ Monte Carlo studies to compare the performance of the augmen-
tation tree (AT) and the Miller’s (1996) residual-based tree (RT) methods. For the sake of
conciseness, we state two common simulation settings in advance, which are also employed
in Sect. 3.3. First, all the inputs or predictors are independent and identically generated
from a discrete uniform distribution over values {1/50, ..., 50/50}. Second, the number of
realizations is 500.

2.3.1 Comparing splitting statistics

We first investigate the performance of the splitting statistics employed in these two tree
methods. Note that AT uses the smallest SSE associated with model (3), while RT chooses
the best split that maximizes the reduction in the deviance of residuals due to a split.

The data were generated from the following two models:

Model A Yi :2+2'.X,*1 +I{x,‘2 < 05} + &; and
Model B y; =2+2-x;; + I{x;; 0.5} + ¢,

where ¢; are i.i.d. N(0, 1) random variables. Each data set has two covariates X; and X,.
Model A differs from Model B in that the linear regression part confounds with the threshold
effect through the same covariate X; in Model B.

We consider two sample sizes, n = 50 and n = 500. For each generated data set, the two
splitting methods were used to identify the best cutoff point. For the sake of comparison,
both methods started with the ‘best’ model y = By + B - x; + €. Figure 1 depicts the rel-
ative frequencies of selected cut-points. The bar at —0.5 corresponds to the case in which
the splitting variable is incorrectly chosen. For example, if X is chosen to split the data
in Model A, then it results in a spurious split. Figure 1 shows that both methods provide
nearly identical results in the non-confounded case (Model A). However, in the confounded
case (Model B), AT provides considerably more accurate splitting variable and cutoff point
selections than those of RT. It is not surprising that both methods perform better with larger
samples.

2.3.2 Detecting tree structure

Next, we study the effectiveness of the two tree procedures, AT and RT, in identifying the
tree structure overlooked by linear regression. The following five models were considered.

Model A" y; =242-x;14+2-x2+ ¢,

Model B y; =2+2-x;1 +2-xi2+3-I{x;; <0.5Nx;2p <0.5} + ¢,
Model " y; =242 -x;1+2-xip+3- I{xi3 <0.5Nx;4 <0.5} + ¢,
Model D" y; =242 x;1 +2 - xi +sin(3wx;1) + sin(3mw x;0) + €,
Model ' y; =2+ 2-x;1 + 2 - xip + sin(B3wx;3) + sin(B3wxi4) + &,

where ¢; ~ N(0,1) and i = 1,...,n. Each model involves four covariates, X1,..., X4.
However, not all of them are associated with the response. Model A’ is a plain linear
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Fig. 1 Comparison of two different splitting methods: Method I, the minimum SSE obtained from fitting
model (3); Method II, greedy search using least squares (LS) method based on the residuals of model (1)

model. Models B’ and C’ involve two interacting thresholds and fall into the general form of
model (2). Models D’ and E’ include two additive nonlinear terms, which are different from
the model form in (3). Moreover, Models B’ & D’ differ from Models C’ & E’ in that the
tree structure of Models B’ & D’ involves the same variables (X; and X) that also appear
in the linear regression model.
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Table 1 Relative frequencies (as a percentage) of the final tree sizes are selected by augmentation tree (AT)
and residual-based tree (RT), respectively. The last column is the percentages of the correctly splitting variable
selections in the final tree structures

Model Sample Tree Number of terminal nodes Variable
size method 1 2 3 4 5 >6 selection
A’ 300 AT 95.4 3.6 1.0 0.0 0.0 0.0 95.4
Miller 98.2 1.8 0.0 0.0 0.0 0.0 98.2
1500 AT 94.6 5.4 0.0 0.0 0.0 0.0 94.6
Miller 98.0 2.0 0.0 0.0 0.0 0.0 98.0
B’ 300 AT 0.0 0.2 854 12.2 2.2 0.0 94.6
Miller 15.2 0.6 4.8 17.6 234 38.4 65.2
1500 AT 0.0 0.0 97.0 2.4 0.6 0.0 98.2
Miller 0.0 0.0 0.0 1.0 0.8 98.2 71.4
c’ 300 AT 0.0 0.0 87.2 11.6 0.8 0.4 100.0
Miller 0.0 0.0 90.8 7.2 1.8 0.2 85.6
1500 AT 0.0 0.0 96.2 3.8 0.0 0.0 97.4
Miller 0.0 0.0 9.8 4.2 1.0 0.0 95.2
D’ 300 AT 1.8 8.0 8.2 31.6 11.6 38.8 72.6
Miller 6.8 0.2 34.8 2.0 8.0 48.2 53.0
1500 AT 0.0 0.0 0.0 0.0 1.6 98.4 97.0
Miller 0.0 0.0 0.0 0.0 0.0 100.0 82.2
E’' 300 AT 4.0 6.8 19.8 16.4 20.2 32.8 58.8
Miller 5.2 0.0 25.0 6.4 19.0 44.4 63.2
1500 AT 0.0 0.0 0.0 0.0 0.0 100.0 100.0
Miller 0.0 0.0 0.0 0.0 0.0 100.0 93.8

In this study, we consider two sample sizes, n = 300 and n = 1, 500, and the ratio of
the training sample versus the test sample is 2 : 1. For each generated sample, both AT
and RT start with the ‘best’ linear model y = By + B; x1 + B2 x2 + €. Subsequently, we
record the Final tree size (i.e., the number of terminal nodes) selected by each of the two
methods (for example, three terminal nodes are desired to represent the tree structures of
Models B’ & C’). In addition, we expect that the final tree structure extracts useful diagnostic
information as well as identifies variables whose effects have been under-represented by the
linear regression model. To this end, we adopt Miller’s (1996) idea of recording the correctly
splitting variable selections in the final tree structure. For example, both X, and X5, but
neither X3 nor X4, are expected to correctly show up in the final tree structure of Model B’.

Based on above settings, we examine AT’s performance. Table 1 (rows 1 and 3) shows
that if a linear model is sufficient, then it is rather unlikely for AT to come up with a nontrivial
tree structure. It is noteworthy that the frequency for the plain linear Model A’ roughly
corresponds to the size or ‘false positive’ rate in hypothesis testing. As for Models B’ — E’,
AT also successfully signals the deficiencies of the linear model by producing nontrivial tree
structures. Accordingly, AT performs fairly well in identifying the true model structure and
capturing correct variables when the underlying effects could not be adequately captured by
the linear model.

We further compare the performance of AT versus RT. Table 1 indicates that AT per-
forms similarly to RT when the tree structure and the linear model contain different sets of
variables. However, AT significantly outperforms RT when the tree structure is confounded
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with the linear model by the same variables. Moreover, the performance of both methods im-
proves in the larger sample size. The above findings are consistent with the results reported
in Su and Tsai (2005), who studied Cox proportional hazards models.

Remark 1 To explain the inferiority of method II, we think this is mainly because the initial
‘best’ linear model is an underfitted one, which leads to biased estimates of 8 (e.g., Chap. 7.9
of Rencher 2000). Such biases may become overwhelming, especially in the confounded
cases such as Models B” and D’ where predictors that have been left out are highly correlated
with those included in the model.

Remark 2 We implement the AT method via R (http://www.r-project.org/), and employ the
existing tree packages (e.g., tree, prune. tree, and cv. tree) in R (Venables and
Ripley 1999) to execute RT. To achieve a better tree size determination, BIC is applied. We
also explore the computational efficiency. For the sake of illustration, we consider Model E’
with n = 300. It took 40 seconds to complete computations of RT on a 1.2 GHz personal
computer with 2.00 GB of RAM, whereas it took 3 minutes and 34 seconds to finish the
computations of AT. Thus, the computational cost of AT is higher than that of RT. However,
we recommend AT for practical use due to its superior performance.

3 Assessing heteroscedasticity
3.1 Model structure

In addition to linearity, another important assumption in model (1) is that of equal variance
or homoscedasticity, i.e.,

var(e;) =07 =’
‘When non-constant variances or heteroscedasticity occurs, the statistical inferences and pre-
dictions via the ordinary least squares method are no longer reliable. Therefore, it is crucial
to check homoscedasticity. Furthermore, estimating the error variance function itself is of-
ten of keen interest in many fields such as economics, finance, engineering, and biological
science.

In statistical literatures, heteroscedasticity is commonly modelled as a known function of
predictors (see e.g. Rutemiller and Bowers 1968 and Harvey 1976) or the expected response
(see e.g., Bickel 1978 and Box 1988). In practice, this specification encounters a serious
challenge from the difficulty of effectively and adequately selecting variables from a set
consisting of categorical and continuous predictors or their interactions, and the expected
response variable. This motivated us to consider a tree procedure to model the error variance
and assess homoscedasticity. The proposed model can be formulated as

T
oiz =o?.exp <wl( V)O) “4)
. T . .
fori =1,...,n,, where W; V= (i1, ..., wyf,)) is the dummy vector induced by a tree
structure Ty, @ = (61, . .., 07,)" is the corresponding parameter vector satisfying > 6, =0,

the subscript “v” in notation Ty indicates that the tree structure is built for variance, and
the exponential transformation is taken to guarantee the non-negativeness of the variance.
Under the formulation of model (4), observations in the same terminal node have a common
constant variance. That is, if the i-th observation falls in the terminal node ¢, then aiz = 0,2 =

o? - expl6,}).
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3.2 Tree procedure

To construct tree Ty, we propose applying a tree procedure such as CART on the squared
residuals. Specifically, obtain the residuals r;’s from the ordinary least squares fit of model
(1) with equal variances. Then, construct the tree Ty by treating the squared residual r?
and the components in x? as responses and inputs, respectively. To incorporate the situation
where thAe variance depends on the mean response, we suggest splitting the fitted values
{y,' :Xiﬁoii: 1,...,]1}.

To justify the above procedure, we examine a splitting statistics, which is derived from
the score test for heteroscedasticity. Specifically, for a given split s, we consider the follow-
ing model

Ul-z =o2. exp (Qw;), ®)
where w; is a 1-0 binary dummy variable induced by split s and 6 is the corresponding
parameter. To assess heteroscedasticity, we apply the score test (see Rao 1947 and Cox and
Hinkley 1974) for testing Hy : 8 = 0. This test is particularly appealing in the recursive
partitioning setting because it is evaluated under the null model. See Appendix B for an
outline of derivations under the normality assumption. To make the score test more robust
against non-normal error distributions (see Simonoff and Tsai 1994), we adopt Koenker’s
(1981) studentized approach. After algebraic simplifications, the resulting studentized score
test for the given split s (see Appendix B) has the following simple form:

ST(s) =n - {corr(w, q)}?, 6)

where W = (wy, ..., w,,) is the dummy vector associated with split s, q = (r{,.... 7)),
and corr(u, q) is the Pearson sample correlation coefficient between w and q. Among all
permissible splits, the best split, s*, is the one corresponding to the maximum score test

statistic, i.e.,

ST(s*) = max ST(s),

or, equivalently, the maximum of {corr(w, q)}>. Recall that, if a simple linear regression
model is fit by using ri2 as response and w; as predictor, the resultant coefficient of deter-
mination R? is equal to the squared correlation coefficient, i.e., ST(s) =n, - corr®> =n, - R.
Nevertheless, R> = (SST — SSE) /SST, is a monotone function of deviance or sum of
squared errors (SSE) since the total sum of squares (SST) is invariant to splits. Therefore,
the best split identified by the maximum score test statistic or the maximum R? is the same
as the one identified by maximum reduction of deviance in riz, which is exactly the splitting
criterion employed in CART (Breiman et al. 1984). The direct implication of this insightful
observation is that we can construct the tree Ty in model (4) for variance by running a CART
type procedure through r7.

To assess the homoscedasticity assumption, we inspect whether a nontrivially final vari-
ance tree structure can be obtained or not. If a nontrivial tree structure is indeed developed,
then the validity of the equal variance assumption is doubtful. Moreover, the resulting tree
structure may yield useful clues on modeling heteroscedasticity. In contrast, if the final tree
structure contains the root node only, then one may tentatively conclude that variance is
constant.

Supposing that a nontrivial variance tree structure has been identified, we pool the learn-
ing sample with the test sample together and then fit the whole data set with model (1)
together with the variance function (4), via an iteratively weighted least squares (see, e.g.,
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Carroll and Ruppert’s 1988) approach. In this tree-based modeling, the error variance is ap-
proximated by piecewise constant functions. Its main advantages include: it naturally incor-
porates modeling based on the mean response and addresses the variable selection issue in
an automatic manner; it has the capability to handle different types of predictors in variance
modeling; and the hierarchical variance tree structure carries meaningful interpretation.

To model heteroscedasticity, Su et al. (2006) proposed the treed variance (TV) proce-
dure, which also employed the score test as the splitting statistic. However, their procedure
requires an adaptive adjustment for each internal node. In addition, they employed the log-
likelihood score associated with models (1) and (4) to aid in tree size determination. Ac-
cordingly, the difference between TV and our proposed residual-based tree variance (RTV)
approach is analogous to the difference between AT and RT in Sect. 2. Based on Monte
Carlo studies in the next subsection, TV and RTV have rather comparable performance.

3.3 Simulations

We conduct simulated experiments to evaluate the performance of RTV in identifying the
true variance structure and make comparisons with TV. The data were generated from the
model

Vi =i +& =2+42x; +2xin + &,

where ;s are independent and identically normal variables with mean zero and variance o2

As given in Sect. 2.3.2, we consider two sample sizes, n = 300 and n = 1, 500, and the ratio
of the training sample versus the test sample is 2 : 1. For the sake of illustration, we present
seven structures for error variance aiz listed below, where the scale parameter o2 is implicitly
assumed to be 1

Model A” o?=1,

Model B” o7 =exp{3-1(x;1 <0.5Nx;» <0.5)},
Model C” aiz =exp{3-1(x;3 <0.5Nx;4 <0.5)},
Model D" o =exp{l (x;1 <0.5Nx;, <0.5)},
Model E” o,.z =exp{l(x;3 <0.5Nx;4 <0.5)},
Model F” o7 =exp(8 - xi1xi2},

Model G” 0,-2 =exp {21 (u; >2.5) + I (u; > 5.0)}.

Each of above models involves four covariates, X, ..., X4, but not all of them are relevant.
Model A” is a null model with constant variance. Models B”—E"” involve interacting thresh-
olds with different signal strength. In Models B” & D”, the variables in the variance are the
same as those in the mean regression, while in Models C” & E” they are different. Model
F” includes an interaction of the original covariates, and Model G” is only a function of the
regression mean. The error variance in Models B” to E” and G” can be fully represented
by a tree structure that has three terminal nodes. However, Model F” needs a large tree to
represent the structure. For the sake of convenience, the mean responses in the simulation
studies are E(y;) = Bo + Bixi1 + Baxiz-

Table 2 reports the relative frequencies of final tree sizes and correct selections of splitting
variables obtained via TV and RTV, respectively. Note that the fourth column of Table 2
presents the percentage of null final trees found for each model. Results with the null model
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Table 2 The relative frequencies of final tree sizes are selected by residual-based tree variance (RTV) and
treed variance (TV; Su et al. 2006), respectively. The last column is the percentages of the correctly splitting
variable selections in the final tree structures

Model Sample Tree Final tree size Variable
size method 1 2 3 4 5 >6 selection
A" 300 RTV 96.2 2.8 0.4 0.4 0.2 0.0 96.2
TV 97.4 1.6 0.6 0.2 0.2 0.0 97.4
1500 RTV 97.0 1.2 1.4 0.4 0.0 0.0 97.0
vV 98.8 1.2 0.0 0.0 0.0 0.0 98.8
B” 300 RTV 26.2 2.8 454 21.8 3.8 0.0 46.8
vV 0.0 32 49.2 24.0 124 11.2 80.6
1500 RTV 0.0 0.0 91.2 1.8 42 2.8 93.4
8% 0.0 0.0 71.4 224 2.2 4.0 98.8
c” 300 RTV 14.8 0.8 514 29.0 3.8 0.2 56.0
TV 0.0 1.2 55.6 27.2 11.4 4.6 87.0
1500 RTV 0.0 0.0 88.6 6.4 1.2 3.8 91.0
TV 0.0 0.0 69.2 23.0 5.6 2.2 99.0
D" 300 RTV 59.0 7.6 29.2 3.2 1.0 0.0 31.2
TV 55.2 15.4 23.8 3.0 2.0 0.6 24.6
1500 RTV 3.2 0.2 88.0 34 4.2 1.0 90.0
vV 0.0 0.0 92.8 3.8 2.4 1.0 97.0
E" 300 RTV 534 8.8 26.4 10.2 0.4 0.8 31.6
TV 58.6 12.8 22.6 3.0 14 1.6 24.6
1500 RTV 2.0 0.4 88.4 4.0 42 1.0 90.2
N% 0.0 1.2 96.0 1.8 0.8 0.2 97.0
F" 300 RTV 422 222 19.0 16.6 0.0 0.0 21.8
TV 0.8 0.0 2.2 4.2 20.8 72.0 914
1500 RTV 10.4 1.0 8.6 8.0 19.2 52.8 55.8
TV 0.0 0.0 0.0 0.0 0.0 100.0 98.4
G" 300 RTV 17.4 52.2 22.8 6.6 1.0 0.0 76.2
TV 0.0 6.0 47.6 24.8 16.0 5.6 94.8
1500 RTV 0.0 344 58.2 5.0 2.0 0.4 93.2
TV 0.0 0.0 66.8 20.0 10.4 2.8 97.0

A” suggests that the ‘false positive’ rates for both methods are rather low. For Models B”—
G, it can be seen that both TV and RTV perform reasonably well, while TV outperforms
RTV in most of cases for signaling heteroscedasticity.

In identifying the true variance structures and selecting the desired variables, Table 2
indicates that TV and RTV are comparable. It is not surprising that the performance of both
methods improves in the larger sample size. Although TV often outperforms RTV, RTV
yields considerably more correct tree size selections in Models B” & C” when the signal is
strong and the sample size is large. It is worth noting that RTV is computationally faster and
much easier to implement. For example, it took 47 seconds for RTV to complete 500 runs
for Model B” while TV spent 12 minutes and 27 seconds.
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4 Data examples

To illustrate, we consider two well-known data sets: one is the 1987 baseball salary data and
the other is the Boston housing data. Both data sets, as well as variable description and other
related information, are available from StatLib (http://lib.stat.cmu.edu). For conciseness, we
will describe them very briefly and refer readers to StatLib for details.

4.1 1987 baseball salary data

The 1987 baseball salary data set originally comes from the 1988 American Statistical As-
sociation (ASA) graphics poster session. After deleting observations with missing values,
the remaining data set contains the salary information for 263 major league hitters. The re-
sponse variable is the log transformation of salary and there are 22 input variables, which
are performance measures for each hitter.

This baseball data set has been widely studied in the literature. Hoaglin and Velleman
(1995) (HV), provided a nice overview on analysis results using various statistical methods.
They found that the following model structure yields good model fit and leads to sensible
interpretations:

log(salary) = f + Bi % + pov/Tunse

+ Bymin[(yrs —2)4, 5] + Ba(yrs — 7)4 +e. )

The segmentations on year are roughly based on a player’s eligibility for arbitration and
free agency, respectively. HV’s model fitting (labelled as Model I) is given in Table 3. We
next apply the proposed tree diagnostic methods to assess the adequacy of Model 1.

Figure 2a shows the final augmentation tree structure obtained by AT, which has three
terminal nodes. The first split of the data is according to hitcr <450 (i.e., whether the
total number of career hits for a player is no more than 450). For those players with hitcr
> 450 (i.e., observations in node 12), their salaries are further differentiated by puto86
< 570. These two threshold effects can also be roughly visualized via the partial residual
plots (see, e.g., Mansfield and Conerly 1987) in Fig. 3. Specifically, Figs. 3a and 3b depict
the partial residuals associated with HV’s model versus the values of hitcr and puto86,
respectively. Because the threshold effect of puto86 is identified at node 12, it is natural
to further examine the partial residual plot at node 12. The resulting Fig. 3c indicates that
the threshold effect of puto86 becomes more prominent in comparison to Fig. 3b. In con-
trast to AT, we also employ Miller’s (1996) RT to obtain a final tree structure, which has
two terminal nodes split by {puto86 < 462.5} (see Fig. 2b). Because Monte Carlo studies
show that AT is often superior (or comparable) to RT, we mainly focus on exploring and
interpreting the final tree structure found by AT.

The AT procedure suggests that the effects of hitcr and puto86 on salary have
been under-represented in HV’s model. It is interesting to note that hitcr is a measure
of offensive performance of a player in his career, while puto86 is a measure of defen-
sive performance of a player in the preceding year. Therefore, in addition to the average
number of runs per year, the total number of runs scored in the previous season, a boost in
salary after year two, and an inverse relation to time in the league after year seven, there
are additional bonuses to a hitter’s salary. Specifically, the players are rewarded with further
monetary enhancement to their salaries if they are able to combine offensive and defensive
baseball expertise. To take into account tree effects, we add two dummy variables via the
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Table 3 Three fitted models for the 1987 baseball salary data: Mode I—Hoaglin and Velleman (1995);
Model II—Augmentation Tree (AT); Model III—Residual-based Tree (RT)

Model Adjusted R2

1 0.815 estimate s.e. z
intercept 3.529 0.113 31.350
runcr/yrs 0.016 0.002 9.597
J/rungé 0.082 0.020 4.071
min[(yrs —2)4, 5] 0.347 0.015 23.066
(yrs—T)+ —0.040 0.009 —4.434

I 0.848 estimate s.e. z
intercept 3.704 0.108 34.378
runcr/yrs 0.014 0.002 8.067
J/runsg6 0.075 0.018 4.093
min[(yrs —2)4+, 5] 0.286 0.019 14.998
(yrs —T)+ —0.047 0.008 —5.543
node 121 0.320 0.081 3.954
node 122 0.731 0.101 7.225

11 0.830 estimate s.e. z
intercept 3.798 0.124 30.534
runcr/yrs 0.016 0.002 9.894
J/runsg6 0.080 0.019 4.123
min[(yrs —2)4+, 5] 0.346 0.015 23.773
(yrs —T)+ —0.042 0.009 —4.747
node 12 0.285 0.064 4.445

final augmentation tree into HV’s model, and then fit all data together. The resulting hybrid
model fit (Model II) is given in Table 3. Similarly, We obtain a hybrid Model III by aug-
menting HV’s model with the final RT tree structure. Table 3 shows that the coefficients of
Model II are all significant and Model II performs slightly better than Model III in terms of
the adjusted R?.

We next employ RT and RTV to examine the homoscedasticity of HV’s model. Both
result in a trivial final tree structure that includes the root node only, which supports the
equal-variance assumption. To gain further confirmation, we conduct additional tree pro-
cedures 10 times with different training and test samples. This is similar to the idea of
bagging (Breiman 1996), which is particularly useful for fully extracting diagnostic infor-
mation. Because all 10 additional runs yield the trivial tree structure, we conclude that the
constant variance assumption of HV’s model is valid. One possible explanation of this find-
ing is that the logarithm transformation on salary stabilizes the error variance.

4.2 Boston housing data
The Boston housing price data were collected by Harrison and Rubinfeld (1978) to study the
effect of air pollution on real estate price in the greater Boston area in the 1970s. The data

consist of 506 observations on 16 variables, with each observation pertaining to one census
tract.
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Fig. 2 The final tree structures (a) Augmentation Tree (AT)
found by AT and RT,
respectively, which are
augmentations to HV’s (Hoaglin
and Velleman 1995) model for
the Baseball Salary Data. To the

hitcr < 450

left of each terminal node is the

number of observations in each 115 puto86 < 570
terminal node, and underneath is

the mean salary (in thousand of 205.32

dollars)

125|121 23122

752.38 1,084.30

(b) Residual-Based Tree (RT)

puto86 < 462.5

115

205.32 752.38

To understand causality, Harrison and Rubinfeld (1978) fitted a multiple linear model
that includes all predictors with some transformations. Since many of them are quite in-
significant, we conduct a stepwise variable selection to obtain the following ‘best’ linear
model:

log(MEDV) = By + B1NOX? + $,DIS + B3PTRATIO + f4log(LSTAT) +¢.  (8)

The ordinary least squares (OLS) estimates of the ’s and their associated standard errors
are given in Table 4.

We first employ AT and RT to assess the adequacy of model (8). Neither shows a non-
trivial tree structure. We also conduct 10 additional runs by using different learning and test
samples, and note that all result in the trivial tree structure.

We next apply RTV and TV to check heteroscedasticity. RTV results in a final tree with
two terminal nodes, while TV leads to a final tree with eight terminal nodes (see Fig. 4).
Hence, the equal variance assumption seems problematic for the OLS fit of model (8). We
then refit model (8) by incorporating these two tree structures for error variance. Table 4
indicates that all three methods have very similar parameter estimates. This finding is not
surprising, as all yield unbiased estimates. However, both TV and RTV have much smaller
standard errors of parameter estimates than those of the OLS estimates. It is worth noting
that TV utilizes a substantially bigger tree than that of RTV (see Fig. 4), which is often
unstable (see Breiman et al. 1984). Hence, TV is less favorable in this example. To diagnose
heteroscedasticity, we finally follow Carroll and Ruppert’s (1988) suggestion and plot the
cubic root of the squared studentized residuals versus the predicted values. Figure 5 shows
that the split {CRIM < 12.148} can be roughly visualized.
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Fig. 3 Partial residual plot for
hitcr (a) and puto86 (b and

¢) in the 1987 baseball salary

data. Superimposed on each plot
is the cutoff point selected by the

tree procedure and a smooth

curve given by locally linear fit

(lowess)
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Table 4 The comparison of RTV and TV versus OLS in fitting Boston housing data

OLS RTV sefos oy sefoLs

_ _ s.e.fRTV _ s.e.fTv

BoLs s.e BrTV s.e Brv s.e
intercept 7.807 0.345 7.823 0.227 1.520 7.158 0.121 2.859
NOX2 —1.452 0354  —1.487 0.234 1.512 —0.966 0.161 2.193
DIS —0.053 0.022  —0.064 0.015 1.514 —0.056 0.007 3.069
PTRATIO —0.070 0.016  —0.062 0.011 1.523 —0.043 0.006 2.860
log(LSTAT) —0.605 0.069  —0.639 0.047 1.487 —0.544 0.024 2.949
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Fig. 4 The final tree structure (a) Residual-Based Tree for Variance (RTV)
for he.teroscedastlclt}{ in model CRIM < 12.148
(8) with Boston housing data.
Inside each terminal node ¢ is the
node size ny, and underneath is
the maximum likelihood estimate 463 43

f 2 AZ_Z‘ ( .,",)2
of o/, 6 =2 i, (vi — 3i)°/ns

0.211 3.581

(b) Treed Variance (TV)
CRIM < 12.05

CRIM < 7.05

0.0391  0.0959

5 Discussion

In this paper, we obtain two diagnostic tree procedures for detecting the adequacy of linear
regression models. One is designed to assess the linearity and the other is used to evaluate
homoscedasticity. If the resulting diagnostic tree is nontrivial, then the assumption of linear-
ity (or homoscedasticity) may not be valid. Our proposed methods not only detect possible
deficiencies but also provide clues for amendments. Furthermore, these methods are partic-
ularly useful in dealing with large data sets, which often occur in data mining or machine
learning.

One could extend the current work to include assessing the adequacy of logistic re-
gression models for classification. Accordingly, the issues of lack-of-fit and over-dispersion
should be considered. It is also of interest to follow an anonymous referee’s suggestion to
simultaneously examine the mean and variance specifications in linear regression models.
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Fig. 5 The cubic root of squared 1
studentized residuals versus v
CRIM for the Boston housing Lo
data. Superimposed on the plot is 2 s °
the cutoff point selected by the '
RTV 1
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We believe that these efforts would further enhance the usefulness of tree-structured model
diagnostics in machine learning and data analysis.

Acknowledgements We thank Professor David Page and two anonymous referees for their insightful and
constructive comments, which led to a substantially improved manuscript.
Appendix A: A computationally efficient splitting method

We first rewrite model (1) asy = X8 + &, where y = (y1,..., y,) isan x 1 vector and X
is an n X g matrix with i-th row x;. There must exist an n x n orthogonal matrix Q that

triangularizes X such that
R
=(o,%.)
On—g)xq

where R is g x g upper-triangular and O(,—g)x4 1S an (n — g) X g matrix with elements 0.
After applying the same orthogonal transformation to the response vector y, we partition the
resultant vector into two components

gy (W
omue(2).
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where u; is a ¢ x 1 vector and u, is an (n — ¢) x 1 vector. Then the sum of squared errors
(SSE) for model (1) can be computed as SSE =|| u, ||? (see, e.g., Kennedy and Gentle 1980).
Next, we consider model (3) which involves the split {s : x; <c}, y=XB+y -
1iy,<c) +&. Let X denote its design matrix, X = (X|x,) where X, = 1;,,<.. We as-
sume that X is of full column rank with dimension g + 1. To compute the SSE associated
with model (3) efficiently, we utilize the available QR decomposition of X to obtain an
orthogonal matrix Q) that triangularizes X®. The detailed procedures are given below.

Note that QX = Q(X[x,) = ( ) Vl), where (:;) = 0x, = (v, ...,v,). To ac-

O—q)xq V2
complish the triangularization of Q X, we apply Householder’s (1958) one-step transfor-
mation approach. Let

i=q+1
a=8"+|v| & and
=(0,...,0, vg41 +8ign(vy4+1)&, Vgi2, - -5 V).
Define the Householder matrix H = I,, — bb’/a. Then we have

R Vi
H(QX®) = v —sign(vg11)a |,
O(n*q*I)Xq 0(n—q—l)xl

an upper-triangular matrix. Let 0 = H Q. Accordingly, Q® triangularizes X and is an
orthogonal matrix. Therefore, the sum of squared errors of model (3) can be computed as

SSE® =|luy” |,

(s)

where u;” consists of the last 7 — (¢ + 1) elements of the vector u® = Q®y = HQy = Hu.

Appendix B: Derivation of the score test

Let w; = I{x;; <c}, ny = ZLI w;, and n, = n — ny. The log-likelihood for the model
jointly given by (1) and (5) is

2 __E _E 2___ (yt_xﬂ)z
[(B.0%.0) =—5In(27) — = In(0”) ZZU 2exp(Ow;)”

After algebraic simplifications, the score function and the expected information matrix are

al nyoyw; > (w; —w)(gi —q)
= A = -—5t55 = ~2 ’
991(8,5%0=0) 2 % 20
and
2
-
0(B.02.0)0(B.02.0) [|(3.52.0 =0
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X'X/62 0 0 .y
= 0  n/26% |n1/26%) | = [T“’Tn} ,
0 n/Q267)] m/2 2
respectively, where w =n;/n, 6= q;/n=g and X = (x],...,x).

Adopting the approach in Breusch and Pagan’s (1979) (see also Cox and Hinkley 1974,
p- 324), we obtain the score test for testing Hy : 8 =0 versus H; : 6 # 0. The resulting test
statistic for a given split s is

2

_ > (gi — q)* > (wi —w)(gi —q)
% | w-0 Y @-a

where V = (Jzz — J21J1711J21)_1 = n?_ﬁz = m, and Zwi = wa =ny.
A drawback of the score test ST*(s) is that it depends on the assumption that ¢ is normally
distributed. Hence, we adopt Koenker’s (1981) approach to replace 264 in ST*(s) by >_(g; —

G)?/n and obtain the studentized score test given in (6).

ST*(s) =U?-V

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov
& F. Czaki (Eds.), 2nd int. symp. inf. theory (pp. 267-281). Budapest: Akad Kiado.

Bickel, P. J. (1978). Using residuals robustly i: Tests for heteroscedasticity, nonlinearity. Annals of Statistics,
6,266-291.

Box, G. (1988). Signal-to-noise ratios, performance criteria, and transformation. Technometrics, 29, 1-17.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Belmont, CA:
Wadsworth International Group.

Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation.
Econometrica, 47, 1287-1294.

Carroll, R. J., & Ruppert, D. (1988). Transformation and weighting in regression. New York, NY: Chapman
and Hall.

Cox, D. R., & Hinkley, D. V. (1974). Theoretical statistics. New York: Chapman and Hall.

Hand, D. J. (1999). Statistics and data mining: intersecting disciplines. ACM SIGKDD, 1, 16-19.

Harrison, D., & Rubinfeld, D. L. (1978). Hedonic prices and the demand for clean air. Journal of Environ-
mental Economics and Management, 5, 81-102.

Harvey, A. C. (1976). Estimating regression models with multiplicative heteroscedasticity. Econometrica, 44,
461-465.

Hoaglin, D. C., & Velleman, P. F. (1995). A critical look at some analyses of major league baseball salaries.
The American Statistician, 49, 277-285.

Householder, A. S. (1958). Unitary triangularization of a nonsymmetric matrix. Journal of the Association
for Computing Machinery, 5, 339-342.

Kennedy, W. J., & Gentle, J. E. (1980). Statistical computing. New York: Marcel Dekker, Inc.

Koenker, R. (1981). A note on studentizing a test for heteroscedasticity. Journal of Econometrics, 17, 107—
112.

Mansfield, E. R., & Conerly, M. D. (1987). Diagnostic value of residual and partial residual plots. American
Statistician, 41, 107-116.

Miller, T. W. (1996). Putting the cart after the horse: tree-structured regression diagnostics. In 1996 proceed-
ings of the statistical computing section, American statistical association (pp. 150-155).

Morgan, J., & Sonquist, J. (1963). Problems in the analysis of survey data and a proposal. Journal of the
American Statistical Association, 58, 415-434.

Neter, J., Kutner, M., Wasserman, W., & Nachtsheim, C. J. (1996). Applied linear statistical models (4th ed.).
Boston, MA: McGraw-Hill.

Rao, C. R. (1947). Large sample tests of statistical hypotheses concerning several parameters with application
to problems of testing. Proceeding of the Cambridge Philosophical Society, 44, 50-57.

@ Springer



Mach Learn (2009) 74: 111-131 131

Rencher, A. C. (2000). Linear models in statistics. New York: Wiley

Rutemiller, H. C., & Bowers, D. A. (1968). Estimation in a heteroscedastic regression model. Journal of
American Statistical Association, 63, 552-557.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.

Simonoff, J. S., & Tsai, C.-L. (1994). Improved tests for nonconstant variance in regression based on the
modified profile likelihood. Journal of the Royal Statistical Society, Series C, 43, 357-370.

Su, X. G., & Tsai, C.-L. (2005). Tree-augmented cox proportional hazards models. Biostatistics, 6, 486—499.

Su, X. G., Wang, M., & Fan, J. (2004). Maximum likelihood regression trees. Journal of Computational and
Graphical Statistics, 13, 586-598.

Su, X. G., Tsai, C.-L., & Yan, X. (2006). Treed variance. Journal of Computational and Graphical Statistics,
15,356-371.

Venables, W. N., & Ripley, B. D. (1999). Modern applied statistics with S-plus (3rd ed.). New York: Springer.

@ Springer



	Tree-structured model diagnostics for linear regression
	Abstract
	Introduction
	Checking adequacy of model specification
	Model structure
	Tree procedures
	Growing a large tree
	Pruning
	Tree size selection

	Simulation studies
	Comparing splitting statistics
	Detecting tree structure


	Assessing heteroscedasticity
	Model structure
	Tree procedure
	Simulations

	Data examples
	1987 baseball salary data
	Boston housing data

	Discussion
	Acknowledgements
	Appendix A: A computationally efficient splitting method
	Appendix B: Derivation of the score test
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


