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Abstract Although memory-based classifiers offer robust classification performance, their
widespread usage on embedded devices is hindered due to the device’s limited memory re-
sources. Moreover, embedded devices often operate in an environment where data exhibits
evolutionary changes which entails frequent update of the in-memory training data. A viable
option for dealing with the memory constraint is to use Exemplar Learning (EL) schemes
that learn a small memory set (called the exemplar set) of high functional information that
fits in memory. However, traditional EL schemes have several drawbacks that make them
inapplicable for embedded devices; (1) they have high memory overheads and are unable
to handle incremental updates to the exemplar set, (2) they cannot be customized to obtain
exemplar sets of any user-defined size that fits in the memory and (3) they learn exemplar
sets based on local neighborhood structures that do not offer robust classification perfor-
mance. In this paper, we propose two novel EL schemes, EBEL (Entropy-Based Exemplar
Learning) and ABEL (AUC-Based Exemplar Learning) that overcome the aforementioned
short-comings of traditional EL algorithms. We show that our schemes efficiently incorpo-
rate new training datasets while maintaining high quality exemplar sets of any user-defined
size. We present a comprehensive experimental analysis showing excellent classification-
accuracy versus memory-usage tradeoffs using our proposed methods.

Keywords Exemplar learning · Instance-based learning · Parzen density estimator · AUC
analysis · Entropy and mutual information

1 Introduction

Rapid advances in embedded computing (Wolf 2002) now facilitate significant computa-
tional capabilities in low-power embedded devices. Nodes in a sensor network are now ex-
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pected to sense as well as analyze the data and make on-site intelligent decisions as opposed
to simply pushing the data to a central server. Examples of such applications include fault
detection in device condition monitoring data streams, face detection in video sensor net-
works, and intrusion detection at network routing hubs. In this paper, we focus on the data
classification problem when the classifier operates on an embedded device. The computa-
tional and memory resources of such devices are not advanced enough to run sophisticated
classifiers such as Support Vector Machines (SVM) or Neural Networks due to the compu-
tationally intensive optimization procedures and model learning steps involved. Moreover,
sensor data often exhibits evolutionary characteristics such as presence of a new kind of
anomaly or a new class of network attacks, the training data for which are available after
actual deployment either in batches or as a data stream. This entails incremental updates
to the classifier in operation. Memory-based classifiers, especially density estimation based
classifiers (Hastie et al. 2001) are an excellent choice for such applications due to the prac-
tical benefits of ease of implementation, incremental nature and model free operation, and
theoretical advantages of implicit smoothing, robustness to noise and automatic relevance
weighting of the data. However, an embedded device is unlikely to be able to hold a large
training data in memory (which could potentially keep increasing in size as new training
data arrives). A viable option then is to employ exemplar learning (EL) techniques to find a
training subset comprising a few carefully selected exemplars of high functional value that
fit in memory and effectively delineate the class boundaries (Aha et al. 1991). Sometimes,
it is even acceptable to incur a small classification accuracy loss to conserve critical device
resources. Since these devices are often expected to have a real-time performance, a small
exemplar set also results in improved runtime performance. Effective EL schemes are thus
essential for any memory-based classifier operating under resource constraints.

1.1 Exemplar learning on embedded devices

Exemplar learning (also known as case-based reasoning, Smyth and McKenna 1999; Zhu
and Yang 1999) is a combinatorial optimization problem similar to that of feature selec-
tion (Kwak and Choi 2002). Due to the high complexity of the optimization procedure
involved, it is often preferred to use randomized (Pkalska et al. 2006) or greedy methods
(Battiti 1994; Wilson and Martinez 2000). Over the years, EL solutions have been proposed
using nearest neighbors (Aha et al. 1991), genetic algorithms (Cano et al. 2003), vector
quantization (Jankowski and Grochowski 2005) and density estimation based classification
techniques (Fukunaga and Hayes 1989).

EL research has mostly advanced in the context of nearest neighbors under the assump-
tions of Aha’s algorithms (Aha et al. 1991) and more effective pruning approaches that
operate on intricate neighborhood characteristics have been proposed (Brighton and Mellish
2002). Wilson and Martinez (2000) provide a comprehensive survey of popular EL ap-
proaches in their work. They also proposed a suite of EL algorithms (DROP1-DROP5),
which to the best of our knowledge are the most widely accepted approaches. In the rest
of this section, we identify the issues with applying the DROP algorithms in an embedded
device setting:

1. Incremental update: DROP algorithms are computationally intensive, offline and are not
incremental in nature. They require the original training dataset in the memory through-
out the execution of the exemplar learning procedure.1 This makes these approaches

1DROP1 can be used in an incremental setting but it is known to have a significantly worse performance than
other DROP algorithms.
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inapplicable for embedded devices where memory is limited, and for applications where
the training data is updated regularly.

2. Ordered removal: Given an appropriate ranking of the training instances, the user can
choose high-ranked instances that fit in the available memory. However, for all DROP
schemes, the size of the exemplar set is determined at runtime and cannot be user defined.
To the best of our knowledge, the ranking heuristic proposed by Xi et al. (2006) is the
best known approach that can be used to rank instances in DROP algorithms. However,
as we will show in our experimental analysis, this scheme is adhoc and does not perform
well.

3. Robustness: DROP algorithms learn exemplars based on the local neighborhood structure
and make instance removal decisions based on the error rate performance. This approach
is sensitive to noise and class-imbalance issues. We argue that using global methods
such as density estimation and performance analysis based on ROC (Receiver Operating
Characteristic) curves results in high-quality exemplar sets.

In this paper, we propose two novel incremental EL schemes based on the Parzen kernel
density estimation classifier (PKDE) (Hastie et al. 2001) that address the issues presented
above. Our algorithms are motivated by the greedy selection scheme proposed by Battiti
(1994), where given a training dataset, we remove one instance at a time that is least likely
to contribute towards the classification decision. Our proposed methods are as follows:

• EBEL (Entropy Based EL). This method removes instances from the training set based
on their information content as opposed to the error rate. Instead of using an ad hoc
ranking scheme, it removes a training instance whose removal causes the least amount of
drop in the conditional entropy of the class indicator variable insuring minimum loss of
information. EBEL is incremental, has low computational overhead and offers effective
ordered removal.

• ABEL (AUC Based EL). This method prunes data based on the AUC (Area under ROC
curve) performance. ABEL uses a validation set and prunes an instance if its removal of-
fers the least drop in the AUC computed for this validation set. Though computationally
more intensive than EBEL, we show that using the AUC’s equivalence to the Wilcoxon-
Mann Whitney statistic (Yan et al. 2003) and our proposed incremental method for up-
dating the validation set scores, the runtime performance of ABEL can be reduced signif-
icantly.

While both the algorithms are incremental and suitable for an embedded device, ABEL
is more demanding on computational resources. This is primarily because of the overhead
of maintaining the validation set in memory and repeated AUC computations. However,
unlike EBEL, it offers robustness to class imbalance in the training data. As we will show in
our experimental analysis, the two algorithms outperform traditional EL methods offering
excellent tradeoff between runtime performance and exemplar set quality.

2 Incremental exemplar learning

We represent the original training set by T s.t. |T | = N . An exemplar set with n instances
is denoted as Sn s.t. Sn ⊆ T where SN = T . Given an exemplar set SN , our objective is
to be able to incrementally compute smaller exemplar subsets (Sn | (1 ≤ n < N) ∧ (Sn ⊆
Sn+1)), by removing one instance at a time, such that the drop in classification accuracy
in transitioning to Sn from Sn+1 is as small as possible. Furthermore, unlike the DROP
algorithms, this transition step should use information available from exemplar set Sn+1 only
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and not from the original training set T . This methodology naturally incorporates any new
batch (or stream) of training data. When the system is in operation with exemplar set Sk of
size k and a new training subset Tnew (with possibly new target classes) arrives, we proceed
with pruning the {Sk ∪ Tnew} dataset, until a new exemplar subset S ′

k of operational size k

is obtained. We present the details of using effective data structures that help us efficiently
obtain Sn from Sn+1 in Sect. 2.2.

2.1 The Parzen kernel density estimation classifier

PKDE is a well-known and one of the most widely accepted non-parametric density estima-
tion technique. Given s samples {X1,X2, . . . ,Xs} drawn from a density function f (x) ∈ �1,
the Parzen density estimate is given by:

f̂ (x) = 1

sλ

s∑

i=1

κ

(
x − Xi

λ

)
, (1)

where κ(.) and λ are called the kernel function and the kernel bandwidth respectively. The
kernel bandwidth is interpreted as a smoothing parameter and the kernel function as the rel-
evance weighting function. A popular choice for the kernel function is the Gaussian kernel,
κ(x) = 1√

2π
e− 1

2 ‖x‖2
. If the kernel bandwidth is chosen as a function of the sample size s.t.

λ = λ(s), then the density estimates obtained using Eq. 1 are asymptotically unbiased when
the following conditions hold true:

lim
s→∞λ(s) = 0, and

∫ ∞

−∞
κ(x)dx = 1. (2)

A detailed analysis on the properties of the PKDE can be found in (Parzen 1962). We now
present our notations and their usage in PKDE based classification. For a given class c and
a training subset Sn, we define set the Zc

n as follows:

Zc
n = {z | (z ∈ Sn) ∧ (class(z) = c)}. (3)

Given a subset Sn, the density estimate of an instance x belonging to class c is given by:

f n
c (x) = 1

|Zc
n|λ

∑

y∈Zc
n

κ

(
x − y

λ

)
. (4)

If the total number of classes is denoted by C, then the prior πn
c of each class is:

πn
c = |Zc

n|
n

. (5)

For an arbitrary instance x, we can now compute its posterior probability of belonging to a
particular class c given the training dataset Sn as follows:

p(c | x)Sn = πn
c fc(x)

∑C

j=1 πn
j fj (x)

,

=
∑

y∈Zc
n
κ(

x−y

λ
)

∑
y∈Sn

κ(
x−y

λ
)
. (6)
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For a binary classification problem, if the two classes are denoted by c+ and c−, then the
merit-score2 γn(x) of an unknown instance x given the training set Sn can be obtained as
follows:

γn(x) = p(c+|x)Sn − p(c−|x)Sn . (7)

The merit-score values can then be used for classification accuracy analysis using ROC
curves, AUC computations or classifier threshold selection (Fawcett 2004).

2.2 EBEL: entropy-based exemplar learning

EBEL is a greedy algorithm motivated by the leave-one-out cross validation (LOOCV)
scheme. For each instance x ∈ Sn, EBEL computes the conditional entropy of the class out-
put variable using Sn \ {x} as the training set and x as a testing instance. It then chooses to
discard the instance whose removal results in the least conditional entropy loss. If C denotes
the class output variable, p(x) the prior on a training instance x and H(C|x) the entropy
of the class variable conditioned on the presence of instance x then EBEL prunes instances
according to the following rule:

Sn−1 = Sn \ {arg min
x∈Sn

[H(C|x)]} where

H(C|x) = −p(x)

C∑

c=1

p(c|x)Sn\{x} log(p(c|x)Sn\{x}). (8)

Assuming that the training data is independent and identically distributed (i.i.d.), the prior
p(x) on an instant x is a constant and can be ignored while making the conditional entropy
computations.

The intuition behind EBEL’s pruning rule comes from Fano’s inequality (Thomasian
1962) which shows that the classification error of a classifier G is lower bounded by the
conditional entropy as follows:

P (G(x) 
= C) ≥ H(C|x) − log(2)

log(C − 1)
. (9)

Hence, choosing the subset with least conditional entropy is least likely to reduce the clas-
sification accuracy.

We are now faced with the challenge of finding the most suitable candidate for pruning
in an incremental and a computationally efficient manner. We show that by storing only
the sum of the pairwise kernel values of the training data (instead of the complete N × N

pairwise kernel-value matrix), each outgoing instance can be found in time linear to the size
of the exemplar subset. Given set Sn, we store the sum of the kernel values of each instance
xj ∈ Sn with all other instances of its own class as follows:

νn[c, j ] =
∑

x∈Zc
n∧x 
=xj

κ

(
x − xj

λ

)
. (10)

2In the rest of this paper, it is assumed that a high merit-score is associated with a greater chance of an
instance belonging to the positive class c+.
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The conditional entropy of the class output variable with each instance xj ∈ Sn can then be
obtained as:

H(C|xj ) = −
C∑

c=1

νn[c, j ] log(νn[c, j ]). (11)

If instance y is chosen for removal using the pruning rule of Eq. 8, then the ν-matrix can be
updated as follows:

νn−1[class(y), j ] = νn[class(y), j ] − κ

(
xj − y

λ

)
. (12)

As we have already shown in Eq. 6, the contents of the ν-matrix are sufficient to compute
the conditional probabilities and hence the conditional entropy values in Eq. 8.

So far, we have ignored the effect of the sample size (i.e., exemplar set size) on kernel
bandwidth. Given the original training set T , the kernel bandwidth can be obtained using
popular bandwidth optimization schemes, such as LOOCV (Hastie et al. 2001) that mini-
mizes mean square error (MSE). However, as we have shown in Eq. 2, the kernel bandwidth
is not independent of the sample size, which in our case is continuously changing. Since,
performing the LOOCV after each pruning step is computationally infeasible, we need to
further investigate the relationship of the kernel bandwidth to the sample size.

If the sample’s true density f̂ (x) is continuous in the r th order and does not change with
the sample size, then the optimal bandwidth λ(n), that minimizes the MSE is related to the
sample size n as follows (Parzen 1962):

λ(n) =
f̂ (x)

∫ ∞

−∞
κ2(y)dy

(2nrkrf r(x))
1

2r+1

, (13)

where kr is called the characteristic component of the kernel function κ(.). Fortunately, most
of the terms in the above equation are independent of the sample size, and for a typical case
of r = 2, we can obtain the optimal bandwidth for a sample of size n as:

λ(n) = λ(N)

(
N

n

)0.2

, (14)

where λ(N) is the bandwidth obtained using the training dataset of size N that minimized
the MSE. Although this prevents a significant computational effort of repeated bandwidth
optimization with changing sample size, a bandwidth update still entails the recomputation
of the ν-matrix in Eq. 12. Since, the bandwidth varies slowly with the sample size as n−0.2,
we update the ν-matrix periodically when Nlast /n >

√
Nlast

α
, where Nlast was the size of the

sample when the last bandwidth update occurred and α is user-specified sensitivity parame-
ter. This formulation insures that the runtime complexity of the incremental steps in EBEL
is always linear in the size of the training set being pruned. Thus, ignoring the initial band-
width optimization and ν-matrix computation costs, the runtime complexity of EBEL for
obtaining an exemplar set of size k from a training set of size N is O((N − k)α2N).

Algorithm 1 outlines the details of the EBEL procedure. When the system is already
using set Told for memory-based classification and is updated with a new batch of training
data Tnew , Algorithm 1 finds an exemplar set S s.t., |S| = k. The size k of the desired
exemplar set is provided as an input parameter. The bandwidth value λ corresponding to
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Algorithm 1 EBEL
Inputs: Existing Training dataset: Told , New Training dataset: Tnew , Desired size of training
subset: k, Number of classes: C, Kernel function: κ , bandwidth optimized for Told : λ̂, Band-
width update sensitivity parameter: α

Outputs: Desired Training subset: S s.t. |S| = k

1: S ← Told ∪ Tnew,N ← |Told | + |Tnew|, λ ← λ̂(
|Told |

N
)0.2

2: Initialize ν-matrix s.t., ν[c, q] ← ∑
(x∈S)∧(class(x)=c)∧(x 
=xq ) κ(

xq−x

λ
)

3: while |S| > k do
4: I ← arg minxi∈S −1 ∗ ∑C

c=1
ν[c,i]∑C

c=1 ν[c,i] log( ν[c,i]∑C
c=1 ν[c,i] ) {xI ’s removal offers least en-

tropy drop}
5: for i ← (j |xj ∈ S) do
6: ν[class(xI), i] ← ν[class(xI), i] − κ(

xi−xI
λ

) {Update ν-matrix}
7: end for
8: S ← S \ {xI} {Remove xI from S}
9: if N

|S| >
√

N
α

then

10: λ ← λ̂( N
|S| )

0.2, N ← |S| {Update bandwidth}
11: goto Step 2 {Recompute ν-matrix}
12: end if
13: end while

Told is assumed to have been optimally obtained offline. Note that the same algorithm can
be used to obtain the exemplar set of size k from the original training dataset T by setting
Tnew = ∅ and Told = T . The algorithm first combines training samples from both the new
and the old training data and then updates the corresponding kernel bandwidth accordingly
(Step 1). After computing the ν-matrix, it prunes set S until its size reaches the desired value
of k. The instances are pruned one at a time (Steps 4–8) and the ν-matrix is updated if the
sample size becomes smaller than that allowed by the user parameter α (Steps 9–12). The
resulting exemplar set S , replaces the older training set Told and is used for classifying the
future unlabeled instances.

2.3 ABEL: AUC-based exemplar learning

Although EBEL is an efficient EL scheme, it has certain disadvantages that it shares with the
traditional EL methods: (1) it ignores the class population ratios while making the instance
removal decisions. This problem is critical to incremental exemplar learning where removal
of each instance or addition of new training datasets continuously skew the class popula-
tions; (2) an instance plays the dual role of a training instance (as long as it is not pruned) as
well as that of a testing instance (while computing conditional probabilities in Eq. 8). Hence,
at different stages of the pruning, the performance is validated (i.e., the entropy is computed)
against datasets differing in composition and size, reducing the statistical significance of the
results.

In this section, we propose the ABEL algorithm, that addresses the aforementioned issues.
ABEL ignores the dependencies within the training data samples and operates by monitoring
the AUC (Area under ROC curve) performance of the unpruned training data computed
over a consistent validation set. The validation set is extracted from the training data at
the beginning of the pruning procedure, and the instances are then removed such that the
AUC performance drop as a result of the removal is minimized. Given a training set Sn,
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and a validation set V such that {V ∩ Sn} = ∅, ABEL prunes an instance x according to the
following rule:

Sn−1 = Sn \
{

arg max
x∈Sn

[AG(V,Sn \ {x})]
}
, (15)

where AG(X,Y ) denotes the AUC value using testing dataset X, training dataset Y when
classifier G is used to score the testing instances. ABEL provides a simple yet effective EL
framework that generalizes to any classifier. However, given Sn, each pruning step comes
at the increased computational cost of n AUC computations and the memory overhead for
holding the validation set. In the rest of this section, we first discuss how the complexity of
any AUC computation can be reduced using the Wilcoxon-Mann-Whitney statistic (Yan et
al. 2003) followed by a discussion on how the update scheme presented in Sect. 2.2 can be
used to enhance the runtime performance of ABEL when used with a PKDE classifier.

Although the ROC is considered to be a continuous curve, in practice it turns out to be
a step function (Fawcett 2004). Hence, given the merit scores of the instances in the valida-
tion set, the AUC can be computed directly (without actually generating the ROC curve) in
O(|V|2) time. However, for a finite set of instances, it can be shown that the AUC (denoted
by A) is equal to the normalized Wilcoxon-Mann-Whitney (WMW) statistic (Hanley and
McNeil 1982):

A =
∑n

i=1

∑p

j=1 1(γ +
i

>γ −
j

)

np
, (16)

where Γ + = {γ +
1 , γ +

2 , . . . , γ +
p } are the merit-scores of the positive class instances and Γ − =

{γ −
1 , γ −

2 , . . . , γ −
n } are the merit-scores of the negative class instances in V . (|V| = n + p).

Statistic A is the estimator of P (Γ + > Γ −) (i.e., the probability that all positive class
instances get a higher merit-score than the negative class instances) and if all the merit scores
are sorted in non-decreasing order s.t. δi is the rank of γ +

i , then A can be further simplified
to (Yan et al. 2003):

A = 1

np

(
p∑

i=1

δi − p(p + 1)

2

)
. (17)

Equation 17 shows that given the merit-scores of the validation set instances, the AUC value
can be computed in O(|V| log(|V|)) time. However, obtaining the merit-scores necessitates
classification of all the instances in the validation set. If O(G) denotes the time taken by
a classifier G to classify a testing instance, then the runtime complexity of removing one
instance using ABEL is O(|V| ∗ (log(|V|) + G)).

In Algorithm 2, we have outlined the ABEL procedure which is similar to Algorithm 1
in terms of input and output parameters. However, it prunes instances using a more robust
methodology than EBEL, and requires an additional parameter η that determines the size
of the validation set. The algorithm first extracts the validation set from the training data,
given its fractional size η (Step 2), and then uses only the remaining instances as the train-
ing samples (Step 3). The optimal value of η depends on the memory constraints and the
complexity of the classification problem. While a large value of η results in a high memory
overhead, a small value reduces statistical significance of the AUC-scores of the validation
set elements resulting in worse instance removal decisions. In our experimental analysis, we
found that setting η = 0.1 offered a reasonably good tradeoff between the two extremes for
a wide variety of problems.

Though ABEL provides an effective EL framework that generalizes to any classifier it
suffers from high computational complexity. Its runtime performance can be significantly
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Algorithm 2 ABEL
Inputs: Existing Training dataset: Told , New Training dataset: Tnew , Desired size of training
subset: k, Classifier to use: G, Validation-set’s fractional size: η

Outputs: Desired Training subset: S s.t. |S| = k

1: S ← Told ∪ Tnew

2: Initialize V s.t. (V ⊆ S) ∧ (|V| = η ∗ |S|) {Extract the validation set}
3: S ← S \ V {Ensure S ∩ V = ∅}
4: while |S| > k do
5: S ← S \ arg maxxi∈S AG(V,S \ {xi}) {Remove instance of least AUC loss}
6: end while

improved when used with the PKDE classifier. As we have already shown in Sect. 2.2, the
PKDE merit-scores of the validation set elements can be incrementally updated in O(α2|V|)
time. Since each AUC computation takes O(|V| log(|V|)) time, by setting |V| = ηN , the
runtime complexity of ABEL for obtaining an exemplar set of size k from a training set of
size N is O(N(N − k)(η log(ηN) + α2)).

3 Experimental evaluation

We compare the performance of our proposed schemes against the popular DROP1 and
DROP2 algorithms proposed by Wilson and Martinez (2000) coupled with the ranking
scheme proposed by Xi et al. (2006). While DROP1 is incremental in nature and can be
used in the embedded device setting that we are interested in, DROP2 (including its other
variants DROP3-DROP5) requires access to the entire training data during its EL stages and
is inapplicable in an incremental setting. We include it in our experimental evaluation to
have a comprehensive analysis and to benchmark our proposed schemes against the state of
the art.

We conducted several experiments on a variety of machine learning datasets from the
UCI (Asuncion and Newman 2007) and UCR (Keogh and Folias 2002) machine learning
repositories. In this paper, we report critical results on the following datasets:

1. Magic Gamma (Asuncion and Newman 2007). This dataset was generated by the regis-
tration of high energy gamma particles in a ground-based atmospheric Cherenkov gamma
telescope using the imaging technique. The dataset has 10 attributes and 5,000 instances.
The classification task was to distinguish images caused by primary gamma rays from
those caused by other cosmic rays.

2. Vehicle Silhouette (Asuncion and Newman 2007). This dataset consists of vehicle silhou-
ettes (represented using 18 features) of four types of vehicles (Opel, Sara, Bus or Van).
In our experimental setup, the classification task was to distinguish the “Bus” class from
the other vehicle classes. The dataset has 846 instances.

3. Face(all) (Keogh and Folias 2002). This dataset contains 1,690 instances from 14 classes
that correspond to human faces (from both genders) as a 131-point time series. In our
experimental setup, the classification task was to distinguish the “Face 1” class from the
other face classes.

4. Statlog (Asuncion and Newman 2007). The dataset consists of the multi-spectral values
of pixels in a satellite image of a landscape. The classification task is to use the spectral
values to predict the soil type in the landscape image. The dataset has six different classes
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with 6,435 instances and 36 features. In our experiments, the objective was to distinguish
the “Grey damp soil” class from the other classes.

Having multiclass datasets help us robustly evaluate the performance of the proposed EL
schemes in an incremental setting, where data belonging to a particular class may cease
to exist in the exemplar set as a result of pruning, or new classes appear as a result of
training data updates. We compared classification accuracy on the ROC curve using the
AUC metric (Cortes and Mohri 2004). For all our experiments, the initial kernel bandwidth
for PKDE and the neighborhood size for the DROP algorithms were obtained offline using
LOOCV technique. Throughout our experiments, we have used α = 2 and η = 0.1 unless
stated otherwise. The validation set for ABEL was always randomly selected from the initial
training set. In the rest of this section, we denote the initial training dataset by SN (e.g., for
the Vehicle dataset N = 846) and the exemplar sets learned from this set as Sn.

Figure 1 shows the classification performance using our proposed schemes as we vary the
desired exemplar-set size for different datasets. The results were aggregated over a 5-fold
cross validation scheme. The x-axis shows the exemplar-set size (|Sn|) as the percentage
of the original training dataset (|SN |) and the y-axis represents the AUC-value obtained us-
ing Sn as the training data for the classifier. The size of the validation set was kept fixed
at |V| = η ∗ |SN | for all the datasets. As seen in the figure, reducing the value of |Sn| re-
sults in classification accuracy drop. Although the individual classification performance on

Fig. 1 AUC performance against exemplar set size
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Fig. 2 Classification performance using the SVM classifier after 90% instance removal

different datasets is different, for high values of |Sn|, the change in the classification accu-
racy for all EL methods is insignificant. However, the classification accuracy drops rapidly
when the required exemplar-set size is significantly small (i.e., less than 10%). As seen
in Figs. 1(c)–1(d), both ABEL and EBEL perform significantly better than the incremental
DROP1 algorithm. The non-incremental DROP2 scheme shows a better performance with
small exemplar set sizes on Magic Gamma (Fig. 1(a)) and the Vehicle datasets (Fig. 1(b)).
Since DROP2 uses the entire training dataset for making an instance removal decision as
opposed to using only the exemplar set data, the effect of an instance removal is validated
against a significantly larger dataset resulting in better performance. However, the perfor-
mance of DROP2 is always worse than that of ABEL even though it used only a small per-
centage (η = 0.1) of the training data for validation. The performance of DROP algorithms
is especially worse on the Face(all) data with DROP1 becoming unstable at low memory
conditions dropping to AUC values of as low as 50 (Fig. 1(c)).

In order to verify that the performance enhancements obtained using our methods were
primarily due to a better EL scheme that generalizes well to other classifiers, we evalu-
ated the classification performance with the resulting exemplar sets using other classifiers
as well. In Fig. 2, we show the results obtained using the popular SVM classification algo-
rithm. We present the entire ROC curves obtained using exemplar sets with 90% instances
removed from the original dataset (|Sn| = 0.1|SN |). The exemplar sets were obtained un-
der the experimental conditions used in Fig. 1. For each fold of the cross validation step,
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Table 1 Computational resource demand for different EL schemes

EL method Memory overhead CPU usage

Face (all) Vehicle Magic gamma Statlog

x = 180 μs x = 59 μs x = 2,600 μs x = 2,200 μs

DROP1 O(n) x x 2.2x x

DROP2 O(N + n) 1.6x 1.8x 4.1x 1.8x

EBEL O(n) 5.6x 6.1x x x

ABEL O(ηN) 252x 141x 126x 125x

we first applied the four EL schemes to remove 90% of the training instances. The data in
the resulting exemplar set was then used to train the SVM with the Radial Basis Function
(RBF) kernel. The final ROC curve was obtained after vertical averaging (Fawcett 2004) of
the individual ROC curves from each fold. While the individual performance on different
datasets using different EL methods is of less importance, Fig. 2 should be used to compare
the relative performance of the EL methods. For example, the ROC curve of EBEL for the
Face(all) dataset (Fig. 2(c)) shows a better classification accuracy than that of ABEL, a trend
also observed earlier in Fig. 1(c). This trend in the relative performance for all datasets is
similar to that seen in Fig. 1, with ABEL and EBEL outperforming the DROP algorithms. The
results shown in Figs. 2(a)–2(d) indicate that our EL schemes provide high quality exemplar
sets that generalize to other classifiers equally well.

We now analyze our proposed EL methods in terms of their computational resource de-
mand. While DROP1 and EBEL methods do not store any data in the memory other than the
exemplar set being used for classification (or in the process of being pruned), the DROP2
algorithm incurs the overhead of maintaining the entire training data (SN ) and ABEL the
overhead of maintaining the validation set (V). While EBEL and ABEL will incur the over-
head of maintaining the ν-matrix in memory for their efficient execution, the DROP algo-
rithm maintains a kd-tree structure for efficient neighborhood lookups. In Table 1, we have
summarized the overall memory overhead (other than holding the exemplar set Sn) and the
mean CPU time taken to prune one training instance from the training dataset. The results
were obtained for the experiments shown in Fig. 1.3 We show the memory overheads in
terms of the original training data size (|SN |) and the exemplar-set sizes (|Sn|). We com-
pare the CPU efficiency of different algorithms on a relative scale where ‘x’ represents the
most efficient algorithm. The individual values of ‘x’ are shown in Table 1. The CPU usage
shown does not include offline overheads of parameter learning, initial kd-tree construc-
tion and ν-matrix computations, however the data structure update costs are accounted for.
We observe that DROP1 and DROP2 are more efficient for small problems (both Face(all)
and Vehicle datasets have less than 1,700 instances). However, for larger problems (Magic
Gamma and Statlog) EBEL is the most efficient algorithm. Due to the overhead of the AUC
computations, ABEL is significantly more CPU intensive than the other methods, and is thus
well suited in an offline EL framework. However, EBEL is incremental, more efficient than
DROP algorithms, and offers robust pruning results thus making it an excellent choice for
realtime systems.

We compare the performance of DROP1 and EBEL in an online setting in Fig. 3. For
each fold of the cross-validation step, we split the training data such that one half of it is

3All algorithms were implemented in C and the experiments were conducted on an Intel Core Duo, with 1.66
GHz processor and 2 Gigabytes of memory.
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Fig. 3 AUC performance in online setting

first used to obtain an EL set of |Sn| = 250 samples, and then the other half is used as a
training data stream. The training stream updates the EL set with new training instances
and the EL algorithm is used again to compute a new exemplar set of 250 samples. We
created a training stream of 100 such updates and the AUC performance is calculated after
each such update. Figures 3(a)–3(d) show the mean AUC performance against time on the
x-axis (each time unit corresponds to one training stream update). As seen in the figures,
EBEL consistently outperforms the DROP1 algorithm. Note that new classes may appear
in the training stream (for example the Face(all) and the Statlog datasets have 31 and 7
classes respectively) varying the individual performances however it does not affect relative
AUC performance enhancements obtained using EBEL. The classification performance of
EBEL on the Face(all) dataset (Fig. 3(c)) is observed to be consistently near 100% accu-
racy.

4 Summary and future work

In this paper, we have presented two novel exemplar learning schemes EBEL and ABEL.
EBEL learns exemplars from an information-theoretic perspective while ABEL uses a vali-
dation set and prunes instances based on the AUC performance. ABEL is computationally



202 Mach Learn (2008) 72: 189–203

more intensive than EBEL and hence more suitable in an offline EL framework like the pop-
ular DROP2 scheme. Using a comprehensive experimental analysis we have shown that our
proposed methods consistently outperform the popular DROP algorithms and the exemplar
sets obtained using our methods generalize well to other classifiers such as SVM. In the
future, we plan to extend our work in the following directions:

1. Investigate on approximate AUC computation methods to reduce its runtime complexity
further.

2. Avoid recomputation of the ν-matrix by developing efficient update schemes. This would
also remove the user parameter α from the system and improve the quality of pruning
results.

3. Develop efficient methods to incorporate class imbalance awareness in EBEL.
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