
Mach Learn (2008) 72: 63–88
DOI 10.1007/s10994-008-5047-9

U-shaped, iterative, and iterative-with-counter learning

John Case · Samuel E. Moelius III

Received: 31 August 2007 / Revised: 2 February 2008 / Accepted: 20 February 2008 /
Published online: 19 March 2008
Springer Science+Business Media, LLC 2008

Abstract This paper solves an important problem left open in the literature by showing that
U-shapes are unnecessary in iterative learning from positive data. A U-shape occurs when
a learner first learns, then unlearns, and, finally, relearns, some target concept. Iterative
learning is a Gold-style learning model in which each of a learner’s output conjectures
depends only upon the learner’s most recent conjecture and input element. Previous results
had shown, for example, that U-shapes are unnecessary for explanatory learning, but are
necessary for behaviorally correct learning.

Work on the aforementioned problem led to the consideration of an iterative-like learning
model, in which each of a learner’s conjectures may, in addition, depend upon the number
of elements so far presented to the learner. Learners in this new model are strictly more
powerful than traditional iterative learners, yet not as powerful as full explanatory learners.
Can any class of languages learnable in this new model be learned without U-shapes? For
now, this problem is left open.

Keywords Computational learning theory · Counter · Gold-style learning · Inductive
inference · Iterative learning · Iterative-with-counter learning · Language learning ·
Memory limited learning · Non-U-shaped learning · Partly set-driven learning ·
Rearrangement independent learning · Set-driven learning · U-shape · U-shaped learning

1 Introduction

1.1 U-shapes

A U-shape occurs when a learner first learns, then unlearns, and, finally, relearns, some
target concept. This phenomenon has been observed, for example, in children learning the
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use of regular and irregular verbs, e.g., a child first correctly learns that the past tense of
“speak” is “spoke”; then, the child overregularizes and incorrectly uses “speaked”; finally,
the child returns to correctly using “spoke” (Marcus et al. 1992; Plunkett and Marchman
1991; Taatgen and Anderson 2002).

Important questions regarding U-shapes are the following. Are U-shapes an unnecessary
accident of human evolution, or, are there classes of tasks that can be learned with U-shapes,
but not otherwise? That is, are there classes of tasks that are learnable only by returning to
some abandoned correct behavior?

There have been mathematical attempts to answer these questions (Carlucci et al. 2006,
2007a, 2007b; Baliga et al. 2007) in the context of Gold-style language learning from pos-
itive data (Gold 1967; Jain et al. 1999).1 Such models differ from one another in ways de-
scribed hereafter, however, the following is common to all. Infinitely often, a learner is fed
successively longer finite, initial sequences of an infinite sequence of numbers and, possibly,
pauses (#). The set of all such numbers represents a language, and, the infinite sequence,
itself, is called a text for the language. For each finite, initial sequence of a text, the learner
either: outputs a conjecture, or diverges (e.g., goes into an infinite loop). A conjecture may
be either: a grammar (possibly for the language represented by the text), or a ‘?’.

One way in which Gold models differ from one another is in the criteria used to judge
the success of a learner. Examples of models with differing criteria are explanatory learning
(Ex-learning) (Gold 1967; Jain et al. 1999)2 and behaviorally correct learning (Bc-learning)
(Case and Lynes 1982; Jain et al. 1999). In both models, for a learner to be successful,
all but finitely many of the learner’s conjectures must correctly (semantically) identify the
input language. However, Ex-learning has the additional requirement that a learner converge
syntactically to a single conjecture.

In Gold-style learning, a U-shape is formalized as: outputting a semantically correct con-
jecture, then outputting a semantically incorrect conjecture, and, finally, returning to a se-
mantically correct conjecture (Carlucci et al. 2006, 2007a, 2007b; Baliga et al. 2007). As it
turns out, U-shapes are unnecessary for Ex-learning, i.e., every class of languages that can
be Ex-learned can be Ex-learned without U-shapes (Baliga et al. 2007, Theorem 20). On
the other hand, U-shapes are necessary for Bc-learning, i.e., there are classes of languages
that can be Bc-learned with U-shapes, but not without (Fulk et al. 1994, proof of Theorem
4). Thus, in at least some contexts, this seemingly inefficient behavior can actually increase
one’s learning power.3

1.2 Iterative learning

For both Ex-learning and Bc-learning, a learner is free to base a conjecture upon every
element presented to the learner up to that point. Thus, in a sense, an Ex-learner or Bc-
learner can remember every element presented to it. One could argue that such an ability is
beyond that possessed by (most) humans. This calls into question the applicability of Ex-
learning and Bc-learning to modeling human learning. That is, it would seem that any model
of human learning should be memory limited in some respect.

1In this paper, we focus exclusively on language learning from positive data. So, we do not consider, for
example, function learning, nor language learning from informant (Jain et al. 1999).
2Ex-learning is the model that was actually studied by Gold (1967).
3There exist Gold models that lie strictly between Ex and Bc (Case 1999). For nearly every such model
considered, U-shapes are necessary (Carlucci et al. 2007a).
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Iterative learning (It-learning) (Wiehagen 1976; Lange and Zeugmann 1996a; Case et
al. 1999) is a straightforward variation of the Ex-learning model that is memory limited.4 In
this model, each of a learner’s conjectures can depend only upon the learner’s most recent
conjecture and input element. An It-learner can remember elements fed to it by coding
them into its conjectures. However, like an Ex-learner, an It-learner is required to converge
syntactically to a single conjecture. Thus, on any given text, an It-learner can perform such
a coding-trick for only finitely many elements.

Despite these apparent limitations, many useful classes of languages are It-learnable.
For example, the pattern languages (Angluin 1980) are an It-learnable class of languages
with applications to molecular biology (Arikawa et al. 1993; Shimozono et al. 1994; Shi-
nohara and Arikawa 1995). (A pattern language is, by definition, the language generated by
all positive length substitution instances in a pattern, e.g., abXYcbbZXa, where the vari-
ables/nonterminals are depicted in uppercase, and the constants/terminals are depicted in
lowercase.) The pattern languages were first shown to be It-learnable by Lange and Wieha-
gen (1991). Subsequently, this result was extended by Case et al. (1999) who showed that,
for each k, the class formed by taking the union of all choices of k pattern languages is
It-learnable.

There have been previous attempts to determine whether U-shapes are necessary in It-
learning (Jain 2006; Carlucci et al. 2007b). The memory limited aspect of It-learning makes
it more nearly applicable than Ex-learning or Bc-learning to modeling human learning.

Herein (Theorem 2 in Sect. 3), we solve this important open problem by showing that
U-shapes are unnecessary in It-learning, i.e., any class of languages that can be It-learned
can be It-learned without U-shapes.

1.3 Other restricted forms of learning

Two other restricted forms of learning that have been well studied are set-driven learning
(SDEx-learning) and partly set-driven learning (PSDEx-learning) (Wexler and Culicover
1980; Schäfer-Richter 1984; Fulk 1990; Lange and Zeugmann 1996b).5 The SDEx-learning
model requires that a learner output syntactically identical conjectures when fed two dif-
ferent initial sequences with the same content, i.e., listing the same set of numbers. So,
for example, when forming a conjecture, an SDEx-learner cannot consider the number of
elements so far presented to it, or the order in which those elements were presented. The
PSDEx-learning model is similar, except that a learner is required to output identical con-
jectures when fed initial sequences with the same content and length. Thus, when forming
a conjecture, a PSDEx-learner cannot consider the order in which elements were presented
to it, but can consider the number of such elements.

SDEx-learners and It-learners are alike in that neither can consider the number of ele-
ments so far presented to it when forming a conjecture. Furthermore, PSDEx-learners are
like SDEx-learners with just this one restriction lifted. Herein, we consider a similar coun-
terpart to It-learners. That is, we consider a model in which each of a learner’s output con-
jectures can depend only upon the learner’s most recent conjecture, the most recent input
element, and a counter indicating the number of elements so far presented to the learner.
For example, if the learner were fed the sequence

0,1,#,#,0,

4Other memory limited models are considered in (Osherson et al. 1986; Fulk et al. 1994; Case et al. 1999;
Carlucci et al. 2007b).
5PSDEx-learning is also called rearrangement independent learning in the literature (e.g., Lange and Zeug-
mann 1996b).
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then the value of the counter would be 5. Thus, a repetition or pause is treated just like
any other element in determining the value of the counter. We call this model iterative-
with-counter learning (ItCtr-learning). In Sect. 4, we show that ItCtr-learning and SDEx-
learning are incomparable (Theorems 3 and 4), i.e., for each, there is a class of languages
learnable by that one, but not the other. It follows that ItCtr-learning is strictly more pow-
erful than It-learning, yet not as powerful as full Ex-learning.

In an early attempt at showing that U-shapes are unnecessary in It-learning, we obtained
the partial result that U-shapes are unnecessary in It-learning of classes of infinite languages.
Independently, Sanjay Jain obtained the same (partial) result (Jain 2006). Thus, we hypoth-
esize: learning without U-shapes is easier when the learner has access to some source of
infinitude, e.g., the cardinality of the input language. This belief is what led us to consider
the ItCtr-learning model, as every learner in this model has access to a source of infinitude,
i.e., the counter, even when fed a text for a finite language.

Assuming our above hypothesis is correct, it should be easy to show that U-shapes are
unnecessary in ItCtr-learning. Unfortunately, however, this problem has turned out to be
more difficult than we had anticipated. So, for now, it is left open.

1.4 Organization

The remainder of this paper is organized as follows. Section 2, just below, gives notation
and preliminaries. Section 3 proves our main result, namely, that U-shapes are unnecessary
in It-learning. Section 4 explores ItCtr-learning, and, restates, formally, the problem that
this paper leaves open. Section 5 concludes.

2 Notation and preliminaries

Computability-theoretic concepts not explained below are treated in (Rogers 1967). In mat-
ters of notation and terminology, we have, to a large extent, tried to be consistent with (Jain
et al. 1999).

N denotes the set of natural numbers, {0,1,2, . . .}. N?
def= N ∪ {?}. N#

def= N ∪ {#}. Low-
ercase Roman letters, with or without decorations, range over elements of N, unless stated
otherwise. A and L, with or without decorations, range over subsets of N. L ranges over col-
lections of subsets of N. For all A, |A| denotes the cardinality of A. For all finite, nonempty

A, maxA denotes the maximum element of A. max∅ def= −1.
ψ ranges over one-argument partial functions from N to N. For all ψ and x, ψ(x)↓

denotes that ψ(x) converges; ψ(x)↑ denotes that ψ(x) diverges.6 For all ψ , dom(ψ)
def= {x :

ψ(x)↓} and rng(ψ)
def= {y : (∃x)[ψ(x) = y]}. We use ↑ to denote the value of a divergent

computation. λ denotes the empty function, i.e., the everywhere divergent function.
ϕ0, ϕ1, . . . denotes any fixed, acceptable numbering of all one-argument partial com-

putable functions from N to N (Rogers 1967). Φ denotes a fixed Blum complexity measure

for ϕ (Blum 1967). For all p, Wp
def= dom(ϕp). Thus, for all p, Wp is the pth recursively

enumerable set (Rogers 1967). W↑
def= ∅.

6For all one-argument partial functions ψ and x, ψ(x) converges iff there exists y such that ψ(x) = y; ψ(x)

diverges iff there is no y such that ψ(x) = y. If ψ is partial computable, and x is such that ψ(x) diverges,
then one can imagine that a program associated with ψ goes into an infinite loop on input x.
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N
∗
# denotes the set of all finite initial segments of total functions of type N → N#. N

≤ω
#

denotes the set of all (finite and infinite) initial segments of total functions of type N → N#.7

α, β , 	, σ , and τ , with or without decorations, range over elements of N
∗
#. T , with or without

decorations, ranges over total functions of type N → N#.

For all f ∈ N
≤ω
# , content(f )

def= rng(f ) − {#}. For all T and L, T is a text for L
def⇐⇒

content(T ) = L. For all σ , |σ | (pronounced: the length of σ )
def= |dom(σ )|. For all f ∈ N

≤ω
# ,

and all σ , n, and i, f [n](i) and (σ  f )(i) are defined as follows.

f [n](i) def=
{

f (i), if i < n;

↑, otherwise.
(1)

(σ  f )(i)
def=

{
σ(i), if i < |σ |;
f (i − |σ |), otherwise.

(2)

M, with or without decorations, ranges over partial computable functions of type N
∗
# →

N?.8

Definition 1, just below, introduces the Gold-style learning models considered in this
paper. In this definition, Ex, SD, PSD, It, and ItCtr are mnemonic for explanatory, set-
driven, partly set-driven, iterative, and iterative-with-counter, respectively.

Definition 1 For all M and L, (a) through (e) below.

(a) (Gold 1967) M Ex-identifies L ⇔ for all texts T for L, there exist i and p such that
(∀j ≥ i)[M(T [j ]) = p] and Wp = L.

(b) (Wexler and Culicover 1980) M SDEx-identifies L ⇔ M Ex-identifies L, and, for all
	 and σ , if content(	) = content(σ ), then M(	) = M(σ ).

(c) (Schäfer-Richter 1984 and Fulk 1990) M PSDEx-identifies L ⇔ M Ex-identifies L,
and, for all 	 and σ , if |	| = |σ | and content(	) = content(σ ), then M(	) = M(σ ).

(d) (Wiehagen 1976) M It-identifies L ⇔ M Ex-identifies L, and, for all 	, σ , and τ such
that content(	) ∪ content(σ ) ∪ content(τ ) ⊆ L, (i) and (ii) below.
(i) M(	)↓.

(ii) M(	) = M(σ ) ⇒ M(	  τ) = M(σ  τ).
(e) M ItCtr-identifies L ⇔ M Ex-identifies L, and, for all 	, σ , and τ such that

content(	) ∪ content(σ ) ∪ content(τ ) ⊆ L, (i) and (ii) below.
(i) M(	)↓.

(ii) [|	| = |σ | ∧ M(	) = M(σ )] ⇒ M(	  τ) = M(σ  τ).

Definition 2 For all I ∈ {Ex,SDEx,PSDEx, It, ItCtr}, (a) and (b) below.

(a) For all M, I(M) = {L : M I-identifies L}.
(b) I = {L : (∃M)[L ⊆ I(M)]}.

7A total function of type N → N# has exactly one infinite initial segment, namely, itself.
8Such an M is often called an inductive inference machine (Jain et al. 1999). Note that since M ranges
over partial computable functions, it is permitted that M diverge on elements of N

∗
#. In particular, it may

be the case that, for some σ and τ , M(σ )↑, yet M(σ  τ)↓. Also note that, for any Ex-identifiable class of
languages L (see Definition 1(a)), there exists a total learner M such that M Ex-identifies L (Jain et al. 1999,
Proposition 4.15).
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Definition 3, just below, formalizes the notion of U-shape. In part (b) of this definition,
NU is mnemonic for non-U-shaped.

Definition 3 For all I ∈ {Ex,SDEx,PSDEx, It, ItCtr}, (a) and (b) below.

(a) For all M, L, and texts T for L, M exhibits a U-shape on T ⇔ there exist i, j , and k

such that i < j < k, {M(T [i]),M(T [j ]),M(T [k])} ⊂ N, and

WM(T [i]) = L ∧ WM(T [j ]) �= L ∧ WM(T [k]) = L. (3)

(b) NUI = {L : (∃M)[L ⊆ I(M) ∧ (∀L ∈ L)[M does not exhibit a U-shape on any text
for L]]}.

Clearly, for all I as above, NUI ⊆ I .
In some parts of the literature (e.g., Carlucci et al. 2007b), an iterative learner is given a

different formulation from that of Definition 1(d). Specifically, in (Carlucci et al. 2007b),
such a learner is defined as: a pair consisting of a partial computable function of type
N? × N# → N? and an initial conjecture. The two arguments of the partial computable func-
tion represent, respectively, the most recent conjecture (where, initially, this is the second
element of the pair) and the most recent input element. The equivalence of the formulation
of Definition 1(d) and that of (Carlucci et al. 2007b) is given by Propositions 1 and 2 below.
Furthermore, these propositions provide algorithmic translations between the two formula-
tions that preserve non-U-shapedness.

We prefer our formulation of Definition 1(d) to that of (Carlucci et al. 2007b) since it
makes the partial function type of the learner match that of other models, e.g., Ex. We further
note an interesting similarity between iterative learners of either kind and an automaton with
a potentially infinite set of states, corresponding to the learner’s conjectures. It was thinking
of iterative learners in this way, and the Myhill-Nerode Theorem (Davis et al. 1994), that led
us to formulate iterative learners as in Definition 1(d).

Definition 4 Suppose that M is a partial computable function of type N? × N# → N?, and
that p0 ∈ N is fixed. Further suppose that L is fixed, and that T is a text for L. For all i, let
pi+1 = M(pi, T (i)). Then, (a) and (b) below.

(a) (Wiehagen 1976)9 (M,p0) It-identifies L from T ⇔ (i) and (ii) below.
(i) For all i, M(pi, T (i))↓.

(ii) There exists i such that (∀j ≥ i)[pj = pi ∈ N] and Wpi
= L.

(b) (M,p0) exhibits a U-shape on T ⇔ there exist i, j , and k such that i < j < k,
{pi,pj ,pk} ⊂ N, and

Wpi
= L ∧ Wpj

�= L ∧ Wpk
= L. (4)

Proposition 1 For all M, there exists a partial computable function M of type N? × N# →
N? and p0 ∈ N satisfying the following. Let L ∈ It(M) be fixed, and let T be a text for L.
Then, (a) through (c) below.

(a) For all i, let pi+1 be as in Definition 4 for M, p0, and T . Then, for all i, if M(T [i]) ∈ N,
then pi ∈ N and Wpi

= WM(T [i]).

9See also (Carlucci et al. 2007b, Definition 6).
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(b) If M does not exhibit a U-shape on T , then (M,p0) does not exhibit a U-shape on T .
(c) (M,p0) It-identifies L from T .

Proof By 1-1 s-m-n (Rogers 1967), there exists a 1-1, computable function f : N
∗
# → N

such that, for all σ ,

Wf (σ) =
{

WM(σ ), if M(σ ) ∈ N;

∅, otherwise.
(5)

For all σ and x ∈ N#, let

M(f (σ ), x) =
⎧⎨
⎩

↑, if (∗) M(σ )↑ ∨ M(σ  x)↑;

f (σ  x), if ¬(∗) ∧ M(σ  x) �= M(σ );

f (σ), otherwise.

(6)

Let L ∈ It(M) be fixed, and let T be a text for L. Let p0 = f (λ). For all i, let pi+1 =
M(pi, T (i)). The remainder of the proof is to show that, for all i, (i) through (iii) below.

(i) M(pi, T (i))↓.
(ii) There exists σ such that pi = f (σ) and M(T [i]) = M(σ ).

(iii) If M(T [i + 1]) = M(T [i]), then pi+1 = pi .

(a) through (c) in the statement of the proposition follow easily from (i) through (iii), just
above, and from the definition of f . Specifically: (a) follows from (i) and (ii), and from the
definition of f ; (b) follows from (a); and (c) follows from (a) and (iii).

For the case when i = 0, we give only the proof that (i) holds; the proofs that (ii) and (iii)
hold are similar.

To show that M(p0, T (0))↓: Since p0 = f (λ) and f is 1-1, there is exactly one σ such
that f (σ) = p0, i.e., σ = λ. Thus, if it were the case that M(p0, T (0))↑, then, by the def-
inition of M, either M(λ)↑ or M(λ  T (0)) = M(T (0))↑. But, both λ and T (0) are initial
segments of T , a text for a language in It(M). Thus, it must be the case that both M(λ)↓
and M(T (0))↓.

Now, suppose, inductively, that (i) through (iii) hold for i. Let σ be such that pi = f (σ)

and M(T [i]) = M(σ ).
To show that (i) holds for i + 1: Since T is a text for a language in It(M), M(T [i])↓

and M(T [i + 1])↓. From the fact that M(T [i]) = M(σ ), it follows that M(T [i + 1]) =
M(σ  T (i)). Thus, M(σ )↓ and M(σ  T (i))↓, and, therefore, M(pi, T (i))↓.

To show that (ii) holds for i + 1: By reasoning from the just previous paragraph, M(σ )↓
and M(σ  T (i))↓. If M(σ  T (i)) �= M(σ ), then pi+1 = f (σ  T (i)), and, as already
mentioned, M(T [i + 1]) = M(σ  T (i)). On the other hand, if M(σ  T (i)) = M(σ ), then
pi+1 = f (σ), and M(T [i + 1]) = M(σ  T (i)) = M(σ ).

To show that (iii) holds for i+1: Suppose that M(T [i+1]) = M(T [i]). Since M(T [i]) =
M(σ ), M(σ  T (i)) = M(σ ). Thus, pi+1 = f (σ) = pi . �

Proposition 2 Let M be a partial computable function of type N? × N# → N?, and let
p0 ∈ N? be fixed. Then, there exists M satisfying the following. Suppose that L is fixed, and
that T is a text for L. Further suppose that (M,p0) It-identifies L from T . Then, (a) through
(c) below.

(a) For all i, let pi+1 be as in Definition 4 for M, p0, and T . Then, for all i, if pi ∈ N, then
M(T [i]) ∈ N and WM(T [i]) = Wpi

.
(b) If (M,p0) does not exhibit a U-shape on T , then M does not exhibit a U-shape on T .



70 Mach Learn (2008) 72: 63–88

(c) M It-identifies L from T .

Proof Let M be such that M(λ) = p0, and, for all 	, and all x ∈ N#,

M(	  x) = M(M(	), x). (7)

It is easy to verify that M has the desired properties. �

3 It = NUIt

In this section, we prove our main result (Theorem 2), namely, that U-shapes are unnecessary
in It-learning. We give some discussion of the structure of the proof following some neces-
sary results and definitions.

Definition 5, just below, introduces a notion that we call canniness. Intuitively, an It-
learner that is canny does not change its mind excessively, and, therefore, is much easier to
reason about.

Definition 5 For all M, M is canny ⇔ for all σ , (a) through (c) below.

(a) M(σ )↓ ⇒ M(σ ) ∈ N, i.e., M never outputs ?.
(b) M(σ  #) = M(σ ).
(c) For all x ∈ N, if M(σ  x) �= M(σ ), then, for all τ ⊇ σ  x, M(τ  x) = M(τ ).

Theorem 1, just below, shows that, for any L ∈ It, there exists a canny learner that It-
identifies every language in L. This fact is used in the proof of Theorem 2.

Theorem 1 For all L ∈ It, there exists M′ such that L ⊆ It(M′) and M′ is canny.

The proof of Theorem 1 is a simulation argument. Given a class of languages L ∈ It, we fix
a learner M such that L ⊆ It(M). Then, we construct M′ from M so that L ⊆ It(M′) and
M′ satisfies (a) through (c) in Definition 5. M′ operates, in part, by simulating M, but not
necessarily on the same inputs fed to M′.

The construction of M′ is relatively straightforward (see (9) below). The difficulty comes
in showing that L ⊆ It(M′). In this regard, we fix L ∈ L and T a text for L. Then, from
T , we construct another text T ′ for L. We show that M′ It-identifies L from T , in part, by
showing that the conjecture to which M′ converges on T is semantically equivalent to that
of M on T ′.

Proof of Theorem 1 Let L ∈ It be fixed. Let M be such that L ⊆ It(M). By 1-1 s-m-n
(Rogers 1967), there exists a 1-1, computable function f : N

∗
# → N such that, for all σ ,

Wf (σ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

WM(σ#m), where m is least such that

M(σ  #m+1) = M(σ  #m) ∈ N,

if such an m exists;

∅, otherwise.

(8)
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M′ is such that M′(λ) = f (λ), and, for all 	 and σ , and all x ∈ N#, [M′(	)↑ ⇒ M′(	x)↑]
and M′(	) = f (σ) ⇒ M′(	  x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

↑, if (∗) x �∈ content(σ ) ∪ {#}
∧ [M(σ )↑ ∨ M(σ  #)↑ ∨ M(σ  #  x)↑];

f (σ  #  x), if ¬(∗) ∧ x �∈ content(σ ) ∪ {#}
∧ [M(σ  #) �= M(σ ) ∨ M(σ  #  x) �= M(σ )];

f (σ), otherwise.

(9)

Clearly, M′ satisfies (a) and (b) in Definition 5. That M′ satisfies (c) in Definition 5 is demon-
strated by Claim 2 below. That L ⊆ It(M′) is demonstrated by Claims 11 and 13 below. �

Claim 1 Let T be any text. Then, (a) and (b) below.

(a) For all i, j , σ , and τ , if M′(T [i]) = f (σ), M′(T [j ]) = f (τ), and i ≤ j , then σ ⊆ τ .
(b) For all i and σ , if M′(T [i]) = f (σ), then content(σ ) ⊆ content(T [i]).

Proof of Claim Easily verifiable from the definition of M′. �

Claim 2 Let T be any text. For all i, if T (i) ∈ N and M′(T [i + 1]) �= M′(T [i]), then, for
all j > i such that T (j) = T (i), M′(T [j + 1]) = M′(T [j ]).

Proof of Claim Let T be any text, and let i be such that T (i) ∈ N and M′(T [i + 1]) �=
M′(T [i]). If M′(T [i + 1])↑, then, clearly, (∀j > i)[M′(T [j ])↑], and the claim is satisfied.
So, suppose that M′(T [i + 1])↓. Let σ be such that M′(T [i]) = f (σ). Clearly, by the defi-
nition of M′, M′(T [i + 1]) = f (σ  #  T (i)). Let j be such that j > i and T (j) = T (i). If
M′(T [j ])↑, then, similarly, the claim is satisfied. So, let τ be such that M′(T [j ]) = f (τ).
By Claim 1(a), σ  #  T (i) ⊆ τ , and, thus, T (j) = T (i) ∈ content(τ ). Clearly, then, by the
definition of M′, M′(T [j + 1]) = f (τ). �

Let L ∈ L be fixed, and let T be a fixed text for L.

Claim 3 For all i, M′(T [i])↓.

Proof of Claim It follows from Claim 1(b) that condition (∗) never applies as M′ is fed T ,
and, thus, for all i, M′(T [i])↓. �

For all i, let σi be such that

M′(T [i]) = f (σi). (10)

By Claim 3, such σi exist. Let k0 = 0, and let

{k1 < k2 < · · ·} = {k > 0 : T (k − 1) �∈ content(σk−1) ∪ {#}}. (11)

Let η ∈ N∪{ω} be the order type (Rogers 1967; Sierpinski 1965; Kuratowski and Mostowski
1967) of (11). Thus, η is equal to the largest subscript occurring on the left hand side of (11),
if (11) is finite; η = ω, if (11) is infinite. Let k1+η = ω. (Recall: 1 + ω = ω.)

Claim 4 (∀i < 1 + η)(∀)[ki ≤  < ki+1 ⇒ σ = σki
].
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Proof of Claim By way of contradiction, suppose that i < 1 + η, and let  be least such that
ki ≤  < ki+1 and σ �= σki

. Clearly,  > ki . Furthermore, by the definition of M′, it must be
the case that T ( − 1) �∈ content(σ−1) ∪ {#}. If ki+1 < ω, then ki − 1 <  − 1 < ki+1 − 1,
which contradicts the choice of ki+1. On the other hand, if ki+1 = ω, then kη − 1 = ki − 1 <

 − 1, which contradicts the choice of η. �

Let T ′ be such that, for all i,

T ′(2i) = #; (12)

T ′(2i + 1) =
{

T (ki+1 − 1), if i < η;

#, otherwise.
(13)

Claim 5 T ′ is a text for L.

Proof of Claim Clearly, content(T ′) ⊆ content(T ). So, suppose, by way of contradiction,
that content(T ′) ⊂ content(T ). Let  be least such that T () �∈ content(T ′) ∪ {#}. Since 

is least such, clearly, T () �∈ content(T []), and, by Claim 1(b), T () �∈ content(σ). Thus,
there must exist i < η such that ki+1 − 1 = . But then, clearly, T ′(2i + 1) = T (ki+1 − 1) =
T ()—a contradiction. �

Claim 6 For all i, M′(T ′[i])↓.

Proof of Claim The reasoning is, essentially, the same as that of Claim 3. �

For all i, let σ ′
i be such that

M′(T ′[i]) = f (σ ′
i ). (14)

By Claim 6, such σ ′
i exist.

Claim 7 For all i, σ ′
2i+1 = σ ′

2i .

Proof of Claim Immediate by the definition of M′ and the fact that, for all i, T ′(2i) = #. �

Claim 8

(a) (∀i < 1 + η)[σ ′
2i = σki

].
(b) (∀i < η)[T ′(2i + 1) �∈ content(σ ′

2i+1) ∪ {#}].

Proof of Claim The proof is by simultaneous induction. Clearly, (a) holds in the case when
i = 0, since σk0 = σ0 = λ. So, suppose, inductively, that (a) holds for i, i.e., σ ′

2i = σki
. If

i < η, then to see that (b) holds for i:

T ′(2i + 1) = T (ki+1 − 1) {by the definition of T ′}
�∈ content(σki+1−1) ∪ {#} {by the choice of ki+1}
= content(σki

) ∪ {#} {by Claim 4}
= content(σ ′

2i ) ∪ {#} {by (a) for i}
= content(σ ′

2i+1) ∪ {#} {by Claim 7}.
If i + 1 < 1 + η, then to see that (a) holds for i + 1, consider the following cases.
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CASE M(σki+1−1  #) �= M(σki+1−1) ∨ M(σki+1−1  #  T (ki+1 − 1)) �= M(σki+1−1). By
Claim 4, this case is equivalent to

M(σki
 #) �= M(σki

) ∨ M(σki
 #  T (ki+1 − 1)) �= M(σki

); (15)

by (a) for i and the definition of T ′, it is equivalent to

M(σ ′
2i  #) �= M(σ ′

2i ) ∨ M(σ ′
2i  #  T ′(2i + 1)) �= M(σ ′

2i ); (16)

and by Claim 7, it is equivalent to

M(σ ′
2i+1  #) �= M(σ ′

2i+1) ∨ M(σ ′
2i+1  #  T ′(2i + 1)) �= M(σ ′

2i+1). (17)

Thus,

σ ′
2i+2 = σ ′

2i+1  #  T ′(2i + 1) {by the definition of M′, (b) for i,

and (17)}
= σ ′

2i  #  T ′(2i + 1) {by Claim 7}
= σki

 #  T (ki+1 − 1) {by (a) for i and the definition of T ′}
= σki+1−1  #  T (ki+1 − 1) {by Claim 4}
= σki+1 {by the def. of M′ and the case}.

CASE M(σki+1−1  #) = M(σki+1−1) ∧ M(σki+1−1  #  T (ki+1 − 1)) = M(σki+1−1). By
Claim 4, this case is equivalent to

M(σki
 #) = M(σki

) ∧ M(σki
 #  T (ki+1 − 1)) = M(σki

); (18)

by the (a) for i and the definition of T ′, it is equivalent to

M(σ ′
2i  #) = M(σ ′

2i ) ∧ M(σ ′
2i  #  T ′(2i + 1)) = M(σ ′

2i ); (19)

and by Claim 7, it is equivalent to

M(σ ′
2i+1  #) = M(σ ′

2i+1) ∧ M(σ ′
2i+1  #  T ′(2i + 1)) = M(σ ′

2i+1). (20)

Thus,

σ ′
2i+2 = σ ′

2i+1 {by the definition of M′ and (20)}
= σ ′

2i {by Claim 7}
= σki

{by (a) for i}
= σki+1−1 {by Claim 4}
= σki+1 {by the definition of M′ and the case}. �

Claim 9 For all i < 1 + η, M(T ′[2i]) = M(σ ′
2i ).

Proof of Claim Clearly, the claim holds in the case when i = 0. So, let i be such that i +1 <

1 + η and suppose, inductively, that M(T ′[2i]) = M(σ ′
2i ). Consider the following cases.
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CASE M(σ ′
2i+1  #) �= M(σ ′

2i+1) ∨ M(σ ′
2i+1  #  T ′(2i + 1)) �= M(σ ′

2i+1). Then,

M(T ′[2i + 2])
= M(T ′[2i]  #  T ′(2i + 1)) {by the definition of T ′}
= M(σ ′

2i  #  T ′(2i + 1)) {by the induction hypothesis}
= M(σ ′

2i+1  #  T ′(2i + 1)) {by Claim 7}
= M(σ ′

2i+2) {by the definition of M′,
Claim 8(b), and the case}.

CASE M(σ ′
2i+1  #) = M(σ ′

2i+1) ∧ M(σ ′
2i+1  #  T ′(2i + 1)) = M(σ ′

2i+1). Then,

M(T ′[2i + 2])
= M(T ′[2i]  #  T ′(2i + 1)) {by the definition of T ′}
= M(σ ′

2i  #  T ′(2i + 1)) {by the induction hypothesis}
= M(σ ′

2i+1  #  T ′(2i + 1)) {by Claim 7}
= M(σ ′

2i+1) {by the case}
= M(σ ′

2i+2) {by the def. of M′ and the case}.
�

Claim 10 If η < ω, then, for all m,

M(σkη  #m+1) �= M(σkη  #m) ⇔ M(T ′[2η + m + 1]) �= M(T ′[2η + m]). (21)

Proof of Claim Suppose that η < ω. Then, for all m,

M(σkη  #m+1) �= M(σkη  #m)

⇔ M(σ ′
2η  #m+1) �= M(σ ′

2η  #m) {by Claim 8(a)}
⇔ M(T ′[2η]  #m+1) �= M(T ′[2η]  #m) {by Claim 9}
⇔ M(T ′[2η + m + 1]) �= M(T ′[2η + m]) {by the definition of T ′}. �

Claim 11 If η < ω, then M′ It-identifies L from T .

Proof of Claim Suppose that η < ω. By Claim 4, for all  ≥ kη , σ = σkη .
Let m be least such that M converges to M(T ′[2η+m]) on T ′. Thus, M(T ′[2η+m]) ∈ N

and WM(T ′[2η+m]) = L. By Claim 10, m is least such that M(σkη #m+1) = M(σkη #m). Thus,
Wf (σkη ) = WM(σkη #m). Furthermore,

WM(σkη #m) = WM(σ ′
2η

#m) {by Claim 8(a)}
= WM(T ′[2η]#m) {by Claim 9}
= WM(T ′[2η+m]) {by the definition of T ′}
= L {by the choice of m}. �

Claim 12 For all i < η,

σki+1 �= σki
⇔ [M(T ′[2i + 1]) �= M(T ′[2i]) ∨ M(T ′[2i + 2]) �= M(T ′[2i])]. (22)
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Proof of Claim For all i < η,

σki+1 �= σki⇔ σki+1 �= σki+1−1 {by Claim 4}
⇔ M(σki+1−1  #) �= M(σki+1−1)

∨ M(σki+1−1  #  T (ki+1 − 1)) {by the def. of M′ and
�= M(σki+1−1) the choice of ki+1}

⇔ M(σki
 #) �= M(σki

)

∨ M(σki
 #  T (ki+1 − 1)) �= M(σki

) {by Claim 4}
⇔ M(σ ′

2i  #) �= M(σ ′
2i )

∨ M(σ ′
2i  #  T (ki+1 − 1)) �= M(σ ′

2i ) {by Claim 8(a)}
⇔ M(T ′[2i]  #) �= M(T ′[2i])

∨ M(T ′[2i]  #  T (ki+1 − 1)) �= M(T ′[2i]) {by Claim 9}
⇔ M(T ′[2i + 1]) �= M(T ′[2i])

∨ M(T ′[2i + 2]) �= M(T ′[2i]) {by the def. of T ′}. �

Claim 13 If η = ω, then M′ It-identifies L from T .

Proof of Claim Suppose that η = ω. Let i be such that M converges to M(T ′[2i]) on T ′.
Thus, M(T ′[2i]) ∈ N and WM(T ′[2i]) = L. By Claim 12, for all j ≥ i, σkj+1 = σkj

. It then
follows from Claim 4 that, for all  ≥ ki , σ = σki

.
Consider the behavior of M′ on T [ki+1]. By the choice of ki+1, T (ki+1 − 1) �∈

content(σki+1−1) ∪ {#}. Thus, since σki+1 = σki
= σki+1−1, it must be the case that

M(σki+1−1  #) = M(σki+1−1)

∧ M(σki+1−1  #  T (ki+1 − 1)) = M(σki+1−1).
(23)

Furthermore,

Wf (σki
) = Wf (σki+1−1) {by Claim 4}
= WM(σki+1−1) {by the definition of f and (23)}
= WM(σki

) {by Claim 4}
= WM(σ ′

2i
) {by Claim 8(a)}

= WM(T ′[2i]) {by Claim 9}
= L {by the choice of i}. �

Definition 6, just below, introduces notation used in the proof of Theorem 2. In this
definition, C is mnemonic for cycle; B is mnemonic for branch.

Definition 6 For all M and σ , (a) through (d) below.

(a) CM(σ ) = {x ∈ N# : M(σ  x)↓ = M(σ )↓}.
(b) BM(σ ) = {x ∈ N# : M(σ  x)↓ �= M(σ )↓}.
(c) B∩

M(σ ) = ⋂
0≤i≤|σ | BM(σ [i]).

(d) CBM(σ ) = (
⋃

0≤i<|σ | CM(σ [i])) ∩ BM(σ ).

Roughly, cycling on an input element corresponds to ignoring that element; whereas
branching on an input element corresponds to memorizing that element. In this sense, if
M(σ ) is the most recent conjecture of some learner M, then the elements of B∩

M(σ ) are
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those elements of BM(σ ) that M can be sure that it has not yet seen; whereas the elements
of CBM(σ ) are those elements of BM(σ ) for which M cannot be so sure.

Lemmas 1 through 3, just below, are used in the proof of Theorem 2.

Lemma 1 Suppose that M and L are such that L ⊆ It(M) and M is canny. Suppose that L

and σ are such that L ∈ L and content(σ ) ⊆ L. Suppose, finally, that L ∩ B∩
M(σ ) = ∅ and

that L ∩ CBM(σ ) is finite. Then, WM(σ ) = L.

Proof (Sketch) Suppose the hypotheses. Let A = L ∩ CBM(σ ). Clearly,

(∀x ∈ A)(∃	 ⊂ σ)[x ∈ CM(	)]. (24)

Furthermore, since L ∩ B∩
M(σ ) = ∅,

L − A ⊆ CM(σ ). (25)

Consider a text T for L described, informally, as follows. T looks, initially, like σ with the
elements of A interspersed. The elements of A are positioned in T in such a way that M
does not make a mind-change when encountering these elements. The 	 in (24) make this
possible.10 Beyond this initial sequence resembling σ , T consists of the elements of L − A

and, possibly, pauses (#), in any order. Clearly, by (25) and the fact that M is canny, M
converges to M(σ ) on such a text T . Thus, it must be the case that WM(σ ) = L. �

Lemma 2 Suppose that M, L, L, and σ are as in Lemma 1. Suppose, in addition, that L is
finite. Then, for all τ such that [σ ⊆ τ ∧ content(τ ) ⊆ L], WM(τ ) = L.

Proof Suppose the hypotheses, and let τ be such that σ ⊆ τ and content(τ ) ⊆ L. Since L ∩
B∩

M(σ ) = ∅ and σ ⊆ τ , clearly, L ∩ B∩
M(τ ) = ∅. Furthermore, since L is finite, L ∩ CBM(τ )

is finite. Thus, by Lemma 1, WM(τ ) = L. �

Lemma 3 Suppose that M and L are such that L ⊆ It(M). Suppose that L and σ are such
that L ∈ L and content(σ ) ⊆ L. Suppose, finally, that L ∩ BM(σ ) is infinite. Then, for all
texts T for L, and all i, there exists j ≥ i such that T (j) ∈ BM(σ ).

Proof Suppose the hypotheses. By way of contradiction, let T and i be such that, for all
j ≥ i, T (j) �∈ BM(σ ). Then it must be the case that L ∩ BM(σ ) ⊆ {T (0), . . . , T (i − 1)} ∩
BM(σ ). But since L ∩ BM(σ ) is infinite and {T (0), . . . , T (i − 1)} ∩ BM(σ ) is finite, this is
a contradiction. �

Theorem 2, just below, is our main result.

Theorem 2 It = NUIt.

10For example, suppose that x ∈ A. Let 	 ⊂ σ be such that x ∈ CM(	). Then, x is inserted into σ after 	, but
before the remainder of σ . Since x ∈ CM(	), M(	  x)↓ = M(	)↓. Thus, M does not make a mind-change
when encountering x. Of course, it could be the case that more than one such x corresponds to a single 	.
But it is straightforward to show that this case is handled, as well.
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The proof of Theorem 2 is a simulation argument. Given a class of languages L ∈ It, we
fix a learner M such that L ⊆ It(M). By Theorem 1, M may be assumed canny. We construct
M′ from M so that L ⊆ It(M′) and M′ does not exhibit a U-shape on any text for a language
in L. M′ operates, in part, by simulating M, but not necessarily on the same inputs fed to
M′.

Suppose L ∈ It(M). For M to exhibit a U-shape on some text T for L, there must be
some prefix σ of T and w ∈ L such that

WM(σ ) = L ∧ WM(σw) �= L.11 (26)

Thus, for such a pair (σ,w), we have

w ∈ WM(σ ) ∩ BM(σ ). (27)

The set of all pairs, (σ,w), as in (27), is recursively enumerable. Thus, M′ can, in the limit,
discover the existence of each such pair. Furthermore, these pairs serve as indicators that
perhaps M is in the midst of a U-shape. By detecting these pairs, M′ can avoid blindly
following M into a U-shape.

Proof of Theorem 2 Clearly, NUIt ⊆ It. Thus, it suffices to show that It ⊆ NUIt. Let L ∈ It
be fixed. Let M be such that L ⊆ It(M). Without loss of generality, assume that M is canny.
Let pM be such that

ϕpM = M. (28)

Let e : N
∗
# × N → N be a partial computable function such that, for all σ , (a) through (c)

below.

(a) dom(e(σ, ·)) is an initial segment of N.
(b) e(σ, ·) is 1-1.
(c) rng(e(σ, ·)) = WM(σ ).

Clearly, such an e exists. By Kleene’s Recursion Theorem (Rogers 1967, p. 214, Prob-
lem 11-4), there exists a ϕ-program p0 with the following properties. For all σ , m, and α,
the elements of Wp0 of the form 〈σ,m,α, ·〉 are chosen by the following staged construction.
This construction is executed in a dove-tailing manner (Rogers 1967, p. 60), for each choice
of σ , m, and α.

STAGE s ≥ 0. If e(σ, s)↓, then let x = e(σ, s), and let

A = {w : 〈σ,m,α,w〉 is listed in Wp0

by the beginning of stage s} ∪ {x}. (29)

If each of (a) through (d) below is satisfied, then list 〈σ,m,α,x〉 in Wp0 and proceed to
stage s + 1; otherwise, go into an infinite loop thereby adding no more elements of the
form 〈σ,m,α, ·〉 to Wp0 .

(a) e(σ, s)↓.
(b) M(σ  x)↓.
(c) x ∈ CM(σ ) ∪ CBM(σ ).

11Clearly, w ∈ L ∪ {#}. However, since M is canny, for all σ , M(σ  #) = M(σ ). Thus, w �= #.
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(d) (∀w ∈ A)[w ∈ CBM(σ ) ⇒ w ≤ m] ∨ (∀τ)[[σ ⊂ τ ∧ content(τ ) ⊆ A ∧ |τ | ≤
|A|] ⇒ A ⊆ {w : 〈τ,0, λ,w〉 ∈ Wp0}].

By 1-1 s-m-n (Rogers 1967), there exists a 1-1, computable function f : N
∗
# × N × N

∗
# → N

such that, for all σ , m, and α,

Wf (σ,m,α) = {w : 〈σ,m,α,w〉 ∈ Wp0}. (30)

Claim 1

(a) For all σ , m, and α, Wf (σ,m,α) ⊆ WM(σ ).
(b) For all σ , m, n, and α, if m ≤ n, then Wf (σ,m,α) ⊆ Wf (σ,n,α).
(c) For all σ , m, α, and β , Wf (σ,m,α) = Wf (σ,m,β).

Proof of Claim We give only the proof of (a); the proofs of (b) and (c) are similar. Clearly,
for all σ , m, and α,

{w : 〈σ,m,α,w〉 ∈ Wp0} ⊆ rng(e(σ, ·)) = WM(σ ). (31)

Thus, for all σ , m, and α,

Wf (σ,m,α) = {w : 〈σ,m,α,w〉 ∈ Wp0} {by (30)}
⊆ WM(σ ) {by (31)}. �

Let P be such that, for all σ and m, and all x ∈ N#, P (σ,m,x) ⇔ x �= # and

(∃w)[ΦM(σ )(w) ≤ x ∧ ΦpM(σ  w) ≤ x ∧ w ∈ CBM(σ ) ∧ m < w ≤ x]. (32)

Note that P is a computable predicate. Let M′ be such that M′(λ) = f (λ,0, λ), and, for all
	, σ , m, and α, and all x ∈ N ∪ {#}, if M′(	)↑, then M′(	  x)↑; furthermore, if M′(	) =
f (σ,m,α), then M′(	  x) is:

↑, if (i) M(σ )↑ ∨ M(σ  x)↑ ∨ M(σ  α)↑ ∨ M(σ  α  x)↑;
f (σ  α  x, 0, λ ), if (ii) ¬(i) ∧ [x ∈ B∩

M(σ ) ∨ [x ∈ CBM(σ ) ∧ x > m]];
f (σ, m, α  x), if (iii) ¬(i) ∧ x ∈ CBM(σ  α) ∧ x ≤ m;
f (σ, x, λ ), if (iv) ¬(i) ∧ x ∈ CM(σ  α) ∧ P (σ,m,x) ∧ α = λ;
f (σ  α, 0, λ ), if (v) ¬(i) ∧ x ∈ CM(σ  α) ∧ P (σ,m,x) ∧ α �= λ;
f (σ, m, α ), if (vi) ¬(i) ∧ x ∈ CM(σ  α) ∧ ¬P (σ,m,x).

Let L ∈ L be fixed, and let T be a fixed text for L.

Claim 2 For all i, M′(T [i])↓.

Proof of Claim Clearly, for all i, σ , m, and α, if M′(T [i]) = f (σ,m,α), then content(σ ) ∪
content(α) ⊆ content(T [i]) ⊆ L. It follows that condition (i) never applies as M′ is fed T ,
and, thus, for all i, M′(T [i])↓. �

For all i, let σi , mi , and αi be such that

M′(T [i]) = f (σi,mi,αi). (33)
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By Claim 2, such σi , mi , and αi exist.

Claim 3 For all i, (a) through (e) below.

(a) σi  αi ⊆ σi+1  αi+1 ⊆ σi  αi  T (i).
(b) If T (i) ∈ BM(σi  αi), then σi+1  αi+1 = σi  αi  T (i).
(c) If T (i) ∈ B∩

M(σi), then σi+1 = σi  αi  T (i).
(d) If σi = σi+1, then mi ≤ mi+1.
(e) M(T [i])↓ = M(σi  αi)↓.

Proof of Claim (a) through (d) are easily verifiable from the definition of M′. (e) follows
from (a) and (b). �

Claim 4 There exists i such that, for all j ≥ i, condition (vi) applies in calculating
M′(T [j + 1]).

Proof of Claim Suppose, by way of contradiction, that one or more of conditions (i) through
(v) applies infinitely often as M′ is fed T . By Claim 2, condition (i) never applies as M′ is
fed T . Also, note that, for all i, if condition (v) applies in calculating M′(T [i + 1]), then
αi �= λ and αi+1 = λ. Furthermore, for all i, if αi = λ and αi+1 �= λ, then condition (iii)
applies in calculating M′(T [i + 1]). Thus, if condition (v) applies infinitely often, then it
must also be the case that condition (iii) applies infinitely often. Therefore, it suffices to
consider the following cases.

CASE condition (iii) applies infinitely often. Then, for infinitely many i, T (i) ∈ BM(σi 
αi). Furthermore, by Claim 3(e), for infinitely many i, T (i) ∈ BM(T [i]). Thus, M does
not converge on T —a contradiction.
CASE condition (ii) applies infinitely often, but condition (iii) applies only finitely often.
Let i be such that, for all j ≥ i, condition (iii) does not apply in calculating M′(T [j +
1]). Let j be such that j ≥ i and αj = λ. Since condition (ii) applies infinitely often,
such a j must exist.
Clearly, by the definition of M′,

(∀k ≥ j)[αk = λ]. (34)

Since condition (ii) applies infinitely often, for infinitely many k ≥ j ,

T (k) ∈ BM(σk)

= BM(σk  αk) {by (34)}
= BM(T [k]) {by Claim 3(e)}.

Thus, M does not converge on T —a contradiction.
CASE condition (iv) applies infinitely often, but conditions (ii) and (iii) apply only finitely
often. Let i be such that, for all j ≥ i, neither condition (ii) nor (iii) applies in calculating
M′(T [j +1]). Let j be such that j ≥ i and αj = λ. Since condition (iv) applies infinitely
often, such a j must exist.
Clearly, by the definition of M′,

(∀k ≥ j)[σk = σj ∧ αk = λ]. (35)
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Furthermore, for all k ≥ j ,

M(T [k]) = M(σk  αk) {by Claim 3(e)}
= M(σj ) {by (35)}.

Thus, M converges to M(σj ) on T , and, therefore, WM(σj ) = L. Since condition (iv)
applies infinitely often, it must be the case that WM(σj ) ∩ CBM(σj ) is infinite. Thus,
L ∩ CBM(σj ) is infinite. By Lemma 3, there exists k ≥ j such that T (k) ∈ BM(σj ).
Thus, there exists k ≥ j such that T (k) ∈ BM(σk  αk). But then, clearly, condition (ii)
or (iii) applies in calculating M′(T [k + 1])—a contradiction.

�

Henceforth, let k1 be least such that

(∀i ≥ k1)[condition (vi) applies in calculating M′(T [i + 1])]. (36)

By Claim 4, such a k1 exists.

Claim 5 For all i ≥ k1, (a) through (g) below.

(a) σi = σk1 .
(b) mi = mk1 .
(c) αi = αk1 .
(d) T (i) ∈ CM(σk1) ∪ CBM(σk1).
(e) T (i) ∈ CBM(σk1) ⇒ T (i) ≤ mk1 .
(f) ¬P (σk1 ,mk1 , T (i)).
(g) M′(T [i]) = M′(T [k1]).

Proof of Claim (a) through (f) follow from the definition of M′ and the choice of k1. (g)
follows from (a) through (c). �

Claim 6 L ∩ B∩
M(σk1) = ∅.

Proof of Claim By way of contradiction, let x be such that x ∈ L∩B∩
M(σk1). By Claim 5(d),

there exists i < k1 such that T (i) = x. Clearly, x ∈ B∩
M(σi). Thus, by Claim 3(c), it must be

the case that x ∈ content(σk1). But this contradicts the assumption that M is canny. �

Henceforth, let k0 be least such that

L ∩ B∩
M(σk0) = ∅. (37)

By Claim 6, such a k0 exists.

Claim 7 For all i < k0, L �⊆ WM′(T [i]).

Proof of Claim Let i be such that i < k0. By the choice of k0, there exists x such that
x ∈ L ∩ B∩

M(σi). Since x ∈ B∩
M(σi), clearly, by the definition of f , x �∈ WM′(T [i]). �

Claim 8 If L is finite, then, for all σ ′ such that [σk0 ⊆ σ ′ ∧ content(σ ′) ⊆ L], (a) and (b)
below.
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(a) WM(σ ′) = L.
(b) WM(σ ′) ∩ B∩

M(σ ′) = ∅.

Proof of Claim (a) is immediate by Lemma 2. (b) follows from (a) and the choice of k0. �

Let Q be such that, for all σ ′, Q(σ ′) ⇔ for all τ ,

[σ ′ ⊂ τ ∧ content(τ ) ⊆ WM(σ ′) ∧ |τ | ≤ |WM(σ ′)|] ⇒ WM(σ ′) ⊆ Wf (τ,0,λ). (38)

Claim 9 If L is finite, then, for all σ ′ such that [σk0 ⊆ σ ′ ∧ content(σ ′) ⊆ L ∧ Q(σ ′)],
L ⊆ Wf (σ ′,0,λ).

Proof of Claim Suppose that L is finite. Let σ ′ be such that σk0 ⊆ σ ′, content(σ ′) ⊆ L, and
Q(σ ′). By Claim 8(a), WM(σ ′) = L. Consider the elements of the form 〈σ ′,0, λ, ·〉 as they are
listed in Wp0 . Clearly, if it can be shown that, for each stage s in which e(σ ′, s)↓, conditions
(b) through (d) in the construction of Wp0 are satisfied, then L ⊆ Wf (σ ′,0,λ).

Let s be such that e(σ ′, s)↓. Let x and A be as in stage s as the elements of the form
〈σ ′,0, λ, ·〉 are listed in Wp0 . Since x ∈ WM(σ ′) = L, clearly, M(σ ′  x)↓. Furthermore, by
Claim 8(b), WM(σ ′) ∩ B∩

M(σ ′) = ∅. Thus, since x ∈ WM(σ ′), x ∈ CM(σ ′) ∪ CBM(σ ′). Finally,
let τ be such that

σ ′ ⊂ τ ∧ content(τ ) ⊆ A ∧ |τ | ≤ |A|. (39)

Then, since A ⊆ WM(σ ′),

σ ′ ⊂ τ ∧ content(τ ) ⊆ WM(σ ′) ∧ |τ | ≤ |WM(σ ′)|. (40)

Thus,

A ⊆ WM(σ ′)
⊆ Wf (τ,0,λ) {by (40) and Q(σ ′)}
= {w : 〈τ,0, λ,w〉 ∈ Wp0} {by (30)}. �

Claim 10 If L is finite, then, for all σ ′ such that [σk0 ⊆ σ ′ ∧ content(σ ′) ⊆ L], Q(σ ′).

Proof of Claim Suppose that L is finite. Let σ ′ be such that σk0 ⊆ σ ′ and content(σ ′) ⊆ L.
By Claim 8(a), WM(σ ′) = L. Thus, if |σ ′| ≥ |L|, then Q(σ ′) holds vacuously. So, suppose,
inductively, that

(∀σ ′′)[[σk0 ⊆ σ ′′ ∧ content(σ ′′) ⊆ L ∧ |σ ′| < |σ ′′|] ⇒ Q(σ ′′)]. (41)

Let τ be such that σ ′ ⊂ τ and content(τ ) ⊆ WM(σ ′). Clearly, σk0 ⊆ τ , content(τ ) ⊆ L, and
|σ ′| < |τ |. Thus, by (41), Q(τ). Furthermore,

Wf (τ,0,λ) ⊇ L {by Claim 9}
= WM(σ ′) {by Claim 8(a)}. �

Claim 11 If L is finite, then, for all σ ′ such that [σk0 ⊆ σ ′ ∧ content(σ ′) ⊆ L], L ⊆
Wf (σ ′,0,λ).

Proof of Claim Immediate by Claims 9 and 10. �
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Claim 12 If L is finite, then, for all i ≥ k0, WM′(T [i]) = L.

Proof of Claim Suppose that L is finite, and let i be such that i ≥ k0. Clearly, by the defini-
tion of M′, σk0 ⊆ σi . Thus,

L ⊆ Wf (σi ,0,λ) {by Claim 11}
⊆ WM′(T [i]) {by (b) and (c) of Claim 1}
⊆ WM(σi ) {by Claim 1(a)}
= L {by Claim 8(a)}. �

Claim 13 If L is finite, then, for all i, WM′(T [i]) = L ⇔ i ≥ k0.

Proof of Claim Immediate by Claims 7 and 12. �

Claim 14 If L is finite, then M′ It-identifies L from T , and, furthermore, M′ does not exhibit
a U-shape on T .

Proof of Claim Immediate by Claims 5(g) and 13. �

Claim 15 For all i such that k0 ≤ i < k1, if σi �= σi+1, then there exists w ∈ (L ∪ WM(σi )) ∩
CBM(σi) such that w > mi .

Proof of Claim Let i be such that k0 ≤ i < k1 and σi �= σi+1. Clearly, one of the following
cases must apply.

CASE condition (ii) applies in calculating M′(T [i + 1]). Then, clearly, T (i) ∈ L ∩
CBM(σi) and T (i) > mi .
CASE condition (v) applies in calculating M′(T [i + 1]). Then, since P (σi,mi, T (i)),
clearly, there exists w ∈ WM(σi ) ∩ CBM(σi) such that w > mi . �

Claim 16 For all i such that k0 ≤ i < k1, if there exists j such that i < j ≤ k1 and σi �= σj ,
then there exists w ∈ (L ∪ WM(σi )) ∩ CBM(σi) such that w > mi .

Proof of Claim Let i be such that k0 ≤ i < k1, and let j be least such that i < j ≤ k1

and σi �= σj . By Claim 15, there exists w ∈ (L ∪ WM(σj−1)) ∩ CBM(σj−1) = (L ∪ WM(σi )) ∩
CBM(σi) such that w > mj−1. Furthermore, by Claim 3(d), mj−1 ≥ mi , and, thus, w > mi . �

Claim 17 If L is infinite, then, for all i and j such that k0 ≤ i < j ≤ k1, if L ⊆ WM′(T [i]),
then WM′(T [i]) ⊆ WM′(T [j ]).

Proof of Claim By way of contradiction, suppose that L is infinite, and let i and j be such
that k0 ≤ i < j ≤ k1, L ⊆ WM′(T [i]), and WM′(T [i]) �⊆ WM′(T [j ]). By Claim 1(a), L ⊆ WM(σi ).
By (b) and (c) of Claim 1, it must be the case that σi ⊂ σj . Thus, by Claim 16, there exists
w ∈ (L ∪ WM(σi )) ∩ CBM(σi) = WM(σi ) ∩ CBM(σi) such that w > mi .

For all s, let xs denote the value of x during stage s of the calculation of f (σi,mi,αi),
and let As denote the contents of the set A during stage s of the calculation of f (σi,mi,αi).
Choose s such that (a) through (f) below.

(a) M(σi  xs)↓.
(b) xs ∈ CM(σi) ∪ CBM(σi).
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(c) w ∈ As .
(d) content(σj ) ⊆ As .
(e) |σj | ≤ |As |.
(f) As �⊆ WM′(T [j ]).

Clearly, such an s exists. However, since As �⊆ WM′(T [j ]), by (b) and (c) of Claim 1, As �⊆
Wf (σj ,0,λ). Thus, by the definition of f , it must be the case that WM′(T [i]) is finite. But this
contradicts L ⊆ WM′(T [i]). �

Claim 18 L ∩ CBM(σk1) is finite.

Proof of Claim By Claim 5(e), L ∩ CBM(σk1) ⊆ content(T [k1]) ∪ {0, . . . ,mk1}. �

Claim 19 WM(σk1 ) = L.

Proof of Claim Immediate by Claims 6 and 18, and by Lemma 1. �

Claim 20 If L is infinite, then max(L ∩ CBM(σk1)) ≤ mk1 .

Proof of Claim By way of contradiction, suppose that L is infinite, and let x be such that
x ∈ L ∩ CBM(σk1) and x > mk1 . Choose i ≥ k1 such that (a) through (c) below.

(a) ΦM(σk1 )(x) ≤ T (i).
(b) ΦpM(σk1  x) ≤ T (i).
(c) x ≤ T (i).

By Claim 19 and the fact that L is infinite, such an i exists. Clearly, P (σk1 ,mk1 , T (i)). But
this contradicts Claim 5(f). �

Claim 21 If L is infinite, then WM′(T [k1]) = L.

Proof of Claim Follows from Claims 6, 19, and 20, and from the definition of f . �

Claim 22 If L is infinite, then there exists i such that, for all j , WM′(T [j ]) = L ⇔ j ≥ i.

Proof of Claim Immediate by Claims 7, 17, and 21. �

Claim 23 If L is infinite, then M′ It-identifies L from T , and, furthermore, M′ does not
exhibit a U-shape on T .

Proof of Claim Immediate by Claims 5(g) and 22. �

4 Iterative-with-counter learning

This section explores a learning model that we call iterative-with-counter learning (ItCtr-
learning) (Definition 7 below). In this model, each of a learner’s output conjectures can
depend only upon the learner’s most recent conjecture, the most recent input element, and
a counter indicating the number of (not necessarily distinct) elements so far presented to
the learner. Theorems 3 and 4, together, show that ItCtr-learning and SDEx-learning are
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incomparable, i.e., for each, there is a class of languages learnable by that one, but not the
other. It follows that ItCtr-learning is strictly more powerful than It-learning, yet not as
powerful as full Ex-learning. Finally, Problem 1 below, restates, formally, the problem that
this paper leaves open.

ItCtr-learning was introduced in Definition 1(e) in Sect. 2, but is repeated here for con-
venience.

Definition 7

(a) For all M and L, M ItCtr-identifies L ⇔ M Ex-identifies L, and, for all 	, σ , and τ

such that content(	) ∪ content(σ ) ∪ content(τ ) ⊆ L, (i) and (ii) below.
(i) M(	)↓.
(ii) [|	| = |σ | ∧ M(	) = M(σ )] ⇒ M(	  τ) = M(σ  τ).

(b) For all M, ItCtr(M) = {L : M ItCtr-identifies L}.
(c) ItCtr = {L : (∃M)[L ⊆ ItCtr(M)]}.

Theorem 3 Based on (Kinber and Stephan 1995, Remark on p. 238) Let L be such that

L = {{0, . . . ,m} : m ∈ N} ∪ {N − {0}}. (42)

Then, L ∈ SDEx − ItCtr.

Proof It is already known that L ∈ SDEx (Kinber and Stephan 1995, remark on p. 238). To
see that L �∈ ItCtr, suppose, by way of contradiction, that M is such that L ⊆ ItCtr(M). For
all s, let σ s be as follows.

σ 0 = λ. (43)

σ s+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ s  #n  (s + 1), where n is least such that

M(σ s  #n) �= M(σ s),

if such an n exists;

σ s  (s + 1), otherwise.

(44)

Let T = lim
s → ∞ σ s . Clearly, T is a text for N − {0}. Furthermore, since M ItCtr-identifies

N − {0}, the otherwise case in (44) must hold for all but finitely many s. Thus, there must
exist i such that (a) and (b) below.

(a) T (i) �= #.
(b) M(T [i]  #)↓ = M(T [i])↓ = M(T [i + 1])↓.

Let L0 = content(T [i])∪{0} and L1 = content(T [i + 1])∪{0}. Clearly, L0 and L1 are in L.
Furthermore, since no element of N − {0} appears in T more than once, by (a) above,

L0 �= L1. (45)

For all j ∈ {0,1}, let T ′
j be such that, for all k �= i,

T ′
j (k) =

⎧⎨
⎩

T (k), if k < i;

0, if k = i + 1;

#, otherwise;

(46)
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and, for k = i,

T ′
0(k) = #; (47)

T ′
1(k) = T (i). (48)

Clearly, T ′
0 is a text for L0 and T ′

1 is a text for L1. Note that

M(T ′
0[i + 1])↓ = M(T ′

0[i]  #)↓ {by (47)}
= M(T [i]  #)↓ {by (46)}
= M(T [i]  T (i))↓ {by (b) above}
= M(T ′

1[i]  T (i))↓ {by (46)}
= M(T ′

1[i + 1])↓ {by (48)}.
Let k ≥ i + 1 be such that, for all j ∈ {0,1} and  ≥ k, M(T ′

j []) = M(T ′
j [k]) ∈ N. Then, by

the above, and the fact the L ⊆ ItCtr(M), M(T ′
0[k]) = M(T ′

1[k]). But then,

L0 = WM(T ′
0[k]) = WM(T ′

1[k]) = L1, (49)

which contradicts (45). �

Theorem 4 Let 〈·, ·〉 : N × N → N be any 1-1, onto, computable function (Rogers 1967),
and let L be such that

L = {{〈e, i〉 : i ∈ N} : ϕe(0)↑} ∪ {{〈e, i〉 : i ≤ ϕe(0)} : ϕe(0)↓}. (50)

Then, L ∈ ItCtr − SDEx.

Proof To see that L ∈ ItCtr, consider the following. By 1-1 s-m-n (Rogers 1967), there
exists a 1-1, computable function f : N → N such that, for all e,

Wf (2e) = {〈e, i〉 : i ∈ N}; (51)

Wf (2e+1) =
{ {〈e, i〉 : i ≤ ϕe(0)}, if ϕe(0)↓;

∅, otherwise.
(52)

Let M be such that M(λ) = ?, and, for all 	, and all x ∈ N#,

M(	  x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (2e), where M(	) = ? and (∃i)[x = 〈e, i〉],
if such an e exists;

f (2e + 1), where M(	) = f (2e) and Φe(0) ≤ |	  x|,
if such an e exists;

M(	), otherwise.

(53)

Clearly, L ⊆ ItCtr(M).
To see that L �∈ SDEx, suppose, by way of contradiction, that M′ is such that L ⊆

SDEx(M′). By Kleene’s Recursion Theorem (Rogers 1967, p. 214, problem 11-4), there
exists e such that, for all x,

ϕe(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m, where m is any such that M′(〈e,0〉  · · ·  〈e,m〉) ∈ N

and WM′(〈e,0〉···〈e,m〉) �⊆ {〈e,0〉, . . . , 〈e,m〉},
if such an m exists;

↑, otherwise.

(54)



86 Mach Learn (2008) 72: 63–88

Consider the following cases.
CASE ϕe(0)↑. Let L = {〈e, i〉 : i ∈ N}. Clearly, L ∈ L. By (54), it must be the case that,
for all m, either M′(〈e,0〉  · · ·  〈e,m〉) �∈ N or WM′(〈e,0〉···〈e,m〉) ⊆ {〈e,0〉, . . . , 〈e,m〉}.
But then, M′ does not identify L from the text 〈e,0〉  〈e,1〉  · · ·—a contradiction.
CASE ϕe(0)↓. Let m = ϕe(0) and L = {〈e, i〉 : i ≤ m}. Clearly, L ∈ L. By (54), it must
be the case that M′(〈e,0〉· · ·〈e,m〉) ∈ N and WM′(〈e,0〉···〈e,m〉) �⊆ {〈e,0〉, . . . , 〈e,m〉}.
Furthermore, since M′ is set-driven, for all n, M′(〈e,0〉 · · ·〈e,m〉#n) = M′(〈e,0〉
· · ·  〈e,m〉). But then, M′ does not identify L from the text 〈e,0〉  · · ·  〈e,m〉  # 
# · · ·—a contradiction. �

Kinber, et al. (Kinber and Stephan 1995, Theorem 7.7 and remark on p. 238) showed that
It ⊂ SDEx. Schäfer-Richter (1984) and Fulk (1990), independently, showed that SDEx ⊂
PSDEx and that PSDEx = Ex. Clearly, It ⊆ ItCtr ⊆ Ex. From these observations and The-
orems 3 and 4, above, it follows that the only inclusions (represented by arrows) among It,
SDEx, ItCtr, and PSDEx = Ex are the following.

Problem 1 Is it the case that ItCtr = NUItCtr?

The tools we employed to show that It = NUIt (Theorem 2) do not seem to carry over
well to the ItCtr setting. For example, there does not seem to be an obvious counterpart to
Theorem 1 for ItCtr-learning. Of course, the difficulty of Problem 1 lies in showing that the
L ∈ ItCtr − It are ItCtr-learnable without U-shapes. At this point, we expect that a positive
solution to Problem 1 would look more like the proof that Ex = NUEx (Baliga et al. 2007,
Theorem 20) than the proof that It = NUIt.

5 Conclusion

Herein, we solved an important problem left open in (Carlucci et al. 2007b) by showing
that U-shapes are unnecessary in It-learning (Theorem 2). In this respect, It-learning likens
itself to Ex-learning (Baliga et al. 2007, Theorem 20), and distinguishes itself from Bc-
learning (Fulk et al. 1994, proof of Theorem 4) and other criteria strictly between Ex and Bc
(Carlucci et al. 2007a). The memory limited aspect of It-learning makes it more nearly ap-
plicable than Ex-learning or Bc-learning to modeling human learning. Thus, if one accepts
It-learning as an accurate model of human learning, then our result suggests that U-shapes
are an unnecessary accident of human evolution.

We also introduced a new model of learning that we call iterative-with-counter learning
(ItCtr-learning). In this model, each of a learner’s output conjectures can depend only upon
the learner’s most recent conjecture, the most recent input element, and a counter indicating
the number of (not necessarily distinct) elements so far presented to the learner. We showed
that ItCtr-learning and SDEx-learning are incomparable (Theorems 3 and 4). It follows
that ItCtr-learning is strictly more powerful than It-learning, yet not as powerful as full
Ex-learning.
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Finally, we considered the problem of whether U-shapes are necessary for ItCtr-
learning. Unfortunately, this problem has turned out to be more difficult than we had initially
anticipated. So, for now, it is left open (Problem 1).

Acknowledgements We would like to thank the anonymous referees for their helpful comments.

References

Arikawa, S., Miyano, S., Shinohara, A., Kuhara, S., Mukouchi, Y., & Shinohara, T. (1993). A machine dis-
covery from amino-acid-sequences by decision trees over regular patterns. New Generation Computing,
11, 361–375.

Angluin, D. (1980). Finding patterns common to a set of strings. Journal of Computer and System Sciences,
21, 46–62.

Baliga, G., Case, J., Merkle, W., Stephan, F., & Wiehagen, W. (2007). When unlearning helps. In-
formation and Computation. doi:10.1016/j.ic.2007.10.005. Available online through ScienceDirect.
http://www.sciencedirect.com.

Blum, M. (1967). A machine independent theory of the complexity of recursive functions. Journal of the
ACM, 14, 322–336.

Case, J. (1999). The power of vacillation in language learning. SIAM Journal on Computing, 28(6), 1941–
1969.

Carlucci, L., Jain, S., Kinber, E., & Stephan, F. (2006). Variations on U-shaped learning. Information and
Computation, 204, 1264–1294.

Carlucci, L., Case, J., Jain, S., & Stephan, F. (2007a). Non-U-shaped vacillatory and team learning. Journal of
Computer and Systems Sciences. doi:10.1016/j.jcss.2007.06.013. Available online through ScienceDi-
rect. http://www.sciencedirect.com.

Carlucci, L., Case, J., Jain, S., & Stephan, F. (2007b). Results on memory-limited U-shaped learning. Infor-
mation and Computation, 205, 1551–1573.

Case, J., & Lynes, C. (1982). Machine inductive inference and language identification. In M. Nielsen &
E. Schmidt (Eds.), Lecture notes in computer science: Vol. 140. Proceedings of the 9th international
colloquium on automata, languages and programming (pp. 107–115). Berlin: Springer.

Case, J., & Moelius, S. E. (2007). U-shaped, iterative, and iterative-with-counter learning. In Lecture Notes
in artificial intelligence: Vol. 4539. Proceedings of the 20th annual conference on learning theory
(COLT’07) (pp. 172–186). Berlin: Springer.

Case, J., Jain, S., Lange, S., & Zeugmann, T. (1999). Incremental concept learning for bounded data mining.
Information and Computation, 152, 74–110.

Davis, M., Sigal, R., & Weyuker, E. (1994). Computability, complexity, and languages (2nd ed.). New York:
Academic Press.

Fulk, M. (1990). Prudence and other conditions on formal language learning. Information and Computation,
85, 1–11.

Fulk, M., Jain, S., & Osherson, D. (1994). Open problems in systems that learn. Journal of Computer and
System Sciences 49(3), 589–604.

Gold, E. (1967). Language identification in the limit. Information and Control, 10, 447–474.
Jain, S. (2006). Private communication.
Jain, S., Osherson, D., Royer, J., & Sharma, A. (1999). Systems that learn: an introduction to learning theory

(2nd ed.). Cambridge: Cambridge University Press.
Kinber, E., & Stephan, F. (1995). Language learning from texts: mind changes, limited memory, and

monotonicity. Information and Computation, 123, 224–241.
Kuratowski, K., & Mostowski, A. (1967). Set theory. Amsterdam: North-Holland.
Lange, S., & Wiehagen, R. (1991). Polynomial time inference of arbitrary pattern languages. New Generation

Computing, 8, 361–370.
Lange, S., & Zeugmann, T. (1996a). Incremental learning from positive data. Journal of Computer and System

Sciences, 53, 88–103.
Lange, S., & Zeugmann, T. (1996b). Set-driven and rearrangement-independent learning of recursive lan-

guages. Mathematical Systems Theory, 6, 599–634.
Marcus, G., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J., & Xu, F. (1992). Monographs of the society

for research in child development: Vol. 54. Overregularization in language acquisition. University of
Chicago Press: Chicago. Includes commentary by H. Clahsen.

Osherson, D., Stob, M., & Weinstein, S. (1986). Systems that learn: an introduction to learning theory for
cognitive and computer scientists. Cambridge: MIT Press.

http://dx.doi.org/10.1016/j.ic.2007.10.005
http://dx.doi.org/10.1016/j.jcss.2007.06.013


88 Mach Learn (2008) 72: 63–88

Plunkett, K., & Marchman, V. (1991). U-shaped learning and frequency effects in a multilayered perceptron:
implications for child language acquisition. Cognition, 38, 43–102.

Rogers, H. (1967). Theory of recursive functions and effective computability. New York: McGraw Hill.
Reprinted, MIT Press, 1987.

Schäfer-Richter, G. (1984). Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien. Rheinisch-
Westfälische Technische Hochschule Aachen, Germany.

Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S., & Arikawa, S. (1994). Knowledge ac-
quisition from amino acid sequences by machine learning system BONSAI. Transactions of Information
Processing Society of Japan, 35, 2009–2018.

Shinohara, T. & Arikawa, A. (1995). Pattern inference. In K.P. Jantke, & S. Lange (Eds.), Lecture notes
in artificial intelligence: Vol. 961. Algorithmic learning for knowledge-based systems (pp. 259–291).
Berlin: Springer.

Sierpinski, W. (1965). Cardinal and ordinal numbers (2nd ed.). Warsaw.
Taatgen, N. A., & Anderson, J. R. (2002). Why do children learn to say broke? A model of learning the past

tense without feedback. Cognition, 86, 123–155.
Wexler, K., & Culicover, P. (1980). Formal principles of language acquisition. Cambridge: MIT Press.
Wiehagen, R. (1976). Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. Electronische In-

formationverarbeitung und Kybernetik, 12, 93–99.


	U-shaped, iterative, and iterative-with-counter learning
	Abstract
	Introduction
	U-shapes
	Iterative learning
	Other restricted forms of learning
	Organization

	Notation and preliminaries
	It= NUIt
	Iterative-with-counter learning
	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


