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Abstract Learning Classifier Systems (LCS) consist of the three components: function ap-
proximation, reinforcement learning, and classifier replacement. In this paper we formalize
the function approximation part, by providing a clear problem definition, a formalization of
the LCS function approximation architecture, and a definition of the function approximation
aim. Additionally, we provide definitions of optimality and what conditions need to be ful-
filled for a classifier to be optimal. As a demonstration of the usefulness of the framework,
we derive commonly used algorithmic approaches that aim at reaching optimality from first
principles, and introduce a new Kalman filter-based method that outperforms all currently
implemented methods, in addition to providing further insight into the probabilistic basis of
the localized model that a classifier provides. A global function approximation in LCS is
achieved by combining the classifier’s localized model, for which we provide a simplified
approach when compared to current LCS, based on the Maximum Likelihood of a combi-
nation of all classifiers. The formalizations in this paper act as the foundation of a currently
actively developed formal framework that includes all three LCS components, promising a
better formal understanding of current LCS and the development of better LCS algorithms.

Keywords Learning classifier systems - Function approximation - Kalman filter

1 Introduction

Accuracy-based Learning Classifier Systems (LCS), which integrate function approxima-
tion, genetic algorithm driven search, and in many cases temporal difference learning,
aim at the autonomous production of human-readable results that are the most compact
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generalized representation whilst also maintaining high predictive accuracy. Alternatively,
they can be seen as ensemble methods that evolve minimal, interpretable populations
of predictors that have the advantage over conventional ensemble methods to dynami-
cally modify number and location of the predictors to find a minimal but sufficient rep-
resentation of the desired solution. Our previous work has demonstrated the competitive-
ness of this technique when applied to the task of data-mining (Saxon and Barry 2000;
Greenyer 2000), work that has subsequently been extensively built upon (e.g. Bernardo et al.
2001, Dixon et al. 2002; Barry et al. 2004). Other researchers have provided further demon-
stration of its power in many single-step tasks, and have recently extended these results to the
discovery of piecewise partially overlapping linear function approximations (Wilson 2002;
Lanzi et al. 2005d). However, our work has demonstrated that current LCS approaches have
only limited success in other than relatively trivial multi-step tasks (Barry 2002, 2003).
These limitations have stimulated research to formulate partial models of the LCS (e.g. Bull
2002; Butz 2004; Wada et al. 2005). However, these developments have produced mod-
els of selective subcomponents that do not adequately capture the global dynamics of the
components of the LCS (function approximation, temporal difference learning and classi-
fier replacement) and neglect the effect of interactions between the components that can
invalidate the local models. Nonetheless, they have contributed to our understanding of the
rather complex dynamics of the genetic algorithm driven search in LCS.

In order to make progress in understanding the global behavior of LCS we aim to pro-
duce a framework that permits the study of LCS as a whole by the combination of interacting
models of subcomponents. The primary objectives of this work are to (i) cover all LCS com-
ponents within that framework to allow for systematic analysis of the components and their
interaction, (ii) design the framework flexibly to utilize it in developing extensions to cur-
rent LCS methods, and (iii) borrow notation and concepts from related fields to allow direct
comparison and lower the barrier of translating new developments in other fields to LCS.
Developing the framework was approached by splitting LCS into three components that re-
late to other Machine Learning techniques and are studied separately and in combination.
Even though this paper only focuses on one of the components, this component is investi-
gated with integration in mind. From constructing the framework we expect to be able to
develop LCS that do not only feature enhanced performance, but are also based on theo-
retically justified approaches instead of the now commonly applied heuristics that require
careful tuning of parameters.

1.1 Background and history

Learning Classifier Systems are rule-based machine learning systems that learn a set of
classifiers with the aim of optimizing the reward in a reinforcement learning framework.
This framework defines a single agent that interacts with an environment by sensing the
environment’s state and choosing an action depending on the current state. Based on the
performed action and the current state, the agent receives external scalar reward which it
aims to maximize in the long run. Throughout the years, systems have emerged that do not
comply to this framework. However, for historical reasons we will describe them from the
reinforcement learning perspective.

An LCS maintains a set of classifiers, each of which consists of a condition that promotes
an action, and a set of performance measures. The condition matches one or several states
of the environment. Upon observing a state, the LCS groups all matching classifiers in sets
according to the action that they promote. Each of those sets results in a prediction of the
expected return (as an accumulation of discounted future expected rewards) when perform-
ing the promoted action, calculated as a function of the performance measures of each of
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the set’s classifiers. Assuming a greedy policy, the action with the highest expected return is
performed. Hence, in contrast to conventional reinforcement learning methods that provide
a prediction of the expected return by using a single function approximation technique for
all states, LCS assemble this prediction by combining the prediction of a set of localized
models (that is, the classifiers), with the advantage and initial motivation of LCS of dynam-
ically assigning resources to areas of the state space where the expected reward is harder to
model.

A similar approach is followed when LCS are used for data mining. In this case, the
classifier condition represents the set of attributes of the classification task that a certain
classifier matches, and the action indicates the class that is predicted from those attributes.
The external reward is now an indicator of the correctness of the promoted class, and the
aim is to increase this correctness. Thereby, LCS again aims at dynamically relocating its
classifiers to classes and sets of attributes that are harder to model.

Once external reward is received, it has to be distributed adequately over the classifiers
that caused this reward (known as the credit allocation scheme). An early economically in-
spired approach was to let each successful classifier pay a bid taken from their performance
measure into a bid pool that is then distributed to the performance measure of successful
classifiers of the previous step. This popular temporal-difference based schema, known as
the Implicit Bucket Brigade (Holland 1985; Riolo 1987a, 1987b), promotes in such a way
classifiers that were indirectly responsible for receiving the reward. Gradually, the Bucket
Brigade algorithm became discredited as a method of credit assignment due to slow trans-
mission of rewards and consequent instability of the scene-setting classifiers (Forrest and
Miller 1990). In the last decade, the relation of credit assignment in LCS to temporal-
difference learning became more and more apparent, as demonstrated by the independent
development of SARSA (Sutton 1996) in Wilson’s ZCS (Wilson 1994) from the LCS side,
and in On-Line Q-Learning (Rummery and Niranja 1994) from the reinforcement learning
side. Finally, Watkin’s Q-Learning (Watkins 1989) was explicitly adapted for credit assign-
ment in Wilson’s eXtended Classifier System (XCS) (Wilson 1995).

If the set of classifiers was constant with constant mixing weights, then LCS are sub-
sumed by some methods in reinforcement learning with function approximation.! How-
ever, the aim of LCS is not only to maximize the long-term reward, but also to find a
minimal set of rules to do so. For this task it employs a steady-state Genetic Algorithm
(GA) that creates new classifiers and removes old ones periodically. The creation of new
classifiers relies on well-performing classifiers in the current set, leading to the question
of how to determine the performance of a classifier. Before XCS, most LCS (known as
strength-based L.CS) used the classifier’s prediction of expected return as a measure of
its performance, but that led to problems of the maintenance of low-reward classifiers,
the lack of knowledge of the expected return of sub-optimal actions, and the emergence
of classifiers that match overly large areas of the state space (Kovacs 2002). Additional
problems due to particular LCS architectures were the emergence of parasitic classifiers
(Smith 1994) and instabilities due to stochastic action selection (Compiani et al. 1990;
Forrest and Miller 1990).

With XCS, Wilson used the classifier’s accuracy of predicting the expected return as its
measure of performance, where the accuracy is some inverse function of the expected predic-
tion error (Wilson 1995). This type of LCS is now commonly known as an accuracy-based

1Having a constant set of classifiers with constant mixing weights makes LCS equivalent to a linear function
approximation architecture. As such, it can be treated as reinforcement learning with linear function approxi-
mation, which has already been investigated at length (e.g. Tsitsiklis and Van Roy 1997; Nedi¢ and Bertsekas
2003).
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LCS. As one would expect, it resolved the problems of strength-based LCS by building a
complete and accurate prediction map over the action/state space. Due to its niche GA ar-
chitecture, it promotes general classifiers over specific classifiers, but only up to a certain
implicitly specified level to maintain a certain generality/accuracy tradeoff (Butz 2001). In
combination, this has been demonstrated in a range of problems to identify an optimally
general set of (mostly) disjoint classifiers that predict the expected return for all state/action
combinations.”

Accuracy-based LCS also lend themselves for use as adaptive function approximators
(Wilson 2001): The action of the classifier can be removed, and the condition matches part
of the domain for the target function. Instead of state and reward the classifiers are given
the function argument as state and the function value as reward. Initially the classifiers
were only able to approximate one value over their subset of the domain, but soon there-
after their approximation abilities were extended to approximate first-order (Wilson 2002;
Lanzi 2005a), and second- and third-order (Lanzi 2005a) polynomials. In addition, the algo-
rithms for function approximation were extended from the initially used Least Mean Square
algorithm to the Normalized Least Mean Square algorithm (Wilson 2002) and the Recursive
Least Squares algorithm (Lanzi et al. 2005d). Their approach, however, was ad-hoc rather
than introducing new algorithms in a bottom-up approach from first principles.

Currently there are no strictly formal performance guarantees for XCS, although strong
arguments have been made for its ability to avoid the emergence of overly general classi-
fiers (Kovacs 2002), and that it is a PAC-learner for k-DNF functions (Butz 2004). Even
these only hold over single-step tasks, and applications in multi-step tasks still only produce
limited success. As previously mentioned, it is the lack of formal models of the interacting
components of LCS to analyse these problems that is the motivation for our work.

1.2 Generalized function approximation in learning classifier systems

With the introduction of function approximation as an application domain, it became clear
that adaptively approximating functions of some kind forms the core of all modern LCS. Let
us consider a function that maps some domain that we will call the state space into the set
of real numbers. Table 1 summarizes the form of this state space for the different LCS tasks,
and indicates whether the function is stationary or non-stationary. When performing straight-
forward function approximation it is clear that we will use the function domain as our state
space. For data mining the state space is formed by a combination of the set of attribute
values and the set of classes, and we aim at learning the correctness of certain attribute/class
combinations. Similarly, single-step tasks are dealt with by learning the reward that is given

Table 1 The different LCS application domains and the according state space over which to perform the
function approximation

Task State space Stationary
Function approximation function domain Yes
Data mining attributes x classes Yes
Single-step tasks features x actions Yes
Multi-step tasks features x actions No

2For an introductory overview of LCS see (Bull 2004), and for further detail on XCS see (Butz 2004, 2006).
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for certain state/action combinations, where the states are identified by their features. This
leads to the state space being formed by the set of feature values and possible actions. The
same state space applies to multi-step tasks, but in their case we are interested in learning
the expected return rather than the reward. As the expected return is given through some
form of reinforcement learning or dynamic programming algorithm, the function values are
not explicitly available, which makes multi-step tasks the only ones where the function to
be approximated varies over time.

Therefore, LCS acts as an adaptive function approximation architecture, where the defin-
ition of function domain and range depends on the problem at hand. Each classifier matches
only a subset of the function domain, where that subset is given by the classifier condition
for straight-forward function approximation tasks, and by the combination of condition and
action for all other tasks. We can thus deal only with function approximation, because all
the other cases can be reduced to this case.

While the power of LCS comes from dynamically adapting its number of classifiers and
their localization in the state space, we first need to understand in detail how a static set of
classifiers is able to act as a function approximator, before considering how classifiers can
be added, removed, or relocated to improve the quality of the function approximation. Thus,
the investigations in this paper are restricted to such a static set of classifiers, each of which
provides a local function approximation over a subspace of the state space. The global func-
tion approximation is provided by a weighted combination of the local models. Our aim is
to describe a formalism that allows us to define what it means for the task of local func-
tion approximation to be solved optimally, and to analyse and extend current algorithmic
approaches.

The next logical step, which we consider as a separate but closely linked task to function
approximation by a static set of classifiers, is how classifiers can be replaced to improve the
quality of this function approximation, leading to adaptive function approximation. Consid-
ering multi-step tasks as the prime motivator for the development of LCS, the analysis of
how the adaptive function approximation of LCS is combined with reinforcement learning
is the last challenge in providing a formal framework for all three components of LCS, that
have now clearly identified as being: function approximation (for a fixed set of classifiers),
classifier replacement, and reinforcement learning.

To summarize, we concentrate here on the function approximation component of LCS.
To be able to relate our investigations to existing literature in function approximation and
adaptive filter theory, we will adopt the following basic assumptions:

— The set of classifiers is fixed. This is equivalent to keeping the set of states of the state
space that a classifier matches time-invariant.

— The states are observed according to a time-invariant probability distribution. This is usu-
ally the case in the long run.

— The value function is time-invariant (i.e. stationary). As shown in Table 1 this assumption
is fulfilled in all tasks but multi-step tasks. As the function in multi-step tasks is a product
of the reinforcement learning algorithm, their treatment requires analysis of the interac-
tion between reinforcement learning and function approximation. Such analysis is beyond
the scope of this paper, but the reader is referred to our further work in (Drugowitsch and
Barry 2006b).

Some of the assumptions will have to be removed once the interaction between different
components of LCS is studied. However, even when only considered in combination with
the replacement of classifiers, it can stand on its own as a method of adaptive function
approximation (e.g. Wilson 2001) and for use in data-mining (e.g. Bernardo et al. 2001).
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The long-term outcomes of this work are potentially wide, but immediate achievements
can be stated as

— providing the first part of the framework for the theoretical analysis of LCS,

— providing a sound theoretical foundation in which to evaluate other work within function
approximation in LCS,

— enabling the development and integration of new and more powerful algorithms for func-
tion approximation in a controlled and systematic manner,

— bridging the gap between the current work in function approximation within reinforce-
ment learning to equivalent work within LCS,

— enabling the development of a more formal linkage between function approximation, re-
inforcement learning, and classifier replacement,

— moving the whole LCS community to a much more formal approach to development and
evaluation of the LCS method.

1.3 Structure

The function approximation-part of the framework is introduced in Sect. 2, together with
the aim of function approximation in LCS. Its notation is based on Bertsekas and Tsit-
siklis’ work that investigates the interaction between reinforcement learning and function
approximation (Bertsekas and Tsitsiklis 1996), and on Sutton and Barto’s introductory text
(Sutton and Barto 1998). As such, it should be easily accessible for anyone working in that
field. First, the use of that framework is demonstrated in Sect. 2.3, where we discuss partial
matching and the likely consequences of an alternative approximation objective. Appen-
dix A summarizes the notation and identifies in which section the symbols used appear for
the first time.

Section 3 uses the framework to consider single classifiers and what it means for them to
have an optimal approximation. This section is particularly important as it not only states the
definite approximation goal for single classifiers, but also gives the conditions under which
this optimality is reached. This is done for the case when the full function is known, and
for the sample-based case which aims at updating the approximation with every additional
observation of a function value.

Section 4 follows as a logical consequence of Sect. 3, discussing different gradient-based
algorithms that aim at implementing a sample-based approach towards optimality as out-
lined before. As a further demonstration of the usefulness of the framework, in Sect. 5 we
utilize it to develop a new and potentially superior algorithmic approach that is based on
the Kalman filter (Kalman 1960), and relates it to the Recursive Least Squares approach.
A short experimental section follows that demonstrates this superiority.

So far single classifiers have been considered. In Sect. 7 we discuss how to best integrate
the approximations of the classifiers into one approximation over the whole state space. This
method is based on modeling the prediction of a classifier by a normal distribution and using
the Maximum Likelihood Estimate to calculate the most likely overall value. As part of this
investigation we examine the mixing parameter and give recommendations on how to set it.

Throughout this paper we give several examples that relate our developments to currently
used LCS architectures. These examples show on one hand how the framework matches
these architectures, and on the other hand gives new insights into currently used methods.
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2 The framework

In this section we define the framework which will be used to study how Learning Classifier
Systems use their classifiers to approximate functions. We will first give a general prob-
lem formulation, followed by the overall aim, and how this aim is approached by Learning
Classifier Systems. In addition, we will present a short discussion on (i) partial rather than
exclusive (binary) matching and, (ii) why LCS function approximation architectures that do
not emphasize the independence of classifiers w.r.t. approximation might cause problems
when used in combination with classifier replacement.

2.1 Problem formulation and aim

Let V : § — R be the function we want to approximate.’ The function’s domain S, called
the state space, is either a countable set or an uncountable set, which we will map onto N or
R respectively.*

The function V is not directly observable but will be sampled or observed with a given
time-invariant sampling distribution. Let 7 : § — [0, 1] define the sampling distribution,’
giving the probability of sampling state i by 7 (i). The function is sampled in discrete time-
steps ¢ =0, 1, ..., giving the sequence of states {iy, i1, ...}, the sequence of function values
{V (o), V(i1), ...}, and the sequence of approximations {\70, Vi, .. .}, where Vi:S—Ris
the approximation after observing V (i,).°

In addition to observing the sequence of function values, we simultaneously observe
a set of features of the current state. These features are formed through a set of L basis
functions {¢; : S — R}, ., where function ¢;(i) returns the /th feature of state i. In
combination, they form the feature vector ¢ : S — RF, returning the features of state i as a
vector ¢ (i) = (¢1(@), ..., ¢r(i))'. Note that this, as well as all other vectors in this paper, is
a column vector, unless otherwise stated, as indicated by the transpose -'.

The selection of features is either left to the designer of the system or depends on the
set of sensors that are available. Even though the quality of the approximation is highly
dependent on the available features, we will not discuss good heuristics for selecting those
features, and the interested reader is referred to standard literature about linear function
approximation architectures, and the large body of existing work on feature selection.

The aim of the function approximator is to minimize the mean-squared error (MSE) given
by

f )V (D) = V()2 di,
N

3The symbol V is used with foresight to value function approximation in multi-step tasks.

4Please note that all of the following is appropriate for the case of a countable state space, but might require
some addition technical conditions for an uncountable state space, which are omitted to ease readability.

SIf the dynamics of the sampling is determined by a Markov Chain, as is the case for application in multi-
step tasks, this sampling distribution can be thought of as the steady-state distribution of the Markov Chain.
Hence, with a change of policy the steady-state distribution will also change, which can lead to an oscillation
in the selection of policies (Koller and Parr 2000). This is a known but unsolved problem in reinforcement
learning with function approximation.

In general, any symbol with subscript -; indicates the time dependency of its meaning and refers to its state
after observing the properties of state i.
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where V : § — R is the approximation of V. For a countable set S the integral can be
replaced by a sum. The squared error is weighted by the sampling distribution, as it empha-
sizes the error of states that are visited most frequently, and as it naturally represents the
approximation target of most standard approximation algorithms.

2.2 LCS function approximation architecture
2.2.1 A single classifier

An LCS utilizes a finite set of K classifiers to approximate the function V. We will enu-
merate the classifiers with 1, ..., K, and denote a classifier parameter of classifier k£ by the
subscript .

Each classifier k matches a particular subset S; € S of the state space S, which we will
call the matched states set.” As discussed in Sect. 1.2, the matched states set of a classifier
is given by its condition and its action. The aim of a classifier is to approximate the function
V over the classifier’s matched states set Sj. To ease notation, we will utilize the indicator
function I5, : § — {0, 1}, which is defined as

Isk(i):{] lflES{(, (1)
0 otherwise.
Hence, I, (i) returns 1 only if classifier k matches state 7.

To avoid introducing additional complexity, we will restrict ourselves to linear approxi-
mation architectures. It is possible to use LCS with non-linear approximation, but this might
introduce local optima (see e.g. Haykin 1999) and will significantly complicate analysis.
Linear architectures are characterized by state-independent approximation parameters and
their linear relation to the features of the states. The approximation parameters are the adapt-
able values that modify the shape of the approximation, and are given by the parameter vec-
tor wy, € RE, also called the weight vector, of classifier k. For any matched state i, the dot
product of the classifier’s weight vector and the feature vector ¢ (i) of that state gives the
approximation Vk (i) by classifier k, that is

L
Vi) =Y weDpi (i) = wip ). )
1=0
2.2.2 Approximation goal of a single classifier

Our approximation goal is for each classifier k¥ to minimize the mean-squared error f; :
RZ — R over its matched states set Sy ; that is, we want to minimize

R A
ﬁw”‘@?@&ﬁ?“”“ V()2 di
= ((V — Vo)?), ©)

where [ is the expectation operator. The whole term is scaled by the inverse of the prob-
ability of observing any of the matching states to make the errors comparable between

7In LCS nomenclature the match set refers to the set of classifiers that match a particular state. For this reason
we call Sy the matched states set rather than the match set.
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different classifiers. To ease notation, we define the classifier-centric expectation E; by
Ey (X)) = E(Isk)*‘E(ISk X), giving the normalized expectation over the states that classi-
fier k matches. As before, for a countable set S the integral of (3) can be replaced by a
sum.

As the function is usually not fully observable, the mean-squared error cannot be evalu-
ated when performing sample-based approximation. Therefore, we will define an approxi-
mation &, to the mean-squared error f; at time 7, which is given by

Ekt =

D I (i) (V i) — w, i), “

crr — L
k.t o

where ¢y ; is the match count® of classifier k at time ¢, giving the number of observed states
until time ¢ that are in the matched states set Si; that is ¢, = Z;:O I, (i). The L is
subtracted in the denominator to keep the error estimate unbiased.

Note that the sequence of states {i,,} is determined by the sampling distribution 7, which
will automatically introduce a weighting by this distribution in (4), as is required to ap-
proximate (3). In general, it is known that the mean-squared error approximation &, is an
unbiased estimate of the mean-squared error f; (see e.g. Graybill 1961, Chap. 6.2). This has
the consequence that if we are using an algorithm that minimizes & ,, then we can guarantee
convergence of the classifier error to the mean-squared error f; with probability 1 (Eweda
and Macchi 1987). We will come back to this concept after having introduced Kalman filter
classifiers in Sect. 5.

A feature of LCS is to track the utility of a classifier at the same time as performing the
approximation. For accuracy-based classifiers, the utility is defined as some inverse of the
approximation of the mean-squared error ¢, ,. Thus, when discussing possible algorithms for
classifier parameter approximation in LCS, we need to consider tracking the approximation
error in addition to providing a useful approximation.

Example 1 (Common linear approximation architectures in LCS) As also employed in
Wilson’s original XCS (Wilson 1995), the most commonly used feature choice in LCS is
¢ (@) =1forall i € S. As the classifier weight vector w; has the same number of elements
as the feature vector, we only have one element wy (1), which directly represents the approx-
imated function value V(i) = wi (1), for all i € S;. This scalar is called the prediction in
LCS jargon. In minimizing the mean-squared error f; (see (3)), the classifier weight aver-
ages the function values over the states that the classifier matches, weighted by the sampling
distribution. For that reason we will call such classifiers averaging classifiers.

Recently, the power of LCS w.r.t. predicting continuous functions was increased by in-
troducing more complex feature vectors, such as in (Wilson 2002, 2004; Lanzi 2005a). Ini-
tially, a feature vector ¢ (i) = (1,i)’ for all i € S was used. This allows a classifier to ap-
proximate straight lines by V(i) = wi(1) + iwi(2), where wy (1) determines the bias and
wy (2) gives the slope. Lanzi et al. (2005a) extended this concept by using feature vectors
o) =(1,i,i%) and ¢ (i) = (1,i,i>,i3) to represent quadratic and cubic functions. Natu-
rally, the choice of feature vectors is not restricted to nth-order polynomials, but can also
include radial-basis functions (RBFs) or any other function, as long as they can be formu-
lated as defined by (2).

81n traditional LCS jargon, the match count is called the experience of a classifier.
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2.2.3 Mixing classifiers

As one classifier possibly only matches a subset of the state space, i.e. Sy C S, we need
to integrate the approximation of all classifiers to recover an approximation over the whole
domain of V. Let ¥ : S — [0, 1] be the mixing weight of classifier k for state i, where
Zf;l Yr(@) =1 forany i € S, and ¥ (i) =0 for all i & S;. We can then form the overall

approximation VofV by

K K
V(i)=Y p@Vil) =D Yo (). )

k=1 k=1

As all mixing weights for one state sum up to 1, the overall approximation is always bounded
by the highest and lowest approximation for that state. Additionally, classifiers that do not
match state i do not contribute to the approximation of that state, due to the condition
Y (i) =0 for all i ¢ S;. When we come to examine specific algorithms in Sects. 4 and 5, we
will only deal with a single classifier, but we will discuss mixing strategies again in Sect. 7.

2.2.4 Matrix notation and approximation as projection

For countable state spaces it is possible to define the values of V by a vector of the size of
the state space. Subsequently we can create a feature matrix and define the approximation
V, of a classifier as a linear operation on that feature matrix. That allows us to define the
approximation of a classifier as a projection of the value vector into the classifier’s approx-
imation space. This is particularly useful when analysing LCS function approximation for
use in reinforcement learning, as described in (Drugowitsch and Barry 2006b). As we will
neither use it for the discussion of the different algorithms, nor for classifier mixing, we will
not introduce it here. However, the interested reader is referred to (Drugowitsch and Barry
2006a) for more information.

2.3 Further issues

Even though not immediately part of our framework, the two issues presented here show
both the generality and the limits of the framework. On one hand we discuss an extension
where classifiers can match certain states to a degree rather than in a simple binary fashion,
and its feasibility and consequences. On the other hand, we compare the architecture of our
framework to another architecture that is in use, and give arguments why we have decided
for one rather than the other.

2.3.1 Non-binary matching

Non-binary matching means using a matching-representing function (in our case I, ) that
returns values of range [0, 1], allowing for matching to a degree. Such matching was already
experimented with in strength-based LCS, and is also proposed for accuracy-based LCS
(e.g. Butz 2005). Nevertheless, to our knowledge there exists no proper comparison between
binary and non-binary matching. Butz only mentions that “Preliminary experiments in that
respect [...] did not yield any further improvement in performance” (Butz 2005).

By looking at (3) we can see that the indicator function /s, acts as a multiplier to the
sampling distribution and can hence be interpreted as a modification of it. From the point-
of-view of a classifier, there is no difference between not matching and not visiting a state,
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as I, (i) (i) =0 for all i & S;. Equally, states that are matched are visited according to their
sampling distribution. Note that for g, (i)7 (i) to be the probabilities of a classifier-centric
state distribution, we need to normalize it by the constant E(Isk)", as it otherwise might
violate fSk w(i)di =1.

When applying the above interpretation to non-binary matching, /5, can take values be-
tween 0 and 1 in addition to {0, 1}. Hence, rather than just choosing which states are ob-
served and which are not, a reduced matching value has the effect of reducing the sampling
probability of that state. Thus, when minimizing (3) the approximation error of states with a
lower matching value has reduced influence on our minimization goal. As classifiers still ap-
proximate independently, we have no reason to believe that non-binary matching might not
work, as long as a lower degree of matching is also considered in the algorithmic approxima-
tion of the mean-squared error after (4). However, due to the lack of experimental evidence,
and to keep further analysis simple, we will only consider the case of binary matching, as
given by (1).

2.3.2 Arguments against aggregating classifier approximations

Recently, Wada et al. (2005) have introduced a modified LCS, similar to Kovacs’ SB-XCS
(Kovacs 2002) and related to Wilson’s ZCS (Wilson 1994), that removes the independence
of function approximation between different classifiers. In our current framework, each clas-
sifier aims at finding the best approximation of its matching part of the function V, inde-
pendent of the approximation of other classifiers. Another approach is to not minimize the
error of each classifier separately, as given by (3), but to minimize the error of the overall
approximation, that is to minimize

% 2
fn(i)(V(i) - lek(i)w,;mi)) di.
s k=1
In that case, the function is approximated by

K
V(i)=Y Is(Hwie (i),

k=1

without considering different mixing weights for different classifiers, in contrast to (5).
Specifically, the approximation of the different classifiers is aggregated rather than averaged.
Such a measure linearizes classifier mixing and eases analysis by relating it to reinforcement
learning with linear function approximation.

Let us now consider the consequences of replacing classifiers in the population.” In the
case of aggregating the classifier approximations, removing one classifier from the popula-
tion will also remove its contribution to the approximation of all the states that it matched.
Therefore, the approximation for all those states will change, resulting in a deviation from
the minimal error. Hence, caused by the aggregated approximation, the classifiers matching
those states need to correct their approximations to again return to the optimal approxima-
tion for the new population. The necessary change might be significant and can cause severe

9Even though we currently only consider constant populations, the analysis up to this point has been done
with classifier replacement in mind.

@ Springer



56 Mach Learn (2008) 70: 45-88

temporary performance drops.'? Additionally, estimating the quality of a single classifier be-
comes harder, as the error of an approximation cannot be assigned to a single classifier but
only to all classifiers that match that state. As a result, it becomes hard for accuracy-based
LCS with aggregating classifiers to judge the quality of a classifier.

Using averaging rather than aggregation removes the interdependence between the differ-
ent classifiers. Replacing classifiers in the population does not influence the optimal approx-
imation of other classifiers and allows for more stability in the overall approximation. The
error of a single classifier can be easily judged by the mean-squared error over its matching
states, as given by (3).

For all the above reasons we believe that aggregating classifier approximations will in-
troduce more problems than it solves. An analysis that uses such an architecture as its basis
deviates too much from the spirit of current LCS to be of much support for future develop-
ment. Therefore, we will only concentrate on the case of averaged classifier approximation,
as outlined in the description of our framework.

3 Optimality

This section deals with what it means for an approximation performed by a single classifier
to be optimal. Having knowledge of such an optimality measure, we can then compare
different algorithms that aim to reach an optimal approximation.

We will discuss optimality on one hand for the case where we have full knowledge of
the function V, and on the other hand for sample-based approximation. Both cases are de-
fined by minimizing their corresponding mean-squared errors, which is a convex function
and therefore has a unique minimum. Additionally, we will give expressions for the mean-
squared error when it is minimized, as the classifier’s error when performing optimal ap-
proximation gives the minimal error that a classifier can achieve and is therefore a good
indicator of its quality.

3.1 Optimality given full knowledge of the function

Using the definition of the mean-squared error given by (3), and the linear approximation
architecture of classifiers, as given by (2), we can state the following:

Theorem 1 Given that the function V : S — R is fully known, the approximation of classi-

fier k is optimal (i.e. the approximation error is minimal) if the features are orthogonal to
the approximation error, that is if

/S TP )V (i) — wep(i))di =0
k

holds, which can also be written as By (¢ Yw, = E (V).
In that case, the mean-squared error of that classifier is given by

Jy, 7 di (/Skn(l)V(l) di /Skn(z)vk(l) dz),

10The degraded performance of the described function approximation architecture was demonstrated em-
pirically in (Wada et al. 2004), although Booker (2006) has suggested that high-error classifiers in such an
architecture only contribute marginally to the overall approximation, which makes their removal less disrup-
tive.
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which is the minin}al error that can be achieved with that classifier, and can also be written
as ]Ek(Vz) — IEk(V,f).

Proof Combining (3) and (2), and omitting the constant term E(/ Sk)*‘ , gives
/ w (@)Y (@) — wyp () di
Sk

as the minimization goal for classifier k. The optimality condition can be found by taking the
first derivative of the above w.r.t. wy and setting it to zero. Given that a minimum exists, the
resulting minimum is unique, as the above is a convex function of wy. Its form E; (¢ )wy =
E«(V¢) is found by simple algebraic manipulation of the optimality condition multiplied by
E(I5,)~" on both sides.

The simplified error term can be derived by using V (i) = w;¢ (i) + (V (i) — w; ¢ (i)) and
the optimality condition to get

/n(i)V(i)ZZ/ (i) (wi (i))* di
Sk

Sk

+ 2wy /S TP @) (Vi) — wpd (i) di
k
+f 7 (i) (Vi) — wy(i))*di
Sr

=/ n(i)Vk(i)2di+/ T()(V(@Q) — Vi (i)?di.
Si Sr

The second integral of the right-hand side is the mean-squared error scaled by E(/g, ), which
leads straight to the minimal error expression. U

To attach a more intuitive understanding, we will call the matrix E;(¢¢’) the feature
vector correlation matrix, and Fy (V ¢) the function-feature correlation matrix.!!

3.2 Optimality by sampling

Usually, we cannot observe all of the function V at once. Instead, a sequence of observations
{V(iy), V(i1), ...} is used to perform its approximation. Hence, rather than minimizing the
mean-squared error fj as given by (3), we want to minimize its approximation &, (see (4)).
The optimality condition of the result is well known as the Principle of Orthogonality (see
e.g. Haykin 2002):

Theorem 2 (Principle of orthogonality) The approximation of function V by classifier
k is optimal (i.e. the approximation error is minimal) if the sequence of feature vectors
{d (o), P(i1), ...} is orthogonal to the sequence of approximation errors for the matching

1 1Te(:hnically, calling these terms correlation matrices is a slight misuse of the term, as they might be shifted
by a certain bias. Still, as they express some form of correlation within the pairs ¢¢’ and V¢, we feel that
calling them correlation matrices is appropriate.
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states i,, € Si. That is, at time t,
t ~
Z I, (i) P ) (V (i) — Vit (i) =0 (6)
m=0

has to hold, where Vk,,(im) = w,’cytq’)(im), and wy, is the classifier’s weight vector at time t.
In that case, the approximated mean-squared error of classifier k is

1

qu[ — L

D s i)V (im)* = Vies (i),

m=0

Ekyt =

which is the minimum approximation error at time t.

Proof Both the optimality condition and the minimal approximation error are derived using
the same approach as in Theorem 1, but this time minimizing (4) rather than (3). For more
details see (Drugowitsch and Barry 2006a). U

Using this principle, we can pre-multiply the optimality condition from the Principle of
Orthogonality by w; , and replace Vi (i,,) by w; ¢ (in), to get

D I i) wy P (i) (V (im) = Wi, b (i) =0.

m=0

Together with (2) that gives:

Corollary 1 (Corollary to the principle of orthogonality) The approximation of function
V' by classifier k is optimal (i.e. the approximation error is minimal) if the sequence of the
approximations {Vk,, (ip), \7;(,, (i1), ...} is orthogonal to the sequence of approximation errors
for the matching states i, € Sy. That is, at time t

D s i) Vit i) (V (i) — w) b (im)) =0

m=0

has to hold, where wy., is the classifier’s weight vector at time t, and Vi, is its approxima-
tion, given by V. ,(i) = w,/{,tqb(i)for state i.

Hence, when we have an optimal approximation, both the sequence of features
{¢p(im)},_, and the sequence of approximations {\~/k’,(z',,,)}fn:0 are orthogonal to the se-
quence of approximation errors {V (i,,) — \7,(, ¢ (im)},,—o for the states that classifier k matches.
Orthogonality is given because their dot product is zero. As the real function values V are
the vector sum of their approximations V, and the errors of that approximation, the optimal
approximation of V is an orthogonal projection of the function into the plane that holds the
optimal approximation. This plane coincides with the plane that is spanned by the feature
vectors, as both are orthogonal to the approximation error. Hence, the approximation that
minimizes the mean-squared error is an orthogonal projection of the function into the fea-
ture space for a particular classifier, a well-known result from linear algebra (e.g. Williams
2005).
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Example 2 (Optimal approximation for averaging classifiers) Let us consider an averaging
classifier k, with a feature vector of ¢ (i) = (1) for all i € S, in which case by (2), V(i) =
w (1) for all i € Si. Then, by solving Theorem 1 for wy, the optimal approximation given a
known function V is

wi(1) =B (@) ' Ex (V) = Ex(V),
which is the normalized expectation over function V for all matched states. In that case, the
mean-squared error is
Ee(V?) — Ex (VD) = Ex(V?) — B (Ex(V)?)

=En(V?) —Eu(V)?

= var(V),
where var; stands for the normalized variance over all matched states, that is var,(X) =
E(/l Sk)‘lvar(l 5. X). This demonstrates that the mean-squared error is the normalized vari-
ance of the function values over the matched states.

For the sample-based approach, let us consider the state sequence {iy, ..., i} at time 7.

Then, if we substitute (2) in Theorem 2 and solve for wy,, the optimal approximation at
time 7 is

t -1
wi (1) = (Z Isk(im>¢(im>¢>(im>’> D s (im) V (im) (i)

m=0 m=0

1 t
=— Y Is(im)V(in),
Cht m=0

which is the average of the function values of all matched states in the state sequence. The
approximated mean-squared error becomes

t t 2
1

» Isk(im)<vam>2— <;§ Isk(ip)va,,)) )
=0

m=0

Eft =
Ck,t — L

which is the sample variance of the function value of all matched states up until time ¢.

4 Gradient-based algorithmic approaches

In this section we will discuss several gradient-based algorithmic implementations of func-
tion approximation and their advantages and disadvantages. They all have in common that
they follow the gradient of the error function or a local estimate of it. As their implementa-
tion is computationally and spatially cheap they are currently the standard choice for use in
LCS and other machine learning methods.

The Genetic Algorithm in LCS relies on a good weight vector and error estimate for
use as the fitness of a classifier. Therefore it is important to quickly get a good idea of the
approximation error of a classifier. For that reason, we also discuss convergence rate and
stability of the methods described.
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4.1 Steepest gradient descent

Steepest Gradient Descent is a well-known method for function minimization, that performs
small steps along the steepest gradient towards the next local minimum. Let us consider the
mean-squared error f; according to (3) as the function we want to minimize. Then, the
steepest gradient descent algorithm is defined by

1
Wi, i1 = Wi — ativwk Si(we,), @)

where «; > 0 is the scalar step size at time ¢, and V,,, fi(wx,) is the gradient of fi w.r.t. wy,
which is, according to (3),

Vi fr (W) = =2(Ex (V@) + Ex (@9 ) w.r).

The algorithm starts at an arbitrary weight vector wy ¢ and reduces the mean-squared error
fx with each step along the gradient. As the error function is a convex function, moving
along the steepest gradient will under some assumptions lead us to the only minimum and
with it to the optimal approximation.

4.1.1 Stability criteria

By definition, the step size o, can change with time. If it is kept constant, that is «; = o for
all > 0, and the gradient V,,, fi(wy,) is Lipschitz continuous,' then the steepest gradient
descent method is guaranteed to converge to the minimum of the function, if that minimum
exists (Bertsekas and Tsitsiklis 1996, Proposition 3.4). It is possible to show that the Lip-
schitz continuity holds if the Hessian Vik Jfe(wi,r) 1s bounded over RE, which depends on
the definition of the basis functions ¢y, ..., ¢; .

Another condition for the stability of steepest gradient descent, which is easier to evalu-
ate, is for the step size o to hold

O<a< 2 , ®)
k,max
where Ay max is the largest eigenvalue of the feature vector correlation matrix E;(¢¢’)
(Haykin 2002, Chap. 4). As the feature correlation matrix is formed by the features of the
states of the environment, the step size to keep the algorithm stable is highly dependent on
the choice of the basis functions that form the feature vector.

4.1.2 Time constant bounds

The rate of convergence is also dependent on the eigenvalues of the feature vector correlation
matrix. Let 7 be the time constant'? of the weight vector update. Then this time constant is
bounded by

1 1

<t< , ©
—1In(1 — @Ag max) —In(1 — A min)

12 A function f: M — R is Lipschitz continuous, if there exists a finite constant scalar K such that || f (a) —
f®)| < Klla—b]| forany a, b € M. The magnitude K is a measure of the continuity of the function f.

13The time constant is a measure of the responsitivity of a dynamic system. A low time constant means that
the system responds quickly to a changing input. Hence, it is inversely proportional to the rate of convergence.
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where Ag max and Ag min are the largest and the smallest eigenvalue of E; (¢¢”) respectively
(Haykin 2002, Chap. 4). As a low time constant T implies a higher rate of convergence,
we would prefer Ay min and Ax max to be close together for a tight bound and large such that
1 —aA is close to 0, which maximizes the negative logarithm and keeps t small. However, if
the eigenvalues are widely spread, which indicates ill-conditioned features, then the settling
time of the gradient descent algorithm is limited by the smallest eigenvalue Aj i, (Bertsekas
and Tsitsiklis 1996, Chap. 3). Therefore, the convergence rate is—as the stability criterion—
dependent on the choice of the basis functions.

4.1.3 Applicability

As given by the algorithm definition, the steepest gradient descent method requires knowl-
edge of the gradient V,, fi(ws ) for each step that it takes. Hence, we would have to have
full knowledge of the mean-squared error, which requires full knowledge of our function
V at each step. We could approach this by approximating the function over a finite number
of steps, but we could never be sure of the quality of that approximation. Hence, we will
treat the algorithm as a theoretical tool rather than one that we will use for implementation
in LCS. It was discussed here, as it shares some theoretical properties with the Least Mean
Squares algorithm that we will describe in the next section.

Example 3 (Stability criteria and time constant for some classifier types) Let us start with
investigating averaging classifiers, defined by a feature vector of ¢ (i) = (1) forall i € S,
giving one eigenvalue A = 1 for E;(¢¢') = E(Isk)*IIE(ISk). Hence, according to (8) the
steepest gradient descent method is stable for 0 < o < 2. Equation (9) gives its time constant
as 7 = —In(1 — &)}, indicating a lower time constant (i.e. faster convergence) for a larger
step size, which is what we would intuitively expect.

We can apply the same analysis to classifiers that approximate first-order polynomials,
as given by the feature vector ¢ (i) = (1, i)’. That gives the feature vector correlation matrix

Eu¢w>=Ek<§ ﬁ)

with the eigenvalues A; = 0, A, = 1 + E;(i?). Hence, for steepest gradient descent to be
stable, the step size has to obey

0<ao<——--—,
TS

which demonstrates that the larger the values for the state i, the smaller the step size « has
to be to still guarantee stability of the algorithm. The time constant is bounded by

-1
<100,
In(1 —a(1 +E @) — ~
which shows that a large eigenvalue spread |A, — A;| caused by on average high values
for the state i pushes the time constant towards infinity, resulting in very slow convergence.
Therefore, the convergence rate of steepest gradient descent depends frequently on the range
of the features.!* We will demonstrate this dependency empirically in Sect. 6.

14 A similar analysis related to LCS was done in (Lanzi et al. 2005d), but there the stability criteria for steepest
gradient descent were applied to the LMS algorithm.

@ Springer



62 Mach Learn (2008) 70: 45-88

4.2 Least mean square algorithm

The Least Mean Square (LMS) algorithm is very much related to steepest gradient descent,
but rather than performing gradient descent on the full gradient of the function, it performs
gradient descent on a current local approximation. For this reason it is also called the Sto-
chastic Incremental Steepest Gradient Descent algorithm, or ADALINE, or, after their de-
velopers Widrow and Hoff (1960), the Widrow-Hoff Update.

Let us consider the mean-squared error (see (3)), or its step-wise approximation (see (4)),
both of which take I, (i,)(V (i;) — w,@_,d)(i,))2 as the error for state i; at time ¢. The LMS
applies the same update equation as steepest gradient descent (see (7)), but rather than taking
the overall gradient, it approximates it by the gradient of the error at time 7, as given above.
That leads to the LMS update

Wit = Wi + L5, (0@ () (V (W) — wi @ (00)), (10)

which is the weight update equation used by XCS (Wilson 1995) for a feature vector of
¢ (i;) = 1. The term I, (i;) has the effect that only classifiers that match the current state i,
are updated. As the gradient estimate is only based on the current state, this method suffers
from gradient noise. Due to this noise, a constant step size o will cause the method to
perform random motion close to the optimal approximation (Haykin 2002, Chap. 5).

4.2.1 Misadjustment due to local gradient estimate

The difference between the mean-squared error fi(wy) and the minimum estimation error
of the LMS algorithm is called the excess mean squared estimation error. The ratio between
the excess mean squared estimation error and the minimum mean-squared error is called the
misadjustment, which is a measure of how far away the convergence area of LMS is from
the optimal approximation. The estimation error value for some small constant step size o
can, according to (Haykin 2002, Chap. 5), be estimated by

J
Si(wy) + @ Z)»j,

j=1

where fi (wy) stands for the minimum mean-squared error, and A ; is the jth out of J eigen-
values of the feature vector correlation matrix E; (¢¢’). This shows that the excess mean
squared estimation error is (i) always positive, and (ii) is proportional to the step size «.
Thus, reducing the step size will also reduce the misadjustment due to local gradient esti-
mation. Indeed, under the standard stochastic approximation assumptions that Y .-, &, = 00
and > 77, a? < 0o, the Lipschitz continuity of the gradient, and some Pseudogradient prop-
erty of the gradient, we can guarantee convergence to the optimal approximation (Bertsekas
and Tsitsiklis 1996, Proposition 4.1).

4.2.2 Stability criteria and average time constant

As the LMS filter is a traversal filter of length one, using only the current observation for its
approximation, no concrete bounds for the step size can be currently given (Haykin 2002,
Chap. 6). However, if the step size is small when compared to the inverse of the largest
eigenvalue of the feature vector correlation matrix, then the stability criteria are the same as
for steepest gradient descent (see (8)).
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As the gradient changes with each step, we can only give expressions for the local time
constant that varies with time (for more details see Drugowitsch and Barry 2006a). On av-
erage, however, the time constant can be bounded in the same way as for steepest gradient
descent (see (9)), with the same consequences.

As discussed before, the misadjustment is proportional to the step size. On the other
hand, the time constant is inversely proportional to the step size. Hence, we have conflicting
requirements and can either aim for a low estimation error or a fast rate of convergence, but
we will not be able to satisfy both requirements with anything other than a compromise.

4.3 Normalized LMS algorithm

As we can see from the LMS update (10), the magnitude of the weight update is directly
proportional to the feature vector ¢ (i, ), causing gradient noise amplification (Haykin 2002,
Chap. 6). Hence, if we have large values in some elements of the feature vector, the cor-
rection based on a local error will be amplified and causes additional noise. This problem
can be overcome by weighting the correction by the squared Euclidean norm of the feature
vector. Hence, the update equation changes to

Wi, 41 = Wi, + o Iy (i,)M(V(i,) —wy @ (i)
’ ’ N CIATE AR
which is the update equation that is used in XCSF and was introduced in (Wilson 2002).
This update equation can also be derived by calculating the weight update vector that
minimizes the norm of the weight change |wg,+1 — wk,,||2, subject to the constraint
I, (i,)wiH,([)(i,) = V (i,). As such, the normalized LMS filter can be seen as a solution
to a constrained optimization problem.

Regarding stability, the step size parameter « is now weighted by the inverted squared
norm of the feature vector. Hence, stability in the mean-squared error sense is dependent on
the current state. The lower bound is still 0, and the upper bound will be generally larger
than 2 if the state values are overestimated, and smaller than 2 otherwise. The optimal step
size, located at the largest value of the mean-square deviation, is in the centre of the two
bounds (Haykin 2002, Chap. 6).

As expected, the normalized LMS algorithm features a rate of convergence that is higher
than that of the standard LMS filter, as demonstrated in simulation (Douglas 1994). One
drawback of this modification is that ||¢(i;)||> has to be checked for being zero, to avoid
divisions by zero. In that case, no weight update needs to be performed, as ||¢(i;)||> = 0
implies that ¢ (i;) is zero in all its elements.

4.4 Summary

In this section we have introduced gradient-based approximation algorithms for single clas-
sifiers that are commonly used in LCS. Even though the steepest gradient descent algorithm
cannot be used for sample-based approximation, it was discussed as it shares properties w.r.t.
stability and rate of convergence with its local approximation, the LMS filter. Due to the gra-
dient noise amplification we have also introduced the normalized LMS filter that avoids that
problem and features a faster convergence rate.

Overall, both variants of the LMS filter have low computational and spatial costs. How-
ever, as they rely on the local approximation of the gradient, they introduce misadjustment
that is proportional to the step size. As a result we have to compromise between a high
convergence rate and a low misadjustment as we cannot achieve both at the same time. In
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addition, the rate of convergence is influenced by the eigenvalues of the feature vector cor-
relation matrix and might be severely reduced, as illustrated in Example 3 and empirically
and analytically demonstrated in (Lanzi et al. 2005d).

The Genetic Algorithm in LCS relies on a fast and correct approximation error estimate
which subsequently requires a good estimate of the optimal weight vector. Due to the de-
pendence of the convergence rate of gradient-based methods on the choice of features, they
might not give good estimates quickly enough for the GA to differentiate between good
and bad classifiers, and might therefore degrade overall LCS performance. The next section
will introduce a set of algorithms that are computationally more expensive than the LMS
algorithm but feature a vastly improved tracking of both the optimal weight vector and its
associated approximation error.

5 The Kalman filter and recursive least squares algorithm

The Kalman filter is a recursive solution to the discrete-data linear filtering problem (Kalman
1960). In this section we apply the Kalman filter to the approximation task and simultane-
ously to tracking the approximation error. Being able to use the Kalman filter for that task is
of advantage as “[...] the Kalman filter is optimal with respect to virtually any criterion that
makes sense” (Maybeck 1979, Chap. 1).

Additionally, we will show how using the Kalman filter for updating the weight vector of
a classifier relates to the optimality conditions that we have introduced in Sect. 3, by showing
its equivalence to the Recursive Least Squares algorithm. We will then use this knowledge
to derive accurate approximation error tracking in addition to the weight update.

5.1 The system model and update equations
5.1.1 The classifier system model

The Kalman—Bucy system model (Kalman and Bucy 1961) describes how a noisy process
modifies the state of a system, and how this affects the noisy observation of the system. Both
the process and the observation are assumed to be linear, and all noise is zero-mean white
Gaussian noise.

We will apply that model to single classifiers by assuming that the process is stationary
which conforms to our assumption that the function to approximate is stationary with zero
noise. In addition, the measurements are in a linear relation to the system state and all devi-
ations from that linearity are covered by zero-mean white Gaussian noise. This gives us the
model

V(i) =Wy, ¢ Gr) + &xr, (11

where V (i;) is the measurement, W, , is our current model of the system state, ¢ (i;) is the
known measurement vector that specifies the linear relation between the system state and
the measurement, and & , is the measurement noise, all at time . The noise is independent
and identically distributed with a variance of &y ;.

The system state W is modeled by a multivariate normal distribution that at a certain
time ¢ is given by its mean vector wy; € RL and its L x L covariance matrix 22, that
is Wy, = N(wg,, X,). Together with the zero-mean Gaussian noise, the measurement
also can be modeled by a Gaussian given by N(V (i,), &%), and the system state and the
measurements are jointly Gaussian. More details on the distribution and interrelation of
the different system variables can be found in (Maybeck 1979, Chap. 5) or (Anderson and
Moore 1979, Chap. 1).
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5.1.2 Bayesian estimation update

The aim of a classifier is to get a good model of the system state W , and of the measure-
ment noise variance &y, that can then be used for predicting a measurement given a certain
measurement vector ¢ (i). By our model according to (11), that prediction is given by the
univariate normal distribution N (w,/{’ttﬁ(i), &y.+) which is centred on w,/{’tq’)(i) and has vari-
ance &y ;. This clearly shows the relation to our previously introduced linear approximation
architecture (see (2)), which is the mean—and equally the maximum likelihood—of the
prediction for the measurement given by the Kalman filter classifiers.

Starting with a prior for the system state Wy _; = N (w1, Y1), we can include the
information given by the measurements by conditioning the system state on those mea-
surements. Considering the previously described distribution relation between the different
system variables, we derive (see Appendix B.1) the following Bayesian update equations
for conditioning the previous system state Wy ,_; on the measurement N (V (i), & ;):

G =I5, (i ZP,_ 9 () Us (DB G Z (i) + Ex) ™' (12)
Wiy = Wii—1 + S (V) — w19 (0r)), (13)
E/ff; = Z‘]Z)z_l - ;k,t¢(it),2/?ft_1- (14)

While &, is a temporary measure that depends on the previous X}*, , and information
about the current observation {¢ (i,), Is, (i;), &k .}, both wy , and X", are the model-defining
parameters that are updated from their previous state wy,—1 and X}’, . This form of the
Kalman filter update is commonly called the Covariance Form. Let us for now assume that
we know the variance Zy; of the current measurement. This is obviously not the case and
we will later show how to estimate the measurement noise variance at the same time as the
system state.

The measurement residual V (i;) — w,’”f1 ¢ (i;) in (13) is the difference between the mea-
surement V (i,) and its estimate w, ,_,¢(i;) before V (i;) is known. The Kalman gain ¢
determines how much the current estimate is corrected.

From the update equation we can see that as the measurement noise variance =y, ap-
proaches zero, the gain ¢, weights the residual more heavily. On the other hand, as the
weight covariance X)”, approaches zero, the gain ¢, assigns less weight to the residual
(Welch and Bishop 2004). This is the behavior that we would intuitively expect, as low-
noise measurements should be valued higher than high-noise measurements.

5.1.3 Inverse covariance form

Using the Kalman filter for estimating the system state requires the setting of the prior es-
timate Wy _;. In many cases, we do not have any knowledge about what the correct values
might be and setting random initial values will cause an unnecessary bias. Complete lack
of information about the initial system state can be modeled as the limiting case of cer-
tain eigenvalues of X} , going to infinity (Maybeck 1979, Chap. 5.7), hence using a non-
informative prior. This will work in theory, but would cause problems in implementation
due to large numerical errors when evaluating the Kalman gain according to (12).

Another approach to the Kalman update is to operate on the inverse of the covariance
rather than the covariance itself (for derivation see Appendix B.2), resulting in the update

) =)+ I, (10 i) B oG (15)

(ZP) iy = (2D w4+ Is (D) BV Gy). (16)
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Note that rather than updating the weight vector wy, directly, we are now performing
updates on the vector (E,:’f,)*l wy .. The weight estimate can be recovered by

wi = [(ZE) T IEE) ™ wi].

This shows that we are only required to perform a matrix inversion for the computation of
the value of the weight vector, but not for the update itself. This is of advantage if our initial
inverse covariance (Z‘,l‘f_l)’l is singular, which is the case if we set it to zero to avoid initial
estimation bias. Hence, we can perform updates until the inverse covariance attains full rank,
which subsequently allows for a unique weight estimate. This is not the case for the Kalman
filter in its Covariance Form, as given by (12), (13) and (14).

Example 4 (Inverse covariance form for singular inverse covariance) Let us consider a clas-
sifier with feature vectors ¢ (i) = (1,i)’. Setting (Z‘,l‘f_l)’l = 0 allows us to avoid any initial
bias. Let us now assume that at time r = 0 we observe value V (iy) in state iy, which is
matched by classifier k. According to (15) and (16), the classifier parameters of classifier k
are updated to

Ek()v(l()) )

=7 ()IOV(IO)

(Z0) o = <

Clearly, wy, o cannot be computed due to the singularity of (2,@?0)*1. However, we can still
perform further updates of the inverse covariance until it is of full column rank and can be
inverted. Until then, we can use the pseudo-inverse to obtain first estimates of the weight

vector, resulting in
1 V (i) >
Wko=—5\. .
YT TR <10V(lo)
5.2 Equivalence to recursive least squares

The Recursive Least Squares (RLS) algorithm gives a method of accurately tracking the
weight vector that minimizes the sample-based mean-squared error, as given by (4). We will
here present a variant that minimizes a weighted mean-squared error so that we can relate it
to the Kalman filter.

Let us assume that we Want to minimize a mean-squared error that at each time m is
weighted by some value &, ) with the error given by

t
Y L5 im) B (V (i) — w) b (im))’ (17)
m=0
Then, starting with (2_,)~" =0, the iterative update
Wi = Wit + Is (D EL (ZE,) D oGV ) — wy,_19G)),  (18)
(EZE) = (3 )T+ I (06 ) B G (19)
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tracks the weight vector wy, that minimizes above error. The derivation of the update equa-
tions can be found in Appendix B.3.

It is easy to see that (19) is equivalent to the covariance update of the Inverse Covariance
Form of the Kalman filter, given by (15). By pre-multiplying (18) by (¥ ,l‘f[)_] we get

(ZE)  wes = (ZP) i + 15, D EL GOV ) — Is, (i) B i) w) ¢ Gi)
= (T ) wem + I (DB Vi) (i),

which is equivalent to the Kalman filter weight update, as given by (16).

This equivalence shows that the Kalman filter tracks the weight vector that minimizes
the weighted mean-squared error and is therefore optimal in the mean-squared error sense.
An additional result is that the noise does not necessarily have to be normally distributed,
as that assumption is not taken by the RLS update. Hence, we can get a minimum-variance
weight estimate using the Kalman filter even when discarding the assumption of Gaussian
noise.

5.3 Estimating error and weight simultaneously

So far we have assumed that the measurement noise variance &y, is known for each mea-
surement. With respect to our system model that is equivalent to knowing the final approx-
imation error before estimating the weight vector. This is naturally not the case in LCS,
where for every classifier we want to find the optimal weight vector at the same time as
estimating the approximation error. Finding a method to do this is the topic of this section.

5.3.1 Minimum model error approximation

In the Kalman system model (11) all deviations of the measurements from the linear model
W, ¢ (,) are attributed to the measurement noise & ,. We could attempt to get an expression
for the noise variance at each measurement, using the information gained by the measure-
ment values. However, at time ¢ having ¢ + 1 measurements and the same number of mea-
surement noise variances, and in addition requiring to find the values of the weight vector,
we have more degrees of freedom than we have measurements.

To reduce the degrees of freedom we will make the assumption that the measurement
noise variance is constant over all measurements, that is =, ,, = & forallm =0,1,.... In
addition we will adopt the Minimum Model Error (MME) philosophy that aims at finding
the approximation that minimizes the model error, given by the measurement noise variance
(Mook and Junkins 1988). It is based on the Covariance Constraint condition, which states
that the measurement-minus-estimate error covariance must match the measurement-minus-
truth error covariance, that is

Is, (i) (V (i) — wy, ¢ (i) ~ Ey.

Given that constraint and the assumption of not having any process noise we can define
the model error at time ¢ by weighting the left-hand side of above equation by the inverted
right-hand side, that is

Y I ) (V (i) — wh b (i)

m=0
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Note that this error is equivalent to the approximated mean-squared error &, (4) scaled by
a constant, and therefore has the same minimum. Assuming a constant measurement noise
variance has led us to minimize the same sample-based error that we originally intended to
minimize.

5.3.2 Incremental error update

Tracking the weight vector with the Kalman filter under the constant measurement noise
assumption minimizes the approximated mean-squared error with each additional measure-
ment and therefore conforms to the Principle of Orthogonality (Theorem 2). Thus, we can
use the minimum error term from that theorem to get the following incremental error update:

Theorem 3 Given the sequence of states {iy, i1, . ..}, the sequence of features {¢ (iy), ¢ (i1),
...}, and the sequence of function values {V (iy), V (i1), ...}, and an iterative weight vector
update that conforms to the Principle of Orthogonality (Theorem 2), then the update

(ke — L)exy = (Cr—1 — L) &g -1

+ 15, (i) (V (i) — wy , @ @) (V (i) — wy,_1$ (),

starting with & _ = 0 tracks the approximated mean-squared error (4).
Proof See Appendix B.4. 0

Therefore, by setting & = 1 in any form of the Kalman filter update, the tracked weight
vector conforms to the Principle of Orthogonality. This allows us to use above theorem to
track the approximation error with similar accuracy.

5.3.3 Non-Gaussian error

We have previously demonstrated that the Kalman filter tracks the weight vector that min-
imizes a weighted mean-squared error, where the weight is given for each measurement
by the inverse of the measurement noise variance. Having now assumed that this variance
is constant, it can be removed from the error expression that is to be minimized, and our
weight vector tracking conforms to the Principle of Orthogonality and is therefore optimal
in the mean-squared error sense.

The Kalman filter assumes Gaussian noise, but by relating it to the RLS algorithm we
have shown that this assumption is not necessary. Similarly, the above error update is derived
without making any assumptions about how the error might be distributed. Therefore, we
can use both the weight update and the error update in cases where the error is non-Gaussian,
and will still achieve minimal variance.

5.3.4 Convergence

With each weight and error update we find the approximation that minimizes the approxi-
mated mean-squared error (4). As already stated in Sect. 2.2.2, it is known that this sample-
based error measure converges to the mean-squared error (3) with ¢+ — oco. Hence, the op-
timality condition of Theorem 2 converges to that of Theorem 1 for full knowledge of the
function to approximate. As a consequence, both the estimated weight vector and the ap-
proximated mean-squared error will converge to the optimum given by Theorem 1, with
probability 1.
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Example 5 (Kalman filter update for averaging classifiers) Let us consider an averaging
classifier k, using feature vector ¢(i) = (1) for all i € S. As we want to estimate the mea-
surement noise variance simultaneously to finding the optimal approximation, we will as-
sume it to be a constant Zy. To avoid any initial bias, let (ka“f’f,)‘1 = 0. Then, according to
(15), the inverse covariance is updated by

EE) " =@ )T+ I D E = 5 e

which is the match count, scaled by the inverse measurement noise variance. Hence, the
covariance (which is in this case a variance) of our weight estimate decreases exponentially
with the number of matched states that were visited. That shows that our estimate will be-
come increasingly more accurate.

The weight update is performed according to (16), that is

(S wi = (2 ) wi + 15, () 8V ()

B s i)V (im),

m=0
giving for wy
S w1
Wiy =—o———=—) I i)V (n),
(Eki,t)il Ck,t mZ:O ¢
which is the average over the function values of the state sequence {iy, ..., i}, when only

considering matched states. Note that due to the constant measurement noise variance, this
weight estimate is independent of the measurement noise variance.

As the weight vector is optimal for each ¢, applying the error approximation update from
Theorem 3 tracks the function sample variance (see Example 2). Note that the variance of
the weight estimate indicates how sure we are about the current estimate and is a different
measure than the sample variance, which indicates how well the linear architecture is able
to approximate the function of its matching states.

Interestingly, XCS applies the MAM update that is equivalent to averaging the input for
the first @' inputs, where « is the step size, and then tracks the input using the LMS al-
gorithm (Wilson 1995). In other words, it bootstraps its weight estimate using the Kalman
filter algorithm with a measurement noise variance of 1, and then continues tracking of the
input using the LMS algorithm. Note that this is only the case for XCS applying averaging
classifiers, and does not apply to XCS-derivates that apply more complex function approx-
imation, such as XCSF (Wilson 2002). Even though it is not explicitly stated in (Wilson
2002), we assume that the MAM update was not used in those XCS-derivates.

5.4 A computationally cheap implementation

In addition to the standard form of the Kalman filter, as given by the Covariance Form,
the Inverse Covariance Form, and the RLS algorithm, we present a computationally cheap
implementation which we have used for experiments, but for which we cannot give any
guarantees on its numerical stability when applied for long time frames.

As our developments aim at application in LCS, we want to approximate the error while
tracking the optimal weight vector. This calls for the use of a constant measurement noise
variance, which consequently allows us to use the approximated mean-squared error (4) as
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our approximation goal. Hence, we can utilize the Principle of Orthogonality (Theorem 2),
from which we can rewrite the condition for the optimal weight vector as follows

(Z I, (im>¢<z’m>¢<z’m>’) Wi =Y Is, i)V (i) (im).
m=0 m=0

Let us denote the matrix in brackets of the left-hand side by Ay, and the vector of the right-
hand side by b, ,. We can then compute the weight vector wy ; by

wi, = A by,
given that Ay, is non-singular. Vector by ,, starting with by _; = 0, can be updated by
bk,t = bk,t—l + ISk (it)V(it)¢(it)-

To avoid taking the inverse every time we update Ay ,, we can apply the Sherman—Morisson
formula to operate on the inverse, that is

[ 1¢(l,)d)(l,) Ak, 1

PR 3 )
ke = Php—1 7 k(l)l—l—lsk(l[)d)(lt) Akt 19

The approximation error is again updated according to Theorem 3.
To recover the covariance matrix X}”,, we can give its inverse by

[

E) =5 I )b i) i) -

m=0

which is matrix Ay, scaled by the measurement noise variance &j. As the error &, is
the current best approximation of the measurement noise variance, we can calculate the
covariance matrix by

w -1
Zk,t = Sk,tAk,/ .

The disadvantage of this update is that we require matrix A, , to be set to an initial value
Ay _1, which introduces a bias to the approximation. This bias can be kept low by setting
Ay,—1 =13, where § is a large scalar and causes the initial inverse A, ! to be small. This can
still introduce numerical instabilities, but should be sufficient for most applications. Addi-
tionally, the update still converges to the same optimal approximation as ¢ — oo. Setting
A; L, =0is invalid as it will cause A;; =0 forallt =0,1,....

5.5 Stability of the Kalman filter

The Covariance Form of the Kalman filter, as summarized by (12), (13) and (14) suffers
from serious numerical difficulties, as described in (Haykin 2002, Chap. 6). Considering
(12) and (14), for example, the covariance matrix is updated by the difference between two
non-negative matrices. Unless the system is numerically completely accurate, the result of
the subtraction may not be non-negative definite, which is not acceptable for a covariance
matrix. Additionally, the property of symmetry of the covariance matrix might not be pre-
served due to numerical inaccuracy. The Inverse Covariance Form, given by (15) and (16),
shows better properties but is still affected by the possible loss of symmetry.
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A method for overcoming these stability issues is to use numerically stable unitary trans-
forms at every iteration, such as, for example, the Square-Root Form of the Kalman filter.
This form is mathematically equivalent to the other Kalman filter forms, but only operates
on the lower triangle of the covariance matrix and hence preserves symmetry. In addition,
in that form the matrix is much less likely to become indefinite. We will not discuss any
further details here, but refer the interested reader to (Haykin 2002, Chap. 11), (Anderson
and Moore 1979, Chap. 6.5) or (Maybeck 1979, Chap. 7).

5.6 Comparison to the LMS filter

As stated in (Haykin 2002, Chap. 9), the RLS algorithm typically features an order of mag-
nitude faster rate of convergence than that of the LMS algorithm. Additionally, its rate of
convergence is less sensitive to the spread of eigenvalues of the feature vectors. As our use
of the Kalman filter is equivalent to a form of the RLS algorithm, these findings also apply
to the Kalman filter.

On the downside, the Kalman filter is both computationally and spatially more complex
than the LMS filter. It requires the storage of the covariance of the weight estimates, and
employs matrix multiplication and eventual inversion, depending on the update type that is
used. A detailed summary of the different forms of Kalman filters and their computational
complexities can be found in (Maybeck 1979, Chap. 7.8).

5.7 Summary

In this section we have introduced algorithms that are able to track both the weight vector
and the approximation error according to our previously given optimality conditions. The
Kalman filter was derived as a Bayesian update and based on the assumption of Gaussian
noise. Later this assumption was relaxed by relating it to the RLS algorithm that minimizes
the weighted mean-squared error but does not assume a particular error distribution.

To track the approximation error we have shown how the assumption of a constant mea-
surement noise makes the weight update conform to the Principle of Orthogonality, from
which we can then derive an incremental update equation that tracks the minimal error on
which this principle is based.

As already emphasized, a rapid and accurate estimate of the quality of a classifier is
crucial for the performance of the Genetic Algorithm in LCS. The weight and error update
equations derived in this section provide such an estimate and can therefore be expected to
improve the general performance of LCS. The commonly used LMS filter is known to suffer
from several drawbacks that deteriorate its rate of convergence, and should therefore only
be used if the spatial and computational costs of the Kalman filter prohibit its employment.
Considering only averaging classifiers with a weight vector of size 1, the Kalman filter has
the same complexity as LMS (see Example 5) and should therefore always be the preferred
choice.

6 Experimental comparison

In this section we demonstrate the superiority of Kalman filter based classifiers when com-
pared to gradient-based methods. The comparison is performed based on the current use of
the LMS and RLS algorithm in XCS and XCSF. It is by no means meant to be a complete
evaluation of the use of Kalman filter classifiers in LCS, but only a demonstration of pre-
viously discussed concepts like the misadjustment of the LMS filter, and the reduced rate
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of convergence for ill-conditioned features. We will perform a full analysis of the system
once we completed at least a primary analysis and eventual improvement of all compo-
nent of LCS. Until then, we will use the Kalman filter to act as a model that helps us to
gain better understanding and is built upon in further analysis (e.g. Drugowitsch and Barry
2006b, 2006c¢). For the Kalman filter classifier to act as a drop-in replacement for currently
used methods its evaluation has to extended beyond experiments with single classifiers to
its use in combination with the Genetic Algorithm, such as in data-mining using the UCI
data set (Hettich and Bay 1999) as a benchmark, and in multi-step tasks in both discrete and
continuous environments (Littman 2005).

For a comparison of the performance of different classifier types in the current state-of-
the-art classifier system XCSF the interested reader is referred to (Lanzi et al. 2005d), where
Lanzi et al. introduce the RLS classifier (using LMS for error tracking) and compare its
performance in function approximation tasks to XCSF using the LMS algorithm. In a follow-
up study, they also evaluate its use in discrete (Lanzi et al. 2005b) and continuous (Lanzi
et al. 2005¢) multi-step tasks. In a recent study (Loiacono 2006) we have collaborated with
Loiacono and Lanzi to demonstrate the effect of the better error estimate of the Kalman filter
on the generalization capabilities of XCSF. The results confirmed that the higher accuracy
in its error prediction enabled the Genetic Algorithm to push the classifier population closer
to the desired generalization boundary.

Here we will look at single classifiers and compare the rate of convergence and sensi-
tivity to noise between different classifier types. The two cases that we will deal with are
(i) averaging classifiers that have to approximate a noisy constant, and (ii) classifiers that
approximate parts of a sinusoid by a first-order polynomial. We have chosen the first case to
investigate the accuracy of the error approximation. The second case tests both the approxi-
mation of the weight vector and the mean squared error.

Statistical comparison of the different methods is for the weight vector based on the mean
squared error of its prediction when compared to the optimal prediction over the classifier’s
matched range, evaluated over 1000 evenly spaced samples. The error estimates are com-
pared by their squared difference to the mean-squared errors of the optimal weight vector’s
error. As either comparison is done on a performance curve that results from plotting the
error over time, we cannot apply the standard analysis of variance (ANOVA) to determine
if the methods perform significantly different, as its assumption of homogeneity of covari-
ances is violated. Thus, we utilize the randomized ANOVA procedure (Piater et al. 1998),
that was specifically design for such tasks. It is based on estimating the sampling distribu-
tion of the null hypothesis (“all methods feature the same performance”) by sampling the
standard two-way ANOVA F-values from randomly reshuffled performance curves between
the methods, where we use a sample size of 5000. The two experimental factors are the type
of classifier that is used, and the number of samples that the classifier has been trained on,
where performance is measured by the corresponding error when compared to the optimal
values. We are only reporting significant difference between classifier types, and are using
Tukey’s HSD post hoc test to determine the direction of the effect. All statistical analysis is
performed over 20 experimental runs.

6.1 Classifier types

We will compare three kinds of classifiers:

Original XCS Classifiers (Wilson 1995): These classifiers apply the LMS algorithm for the
averaging case (i.e. using a feature vector of ¢ (i) = (1) for all i € S), and the normal-
ized LMS algorithm for any other case (as introduced in Wilson 2002). In the averaging
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case, they will additionally perform MAM update, as described in Example 5. The approx-
imation error is tracked by applying the LMS algorithm to the current error of the error
estimate

Is, (i) s, (i) (V (i) — wy ,§ (i) — €x0-1)°,
which gives
ekt = Ek—1 T oI5 (i) (V) — w/@;‘ﬁ(it))z — &ki—1)-

To be precise, the error that is tracked in XCS is for no apparent reason the mean-absolute
error Is, (i,)|V (i;) — w; ¢ (i,)], but to be consistent with our error definition and to keep
the results comparable, we have chosen to modify the algorithm to track the mean-squared
error.'> For all experiments, the step size « is kept constant and set to the commonly applied
value o = 0.2. All other values are initialized to 0.

RLS Classifiers (Lanzi et al. 2005d): The RLS Classifiers use the Recursive Least Squares
algorithm, as introduced in Sect. 5.2, for its weight update, with a constant measurement
noise variance of =, = 1.9 Its covariance matrix E,ft is initialized to 21?,)—1 =461 with
8 = 1000. Error update is performed in the same way as for the original XCS classifiers by
the LMS algorithm. The step size is again set to o = 0.2.

Kalman filter Classifiers: These classifiers apply the Kalman filter update under the Min-
imum Model Error philosophy, as described in this paper. The form of update used is
described in Sect. 5.4. It is initialized with § = 1000.

6.2 Tracking the error

In our first experiment we apply averaging classifiers, using a feature vector of ¢ (i) = (1),
for all i € S. Each classifier matches all states, which is why we can reduce the system
to a single state without the loss of generality. The sampled function values of that state
are sampled from N (5, 1), denoting a normal distribution with mean 5 and variance 1. We
have not considered noisy sampling in developing conditions for optimality and discussing
the algorithms.!” However, by assuming that each sample describes the function value of
a different state, the developed theory is still valid. The optimal values are wy(1) =5 and
Je(we) = 1.

Figure 1 shows the results of a single run over the first 50 samples. As the weight vector
for the XCS classifier is initialized to wy, _; = 0, it requires about 15 samples to get close
to the optimal weight value. Due to considering only the local gradient, it then performs
stochastic motion around that optimal point. The RLS and Kalman classifiers both apply a
mathematically equivalent algorithm and therefore also have equivalent weight approxima-
tions. These approximations are obviously significantly more stable and less noisy, which
is as expected, as they track the optimal approximation given all past observations. Statisti-
cal analysis has confirmed that the difference is indeed significant (randomized ANOVA:

15This modification to the XCSF error measure was after initial submission of this paper also proposed in
(Loiacono 2006).

16The standard RLS algorithm does not consider measurement noise, and therefore always operates under
the condition of a constant measurement noise variance.

17 A§ can be seen from the Kalman filter system model (11), both the model error and the measurement noise
are captured by the noise component. Therefore, additional noise in measuring the function values will in-
crease the approximation error that is contributed to the deviation from the linear model by the variance of that
noise. Given that the real measurement noise is equal for all classifiers, it will increase in the approximation
error for all classifiers by an equal amount.
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Fig. 1 Comparing the approximation of the mean and the variance of values sampled from N (5, 1), using
different classifier types. The optimal mean is 5, which is quickly reached by both the RLS and the Kalman
filter classifier, as they are using formally equivalent methods to estimate their weight values. The XCS
classifier’s estimate of the weight value, on the other hand, is more noisy, which is due to the local gradient
estimate of the LMS algorithm. This noise is also visible in the variance estimate of the XCS and RLS
classifiers, both of which utilize the LMS algorithm to estimate the variance. The Kalman filter, on the other
hand, performs direct tracking, and thus features a visibly more stable estimate close to the optimum of 1

Fy¢(2,2850) = 38.0, F;lg.o.ol = 25.26, p < 0.01; Tukey’s HSD: no difference between
Kalman and RLS, p > 0.05, but both significantly different to XCS, p < 0.01).

The approximated error, given by the variance, reflects the same picture. Both XCS and
RLS classifiers use the LMS algorithm to update their error approximation and therefore re-
quire more initial time to get close to the optimal, and then perform stochastic motion around
it. The XCS variance estimate is particularly bad in the beginning, as its approximation of
the mean is worse than for the RLS classifier. The Kalman filter classifier again features
better initial performance and higher stability in its approximation. Even though the RLS
classifier seems to reside closer to the optimal error approximation, this is due to the initial
bias of setting ¢ _; = 0. The Kalman filter classifier initially overestimates the variance,
but its estimate is theoretically optimal and its initial deviation from the long-run optimum
stems from the randomness of the sampling process. Statistical comparison over 20 exper-
imental runs does not reveal any difference between the error estimation performance of
the XCS and RLS classifier, but shows that they are significantly worse than Kalman filter
(randomized ANOVA: Fy,(2,2850) = 53.68, Fy, o001 = 29.26, p < 0.001; Tukey’s HSD:
no difference between XCS and RLS, p > 0.05, but both significantly different to Kalman,
p < 0.01).

6.3 Sensitivity to ill-conditioned features

The second experiment requires the classifiers to approximate a sinusoid V(i) = sin(i),
using a first-order polynomial, given by the feature vector ¢ (i) = (1,i)’, forall i € S. We
employ two classifiers, 1 and 2, of which the first matches the range S = [0, %), and the
second matches the range S, = [7, 7). Evaluating the optimality conditions of Theorem 1
(see Appendix B.5 for derivation), we get the optimal weight vectors w; ~ (0.115, 0.665)’
and w, ~ (2.202, —0.665), and equal mean-squared errors f;(w;) = f>(w;) =~ 0.00394.
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Fig. 2 Approximating a sinusoid 1 ‘ ‘
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A single experiment consists of two runs, where in the kth run we uniformly sample states
from S; and only observe classifier k.

Figure 2 shows the first 150 observations for classifier 1 in (a), and the first 500 ob-
servations for classifier 2 in (b), for a single experimental run. As in the first experiment,
the weight vectors are congruent for RLS and Kalman filter classifiers, as their approxima-
tion methods are mathematically equivalent. For both classifiers, the Kalman filter approx-
imations feature better initial performance and higher stability if compared to XCS using
the normalized LMS algorithm. What becomes particularly apparent in Fig. 2(b) is that
ill-conditioned features reduce the rate of convergence of the LMS algorithm, which was
already postulated in Example 3 and is now confirmed by the slow convergence of XCS.
As the error approximation behaves similar to the first experiment, with the Kalman filter
demonstrating better initial values and higher stability than both the RLS and XCS clas-
sifiers (and even worse initial performance of XCS than in the first experiment), we have
omitted the graph showing that error approximation.

In terms of performance when compared to the optimum by evaluating the mean
squared errors over 1000 evenly spaced samples for each of the classifiers, the XCS clas-
sifier performs significantly worse than the RLS or Kalman filter classifier in both cases,
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as confirmed by statistical analysis over 20 experimental runs (for [0, 7): randomized
ANOVA: Fy,(2,2850) = 171.41, Fj, 000 = 32.81, p < 0.001; Tukey’s HSD: XCS vs.
RLS and Kalman, p < 0.01, Kalman vs. RLS, p > 0.05; for [%, 7): randomized ANOVA:
Fy¢(2,17100) = 4268.7, F;ig,o.om = 577.89, p < 0.001; Tukey’s HSD: XCS vs. RLS and
Kalman, p < 0.01, RLS vs. Kalman, p > 0.05).

6.4 Summary

The experiments have confirmed what was previously predicted: gradient-based methods are
generally slower to converge and more noisy than methods that track the optimal weight vec-
tor and approximation error accurately. The first experiment shows this difference clearly for
the weight and error estimate of XCS classifiers and the error estimate of RLS classifiers.
The second experiment demonstrates how ill-conditioned features reduce the rate of con-
vergence of gradient-based methods significantly. These results reemphasize that gradient-
based classifiers should only be used if computational or spatial constraints prohibit the use
of Kalman filter classifiers.

7 Mixing classifier estimates

So far, we have concentrated on finding optimal approximations for single classifiers. This
section concentrates on how the approximation of single classifiers can be assembled to give
an approximation over the whole domain of the function V.

We have already described how mixing is performed in our framework (see (5)), and
presented arguments why we should prefer averaging over approximations rather than ag-
gregating them. The open question that we will consider in this section is how to set the
mixing weights 1 (7). For that purpose, we will assume a fixed set of classifiers that have
all converged to the optimal approximation. Hence, we will drop the subscript -,, making
the parameters time-independent, including & ,, which we will simply denote by &;. Never-
theless, all findings from this section are also valid for the time-dependent case, as we can
simply observe the LCS at a fixed time ¢ and follow the same line of reasoning.

7.1 Accuracy-based mixing

By definition, the mean-squared error of a classifier gives the average approximation error
over its matched states. Hence, a lower mean-squared error also implies an on average higher
approximation accuracy. As we aim at mixing the classifiers in a way to increase the overall
approximation accuracy, making the mixing weight of a classifier inversely proportional to
its approximation error seems intuitively correct.

In XCS (Wilson 1995), the first accuracy-based LCS, the accuracy of classifier k is sep-
arately calculated by some inverse power-function of the approximation error, and then ad-
ditionally scaled relative to the accuracy of classifiers that match some states in Sy, which
introduces scaling of the mixing weights w.r.t. the approximation error of classifiers that
share the same area in the state space. Such additional scaling might have a smoothing ef-
fect on the mixing weights but from the mixing point-of-view it is not strictly necessary.
Note that in XCS, there is no explicit separation between the use of accuracy for mixing
classifiers, and as a measure of a classifier’s fitness for application in the evolutionary com-
ponent of XCS. In our opinion, those two values do not necessarily have to be equal, and
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currently we do not aim at redefining the fitness of a classifier but rather concentrate ex-
clusively on the mixing weights. We define these weights closely related to how YCS (Bull
2005) (a simplified version of XCS) defines the fitness of a classifier, that is

I (e, ”

Yp(i) = —7———mm,
Y I ey

(20)

where v € R* is a positive constant that allows additional control on the mixing weights.'®
It is easy to check that a mixing weight defined like that satisfies the constraints given by our
framework, that is for any i € S, Z,le Y (i) =1, and ¥, (i) =0 if i ¢ S;. Note that (20) is
undefined for states that no classifier matches, but in such cases it is clear that we are unable
to give an approximation.

7.2 Using the maximum likelihood estimate

In deriving the update equations for the Kalman filter, we have modeled the weight estimate
by a Gaussian, given by N (wy, ). The same can be said for the observation of V for
state i, which can be modeled by a Gaussian with mean Vk (i) = w;¢ (i) and the estimated
variance of V;, as given by ¢ (i)' Xi¢ (i) + & (see Appendix B.1 for derivation). Having a
model of the observation for each classifier, we can derive a mixed model of all classifiers
by using the Maximum Likelihood Estimate (MLE).

The MLE defines the value of highest likelihood by the maximum of the likelihood func-
tion, which is the product of the probability density function of the models of all classifiers.
As deriving the logarithm of the likelihood function is usually easier and gives the same
maximum, we will use this log-likelihood, denoted by A, to derive the maximum. Let us fix
astate i € S and define px = w, ¢ (i) as the mean and oy = /¢ (i)' Xy (i) + Ey as the stan-
dard deviation of the Gaussian model for classifier k.'” Then, substituting for the probability
density function of a Gaussian, the log-likelihood A for our approximation V(i) is given by

. K 1 V@) 2#/()
AV(@Q)) = I (i)ln( e % >
; ¢ V2moy

K

B . 1 L, (V) — )’
_lek(l)ln<\/2——ﬂak)+§k2_1:15k(l)7'

k=1 k

Adding I, (i) is equivalent to taking the probability density function of classifier & to the
power of Ig, (i), and ensures that we ignore classifiers that do not match state i. We can
get the unique maximum of the convex log-likelihood function by setting its first derivative
w.r.t. V(i) to zero, which results in

V()= Z AT Js @0 "

_ Is, (Do,

18Such power factors have also been used in XCS and YCS, but in both cases there is no separation between
the classifier fitness and the mixing weights. In our study, v exclusively concerns classifier mixing and does
not influence the fitness.

19To be able to calculate the MLE we have to assume the independence of the models given by the classifiers.
Considering dependence between the classifier models would not allow us to derive a closed-form solution
to the MLE.
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giving the value for state i with the highest likelihood. Hence, the most likely estimate of
the function value for state i is the sum of the approximation of each matching classifier,
weighted by the normalized inverse variance of that classifier.

When taking a closer look at the value model variance ¢ (i)' ;"¢ (i) + Zi, we can see
that it consists of the variance caused by the uncertainty of the value estimate by the clas-
sifier weight, ¢ (i)’ 2 ¢ (i), and the measurement noise variance 5. The uncertainty of the
estimate decreases with the number of observations, which causes the value estimate to be
judged as being more certain and have a higher influence, as more observations are made.
The noise variance should be independent of the number of observations and gives a bias
to the value model variance. Therefore, combining both adjusts classifier mixing by (i) the
time and state-dependent certainty of the classifier’s approximation and (ii) the final quality
of its approximation.

An underlying assumption of our model is that the measurement noise can be modeled
by a Gaussian. In our case, the measurement noise represents the deviation of the function
values of V from our linear architecture, about the distribution of which we cannot make any
predictions. In the value model variance, the Gaussian nature is partially expressed by the
state-dependent term ¢ (i)’ X”¢. We currently cannot give any qualitative comments about
the influence of this term on the overall estimate, but assume that it is of advantage to func-
tions where the deviation is indeed expressible by a Gaussian, and of possible disadvantage
to functions where that is not the case. However, this statement is speculative and definitely
needs further investigation.

For now, let us drop the term ¢ (i)' X}"¢ from the value model variance, and let it be
defined by oy = +/E}. Then the above expression for the most likely value estimate becomes

K 1
Vi) =3 wi i) g D

K N o—~_1"
k=1 Zp:l IS[’ (l)‘:'ll !

By noting that & is the approximation for &}, and by combining (5) and (20), we can see
that the above is equivalent to using classifier mixing as in (20) with v = 1. Thus, using
v =1 gives the MLE of the value estimate, given that the value variance is approximated by
the approximation error &.

7.3 Investigating parameter v

From the previous section we could assume that setting v = 1 gives the best overall approx-
imation. In this section we will show that this might indeed be a good value, but that setting
v is actually not that clear-cut.

By its definition (see (20)), v influences the spread in weighting between classifiers with
different accuracy. The higher v, the more importance is given to a low approximation error.
In the limiting case, which is v — oo, the mixing weights are set so that only the approxi-
mation of the seemingly most accurate classifier is considered, that is

lim ) = lim — D8 _ {1 if k= argmin, e k)ps
V—>00

e Z,If:l Is, (e, 0 otherwise.

Setting it to 0 weights all matching classifiers equally, independent of their accuracy.
Intuitively, setting v = oo only considers the classifier with the lowest error and should

therefore give the best approximation. This error, however, is the average error over the

classifier’s matched states and does not tell us anything about the approximation error for
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Fig. 3 Applying different values of mixing parameter v when approximating a a sinusoid in range [0, ),
and b a step function g (i)

particular states. Hence, in the worst case, the classifier could happen to only have the lowest
error within a set of states for which its approximation is actually worse than that of other
classifiers. In such a case, more moderate settings for v might be appropriate.

Let us consider two simple examples, as shown in Fig. 3: In the first example we want
to approximate V (i) = sin(i) over the range [0, ), using three classifiers with matched
states sets S; = [0, %), S, = [%, 1), and S3 = [0, 7). Its approximation for v =0, v = 1 and
v = oo is shown in Fig. 3(a). The second example concerns the step-function

1 ifti <05,

0 otherwise,

g(i)={

which we approximate by another 3 classifiers which match S, = [0, 0.5), S, =[0.5, 1),
and S3 = [0, 1) respectively. Its mixed approximation is shown in Fig. 3(b) for the mixing
parameters v = 0 and v = co. Both graphs show that v = 0 might never be a good idea, as
it ignores the approximation error of the classifiers. The case is not as clear-cut for values
v > 0, particularly around i = 7 for the sinusoid, where some value 0 < v < 1 might give
the best approximation. In the case of the step-function, classifiers 1 and 2 are completely
accurate (¢; = &, = 0) and therefore dominate the mixing for any v > 0. This is an extreme
case and might not happen frequently, but is always appropriate, as zero-error classifiers do
not have any approximation error for any of its matching states.

To summarize, v = 0 ignores the accuracy of a classifier and might therefore lead to
rather inaccurate overall approximations. On the other hand, v = oo might overemphasize
low-error classifiers in certain cases and increase the discontinuity in the approximation. In
general, the topic requires further investigation, but to our current knowledge, v = 1 actually
seems to give the best compromise between the two extremes.

8 Discussion and future work

In this paper, we have introduced parts of a formal framework that aims at studying learning
classifier systems, concerning how a set of classifiers approximate a function separately
and in combination. The notation and structure of the framework is aligned to allow for
relation of the separate components of LCS to common Machine Learning techniques, and
is inspired by the one presented in (Bertsekas and Tsitsiklis 1996).
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Firstly considering single classifiers, we have defined their optimality by minimizing the
squared approximation error over all states that the classifier matches. As minimizing the
cost function (3) or (4) is formally equivalent to a weighted least squares problem with
weights I, (i,,), all approaches to solving this problem are technically incremental learning
approaches to a weighted least squares problem. Alternatively, one can derive the same
problem statement by assuming a probabilistic formulation with constant noise variance
and seeking the maximum likelihood solution (Bishop 2006), as demonstrated here by the
equivalence of the Kalman filter and RLS update equations. Either way, we end up with
the same update equations, using either slowly converging gradient-based approaches, or
preferably, RLS or similar methods that provide the optimal least-squares solution with each
additional update.

While we have discussed the relation of introduced incremental weight updates to ex-
isting methods throughout the text, let us here take a summarized view: LCS that do not
train their classifiers independently of each other, such as those described in (Booker 2006;
Kovacs 2002; Wada et al. 2005; Wilson 1994), are not covered by our framework, for reasons
given in Sect. 2.3. XCS and its derivates, on the other hand, train their classifiers indepen-
dently and can therefore be easily related to the methods discussed in this paper: while the
original XCS (Wilson 1995) uses (10) with averaging classifiers, that is ¢ (i) = (1) for all
i € S, for its weight update, we have for the first time explicitly identified that the error
that this update equation minimizes is given by (4). Similarly, XCSF (Wilson 2002) im-
plicitly minimizes the same cost function by using the NLMS update equation (4.3). The
cost function was for the first time explicitly described in (Lanzi et al. 2005d) to introduce
the RLS algorithm to update the weight vector in XCSF, but without including the match-
ing term I, (i,,). Matching was introduced, as in XCS, by only updating the weight vector
of classifiers that match the current state. While this is an algorithmically valid approach,
our derivation from first principles explicitly shows that all update methods have the same
underlying linear model and minimize the same cost function.

With the introduction of the Kalman filter we have shown that under the assump-
tion of constant measurement noise, the Bayesian update of the multivariate Gaussian
weight vector model results in the same equations as the RLS algorithm, and therefore
equally minimizes the matching-weighted sum of squared errors. In addition, we have
gained probabilistic interpretations of the different parameters involved in the classifier
model, such as that the model’s prediction given a new state i is given by the Gaussian
N(w,¢ @), () Zr¢p (i) + Zi). Note that the variance of this prediction is on one hand
formed by the noise variance estimate =y, and on the other hand by the uncertainty of the
weight vector model ¢ (i)’ 2”¢ (i). Thus, we can now judge the confidence of a prediction
made by a classifier not only based on the global approximation error, but also based on
our certainty about the weight vector estimate. This property needs to be further explored to
provide confidence measures for the global approximation.

In contrast to the large amount of research activity seeking to improve the weighted
vector estimation methods in XCS, its method of estimating the classifier model quality
based on the absolute error rather than the squared error was left untouched since its initial
introduction. We have firstly questioned its consistency here, as the squared error measure
(rather than the absolute error) is not only more consistent with the weight vector update
methods, but also allows us to formulate a method that directly tracks this error. Used as
a drop-in replacement for the mean absolute error measure in XCSF, we have shown in a
follow-up study that it, indeed, improves the generalization capabilities due to its higher
accuracy of evaluating the model quality of a classifier (Loiacono 2006).

With respect to mixing the classifiers, that is, to combine their prediction to form the pre-
diction of the global function approximation, we have recently performed additional work
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in (Drugowitsch and Barry 2006d, 2007a) that confirms that accuracy-based mixing indeed
outperforms XCS mixing, and a set of other alternative heuristics. In more detail, we have
additionally investigated linear mixing models that do not rely on the principle of weighted
averaging, and some other quality measures for the classifier prediction. In a set of function
approximation experiments, we have shown that while the linear mixing models might be
able to outperform mixing by weighted average (and that includes accuracy-based mixing)
when only a small number of classifiers is used, they do not scale well computationally with
the number of classifiers, and are unable to maintain their performance lead when the num-
ber of classifier rises. Mixing as done in XCS was identified as being significantly worse
than all other methods, and the accuracy-based mixing introduced here provided the best
overall performance.

How does the work performed in this study help us to complete the framework by addi-
tionally considering classifier replacement and reinforcement learning? Concentrating first
on classifier replacement, one has to ask the question how to identify a desirable set of clas-
sifiers? Taking the least squares error or maximum likelihood as a performance measure
would result in an optimal set of classifiers being given by a single classifier per input sam-
ple, as in that way all samples can be approximated completely error-free. However, to avoid
such over-fitting, we need to introduce methods that balance over- and under-fitting of the
global approximation. Borrowing from the field of Model Selection, we have addressed this
problem by embedding the function approximation framework introduced in this paper in
a fully Bayesian formulation, and have then applied Bayesian model selection to identify
how well a particular set of classifiers explains the given samples (Drugowitsch and Barry
2007b, 2007c). More explicitly, given a set of classifiers by their number and location in
the input space, their parameters can be tuned by conditioning their parameter priors on the
given samples, just as done for a single classifier by the Kalman filter. This allows us to
derive an expression of the probability of the samples given the current classifiers, and—by
applying Bayes’ rule—also an expression for the probability of the given set of classifiers
given the current samples. Thereby, the task of finding a good set of classifiers is equivalent
to increasing their probability, given the available samples. This approach is appealing as it
is conceptually clear, and implicitly prevents over-fitting of the model (MacKay 1991). Cur-
rently, we can only provide a batch implementation which requires that all available samples
are available at once. How to turn this approach into an incremental learner such that we can
replace classifiers dynamically and still increase the probability of the whole set is the topic
of future research.

With respect to embedding the adaptive function approximation of LCS in reinforcement
learning, we have provided a preliminary analysis in (Drugowitsch and Barry 2006b, 2006c).
The main concern is that the interaction between the function approximation architecture
and the different reinforcement learning algorithms can lead to instabilities. Q-Learning,
for example, is known to be unstable even with the simplest linear function approximation
architectures. We can provide stability guarantees by showing that the LCS function approx-
imation architecture satisfies certain functional properties, that we will not discuss in detail
here. While (Drugowitsch and Barry 2006b, 2006¢) do provide a detailed overview of the
required analysis, it still lacks conclusive results. Nonetheless, it points out the direction that
future work has to concentrate on.

9 Conclusion

By providing a formal framework for function approximation in Learning Classifier Sys-
tems we have for the first time shown that the classifiers are independently trained localized
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regression models of the target function, where their localization is determined by their
matched states sets. Their training is a weighted least squares problem, for which we have
derived both batch and incremental learning methods from first principles. We have shown
how to combine the localized models to a global model by the principle of maximum likeli-
hood, resulting in an inverse-variance weighted combination of the local models.

The introduced framework forms the basis of our work that aims at capturing all compo-
nent of LCS to provide a sound theoretical foundation for these systems, enable the develop-
ment of new, better understood, methods, and bridge the gap between LCS and other closely
related machine learning methods. It has already been of significant value in our follow-up
work that has moved us notably closer to the goal of a unified LCS framework and analysis.
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Appendix A: Notation

The following table gives an overview of the meaning of the different symbols and in which
section they are introduced:

Symbol Stands for Section
\%4 Function to approximate, V : § — R 2.1
1% Approximation of V 2.1
v, Approximation of V at time ¢ 2.1
Vi Approximation of V by classifier k 2.2.1
S State space, domain of V 2.1

i State observed at time ¢, i; € S 2.1

T Function that gives the sampling distribution over S 2.1
L Size of the feature and weight vector 2.1
& [th basis function, giving /th feature of some state 2.1

¢ @) feature vector € R”, giving features of state i € S 2.1
K number of classifiers in the population 2.2.1
Sk Set of states that classifier k matches, Sy C S 2.2.1
I, Indicator function for set S; 2.2.1
Wy Weight vector € R of classifier k 2.2.1
Wkt Weight vector wy, at time ¢ 222
Jx Mean-squared error of classifier k 222
Ekt Sample-based error of classifier k at time ¢ 222
Cht Number of states matched by classifier k up to time ¢ 222
Ex Expectation taken w.r.t. classifier k 222
Y (Q) Mixing weight for classifier & in state i 223
o Step size for gradient-based algorithms 4.1
Ak Eigenvalues of the feature vector correlation matrix 4.1
Wit Model of system state w.r.t. classifier k 5.1.1
2 L x L weight covariance matrix 5.1.1
o, Measurement noise for classifier k at time ¢ 5.1.1
Ert Measurement noise variance of & , 5.1.1
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Appendix B: Derivations and proofs

The derivations and proofs in this section are given in their short form to present the idea of
the derivation/proof rather go through each step in full detail. For full detail see (Drugow-
itsch and Barry 2006a).

B.1 Kalman filter in covariance form

The Kalman filter is based on repeatedly conditioning the system state model given by
Wii—1 = N(wy,, X;) on the measurements V, = N(V (i;), Ey). As the system state and
the measurement are jointly Gaussian, the Bayesian update is given by (e.g. Anderson and
Moore 1979, Chap. 3)

Wi = E(We 1|V =NV (@), Ek.1))
= E(Wgi—1) +cov(W—1, Vvar(V) ™' (V (ir) — E(V),
e = coV(Wi1 |V, = N(V (i), Exr))
=cov(Wy,—1, Wr—1) —cov(Wi 1, Vy)var(V,) " cov(V;, We.i—1)-

Based on the definition of W}, and the system model (11) we get the following expectations,
variances and covariances:

E(Wi,) = wy,,
cov(Wi s, We) = 2,
E(V) = w9 (0),
var(V;) = ¢ (i) ¢, ¢ (i) + B,
cov(Wi,—1, Vi) = X, _ (i),
cov(Vi, Wiim1) = ¢ () .

To perform the conditioning only for measurement of states that the classifier matches, we
replace ¢ (i;) by /Is (i;))¢(i,) and V (i,) by /15, (i,)V (i;). This change is justified by ob-
serving that including the function I, in the state error I, (i,)(V (i;) — u;,/(,[_lq')(i,))2 causes
the same modifications. The effect is that non-matching states seem to have zero error, as
Vs ()¢ ) = /15, (i) V (i) = 0.

The final form of the Kalman filter in its Covariance Form, given by (12), (13), and
(14), is found after some algebraic manipulation, by substituting the expressions for the
expectations, variances, and covariances in the Bayesian update equations.

B.2 Kalman filter in inverse covariance form

The Inverse Covariance Form can be derived by applying the Matrix Inversion Lemma (e.g.
(Haykin 2002, Chap. 9.2)) to the weight covariance update (14) with (12) being substituted
for &, which leads us straight to the Inverse Covariance Form of the weight covariance
update (15).

Getting the weight update (16) requires some more steps: Firstly, by combining (12) and
(14) we can express the Kalman gain by

é-k,t = ISk (i,)E,:f)td)(i,)E,;l,
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which together with (13) gives
Wik, = Wgk,t—1 — ISk (i,)E,ﬁf,(ﬁ(i,)E,;l(p(it)’wk,,_l + ISk (iz)E/:‘f;(p(it)E/;l V@,).

From this we get the final weight update (16) by pre-multiplying above by (Z‘,:’f,)*‘ and
substituting (15) for the first (X ,l‘ft)‘l on the right-hand side of the resulting equation.

B.3 The recursive least squares algorithm

The derivation in this section is based on (Haykin 2002, Chap. 9) and (Bertsekas and Tsit-
siklis 1996, Chap. 3). We aim at finding and iterative update that minimizes (17) at every
time ¢. To find the minimum of the error we find the gradient of (17) and set it to 0, which
results in

(Z I, (z'm>Ek,,L¢<im)¢<im)/> Wi =Y L5 (im) 0V (in)$ (i)

m=0 m=0

From (15) and (Z}’_ )~ =0 we get

(ZP)™ =D s (im) B i) i)
m=0

which is (19) of the RLS algorithm and part of the left-hand side of above optimality condi-
tion for the weight vector. That lets us derive

t—1

(B2 wi = Is, (D ELV @G ) + Y s, (i) BV i) b i)

m=0

=I5 (i B V(iD$ i) + (T ) ' wi
=I5 (i) & V(i)p (i) + (ZF) ' wea—
—Is, (i) & ¢ i)p (i) we—y
= (S0 o + Is, (i) B ) (V) — wi,_, (i),
which, pre-multiplied by X}, gives the final weight update (18).
B.4 Incremental error update

As we assume a constant measurement noise variance & for deriving the incremental error
update, we will omit it from the update equation, which is equivalent to setting it to 1. This
is valid as the noise variance is a constant factor in our minimization that does not influence
the result.

The proof is based on the equalities

D s (i) (Wi (i) = (Z I, (im>¢(im>¢(im>/) Wi
m=0 m=0
= w/’{_t(zlgjt)_lwk,t

= wi, Y Is i)V (in) (i),

m=0
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that are used to manipulate the expression for g, from the new applicable Principle of
Orthogonality (Theorem 2). The manipulation is based on expressing (cx; — L)&;, in terms
of (cx,—1 — L)&x,—1 by reducing the scope of the sums from ¢ to t — 1. The algebraic details
to get the final error update equation can be found in (Drugowitsch and Barry 2006a).

B.5 Optimal approximation for a sinusoid

Let us consider the function V(i) = sin(i) and feature vectors ¢ (i) = (1,i)’, which are
used by classifier k, matching range Sy = [a, b) with b > a, to approximate function V by
uniform sampling. According to Theorem 1, the optimal weight vector can be calculated by
wy = (¢¢) "' Er (V). Hence, we require to know E(ls,), E(/s,¢¢") and E(I5, V ¢).

As we only sample states from S, we have E(/g,) = 1. For the other two expectations

we get
b 1 1 (p—q =2
E = — li)di=—— 2 ,
(Is,99) ]; h_ali ( l) ! h—a bzgaz b3;a3

b
E(Is V) = f ﬁ (})sin(i)di

1 cos(a) — cos(b)
"~ b—a \acos(a) —sin(a) — bcos(b) +sin(b) )

By inverting E(/g, ¢¢’) we can calculate wy, which gives

Wik

2 2(a® 4 ab +b*) —3(a +b)
T (b—a) —3(a+b) 6

cos(a) — cos(b)
acos(a) — sin(a) — bcos(b) +sin(b) ) °

To get the mean-squared error f; (wy), we again apply Theorem 1 to get
Jiewe) =B (V?) — wiEy (¢ ) wy

1 . .
= m (cos(a) sin(a) — a — cos(b) sin(b) + b)

wy, cos(a) — cos(b)
" b—a \acos(a) —sin(a) — beos(b) +sin(b) |
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