
Mach Learn (2006) 64:231–261

DOI 10.1007/s10994-006-8958-3

Gleaner: Creating ensembles of first-order clauses to
improve recall-precision curves

Mark Goadrich · Louis Oliphant · Jude Shavlik

Received: 11 April 2005 / Revised: 11 March 2006 / Accepted: 26 April 2006 / Published online: 30 June
2006
Springer Science + Business Media, LLC 2006

Abstract Many domains in the field of Inductive Logic Programming (ILP) involve highly

unbalanced data. A common way to measure performance in these domains is to use precision
and recall instead of simply using accuracy. The goal of our research is to find new approaches

within ILP particularly suited for large, highly-skewed domains. We propose Gleaner, a

randomized search method that collects good clauses from a broad spectrum of points along

the recall dimension in recall-precision curves and employs an “at least L of these K clauses”

thresholding method to combine sets of selected clauses. Our research focuses on Multi-Slot

Information Extraction (IE), a task that typically involves many more negative examples

than positive examples. We formulate this problem into a relational domain, using two large

testbeds involving the extraction of important relations from the abstracts of biomedical

journal articles. We compare Gleaner to ensembles of standard theories learned by Aleph,

finding that Gleaner produces comparable testset results in a fraction of the training time.

Keywords Inductive logic programming · Ensembles · Recall-precision curves ·
Biomedical information extraction

1. Introduction

Many large relational domains recently addressed by the field of Inductive Logic Program-

ming (ILP) intrinsically involve highly unbalanced data, where negative examples greatly

outnumber positive examples (Tang et al., 2003; Taskar et al., 2003; Popescul et al., 2003;

Richardson and Domingos, 2006). These domains present problems for traditional ILP algo-

rithms, where learning is focused on obtaining accurate, interpretable theories for relatively

small datasets. The goal of our research is to find new approaches within ILP particularly

suited for large, highly-skewed domains.

Editor: Rui Camacho

M. Goadrich (�) · L. Oliphant · J. Shavlik
Department of Computer Sciences, Department of Biostatistics and Medical Informatics, University of
Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706 USA
e-mail: richm@cs.wisc.edu

Springer

232 Mach Learn (2006) 64:231–261

Table 1 Evaluation metrics and
definitions Metric Definition

Accuracy TP+TN
TP+FP+TN+FN

True positive rate TP
TP+FN

False positive rate FP
FP+TN

Precision TP
TP+FP

Recall TP
TP+FN

F1-score 2·Precision·Recall
Precision+Recall

The standard approach to ILP is to use a covering algorithm: first-order logical clauses

are learned sequentially, each covering a subset of the positive examples, until almost all of

the positive examples are covered by at least one clause (Fürnkranz, 1999). These clauses

are combined to form what is called a theory. If one uses the traditional approach to combine

the clauses, such that a test example need only match one of the learned clauses to be

classified as positive, an individual theory will produce a set of true/false predictions for the

testset examples. These predictions can then be evaluated using a wide number of evaluation

metrics, such as accuracy, true positive rate, false positive rate, precision and recall (defined in

Table 1).

When applying ILP to large relational datasets, one major problem with using a covering

algorithm approach is the amount of time needed to generate a theory. Theory search is very

time intensive, due to the repeated sequential process of examining hundreds or thousands of

clauses to find the one “best” clause to add to the theory. This is especially pronounced in large

datasets, where it can take days or weeks to find a complete theory for a large training set.

A second problem involves the evaluation metrics used for ILP domains. The most com-

mon way to measure performance in large highly-skewed domains is to use precision and

recall (Manning and Schütze, 1999), two evaluation metrics which focus on the correct

classification of the positive examples. However, the standard ILP approach is biased to-

ward producing many high-precision, low-recall clauses, which when combined typically

create a high-recall, low-precision theory. A more useful evaluation would be to create a

recall-precision curve, to illustrate the trade-off between these two measurements.

To address the goal of efficiently producing good recall-precision curves within ILP, we

have developed and evaluated the Gleaner algorithm. Gleaner is a parallel randomized-search

method that quickly collects good clauses from a broad spectrum of points along the recall

dimension in recall-precision curves. It then employs a simple “at least L of these K clauses”

thresholding method to combine the selected clauses and create disjoint theories, each focused

on a different region of recall-precision space.

Our datasets for exploring Gleaner come from biomedical information-extraction and are

large, relational, and highly unbalanced. Specifically, we are given a set of Medline journal

abstracts manually tagged with protein-localization or genetic-disorder relationships, and

our goal is to learn a theory that extracts these relations from the training set of abstracts and

performs well on unseen abstracts. Using these datasets, we compare Gleaner to ensembles

of standard Aleph theories, finding that Gleaner produces comparable testset results in a

fraction of the training time.

The rest of this paper is organized as follows: we first review necessary background mate-

rial on ILP and our evaluation metrics of recall and precision. We then present our new algo-

rithm Gleaner, followed by a discussion of our biomedical information-extraction dataset in

detail. We then describe our comparison algorithm of Aleph ensembles and discuss the results

of our experiments. Finally, we conclude with some proposals for future work in this area.

Springer

Mach Learn (2006) 64:231–261 233

2. Interpolating in recall-precision space versus ROC space

When making predictions, machine learning classifiers commonly label each test example

as being positive or negative. True positives (TP) are those examples where the classifier

correctly predicts a positive label, false positives (FP) occur when the classifier incorrectly

predicts a positive label, with similar definitions for true negatives (TN) and false negatives

(FN).

Datasets with unbalanced class distributions present a number of problems for ILP systems.

First, these domains tend to have a large number of objects and relations, causing a large

explosion in the search space of clauses. A first approach is to sample these objects and

reduce the space to a reasonable size. However, even a moderate number of objects brings

about the second problem, a large skew of the data toward negative examples. Suppose we

have 500 people, each of whom have 10 friends amongst these 500 people. This gives us 5000

positive examples, assuming that the friendship relationship is not necessarily symmetric.

Our negative examples are all other possible friendships, for 500 × 500 − 5000 = 245,000

negative examples, a positive:negative skew of 1:49.

Table 1 contains the definitions for some common evaluation metrics: accuracy, true
positive rate, false positive rate, precision and recall. The issue of skewed data leads us away

from using the standard performance measure of accuracy to evaluate our results. With the

positive class so small relative to the negative class, it is trivial to achieve high accuracy by

labeling all test examples negative. Precision and recall concentrate on the positive examples,

since precision measures how accurate we are at predicting the positive class, while recall

measures how many of the total positives we are able to identify.

Two common ways to evaluate the performance of algorithms are ROC curves (Fawcett,

2003) and Recall-Precision curves (Manning and Schütze, 1999). Both are typically generated

from a ranked list of examples. Points are commonly created by first defining a threshold,

where all examples ranked higher than this threshold are classified positive and all examples

lower than this threshold are classified negative. From these classifications we can calculate

our TP, FP, TN, and FN values, followed by the true positive rate, false positive rate, recall

and precision for this threshold. The threshold is then varied from the highest rank to the

lowest rank, giving us all meaningfully distinct threshold values for this ranking and therefore

all possible points on our curve. This thresholding is a way to generate many classifiers from

one ranked list of examples; however, in general, more than one classifier can be used to

generate a curve, as will be seen later in this article.

The Area Under the Curve (AUC) has traditionally been used to analyze ROC curves

(Bradley, 1997), which plot the true positive rate versus the false positive rate. It is equiv-

alent to the Wilcoxon-Mann-Whitney statistic (Cortes and Mohri, 2003), which calculates

the chance that a randomly selected positive will be before a randomly selected negative

in a ranked list of positive and negative examples. The optimal AUC is 1.0, where all

positive examples are ranked before negative examples, and the score of a random clas-

sifier is 0.5. The AUC provides a quick summary of a ROC graph, which is helpful for

comparing the performance of different machine learning algorithms across a variety of

thresholds.

We will be using the Area Under the Recall-Precision Curve (AURPC) to gather a single

score for each algorithm involved in this research. We see in Fig. 1 that ROC curves can

mask the true performance of an algorithm by ignoring the class distribution, while RP

curves account for this skew by using recall and precision as the axis.

To calculate the AURPC, we first standardize our precision-recall curves to always cover

the full range of recall values [0,1] and then interpolate between the points. From the first point,

Springer

234 Mach Learn (2006) 64:231–261

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

T
ru

e
 P

o
si

ti
v

e
 R

a
te

False Positive Rate
1.00.90.80.70.60.50.40.30.20.10.0

(a) ROC curve

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

P
re

ci
si

o
n

Recall
1.00.90.80.70.60.50.40.30.20.10.0

(b) RP curve

Fig. 1 ROC and RP curves both computed from the same set of predictions on our dataset described in
Section 5. Although both curves are produced from the identical underlying predictions, visually they are
strikingly different

which we designate (Rfirst, Pfirst), the curve is extended horizontally to the point (0, Pfirst).

This new point is achievable since we could randomly discard a fraction, f , of the extracted

relations and expect the same precision but smaller recall on the examples; the setting of f

would determine the recall. An ending point of (1, Total Pos
Total Pos + Total Neg

) can always be

found by classifying everything as positive. This will give us a continuous curve extending

from 0 to 1 along the recall dimension.

Remember that any point A on a precision-recall curve is generated from the underlying

true positive (TPA) and false positive (FPA) counts. Suppose we have two points, A and B
which are far apart in precision-recall space. To find some intermediate values for our curve,

we must interpolate between their counts TPA and TPB , and FPA and FPB . First, we find

out how many negative examples it takes to equal one positive, or the local skew, defined

by FPB−FPB
TPB−TPA

. Now we can create new points with recall T PA + x for all integer values of x

Springer

Mach Learn (2006) 64:231–261 235

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

P
re

ci
si

o
n

Recall
1.00.90.80.70.60.50.40.30.20.10.0

Correct Interpolation

Incorrect Interpolation

Fig. 2 Interpolation differences between ROC and RP space

such that 1 ≤ x ≤ TPB − TPA, i.e. TPA + 1, TPA + 2, . . . , TPB − 1, and calculate precision

by linearly increasing the false positives for each new point by the local skew. Our resulting

precision-recall points will be(
TPA + x

Total Pos
,

TPA + x

TPA + x + FPA + FPB−FPA
TPB−TPA

x

)
.

With these new points, we can now approximate the AURPC.

The graphical interpolation for the recall-precision curve is different than for a ROC

curve; whereas the ROC interpolation would be a linear connection between the two points,

in recall-precision space the connection can be curved, depending on the actual number of

positive and negative examples covered by each point. The curve is especially pronounced

when a classifier predicts many tied confidence scores, causing adjacent points to be far away

in recall and precision. Consider a curve (Fig. 2) constructed from a single point of (0.02, 1),

and extended to the endpoints of (0, 1) and (1, 0.008) as described above (for this example,

our dataset contains 433 positives and 56,164 negatives). Interpolating as we have described

would produce an AURPC of 0.031; a linear connection would severely overestimate with

an AURPC of 0.50.

The AURPC has advantages over the breakeven point statistic, defined as the point on a

curve where precision = recall, since our curves are not necessarily generated from a ranked

list of examples. The AURPC can also be seen as a more exact measure than the 11-point

average precision statistic (Manning and Schütze, 1999), since we calculate and interpolate

between all recall points. As with ROC curves, the optimal AURPC value is 1.0, however,

the AURPC value for a random classifier is equal to TotalPos
TotalPos+TotalNeg , as this is the expected

precision for classifying a random sample of examples as positive. More discussion of the

AURPC metric and its relation to ROC curves can be found in Davis and Goadrich (2006).

3. Inductive logic programming

Inductive Logic Programming (ILP) combines machine learning with logic programming

(Džeroski and Lavrač, 2001). It is the process of learning first-order clauses to correctly

Springer

236 Mach Learn (2006) 64:231–261

B

C
E

D

F

G

H

(a) East-bound vs. West-bound Trains (b) Mutagenic Molecules

(c) Friendship in Social Networks

NO

NOO N2 2

2

A

Fig. 3 Relational object domains (a) and (b) versus link-learning domains (c)

categorize training set data. Typical machine learning algorithms are propositional, using a

fixed-sized feature-vector representation, while ILP uses relations in mathematical logic to

describe examples, and can handle large and variable-sized structures and sequences. One

advantage of ILP is the incorporation of related background knowledge about the data. Some

currently open problems for ILP include efficiently searching the greatly increased hypothesis

space compared to propositional domains, and appropriately calibrating probability estimates

when using Boolean-valued logical rules. We refer the reader to Nilsson and Maluszyński

(2000) for definitions of standard logic programming terminology.

Domains suitable for ILP can be roughly divided into two main groups, as seen in Fig. 3. In

one group, there are tasks in which each example has some internal relational structure. One

classic example of this domain is the trains dataset (Michalski and Larson, 1977), where the

goal is to discriminate between two types of trains (east/west), and the trains themselves are

relational in nature, having varying length (i.e. number of cars) and types of objects carried

by each car. A more realistic example is the mutagenesis dataset (Srinivasan et al., 1996),

where the goal is to classify a chemical compound as mutagenic or not using the relational

nature of the atomic structure of each chemical. ILP has proven successful in domains like

these by bringing the inherently relational attributes into the hypothesis space.

The other group contains tasks where examples, in addition to having a relational structure,

have relations to other examples. The goal in these domains is to classify links between objects

instead of the objects themselves. One such domain is the learning of friendship in social

networks (Taskar et al., 2003), where instead of classifying people, we try to determine the

structural relationships of people based on a combination of their personal attributes and the

attributes of their known friends. Another domain of this type is learning to suggest relevant

citations for scientific publications (Popescul et al., 2003). Link-learning domains are typified

by significant overlap in the background knowledge for each example as well as a large skew

toward negative examples, and this article is focused on these link-learning domains.

Aleph (Srinivasan, 2003) is a top-down ILP covering algorithm developed at Oxford

University, UK. It is written completely in Prolog and is open source. Aleph is based on an

earlier ILP system called PROGOL (Muggleton, 1995). As input, Aleph takes background

Springer

Mach Learn (2006) 64:231–261 237

knowledge in the form of either intensional or extensional facts, a list of modes declaring

how literals can be chained together, and a designation of one literal as the “head” predicate

to be learned. Lists of positive and negative examples of the head literal are also required.

At a high-level overview, Aleph sequentially generates clauses for the positive examples

by picking a random example to be a seed. This example is then saturated to create the bottom
clause, the most specific clause (relative to a given background knowledge) that covers a given

example. This clause is created by chaining through literals until no more facts about the

seed example can be added or a specified limit is reached. The bottom clause determines the

possible search space for clauses. Aleph heuristically searches through the space of possible

clauses until the “best” clause is found or time runs out. When enough clauses are learned

to cover (almost) all of the positive training examples, the learned clauses are combined to

form a theory.

Rückert et al. (2002; 2003; 2004) and Železný et al. (2003; 2004), have explored using

Stochastic Local Search (SLS) to explore the hypothesis space in both propositional and ILP

settings. Aleph allows for stochastic search functions such as Stochastic Clause Selection

(SCS), GSAT and WalkSAT (Selman et al., 1993), and Rapid Random Restart (RRR):� SCS randomly picks clauses which are subsets of the bottom clause according to a user-

specified distribution of clause lengths. SCS has a hard time finding high quality clauses

and is biased to select long clauses due to the heavy-tailed distribution of clause lengths

since it does no local search.� GSAT selects an initial clause at random and then chooses to either add or remove a

randomly selected literal if the new, altered clause is “better” according to the evaluation

function; WalkSAT modifies GSAT by allowing a certain percent of “bad” moves.� RRR works similarly to SCS, GSAT and WalkSAT in the initial random clause selection,

but takes time to evaluate the hypothesis space around the initial clause. RRR refines

clauses by using a best-first search when used in conjunction with a heuristic evaluation

function, and restarts with a new random clause after a specified number of evaluations.

Where GSAT and WalkSAT will make more moves in hypothesis space, RRR makes a

more thorough investigation before choosing its next move.

As stated earlier, the standard ILP approach is biased toward producing many high-

precision, low-recall clauses, which when combined typically create a high-recall, low-

precision theory. Let K be the number of clauses in a theory and R be the recall of each

clause. Assuming independence of the clauses in a theory, the probability of a given pos-

itive example being classified as positive by the theory is just the probability of it being

classified as positive by at least one clause. In other words, this is 1 minus the probability

of it being classified as positive by no clauses. So the recall of the theory can be written

as 1 − (1 − R)K . For large values of K , (1 − R)K approaches 0 and so the entire equation

approaches 1. For example when R = 0.06 and K = 100, the recall of the entire theory,

(unrealistically) assuming independence, is 0.99.

In order for a negative example to be correctly labeled, it must not match any of the K
clauses. The probability of any one clause correctly classifying a negative example (the True

Negative Rate) is 1 − [FP/(TN + FP)], which equals TN/(TN + FP). So the probability of

all K clauses correctly calling it negative is [TN/(TN + FP)]K . Thus the probability of a false

positive is 1 − [TN/(TN + FP)]K , which approaches 1 for large values of K . In keeping with

our focus on skewed data, suppose we have 100 positive and 1,000 negative examples and a

True Negative Rate of 0.998. R = 0.06 and K = 100 implies the precision of any one clause

is 0.75, while precision for the whole theory of independent clauses is 0.35.

Springer

238 Mach Learn (2006) 64:231–261

Table 2 The Gleaner algorithm

4. Our algorithm: Gleaner

In order to rapidly produce good recall-precision curves, we have developed Gleaner, a two-

stage algorithm to (1) learn a broad spectrum of clauses and (2) then combine them into a

thresholded theory aimed at maximizing precision for a particular choice of recall. Pseudo-

code for our algorithm appears in Table 2. A gleaner is one who gathers grain left behind by

reapers, and we call our algorithm Gleaner because it sifts through clauses discarded by a

standard heuristic search and uses some of them to form its theories. Our Gleaner algorithm

currently uses Aleph as its underlying engine for generating clauses.

After initialization, the first stage of Gleaner learns a wide spectrum of clauses, illustrated

in Fig. 4. We use Aleph to search for clauses using K seed examples to encourage diversity.

In our experiments that appear in Section 7, the recall dimension is uniformly divided into

B equal sized bins, for example, [0, 0.05], [0.05, 0.10], . . . , [0.95, 1]. For each seed, we

consider up to N possible clauses using stochastic local-search methods (Hoos and Stutzle,

2004). As these clauses are generated, we compute the recall of each clause and determine

into which bin the clause falls. Each bin keeps track of the best clause appearing in its bin

for the current seed. We use the heuristic function precision × recall to determine the best

clause, since we believe this will increase the generality of our clauses. At the end of this

search process, there will be B clauses collected for each seed and K seed examples for a

total of B × K clauses (assuming a clause is found that falls into each bin for each seed).

To perform stochastic local search, we considered the four search methods discussed

earlier: Stochastic Clause Selection (SCS), GSAT and WalkSAT, and Rapid Random Restart

(RRR). We found that GSAT and WalkSAT make more “uphill” moves in the search space (i.e.

removing predicates from the clause) than RRR, and due to the internal workings of Aleph,

adding predicates to a clause is much more efficient than removing them. In our testbeds,

RRR both takes less time and produces higher quality clauses than the other methods, and

we will use it as Gleaner’s search method in the remainder of this article.

Springer

Mach Learn (2006) 64:231–261 239

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

P
re

ci
si

o
n

Recall
1.00.90.80.70.60.50.40.30.20.10.0

Fig. 4 A hypothetical run of Gleaner for one seed and 20 bins on the training set, showing each considered
clause as a small circle, and the chosen clause per bin as a large circle. This is repeated for K seeds to gather
B × K clauses (assuming a clause is found that falls into each bin for each seed)

The second stage takes place once all our clauses have been gathered using random search.

Gleaner combines the clauses in each bin to create one large thresholded theory, of the form

“At least L of these K clauses must cover an example in order to classify it as a positive.”

Each of these learned theories could generate their own recall-precision curves, by exploring

all possible values for L , as shown in Fig. 5. These curves will overlap in their recall and

precision results, and we would like to save the highest points along this combined curve,

irrespective of the bin which generated the points. Hence, for each bin we record the theory

and threshold L which generated the highest points in that bin on the tuning set. With this

L , we now evaluate our saved thresholded theory on the testset and record the precision

and recall. We will end up with B recall-precision points, one generated by each bin, that

hopefully broadly span the recall-precision curve.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

P
re

ci
si

o
n

Recall
1.00.90.80.70.60.50.40.30.20.10.0

Fig. 5 Twenty complete recall-precision curves, one from each Gleaner bin, evaluated on fold 1 of our
protein-localization dataset

Springer

240 Mach Learn (2006) 64:231–261

A unique aspect of Gleaner is that each point in the recall-precision curve could be

generated by a separate thresholded theory. This is opposed to the usual setup to create a

curve, where one standard theory is transformed into many by ranking the examples and then

finding different thresholds of classification. This separate-theory method is related to using

the ROC convex hull created from separate classifiers (Fawcett, 2003). We believe using

separate theories is a strength of our Gleaner approach, such that each theory, and therefore

each point on our curves, is not hindered by the mistakes of previous points; each theory is

totally independent of the others.

An end-user of Gleaner will be able to choose their preferred operating point from this

recall-precision curve. Our algorithm will then be used to generate testset classifications using

the closest bin to their desired recall results along with our found threshold L . If necessary, we

can produce a confidence score for each example by using the number of clauses that cover

this example within our selected bin. For this reason, we have performed macro-averaging

(Lewis, 1991) of our results to calculate the AURPC, where the AURPC is first calculated

for each fold and then averaged to produce one value.

5. Selection of a dataset

This article focuses mainly on one particular dataset, learning the location of yeast proteins

in a cell, as illustrated in Fig. 6. This is an example of Biomedical Information Extraction

(IE), our domain for this research. A second genetic-disorder dataset with a similar structure

will also be examined in Section 7. This section gives a brief overview of this domain,

then proceeds to explain this dataset, how it was collected and labeled, as well as additional

background information that was used.

5.1. Information extraction

Information Extraction (IE) is the process of scanning unstructured text for objects of interest

and facts about these objects. When framed as a learning task, IE is defined as: given infor-

mation in unstructured text documents, extract the relevant objects and relationships between

them. There are two main IE tasks, Single-Slot Extraction and Multi-Slot Extraction.

Named Entity Recognition (NER) is a common subtask of single-slot extraction. NER

can be seen as identifying a single type of object, for example the name of an individual,

PubMed Abstract1570306, Sentence 3
The deduced amino acid sequence of the FRE1 protein
exhibits hydrophobic regions compatible with transmembrane
domains and has significant similarity to the sequence of the
plasma membrane cytochrome b558, a critical component of
a human phagocyte oxidoreductase, suggesting that FRE1
is a structural component of the yeast ferric reductase.

CLEAR: cytochrome b558 - plasma membrane
AMBIGUOUS: FRE1 - transmembrane
CO-OCCURANCE: all other combinations

Fig. 6 Sample biomedical sentence with its correct extractions for a protein localization task

Springer

Mach Learn (2006) 64:231–261 241

corporation, gene, or weapon. Multi-slot extraction builds upon the objects found in NER, and

looks for a relationship between these items in the text, some examples being a parent-child

relationship between individuals, the CEO of a particular company, or the interaction of two

proteins in a cell. Multi-slot extraction is typically much harder; not only must the objects

of the relation be identified, but also the semantic relationship between these two objects.

Recently, biomedical journal articles have been a major source of interest in the IE commu-

nity for a number of reasons: the amount of data available is enormous; the objects, proteins

and genes, do not have standard naming conventions; and there is interest from biomedi-

cal practitioners to quickly find relevant information (Blaschke et al., 2002; Shatkay and

Feldman, 2003; Ray and Craven, 2001; Bunescu et al., 2005). We have focused on learning

multi-slot protein localization from Medline1 abstracts, where the task is to identify links
between phrases which correspond to a protein and the location of that particular protein

in a cell. Biomedical journals typically contain highly domain-specific language, as seen in

Fig. 6. This figure’s sentence comes from our protein-localization dataset. Proteins (black

text in boxes) and locations (white text in boxes) are the named entities of our dataset, and

we wish to discern if there is any evidence in this sentence to suggest a protein is found in a

particular cell location.

When seen as a relational data task, multi-slot IE clearly falls into the link-learning category

described in Section 3. IE is a domain that typically has unbalanced data; for example, only a

very small number of phrases are protein names. Learning the relation between two entities,

such as protein and location, only increases this imbalance, as the number of positive examples

is now a subset of the cross-product of the entities, and the negative examples are every other

entity-entity pairing in the dataset.

We believe that ILP is well-suited for information-extraction in biomedical domains as

well as other link-learning tasks. ILP offers us the advantages of a straight-forward way to

incorporate domain knowledge and expert advice and will produce logical clauses suitable

for analysis and revision by humans to improve performance. Multi-slot IE is an appealing

challenge task for ILP, due to its large amount of examples and background knowledge, as

well as the substantial skew of examples. There are not many large, heavily skewed datasets

available for ILP research, and we believe this information-extraction task will provide a

useful testbed for further ILP research.

5.2. Data labeling

Our testbed initially came from Ray and Craven (2001). The data consist of 7,245 sentences

from 871 abstracts found in the Medline database, and contains 1,200 positive phrase-phrase

relations. We formalize this dataset into an ILP task as follows:

Given a sentence S, find all protein phrases P and location phrases L that satisfy

the relation protein location(P, L, S).

The original dataset was labeled semi-automatically, in order to avoid the laborious task

of labeling by a human. Protein localizations were gathered from the Yeast Protein Database

(YPD) Hodges et al. (1997), and sentences which contained instances of both a protein and

location pair were marked as positive by a simple computer program. In our early exploration

of this dataset, we found that there were a significant number of false positives that looked

like true positives, but were apparently missed by the automated labeling algorithm. Also,

1http://www.ncbi.nlm.nih.gov/pubmed

Springer

242 Mach Learn (2006) 64:231–261

some of the labels were ambiguous at best, finding both a protein word and a location

word, whereas the human-judged semantics of the sentence did not involve localization. In

addition, by using this labeling scheme, we did not have data on all yeast proteins in the

corpus, only those listed in YPD. Because of these issues, we decided to relabel the dataset

by hand. Our current dataset can be found at ftp://ftp.cs.wisc.edu/machine-learning/shavlik-

group/datasets/IE-protein-location.

To label the positive examples, we manually performed first protein and location named-

entity labeling, followed by relational labeling between all found named-entities.

For each example, we labeled the proteins and locations independently. Then, we asso-

ciated those proteins and locations that we believed were part of the same relational tuple.

The data had been previously divided into five folds by abstract, and each abstract was par-

titioned into sentences by simple heuristics. We labeled each sentence individually without

looking at the whole abstract, and deleted and merged sentences which were incorrectly split

by the previous heuristic program. We used Medical Subject Headings (MeSH)2 to look up

any biological words unknown to us at the time of labeling. Our labeling standards differ

from those used by other groups (Hu, 2003) who focus on finding general words describing

proteins, as our task is to extract the locations of specific yeast proteins. If there was any

disagreement among the three labelers, we did not tag the protein or location, to make sure

our training set was as precise as possible at the expense of some recall.

For the protein labeling, we strove to be specific rather than general, and only labeled

words that directly referred to a protein or gene molecule. This included gene names such

as “SMF1,” protein names like “fet3p” and full chemical names of enzymes, such as “qh2-

cytochome c reductase.” Therefore, while we would label SEC53 from “SEC53 mutant,”

we did not label “isp4delta” or “rrp1-1” as these gene products are defective and would

not give rise to a functioning protein molecule. We did not label protein families such as

“hsp70” unless it was an adjective to a protein, as in “hsp70 dnaK.” Fusion proteins, such as

when a gene is combined with a fluorescent tag, were labeled as proteins. Protein complexes,

antibodies and open reading frames were never labeled as positive protein examples. Also,

only proteins that are known to exist in yeast were labeled, not those which were found in

other species, since our dataset dealt with the localization of yeast proteins.

Labeling the location words was much more direct. We used a list of known cellular

locations listed in an introductory cellular biology text book (Becker et al., 1996), including

locations and abbreviations such as “cytoskeleton,” “membrane,” “lumen,” “ER,” “npc,”

“bud,” etc. Also labeled were location adjectives, such as “nucleoporin” and “ribosomal.”

Each [protein,location] pair was then labeled as either a “co-occurrence,” an “ambiguous”

tuple, or a “clear” tuple. “Co-occurrence” indicates that even though the protein and location

occurred in the same sentence, they did not belong to the same tuple, i.e. the sentence did

not imply that the protein was found in the marked location. “Ambiguous” indicates that the

sentence has some evidence for localization, but more information is needed (perhaps from

the surrounding context) to determine, especially automatically, that the tuple is present.

“Clear” indicates that the sentence directly implies the relationship. For example:� Clear. Relationships directly stated in the text, as in protein location(YRB1p,
cytosol) from the sentence “YRB1p is located in the cytosol.”� Ambiguous. Relationships where the protein location was implied rather than stated, such

as protein location(LIP5, mitochondrial) from the sentence “LIP5 mu-

tants undergo a high frequency of mitochondrial DNA deletions.”

2 http://www.nlm.nih.gov/mesh/meshhome.html

Springer

Mach Learn (2006) 64:231–261 243� Co-occurrence. Pairing of a protein and location that had no relationship at all within the

context of that sentence, such as protein location(ERD1, ER) from the sentence

“Cells lacking the ERD1 gene secrete the endogenous ER protein, BiP.”

Each classification was agreed upon by all three labelers. For our experiments, we used the

clear category as positive examples, and all other phrase pairings as negative examples.

5.3. Unbalanced data filtering

As previously mentioned, one of the difficulties we face with this domain is the large number

of possible examples we must consider. Our dataset contains approximately 7,000 sentences.

If each sentence contains approximately 12 phrases then the total number of phrase-phrase

pairings is over 1 million. Only 1,299 of those pairings are positive. This leads to a posi-

tive:negative ratio of over 1:750.

For this domain, we use prior knowledge to help reduce the number of false positive

examples. We observe that 95% of our positive relations contain noun phrases in both po-

sitions, while the overall ratio is 26%, and use this to limit the size of our training data to

only those candidate extractions where both arguments are noun phrases. This reduces the

positive:negative ratio in our data to 1:158. We must necessarily keep track of all discarded

positives in the testing set, i.e., those that have at most one non-noun phrase, and record them

as false negatives in our recall-precision results.

To further reduce the positive:negative ratio we randomly under-sample the negatives,

retaining only a fourth during training. This filtering, as shown in Fig. 7, allows for faster

clause learning.

5.4. Background knowledge

Instead of the standard feature-vector machine learning setup (Mitchell, 1997), ILP uses

logical relations to describe the data. Our algorithms attempt to construct logical clauses

based on this background structure that will separate positive and negative examples. For our

information-extraction task, we construct background knowledge from sentence structure,

statistical word frequency, lexical properties, and biomedical dictionaries. Table 3 shows a

sample sentence and some of the resulting Prolog facts we create to capture the structure and

semantics.

POS POS POS

NEG

NEG
NEG

sampling
noun

phrase
filter

Fig. 7 We filter both training and testing sets with the “noun phrase filter,” but only the training set with the
“sampling filter”

Springer

244 Mach Learn (2006) 64:231–261

Table 3 Translation from sample sentence “YRB1p is located in the cytosol,” to Prolog. This sentence
is from the abstract whose PubMed ID is 9121474. Not all facts created are listed.

Background Some of the Prolog facts created

Knowledge

Sentence sentence(ab9121474 sen6).
Structure phrase(ab9121474 sen6 ph0).

phrase(ab9121474 sen6 ph1).
word(ab9121474 sen6 ph0 w1).
word(ab9121474 sen6 ph1 w2).
word(ab9121474 sen6 ph1 w3).
phrase child(ab9121474 sen6 ph0, ab9121474 sen6 ph0 w1).
word next(ab9121474 sen6 ph0 w1, ab9121474 sen6 ph0 w2).
word ID to string(ab9121474 sen6 ph1 w1, `YRB1p').
target arg1 before target arg2(ab9121474 sen6).

Part Of np segment(ab9121474 sen6 ph0).
Speech vp segment(ab9121474 sen6 ph1).

unk(ab9121474 sen6 ph0 w0).
cop(ab9121474 sen6 ph1 w1).
v(ab9121474 sen6 ph1 w2).

Medical phrase contains mesh term(ab9121474 sen6 ph3, `cytosol').
Ontologies phrase contains medDict term(ab9121474 sen6 ph3, `cytosol').

phrase contains go term(ab9121474 sen6 ph3, `cytosol').
Lexical phrase contains alphabetic word(ab9121474 sen6 ph0).
Properties phrase contains specific word(ab9121474 sen6 ph1, `is').

phrase contains originally leading cap(ab9121474 sen6 ph0).
Word phrase contains some arg 5x word(ab9121474 sen6 ph1).
Frequency phrase contains some arg 2x word(ab9121474 sen6 ph3).

Our first set of predicates comes from the sentence structure. We use the Sundance sentence

parser (Riloff, 1998) to derive a parse tree for all sentences in our dataset and the part-of-

speech for all words and phrases of the tree. We then flatten this tree, such that there are no

nested phrases; all phrases have the sentence as the root, and therefore all words are only mem-

bers of one phrase. Figure 8 shows a sample sentence parse divided into one level of phrases.

Each word, phrase, and sentence is given a unique identifier, or constant, based on its

ordering within the given abstract. This allows us to create predicates which relate sentences,

phrases and words based not on the actual text of the document but on its structure, such

as sentence child, phrase previous and word next about the tree structure and

sequence of words, and predicates like nounPhrase, article, and verb to describe

the part of speech structure. To include the actual text of the sentence in our background

knowledge, the predicate word ID to string maps these identifiers to word constants.

Sentence Fragment

Text

Part Of Speech

Phrase Type

N V V N V NP

NP VP NP VP PP NP

... we haved named YFH1, localizes to mitochondria ...

Fig. 8 Sample sentence parse from Sundance sentence analyzer (N = noun, V = verb, P = preposition, NP
= noun phrase, VP = verb phrase, PP = prepositional phrase)

Springer

Mach Learn (2006) 64:231–261 245

In addition, the words of the sentence are stemmed using the Porter stemmer (Porter, 1980),

and currently we only use the stemmed version of words.

Another group of background predicates comes from looking at the frequency of words

appearing in the target phrases in the training set. This is done on a per-fold basis to prevent

learning anything about the test set. We created Boolean predicates for several ratios, 2 times,

5 times and 10 times the general word frequency across all abstracts in a given training set,

using the following formula to determine which words matched which ratios:

ratio for wi = P(wi = word|wi ∈ Target Phrase)

P(wi = word|wi �∈ Target Phrase)

For example, the words “body,” “npc,” and “membrane” are at least 10 times more likely to

appear in location phrases than in phrases in general in training set 1. These gradations are

calculated for both target arguments, protein and location, as well as for words that appear

more frequently in between, before or after the two arguments. We create semantic classes

consisting of these high frequency words. These semantic classes are then used to mark up

all occurrences of these words in a given training and testing set.

A third source of background knowledge is derived from the lexical properties of each

word. Alphanumeric words contain both numbers and alphabetic characters, (such as

“YRB1p” and “LIP5”) whereas alphabetic words have only alphabetic characters.

Other lexical and morphological features includesingleChar (“a”),hyphenated (“qh2-

cytochrome”) and capitalized (“NIP7p”). Also, words are classified as novelWord
(“phosphatidylinositol”) if they do not appear in the standard /usr/dict/words dictio-

nary in UNIX.

For our fourth source, we incorporate semantic knowledge about biology and medicine

into our background knowledge, such as the Medical Subject Headings (MeSH)3, the Gene

Ontology (GO)4, and the Online Medical Dictionary5. As we did for the sentence struc-

ture, we have simplified these hierarchies to only be one level. We have picked three cate-

gories from MeSH (protein, peptide and cellular structure), the cellular-localization category

from GO, and the cellular-biology category from the Online Medical Dictionary. Phrases

are labeled with predicates such as phrase contains mesh term and phrase
contains go term if any of the words in the given phrase match any words in the category.

As seen in Table 3, the word ‘cytosol’ is found in all three categories and labeled accordingly.

Sentence-structure predicates likeword before andphrase after are added, allow-

ing navigation around the parse tree. Phrases are also tagged as being the first or last phrase

in the sentence, likewise for words. The length of phrases is calculated and explicitly turned

into a predicate, as well as the length (by words and phrases) of sentences. Also, phrases are

classified as short, medium or long. An additional piece of useful information is the predicate

different phrases, which is true when its two arguments are distinct phrases.

Lexical predicates are augmented to make them more applicable to the phrase level. If a

phrase contains an alphabetic word, the phrase is given the predicate phrase contains
alphabetic word(A). Similarly, phrases are marked with a predicate for their actual

word text, such as phrase contains specific word(A, ``lumen''). This is

the equivalent of adding both phrase child(A,B) and word ID to string(B,

3 http://www.nlm.nih.gov/mesh/meshhome.html
4 http://www.geneontology.org/
5 http://cancerweb.ncl.ac.uk/omd/

Springer

246 Mach Learn (2006) 64:231–261

``lumen'') at once. These predicates are also created for pairs and triplets of words,

so we can assert that a phrase has the word “golgi” labeled as a noun all in one step when we

search the hypothesis space.

Finally, predicates are added to denote the ordering between the phrases. Tar-
get arg1 before target arg2 asserts that the protein phrase occurs before the loca-

tion phrase, similarly for target arg2 before target arg1. Also created are ad-
jacent target args (which is true when the protein and location phrases are adjacent

to each other in the sentence, such as the phrase “the nucleoporin NPL3”), and identi-
cal target args (which says the same noun phrase contains both the protein and its

location), as well as the count of phrases before and after the target arguments. Overall, we

have defined 215 predicates for use in describing the training examples.

We informally evaluated the impact of the various types of background knowledge de-

scribed in Table 3. We did this by performing, for various subsets of background knowledge,

a standard run of Aleph and computing the F1 score on fold 3’s testset of the theory created

by using the first 50 clauses Aleph induces. Using all of the background knowledge results

in an F1 score of 0.418. Leaving out the MESH-related biomedical features (but using all

others), produces an F1 of 0.412. When we only leave out the lexical and part-of-speech

properties of words, F1 drops to 0.367, and when we leave out only the features related to

the statistics on words, F1 shrinks to 0.328.

6. Experimental controls

Our main experimental control for this work is Aleph ensembles, discussed below. In addition

we compare to weighting methods of what we call Single-Theory Ensembles, as well as naı̈ve

Bayes and Structural HMMs.

6.1. Aleph ensembles

Bagging (Breiman, 1996) is a popular ensemble approach to machine learning where multiple

classifiers are trained using different subsamples of the training data. This introduces a bias

in each learned hypothesis toward its particular training set. These classifiers then vote on

the classification of testset examples, usually with the majority class being selected as the

output classification. How they vote is user-dependent, with some common schemes being

equal voting or weighted according to the tuneset accuracy of each voter (Dietterich, 1998).

Bagging can be used to create confidence scores for each example by using the percentage

of classifiers voting for the majority class. In general, the confidence score from an ensemble

is calculated by summing the result of the weight associated with each classifier multiplied

by its prediction. The use of bagging for ILP has been previously investigated by Dutra et al.

(2002) where they demonstrate bagging to be helpful for modest improvements in accuracy

as well as a straight-forward way to calculate the confidence of a particular example.

Boosting (Freund and Schapire, 1996) also learns multiple classifiers, but uses a different

method to produce diverse classifiers. Examples are initially assigned a uniform weight and

classifiers are learned sequentially. For each classifier, it is likely there will be misclassifica-

tions of the training set examples. Those examples where the classifier is incorrect will be

up-weighted to add emphasis, while correct examples will be down-weighted, forcing the

subsequent classifiers to focus on harder and harder examples. Additionally, each potential

classifier is given a score based on how well it covers the examples, with higher scores corre-

lated with correctly covering highly weighted examples. As long as each classifier is always

Springer

Mach Learn (2006) 64:231–261 247

greater than 50% accurate and sufficiently different from the other classifiers, then boosting

will theoretically converge to a highly accurate classifier. Quinlan (2001) has investigated

boosting in relation to combining theories learned by FOIL.

We investigate here the “random seeds” approach for creating ensembles from Dutra et al.

This approach, shown to have essentially equivalent predictive accuracy as bagging (Breiman,

1996), produces diversity in its learned models by starting each run of its underlying ILP

system with a different “seed” example. We compare our new Gleaner approach (described

in Section 4) to that of using “random seeds” in Aleph. In this experimental control, we

call Aleph N times and have it create N theories (i.e., sets of clauses that cover most of the

positive training examples and few of the negative ones). To create a recall-precision curve

from these N theories, we simply classify an example as positive if at least K of the theories

classify it as positive; varying K from 1 to N produces a family of ensembles, and each of

these ensembles produces a point on a recall-precision curve.

As discussed earlier, Aleph is a very flexible ILP system with a wide variety of learning

parameters available for modification. We use the train and test sets of fold 1 of our protein-

localization dataset to choose good parameter settings (since this is the experimental control

against which we compare our Gleaner algorithm, it is “fair” to use the testset to tune

parameters). We limit the number of clauses considered to 100 thousand per seed processed,

and we also limit the number of reductions to 100 million (using the call counting
predicate available in YAP Prolog6). Unless explicitly stated otherwise, our parameter choices

were made initially and not empirically tuned. The major Aleph parameters we used are:

minimum accuracy. We can place a lower bound on the accuracy of each clause learned by

our system. (Note that this is only the accuracy of the clause on the positive examples,

in other words, precision.) We consider two settings for minimum accuracy for learned

clauses: 0.75 and 0.90.

minimum positives. To prevent Aleph from learning overly narrow clauses, ones which

only cover a few examples, we specify that each acceptable clause must cover at least

a certain number of positives. We require all clauses to at least cover seven positive

examples.

clause length. The size of a particular clause can be constrained using clause length. By

limiting the length, we can explore a wider breadth of clauses and prevent clauses from

becoming too specific. We required that clauses be no longer than ten literals, including

the head (the same settings we use for random sampling of the hypothesis space in our

Gleaner approach).

search strategy. Aleph allows the user to choose which search function to use. These include

the standard search methods of breadth-first search, depth-first search, iterative beam

search, iterative deepening, and heuristic methods requiring an evaluation function. We

used heuristic search since it scales best to the large size of our task, and investigated

a number of different evaluation functions.

evaluation function. There are many ways to calculate the value of a node for further

exploration. The default heuristic used in Aleph is coverage. This is defined as the

number of positives covered by the clause minus the number of negatives (TP − FP).

In our highly skewed domain, coverage will bias the search toward clauses which

cover a small number of false positives, no matter how many true positives they

cover. A very similar heuristic is compression, which is coverage minus the length

of the clause (TP − FP − L). Compression biases the search toward the minimum

6 http://www.ncc.up.pt/˜vsc/Yap/yap.html

Springer

248 Mach Learn (2006) 64:231–261

Table 4 AURPC results for
Aleph ensembles of
protein-localization dataset, 25
clauses per theory, 50 theories

Minimum Heuristic

Accuracy Function AURPC

Laplace 0.38

0.75 coverage 0.35

F1-score 0.20

precision × recall 0.19

Laplace 0.34

0.90 coverage 0.35

F1-score 0.34

precision × recall 0.31

description-length hypothesis (Rissanen, 1978), or the shorter the clause, the better.

To improve clause quality and correct accuracy estimates for clauses that only cover a

small number of examples, one can also use the Laplace estimate, (TP+1
TP+FP+2

). Since we

are working within domains to generate recall-precision curves, we also explored as

our heuristic-search’s evaluation function precision × recall, and the F1-score, which

is (2·Precision·Recall
Precision+Recall). These two metrics try to provide a balance between precision and

recall clause coverage.

coverage in tune set. To encourage our clauses to be more general, we added a parameter

to Aleph requiring each recorded clause to cover at least 2 positive examples in the

tuneset. We believe this will help our clauses on the unseen examples in the test set at

a low computational overhead during training.

For these parameter evaluations on fold 1, we obtained our best area under the recall-

precision curve for Aleph ensembles using Laplace as the evaluation function and a minimum

clause accuracy of 0.75, as shown in Table 4. Under this setting, the average number of clauses

considered per constructed theory is approximately 35,000.

One new finding we encountered that was not reported by Dutra et al. is that it is better to

limit the size of theories. Figure 9 plots the AURPC as a function of the maximum number of

clauses we allow in the learned theories. Running Aleph to its normal completion given the

above parameters leads to theories containing 271 clauses on average. However, if we limit

this to the first C clauses, the AURPC can be drastically better. The likely reason for this is

0.5

0.4

0.3

0.2

0.1

0.0

Te
st

se
t

A
U

R
P

C

Number of Clauses Used Per Theory

300250200150100500

0.6

Fig. 9 AURPC for Aleph ensembles, where N = 100, with varying number of clauses on protein-localization
dataset

Springer

Mach Learn (2006) 64:231–261 249

that larger theories have less diversity amongst themselves than do smaller ones, and diversity

is the key to ensembles (Dietterich, 1998). Therefore in our subsequent experiments, we stop

the clause learning for each theory after 50 clauses. A convenient side-effect of limiting

theory size is that the runtime of individual Aleph executions is substantially reduced.

While we have not considered all possible parameter settings and algorithm designs with

which Aleph could be used to create an ensemble of theories, we have evaluated a substantial

number of variants and feel that our chosen settings provide a satisfactory experimental

control against which to compare our new algorithm, Gleaner.

6.2. Single-theory ensembles

As mentioned earlier, a theory learned by Inductive Logic Programming can be viewed as an

ensemble, or disjunction, of clauses. This view can be extended by exploring how to weight

the influence of each clause on the overall classification of each example; a standard theory

under this interpretation has all clauses with the same (positive) weight, and the decision

threshold being set to zero. This approach, which we call a single-theory ensemble, could

achieve better results and examines fewer clauses than the Aleph ensembles approach, and

next we explore possible weighting schemes for comparison with Gleaner.

Fawcett (2001) compares a number of propositional-rule weighting methods in relation

to their area under the curve (AUC) performance. There are a number of differences between

our dataset and the ones examined by Fawcett. First, we use ILP to only learn clauses which

cover the positive class, whereas the propositional-rule learners examined earlier by Fawcett

have rules for both positive and negative examples. For this reason, we are unable to compare

to a number of his weighting schemes. Second, our data is highly skewed toward the negative

examples, while Fawcett’s previous work has examined datasets which have a fairly balanced

distribution. One final difference to note is that we are using the AURPC for recall-precision

curves instead of the AUC for ROC curves.

To determine the score for each test example, we investigated the following methods on

the protein-localization dataset, using the tuneset to gather our statistics.

Ranked List. This method treats a theory as a list of clauses, ordered by using an m-estimate

on the precision of each clause on the tuneset. For a given testset example, its score is

generated by finding the set of clauses which cover this example and using the score

of the highest-scoring clause. Fawcett calls this method First, and it is also employed

by Craven and Slatterly (2001) within ILP.

Lowest False Positive Rate. LFPR is another one of Fawcett’s proposed schemes. It is sim-

ilar to the Ranked List method above, using the false-positive rate on the tuning data

instead of the m-estimate as the score for each clause, and using the lowest instead of

the highest-ranked clause.

CN2. We also compared to the unordered rule resolution method mentioned by Clark and

Boswell (1991) for CN2, a propositional-rule learner. First, the set of clauses that match

each example are found. We then separately sum the true positives and false positives

for each matching clause on the tuneset, and the score assigned to each example is the

resulting aggregated precision.

Weighted Vote. Along the same lines as CN2, we can use Fawcett’s weighted vote method.

This first finds the precision of each matching clause and an example’s score is the

average of these precision scores for the matching clauses.

Cumulative. A class of weighting schemes not examined by others is to use the size of the

set of matching clauses as the score for each example. This single-theory ensemble

Springer

250 Mach Learn (2006) 64:231–261

Weighting Schemes

0.0

Te
st

se
t

A
U

R
P

C

0.1

0.2

0.3

0.4

0.5

0.6

Precision Diversity Equal F1-score Recall Naïve

Bayes

TAN Ranked

List

LFPR CN2 Weighted

Vote

Fig. 10 Comparison of AURPC for various weighting approaches on the protein-localization datasets with
error bars for the standard deviation across the five folds

approach is partially inspired by Blockeel and Dehaspe (2002) with their proposal for

using cumulativity in ILP. We call this method equal weighting, where each clause

has one vote, and the score of an example is the number of matching clauses. We also

explored using other methods to determine the weight of each clause’s vote, such as

the precision, recall or F1 score of each clause, as well as a diversity metric adapted

from Opitz and Shavlik (1996).

Naı̈ve Bayes and TAN. The method of first learning a theory and then learning weights

can be seen as a way to combine feature selection with propositionalization. We also

compare with two propositional learners discussed in Davis et al. (2005b), naı̈ve Bayes

and Tree Augmented Networks (TAN) (Friedman et al., 1997), which augments naı̈ve

Bayes as a way to account for the dependence between features.

We compared these different weighting schemes on the protein localization set to find

a good weighting scheme as a control experiment for Gleaner. We used standard Aleph to

learn 30 theories on each training set fold, using a minimum accuracy setting of 0.75 and a

maximum nodes setting of 100,000. Our 150 learned theories, 30 for each fold, averaged 271

learned clauses. Figure 10 shows the results of our different weighting schemes in the protein

localization task, ordered by performance. The five leftmost columns are for the cumulative

weighting schemes, the next two are from the propositional learning methods, then ranking

schemes, followed by the averaging schemes.

In our experiments, we found that the highest scoring scheme was cumulative weighting
using precision. In fact, the cumulative weighting schemes outscored all other approaches.

However the difference between naı̈ve Bayes, TAN and the cumulative schemes is barely

statistically significant, with p value slightly less than 0.10. These results are a contrast

to those of Fawcett, who found that LFPR and Weighted Vote scored equally well, while

Ranked List lagged behind. However, it should be noted that our experiments only involve

one protein-localization dataset.

6.3. Additional controls

We also compare our results to Ray and Craven’s structural HMMs (2001), which were

retrained and evaluated on our cleaned dataset, and to a propositional naı̈ve Bayes approach

for text classification found in Mitchell (1997). Under Ray and Craven’s HMM approach, a

Springer

Mach Learn (2006) 64:231–261 251

phrase that has more than one protein or location, such as “pif1 and pif2,” would be counted

multiple times when part of a positive relation. Due to this different problem representation,

the HMM approach has slightly more positive examples than our ILP framework, since our

examples are based on the phrase constants only and not their constituent words.

For naı̈ve Bayes, we created two feature sets, one with a bag of words for each of the

two phrases in the relation, and one with five bags of words for each example: one for each

phrase in the relation, and one each for words before, between and after the target phrases.

We also used Mitchell’s m-estimate equation of m
m×|Vocabulary| with m values of 1, 10 and 100

and found the best results with m = 1. No relational features were used in this experiment,

only the stemmed words of the sentences.

7. Experimental results

Our main hypothesis is that by dividing up the recall-precision area, both for collecting

clauses and combining clauses into theories, we can quickly find theories with high area

under the recall-precision curve. We explore this hypothesis through experiments on our two

biomedical information extraction domains.

7.1. Protein localization dataset

We divided the protein-localization data into five folds. Each training set consisted of three

folds, with one fold held aside for tuning and another for testing. For our experiments, we

require each clause learned on the training set to cover at least two positive examples in the

tuning set. Gleaner uses the tuning set to pick the appropriate threshold L for each bin.

A sample clause chosen by Gleaner is shown in Table 5 We can see that the clause

has picked up on the tendency of the protein phrase to contain alphanumeric words.

The location part of the sentence contains words previously marked as locations in the

training set, and has a familiar pattern starting with an article, “a,” “an,” or “the.” Also

important for this clause is the sentence structure, requiring that the protein phrase comes

before the location phrase, and that the location phrase is not the last phrase in the sentence.

Our Aleph-based method for producing ensembles has two parameters that we vary: N ,

the number of theories (i.e., the size of the ensemble), and C , the number of clauses per

theory. To produce ensemble points for our experiments, we let N be 100 and choose C
from {1, 5, 10, 15, 20, 25, 50}, with the average nodes explored per clause learned was

35,000. To extend our analysis to lower numbers of clauses generated, we let C be 1 and

choose N from {10, 25, 50, 75, 100}. We also compare in our experiments the scenario

where we drastically limit the nodes explored to 1,000. In this latter experiment using 1,000

nodes, approximately 20 seed examples per theory would result in singletons, i. e. they were

unable to learn a suitable clause within the time allowed. These wasted clause evaluations are

factored into our comparisons. Further attempts to limit the nodes explored to 100 resulted

in approximately 350 singletons per theory; when these singletons are factored in to learning

time, it becomes more expensive to limit the nodes to 100 than 1,000.

We also compare Gleaner to single-theory ensembles using the cumulative precision

weighting, as this performed highest of all the weighting schemes. To make the comparison

competitive, we limited the maximum nodes to 1,000 for each learned clause in the theory, and

calculated AURPC points with the first 25, 50 and 100 clauses as well as the complete theory.

For the parameters of Gleaner, we used 20 equal-sized recall bins. We used Rapid Random

Restart (Železný et al., 2003) with the precision × recall heuristic function to construct 1,000

Springer

252 Mach Learn (2006) 64:231–261

Table 5 Sample clause with 29% recall and 34% precision on testset 1

clauses derived from the initial random clause before restarting with a new random clause.

We generate AURPC data points for Gleaner by choosing 100 seed examples and using the

values of {1,000, 10,000, 25,000, 50,000, 100,000, 250,000, 500,000} for the number of

candidate clauses generated per seed. We further reduce the number of seed examples to {25,

50, 75} to explore performance on lower numbers of clauses generated.

The results of our comparison are found in Fig. 11; the points are averaged over all five

folds. Note that this graph has a logarithmic scale in the number of clauses generated. We

see that Gleaner can find comparable AURPC numbers while generating three orders of

magnitude fewer clauses than Aleph ensembles with 35,000 nodes per learned clause. Aleph

ensembles improve when limited to considering 1,000 nodes per learned clause, however

Gleaner is still more than one order of magnitude faster. It is interesting to note that the

Gleaner curve is very consistent (i.e. flat) across the number of clauses allowed, while the

Aleph ensemble method increases when more clauses are considered. This demonstrates the

benefit of saving more than just the “best” clause when searching hypothesis space, as well

as showing that Gleaner is resistant to overfitting. We also see in Fig. 11 that Gleaner is one

order of magnitude faster than the method of weighting one theory. Single-theory ensembles

employ a covering algorithm which halts learning when all positive examples are either

singletons or covered by a clause, thus we cannot explore their behavior on large numbers

of considered clauses. Note that Gleaner and Aleph ensembles can be executed in parallel

which will give a large savings in running time, while the theory-weighting method learns

clauses sequentially.

In Figs. 12(a)-(c), we show a comparison of RP curves between Gleaner and Aleph

ensembles, using 100,000, 1,000,000 and 10,000,000 as the number of total clauses eval-

uated. These results are generated by averaging the precision across all five folds at 100

equally-spaced recall values. After 100,000 clauses, we can clearly see the benefits of saving

Springer

Mach Learn (2006) 64:231–261 253

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Clauses Generated (Logarithmic Scale)

Te
st

se
t

A
U

R
P

C

Aleph

Ensembles 1K

Aleph

Ensembles 35K

Gleaner

Precision

Weighting

Fig. 11 Comparison of AURPC from Gleaner and Aleph ensembles by varying the number of clauses gen-
erated

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

o
n Gleaner

Aleph

Ensembles 1K

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) RP curves after 100,000 clauses.

Gleaner

Aleph

Ensembles 35K

Aleph

Ensembles 1K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

o
n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) RP curves after 1,000,000 clauses.

Gleaner

Aleph

Ensembles 35K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

o
n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c) RP curves after 10,000,000 clauses.

Fig. 12 Comparison of RP curves between Gleaner and Aleph Ensembles for various numbers of clauses
generated. Curves were averaged across all five folds

Springer

254 Mach Learn (2006) 64:231–261

Table 6 AURPC results
averaged over five folds on the
protein-localization dataset for
Naı̈ve Bayes, HMM, Aleph
Ensembles, Single-Theory
Ensembles and Gleaner. For
Aleph Ensembles, Single-Theory
Ensembles and Gleaner, the
right-most point in the curve
from Fig. 11 is used

Learning Algorithm Testset AURPC

Naı̈ve Bayes with 5 bags 0.018

Naı̈ve Bayes with 2 bags 0.032

Structural HMM 0.141

Single-Theory Ensembles 0.415

Aleph Ensembles 0.447

Gleaner 0.461

high-recall clauses, as Gleaner quickly spans the whole recall-precision space, while Aleph

ensembles are initially limited in their recall ability. Aleph ensembles achieve higher recall

and precision at 1,000,000 and 10,000,000 clauses, and the major benefit from Gleaner is

increased precision for low as well as high recall.

Gleaner’s “L of K ” clauses should theoretically produce higher precision than individual

clauses with the same recall, as long as the coverage of positives is greater than the coverage

of negatives and our clauses are independent. In practice, our clauses are not as independent

as we would like and have a tendency to cover the same negatives. This is especially true in

the high-recall bins, with many of the learned clauses being identical, and we believe this

overlap degrades the performance.

Our results when comparing to structural HMMs and naı̈ve Bayes are shown in Table 6.

Naı̈ve Bayes only performs slightly better than random guessing in this domain, and we

believe this is partially due to relational nature of the dataset, since each protein phrase in a

positive example is repeated in many more negative examples when not correctly paired with

a location phrase. Also, many of the protein words to be classified in the testset are novel and

therefore receive the “data-free” m-estimate score. The HMM approach of Ray and Craven

(2001) fares better, however it suffers from low recall, achieving its highest recall of 0.31 on

the testset for fold 3.

7.2. Genetic disorder dataset

Finally, we also evaluate Gleaner on the genetic-disorder biomedical information extraction

dataset from Ray and Craven (2001). We use their original labelings and five folds, and

construct our background knowledge in the same fashion as the protein-localization dataset,

substituting MeSH categories related to diseases where appropriate. Due to memory size

limitations in Yap Prolog, we uniformly sampled 25% of the abstracts per fold used by

Ray and Craven to create our dataset. This left us with 233 positive and 103,959 negative

examples. We compare Aleph ensembles to our Gleaner algorithm, using the same parameter

settings as in our previous experiment.

Figure 13 shows the comparison results on the genetic-disorder dataset. Gleaner again

consistently achieves a higher AURPC than Aleph ensembles across all values for the num-

ber of candidate clauses. We notice that Gleaner consistently improves as more clauses are

examined, reaching a maximum AURPC score of 0.44 as compared to 0.36 for Aleph ensem-

bles. The peak in Gleaner’s performance at 75,000 clauses indicates there could be a benefit

from pruning clauses found through Gleaner, since this point was found by using 75 seeds

and 1,000 clauses generated per seed. In this domain, early stopping after 15 clauses per

theory would improve the final AURPC of Aleph ensembles; we show here all data points

for completeness.

Springer

Mach Learn (2006) 64:231–261 255

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Number of Clauses Generated (Logarithmic Scale)

C
P

R
U

A t
ests

e
T

Gleaner

Aleph

Ensembles 1K

10,000 100,000 1,000,000 10,000,000

Fig. 13 Comparison of AURPC from Gleaner and Aleph ensembles by varying the number of clauses gen-
erated on genetic-disorder dataset

8. Related work

We have applied our Gleaner algorithm to an Information Extraction task. In addition, this

article discusses ways in which a single-theory can be viewed as an ensemble of clauses with

different methods of assigning weights to the clauses. This section looks at related work and

how the Gleaner algorithm fits into these two domains.

8.1. Information extraction

Most work in IE has been focused on named-entity recognition. Successful rule-based ap-

proaches for this task include Rapier (Califf and Mooney, 1998), a system which learns clauses

with the format prefix, extraction, postfix, and Boosted Wrapper Induction (BWI) (Freitag

and Kushmerick, 2000), a method for boosting weak rule-based classifiers of extraction

boundaries into a powerful extraction method. BWI has been further examined by Kauchak

et al. (2004) showing results with high recall and high precision on a wide variety of tasks.

Previous machine learning work in the biomedical multi-slot domain includes a number of

different approaches. Ray and Craven (2001) use a Hidden Markov Model (HMM) modified

to include part of speech tagging, and analyze their method on protein localization, genetic

disorder and protein-protein interaction tasks. This probabilistic approach achieves relatively

high precision in low areas of recall, however maximum recall is limited to 70%. A limitation

of this approach is the difficulty of adding new background knowledge to the hypothesis space,

as well as the human interpretability of the results.

For the same datasets, Eliassi-Rad and Shavlik (2001) implemented a neural network for

IE primed with domain-specific prior knowledge, and achieved significant improvements in

both recall and precision over the work of Ray and Craven. In their approach, background

knowledge was directly incorporated in the form of the initial weights and structure of the

network. The resulting neural-network structure and weights were still uninterpretable, and

the sequential nature of the data required an awkward “sliding window” implementation to

fully capture the desired background knowledge.

Springer

256 Mach Learn (2006) 64:231–261

Aitken (2002) uses FOIL (Quinlan, 1990) to perform ILP on an IE dataset, working with

a closed ontology of entities, which means that relationships can only be learned between

previously identified objects. He uses a “bag-of-words” representation for each sentence and

uses type information to incorporate semantic knowledge of the data. His results are limited

to a small dataset, and recall-precision results are only given for one point as opposed to our

analysis using a curve.

Bunescu et al. (2005) propose the use of Extraction using Longest Common Subsequence

(ELCS), a bottom-up approach to finding protein interactions with rule templates for sen-

tences. They use a greedy covering algorithm to repeatedly generalize sentence templates

until enough templates are found to cover most positive examples. Bunescu et al. have also

extended Rapier (Califf and Mooney, 1998) and BWI (Freitag and Kushmerick, 2000) to

handle multi-slot extractions. All of their approaches assume the use of a named entity rec-

ognizer to label all the proteins involved in the relationship. One thing notably absent is the

incorporation of background knowledge such as part of speech and word properties. Their

results show an extension in recall for ELCS over their modified Rapier and BWI algorithms,

both of which fared poorly in their protein-interaction domain due to low recall.

8.2. Single-theory ensembles

One typical approach to weighting a theory is propositionalization, where each clause in a

theory is translated into a Boolean feature. This allows for a number of propositional learning

algorithms to be used for learning weights on each clause. Pompe and Kononenko (1995) use

a naı̈ve Bayes classifier to find their weights, while Srinivasan and King (1996) use logistic

regression, a technique to find weights that will maximize the likelihood of the data.

Koller and Pfeffer (1997) learn the weights for clauses in a theory by first creating a

Bayesian network model for the theory. They then use an Expectation Maximization algo-

rithm to set the parameters to maximize the likelihood of the data. Their results are on a toy

dataset with three clauses, so it is unknown how well this would extend to the very large

datasets we propose to investigate here. Richardson and Domingos (2006) extend work with

Relational Markov Networks (Taskar et al., 2003) to formulate Markov Logic Networks.

Their setup can take clauses from either ILP or a domain expert, translate them to a Markov

Network, and then learn the weights on the clauses using logistic regression. Davis et al.

(2005) compare naı̈ve Bayes, TAN and the sparse candidate algorithm as alternate methods

of learning appropriate weight parameters. As in the above methods, there is no attempt to

modify the learned theory, only the weights.

Fürnkranz and Flach (2005) explore the effect of different heuristic functions on the

resulting learned theories. A few researchers have made progress by learning clauses and

their probabilities in concert with each other. Hoche and Wrobel (2001) implement a ver-

sion of Boosting in FOIL to sequentially learn clauses. Only examples covered by a clause

are reweighted, with positive examples being down-weighted and negative examples up-

weighted. After each clause is learned, a confidence score is created for that clause based

on the current example weights and clause coverage. Popescul et al. (2003) proposed an

upgrade to logistic regression called Structural Logistic Regression (SLR). They use a top-

down search of the ILP hypothesis space plus aggregates to gather clauses which are then

weighted using logistic regression, as in Srinivasan and King (1996). SLR guides the search

toward those clauses which improve the current AIC score, however, they only compare

their algorithm to a flat data representation and not to other methods of learning weights

for clauses. Landwehr et al. (2005) and Davis et al. (2005b) concurrently proposed nFOIL

Springer

Mach Learn (2006) 64:231–261 257

and SAYU algorithms for scoring features based on their contribution to a growing Bayesian

classifier.

Muggleton (1996) adds a probability distribution over the ground predicates, and later in-

corporates methods for learning these probabilities from data (Muggleton, 2000). A common

approach to learning weights for clauses is to perform Statistical Relational Learning (SRL),

which combines the probabilistic benefits of Bayesian networks with the structural data rep-

resentation of ILP. Friedman et al. (1999) approach the problem from a database perspective,

and upgrade Bayesian networks to operate and aggregate with relational database schema.

They have made progress with both learning parameters for joint probability tables and the

correct database structure. Kersting and De Raedt (2000) propose a Bayesian Logic Program

framework and show how both logical and probabilistic approaches can be expressed with

one common formalism.

9. Conclusions and future work

The field of Inductive Logic Programming has matured to the point that large, real-world

problems are being formulated and attempted. Our research addresses the issue of unbalanced

data that frequently arises in these large datasets. We believe there are two main strengths

to the Gleaner algorithm. First is its ability to quickly retain a large number of clauses in

a wide range of performance areas. Second is its ability to combine these collected clauses

into separate theories providing high precision across the full recall range.

A major benefit of Gleaner is the use of different seeds for each Rapid Random Restart

search. This helps us achieve many unique clauses in the low-recall bins; since the search

space is constrained to always cover the seed example, there will necessarily be little overlap

between clauses learned from different seeds. But we have noticed a lack of diversity among

the collected clauses in the high-recall bins of Gleaner. When semantically duplicate clauses

(i.e. those with identical coverage in the training set) are removed, we are left with only 10 to

20 clauses per bin, whereas in the low recall bins, we retain 80 to 90 clauses. We believe this

hampers these theories in their ability to achieve higher recall, and plan to investigate ways

of keeping more diverse clauses for these bins.

Currently, Gleaner keeps one clause per seed for each recall bin; it is possible that saving

more clauses will give us the flexibility to increase the AURPC as more clauses are processed.

Remember that our Rapid Random Restart search selects a random clause and then performs

heuristic search for a set number of moves before jumping to another place in hypothesis

space. In our experiments, we searched through 1000 clauses before jumping to another

random clause. One way we could retain a larger number of clauses is to record the best

found per bin per seed per jump, since each jump will hopefully examine new clauses in a

different area of the hypothesis space. Some alternate ways to save more clauses are to store

the best five or ten highest scoring clauses per bin per seed, or to increase the number of bins

used in the training phase, since this will create some diversity within each seed in addition

to between seeds.

Even with more clauses gathered, though, the Gleaner algorithm is still limited by its

Rapid Random Restart approach. There is no direct search for clauses in all areas of recall;

this is only a byproduct of generating many clauses along the way. For high-recall bins, we

believe a more active approach is needed. High-recall clauses tend to be the most general,

and these are found at the beginning of top-down searches, since each additional literal added

to a clause can only decrease its positive and negative coverage, and therefore lower recall.

We propose to incorporate into Gleaner a top-down approach such as breadth-first search,

Springer

258 Mach Learn (2006) 64:231–261

or a heuristic search where the search strategy is guided by finding general rather than more

specific clauses. As in the original Gleaner algorithm, these new clauses will be sorted into

the appropriate recall bins. Another possibility is to use statistics gathered from searching

the hypothesis space to influence our choice of the next initial clause jump, thus encouraging

our search within one seed to find unexplored clauses.

It is possible that the use of a bottom clause in the search for diverse high-recall clauses

will be less relevant than when searching for low-recall clauses. In low-recall bins, merely

having a bottom clause is enough to bias Gleaner to find diverse clauses; by definition, the

best clause that covers a particular seed example and also has 10% recall will not cover 90%

of the positives, leaving ample room for a different clause to be found with a different seed.

However, with high-recall bins, such as 90% recall, the same clause will be the best clause

for approximately 90% of the positive examples, thus limiting diversity. A more appropriate

search would instead bias the search space to avoid a randomly selected subset of negative

examples. We plan to explore heuristic functions where we can specify negative examples we

wish not to cover by giving them very high cost, and encourage the clauses to cover as many

positive examples as possible. These can be used in parallel with different subsets of negatives.

Our end result will hopefully be a large number of high-recall clauses that cover different neg-

ative examples, which when combined will produce higher precision along with high recall.

We plan to examine other information-extraction datasets as part of our future research.

These include the protein-interaction datasets from Ray and Craven (2001) and from Bunescu

et al. (2005), and we have reported elsewhere results on a recent Learning Language and

Logic challenge task dataset (Goadrich et al., 2005). Other datasets outside of IE where we

believe Gleaner will be useful include the nuclear smuggling dataset from Tang et al. (2003),

the social network dataset from Taskar et al. (2003), the CiteSeer citation dataset from

Popescul et al. (2003), and the university relation dataset from Richardson and Domingos

(2006).

The above datasets are all link-learning tasks relevant to ILP. We plan to compare on

datasets where there is not a severe skew, to see if Gleaner can be a general-purpose algorithm

or should only be used for recall-precision type problems. For these balanced-data problems,

we believe the Gleaner approach can be modified to partition the ROC space instead of the

recall-precision space. We also believe that our techniques for optimizing the recall-precision

graph will be applicable outside of ILP, and plan to explore how to adapt our Gleaner method-

ology to work with propositional datasets. The most straight-forward translation would be

to use CN2 (Clark and Niblett, 1989) instead of Aleph as our clause-learning engine.

Finally, we plan to explore the AURPC evaluation metric. Two current methods for com-

paring algorithms on the recall-precision curve are the Uninterpolated Average Precision UAP

(Manning and Schütze, 1999) and the maximum F1-score. Uninterpolated Average Precision

is essentially AURPC but without smoothed interpolation between each recall point. Davis

and Goadrich (2006) demonstrate the similarities and differences between the ROC and RP

curves formally, and answer questions such as how far will optimizing the ROC curve opti-

mize the recall-precision curve and what changes should be made to existing algorithms to

focus on the AURPC.

Acknowledgements We gratefully acknowledge the funding from USA NLM Grant 5T15LM007359-02,
USA NLM Grant 1R01LM07050-01, USA DARPA Grant F30602-01-2-0571, and USA Air Force Grant
F30602-01-2-0571. We would like to thank Ines Dutra, Vitor Santos Costa, the UW Condor Group, Soumya
Ray, Marios Skounakis, David Page, Jesse Davis and our anonymous reviewers for their helpful comments on
this research. This article is an extended version of Goadrich et al. (2004).

The protein-localization dataset discussed in this article can be downloaded from ftp://ftp.cs.wisc.edu/
machine-learning/shavlik-group/datasets/IE-protein-location/.

Springer

Mach Learn (2006) 64:231–261 259

References

Aitken, S. (2002). Learning Information Extraction Rules: An Inductive Logic Programming Approach. Pro-
ceedings of the 15th European Conference on Artificial Intelligence. Amsterdam, Netherlands.

Becker, W., Reece, J., & Poenie, M. (1996). The World of the Cell. Benjamin Cummings.
Blaschke, C., Hirschman, L., & Valencia, A. (2002). Information Extraction in Molecular Biology. Briefings

in Bioinformatics, 3, 154–165.
Blockeel, H., & Dehaspe, L. (2000). Cumulativity as Inductive Bias. PKDD 2000 Workshop on Data Mining,

Decision Support, Meta-learning and ILP. Lyon, France.
Bradley, A. (1997). The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning

Algorithms. Pattern Recognition, 30, 1145–1159.
Breiman, L. (1996). Bagging Predictors. Machine Learning, 24, 123–140.
Bunescu, R., Ge, R., Kate, R., Marcotte, E., Mooney, R., Ramani, A., & Wong, Y. (2005). Comparative

Experiments on Learning Information Extractors for Proteins and their Interactions. Journal of Artificial
Intelligence in Medicine, 3(2), 139–155.

Califf, M. E., & Mooney, R. (1998). Relational Learning of Pattern-Match Rules for Information Extraction.
Working Notes of AAAI Spring Symposium on Applying Machine Learning to Discourse Processing (pp.
6–11). Menlo Park, CA: AAAI Press.

Clark, P., & Boswell, R. (1991). Rule Induction with CN2: Some Recent Improvements. Proceedings of the
European Working Session on Machine Learning (pp. 151–163). Porto, Portugal: Springer-Verlag New
York, Inc.

Clark, P., & Niblett, T. (1989). The CN2 Induction Algorithm. Machine Learning, 3, 261–283.
Cortes, C., & Mohri, M. (2003). AUC Optimization vs. Error Rate Minimization. Neural Information Pro-

cessing Systems (NIPS). MIT Press.
Craven, M., & Slattery, S. (2001). Relational Learning with Statistical Predicate Invention: Better Models for

Hypertext. Machine Learning, 43, 97–119.
Davis, J., Burnside, E., Dutra, I. C., Page, D., & Costa, V. S. (2005a). An Integrated Approach to

Learning Bayesian Networks of Rules. 16th European Conference on Machine Learning (pp. 84–95).
Porto, Portugal: Springer.

Davis, J., Dutra, I. C., Page, D., & Costa, V. S. (2005b). Establish Entity Equivalence in Multi-Relation
Domains. Proceedings of the International Conference on Intelligence Analysis. Vienna, Va.

Davis, J. & Goadrich, M. (2006). The Relationship Between Precision-Recall and ROC Curves. Proceedings
of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania.

de Castro Dutra, I., Page, D., Costa, V. S., & Shavlik, J. (2002). An Empirical Evaluation of Bagging
in Inductive Logic Programming. Twelfth International Conference on Inductive Logic Programming
(pp. 48–65). Sydney, Australia.

Dietterich, T. (1998). Machine-Learning Research: Four Current Directions. The AI Magazine, 18, 97–136.
Džeroski, S., & Lavrač, N. (2001). An Introduction to Inductive Logic Programming. Relational Data Mining

(pp. 48–66). Springer-Verlag.
Eliassi-Rad, T., & Shavlik, J. (2001). A Theory-Refinement Approach to Information Extraction. Proceedings

of the 18th International Conference on Machine Learning. Williamstown, Massachusetts.
Fawcett, T. (2001). Using Rule Sets to Maximize ROC Performance. IEEE International Conference on Data

Mining (ICDM) (pp. 131–138).
Fawcett, T. (2003). ROC Graphs: Notes and Practical Considerations for Researchers (Technical Report). HP

Labs HPL-2003–4.
Freitag, D., & Kushmerick, N. (2000). Boosted Wrapper Induction. Proceedings of the 15th National Confer-

ence on Artificial Intelligence (AAAI) (pp. 577–583). Austin, Texas.
Freund, Y., & Schapire, R. (1996). Experiments with a New Boosting Algorithm. International Conference

on Machine Learning (pp. 148–156). Bari, Italy.
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian Network Classifiers. Machine Learning, 29,

131–163.
Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning Probabilistic Relational Models. Proceed-

ings of the 16th International Conference on Artificial Intelligence (IJCAI) (pp. 1300–1309). Stockholm,
Sweden.

Fürnkranz, J., & Flach, P. (2005). ROC ‘n’ rule learning—Towards a better understanding of covering algo-
rithms. Machine Learning, 58, 39–77.

Fürnkranz, J. (1999). Separate-and-Conquer Rule Learning. Artificial Intelligence Review, 13, 3–54.
Goadrich, M., Oliphant, L., & Shavlik, J. (2004). Learning Ensembles of First-Order Clauses for Recall-

Precision Curves: A Case Study in Biomedical Information Extraction. Proceedings of the 14th Interna-
tional Conference on Inductive Logic Programming (ILP). Porto, Portugal.

Springer

260 Mach Learn (2006) 64:231–261

Goadrich, M., Oliphant, L., & Shavlik, J. (2005). Learning to Extract Genic Interactions using Gleaner.
Proceedings of the Learning Language in Logic 2005 Workshop at the International Conference on
Machine Learning. Bonn, Germany.

Hoche, S., & Wrobel, S. (2001). Relational Learning Using Constrained Confidence-Rated Boosting. 11th
International Conference on Inductive Logic Programming. Strasbourg, France.

Hodges, P. E., Payne, W. E., & Garrels, J. I. (1997). The Yeast Protein Database (YPD): A Curated Proteome
Database for saccharomyces cerevisiae. Nucleic Acids Research, 26, 68–72.

Hoos, H., & Stutzle, T. (2004). Stochastic local search: foundations and applications. Morgan Kaufmann.
Hu, Z. (2003). Guidelines for Protein Name Tagging (Technical Report). Georgetown University.
Kauchak, D., Smarr, J., & Elkan, C. (2004). Sources of Success for Boosted Wrapper Induction. Journal of

Machine Learning Research, 5, 499–527.
Kersting, K., & Raedt, L. D. (2000). Bayesian Logic Programs. Proceedings of the Work-in-Progress Track

at the 10th International Conference on Inductive Logic Programming (pp. 138–155). London, England.
Koller, D., & Pfeffer, A. (1997). Learning Probabilities for Noisy First-Order Rules. Fifteenth International

Joint Conference on Artificial Intelligence (IJCAI). Nagoya, Japan.
Landwehr, N., Kersting, K., & Raedt, L. D. (2005). nFOIL: Integrating Naive Bayes and FOIL. National

Conference on Artificial Intelligene (AAAI). Pittsburg, Pennsylvania.
Lewis, D. (1991). Evaluating Text Categorization. Proceedings of Speech and Natural Language Workshop

(pp. 312–318). Pacific Grove, California: Morgan Kaufmann.
Manning, C., & Schütze, H. (1999). Foundations of statistical natural language processing. MIT Press.
Michalski, R., & Larson, J. (1977). Inductive Inference of VL Decision Rules. Proceedings of the Workshop

in Pattern-Directed Inference Systems. Hawaii.
Mitchell, T. (1997). Machine learning. New York: McGraw-Hill.
Muggleton, S. (1995). Inverse Entailment and Progol. New Generation Computing Journal, 13, 245–286.
Muggleton, S. (1996). Stochastic Logic Programs. Proceedings of the 5th International Workshop on Inductive

Logic Programming (p. 29). Stockholm, Sweden.
Muggleton, S. (2000). Learning Stochastic Logic Programs. Proceedings of the AAAI2000 Workshop on

Learning Statistical Models from Relational Data. Austin, Texas.
Nilsson, U., & Maluszyński, J. (2000). Logic Programming and PROLOG (2ed). John Wiley & Sons.
Opitz, D., & Shavlik, J. (1996). Actively Searching for an Effective Neural-Network Ensemble. Connection

Science, 8, 337–353.
Pompe, U., & Kononenko, I. (1995). Naive Bayesian Classifier within ILP-R. Fifth International Workshop

on Inductive Logic Programming (pp. 417–436). Tokyo, Japan.
Popescul, A., Ungar, L., Lawrence, S., & Pennock, D. (2003). Statistical Relational Learning for Document

Mining. IEEE International Conference on Data Mining, ICDM-2003. Melbourne, Florida.
Porter, M. (1980). An Algorithm for Suffix Stripping. Program, 14, 130–137.
Quinlan, J. R. (1990). Learning Logical Definitions from Relations. Machine Learning, 5, 239–266.
Quinlan, J. R. (2001). Relational Learning and Boosting. Relational Data Mining (pp. 292–306). Springer-

Verlag.
Ray, S., & Craven, M. (2001). Representing Sentence Structure in Hidden Markov Models for Information

Extraction. Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI).
Seattle, Washington.

Richardson, M., & Domingos, P. (2006). Markov Logic Networks. Machine Learning, 62, 107–136.
Riloff, E. (1998). The Sundance Sentence Analyzer. http://www.cs.utah.edu/projects/nlp/.
Rissanen, J. (1978). Modeling by Shortest Data Description. Automatica, 14, 465–471.
Rückert, U., Kramer, S., & Raedt, L. D. (2002). Phase Transitions and Stochastic Local Search in k-Term

DNF Learning. Proceedings of the 13th European Conference on Machine Learning (ECML-02). Helsinki,
Finland.

Rückert, U., & Kramer, S. (2003). Stochastic Local Search in k-Term DNF Learning. Proceedings of 20th
International Conference on Machine Learning (ICML-2003). Washington, D.C., USA.

Rückert, U., & Kramer, S. (2004). Toward Tight Bounds for Rule Learning. Proceedings of 21st International
Conference on Machine Learning (ICML-04). Banff, Canada.

Selman, B., Kautz, H., & Cohen, B. (1993). Local Search Strategies for Satisfiability Testing. Proceedings of
the Second DIMACS Challange on Cliques, Coloring, and Satisfiability. Providence, RI.

Shatkay, H., & Feldman, R. (2003). Mining the Biomedical Literature in the Genomic Era: An Overview.
Journal of Computational Biology, 10, 821–55.

Srinivasan, A., & King, R. (1996). Feature Construction with Inductive Logic Programming: A Study of
Quantitative Predictions of Biological Activity Aided by Structural Attributes. Proceedings of the 6th
International Workshop on Inductive Logic Programming (pp. 352–367). Stockholm, Sweden.

Springer

Mach Learn (2006) 64:231–261 261

Srinivasan, A., Muggleton, S., Sternberg, M., & King, R. (1996). Theories for Mutagenicity: A Study in
First-Order and Feature-Based Induction. Artificial Intelligence, 85, 277–299.

Srinivasan, A. (2003). The Aleph Manual Version 4. http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/.

Tang, L., Mooney, R., & Melville, P. (2003). Scaling up ILP to Large Examples: Results on Link Discovery
for Counter-Terrorism. KDD Workshop on Multi-Relational Data Mining. Washington, DC.

Taskar, B., Abbeel, P., Wong, M.-F., & Koller, D. (2003). Label and Link Prediction in Relational Data. IJCAI
Workshop on Learning Statistical Models from Relational Data. Acapulco, Mexico.

Železný, F., Srinivasan, A., & Page, D. (2003). Lattice-Search Runtime Distributions may be Heavy-Tailed.
Proceedings of the 12th International Conference on Inductive Logic Programming 2002 (pp. 333–345).
Syndey, Australia.

Železný, F., Srinivasan, A., & Page, D. (2004). A Monte Carlo Study of Randomized Restarted Search in
ILP. Proceedings of 14th International Conference on Inductive Logic Programming (ILP-04). Porto,
Portugal.

Springer

