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Abstract In this paper, we continue our study of learning an optimal kernel in a prescribed

convex set of kernels (Micchelli & Pontil, 2005) . We present a reformulation of this problem

within a feature space environment. This leads us to study regularization in the dual space

of all continuous functions on a compact domain with values in a Hilbert space with a mix

norm. We also relate this problem in a special case to Lp regularization.

Keywords Banach space regularization . Convex optimization . Learning the kernels .

Kernel methods . Sparsity

1 Introduction

A central theme of this paper is the problem of learning a kernel in a prescribed convex set

of kernels K. Our previous work on this problem which was motivated by its potential appli-

cation in machine learning focused on finding a suitable optimal kernel. Here, we study an

equivalent feature space formulation of this problem. This leads us to explore the relation-

ship between the problem of finding an optimal kernel and regularization in the dual space
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of the space of continuous functions on a compact domain with values in a Hilbert space.

We also describe related regularization techniques in Lp spaces which naturally arise in our

investigation.

Argyriou, Micchelli, and Pontil (2005) and Micchelli and Pontil (2005) proposed to find

a good kernel K by solving the variational problem

min

{ ∑
j∈Nm

L(y j , f (x j )) + μ‖ f ‖2
K , : f ∈ HK , K ∈ K

}
(1.1)

where L : R × R → R+ is a prescribed loss function, ‖ · ‖K the norm in a reproducing

kernel Hilbert space of real-valued functions on some input space X with kernel K , μ a

positive parameter, K is a prescribed set of kernels and Nm := {1, . . . , m}. This problem

has been studied from different perspectives in a substantial number of papers. Specifically,

in statistics, it has been motivated by Lee et al. (2004) and Lin and Zhang (2003) as a

generalization of the lasso, a technique introduced in Tibshirani (1996) which also relates

to basis pursuit denoising (Chen, Donoho, & Saunders, 1998) and to a linear programming

approach for feature section (Fung & Mangasarian, 2004); in machine learning, problem

(1.1) has been studied in the context of support vector machines as a mean to optimize

the margin or soft-margin error used therein (Bach, Lanckriet & Jordan, 2004; Lanckriet

et al., 2004); in learning theory, it has been investigated with the intention of improving the

approximation error (Wu, Ying & Zhou, to appear; Micchelli et al., 2005). For additional

interesting observations related to the theme of this paper see (Bousquet & Herrmann, 2003;

Cristianini et al., 2002; Gunn & Kandola, 2002; Herbster, 2004; Ong, Smola, & Williamson,

2003).

In Section 2, we describe the main result of the paper which relates problem (1.1) to our

feature space extremal problem. Indeed, the problem described above concerns the choice of

an optimal kernel for kernel based learning algorithms while the second problem we study

is the reformulation of it within a feature space environment. We demonstrate in great gen-

erality that these problems are equivalent and characterize the form of the solutions for both

problems. We also provide a description for an optimal feature map solution analogous to

the one we derived in our earlier work on learning the kernel (Argyriou, Micchelli, & Pontil,

2005; Micchelli & Pontil, 2005). A detailed description of this result appear in Section 2.

However, the proof is postponed until Section 6. In Section 3, we present specific motivat-

ing examples when K is the convex hull of a finite set of prescribed kernels. Moreover, for

these examples we provide an alternate derivation of the main result in Section 2 by using

a decomposition theorem from Aronszajn (1950). In Section 4, we discuss the connection

between learning the kernel and L1 regularization. Section 5 contains related results for Lp

regularization and provide a representer theorem in the spirit of Micchelli and Pontil (2004).

We end the paper with a discussion of future research directions and commentaries on our

results.

We remark that an interesting aspect of the feature space regularization we present here

is not only does it involve linear functionals, but also that it is a Banach space regularization

method. Indeed, as we shall show, the appropriate norm for the functionals is induced by a

mix norm on a space of functions with values in the Hilbert space associated with the feature

map. Finally, we also explore similar issues for an Lp analog of the convex hull of a fix set

of kernels.
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2 Main result

In this section, we present our main result. First, we recall the notion of reproducing kernel

Hilbert spaces and continuously parameterized convex set of kernels.

2.1 Integrals of kernels

Let X be an input set. By a kernel we mean a function K : X × X → R such that for

every finite set of inputs x = {x j : j ∈ Nm} ⊆ X and every m ∈ N, the m × m matrix Kx :=
(K (xi , x j ) : i, j ∈ Nm) is positive semi-definite. According to Aronszajn and Moore, every

kernel has associated to it an (essentially) unique Hilbert space HK of real-valued functions

on X with inner product 〈·, ·〉K such that K is its reproducing kernel (Aronszajn, 1950). This

means, for every f ∈ HK and x ∈ X , that 〈 f, K (x, ·)〉K = f (x).

We use the notation A(X ) for the set of all kernels on the set X and A+(X ) for the subset

of kernels K such that, for each input x, the matrix Kx is positive definite.

Let � be a compact Hausdorff space, C(�) the space of continuous real-valued func-

tions on � and M(�) the set of all probability measures on �. Let G : � → A+(X ) be a

continuous map. By this we mean that, for each x, t ∈ X , the function of θ �→ G(θ )(x, t) is

continuous on �. The set of kernels G := {G(θ ) : θ ∈ �)} induces the convex set of kernels

K(G) :=
{∫

�

G(θ )dp(θ ) : p ∈ M(�)

}
(2.1)

which we shall consider below. We note that when � = Nn then K(G) equal the convex hull

of G.

2.2 Regularization error functional

Let D := {(x j , y j ) : j ∈ Nm} ⊂ X × R be prescribed data and y the vector (y j : j ∈ Nm).

Each kernel K ∈ K(G) gives rise to a RKHS HK . For each f ∈ HK , we introduce the

information operator Ix( f ) := ( f (x j ) : j ∈ Nm) ∈ Rm of values of f on the set of in-

puts in x. We consider Ix : HK → Rm a linear map and on Rm we put the usual in-

ner product. Thus, for any two vectors c = (c j : j ∈ Nm) and d = (d j : j ∈ Nm) we write

(c, d) := ∑
j∈Nm

c j d j . A straightforward computation identifies the adjoint I ∗
x : Rm → HK ,

for every c = (c j : j ∈ Nm) ∈ Rm , as

I ∗
x c =

∑
j∈Nm

c j K j ,

where K j = K (x j , ·). A regularization error function is any function q : Rm × R+ → R.

We write any vector v ∈ Rm × R+ in the form (c, t) for some c ∈ Rm and t ∈ R+. In other

words, the vector v is the concatenation of the vector c and the scalar t . There should be

no confusion with this “double duty” notation since in this case one argument is a vector

and the other is a scalar. Likewise, we shall denote q(v) as q(c, t) and qinf := inf{q(v) : v ∈
Rm × R+}. The regularization error function will allow us to balance the data Ix f with the

norm ‖ f ‖K := √〈 f, f 〉K and leads us to the following definition.

Definition 2.1. We say that q : Rm × R+ → R is an acceptable regularization error function

provided that
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1. q is lower semi-continuous, that is, for each λ ∈ R the set Uλ := {v : v ∈ Rm ×
R+, q(v) ≤ λ} is a closed subset of Rm × R+;

2. given any λ > 0 there exists ρ > 0 such that whenever (c, t) ∈ Uλ then t ∈ [0, ρ];

3. for each c ∈ Rm the function q(c, ·) : R+ → R is non-decreasing on R+.

An important example for an acceptable regularization error function in machine learning

has the form

q(c, t) =
∑
j∈Nm

L(y j , c j ) + μJ (t), (2.2)

where L : R × R → R+ is a continuous loss function (typically convex), μ a positive con-

stant and J : R+ → R+ is a strictly increasing function. The standard choice for the function

J is J (t) = t, t ∈ R+. This leads to the usual kernel–based regularization algorithm studied

extensively in the literature. However, as we shall see later, from the feature space point of

view, the choice J (t) = √
t, t ∈ R+, is widely studied. Whenever we consider the special

case (2.2) we always assume that the above properties of L and J are satisfied.

An acceptable regularization error function q gives rise to a functional Q(·, K ) : HK →
R defined, for all f ∈ HK , as

Q( f, K ) = q
(
Ix f, ‖ f ‖2

K

)
. (2.3)

Properties 1–3 above guarantee, for every K ∈ A(X ), that Q(·, K ) has a minimum fK over

f ∈ HK . Since we do not assume here that q is strictly convex this minimum may not be

unique, hence our notation fK is to be interpreted to mean that fK is any minimum for

Q(·, K ). We let

E(K ) := min{Q( f, K ) : f ∈ HK } = Q( fK , K )

and note that using the weak compactness of the unit ball in HK , the weak lower semi-

continuity of the norm on HK and the first hypothesis on an acceptable regularization func-

tional q ensure the existence of the minimum. In our previous work (Argyriou, Micchelli,

& Pontil, 2005) we studied the problem of choosing a kernel K ∈ K(G) which solves the

variational problem

EG := inf {E(K ) : K ∈ K(G)} . (2.4)

Any kernel K̂ ∈ K(G) for which EG = E(K̂ ) is called an optimal kernel and f K̂ is called

an optimal function. A main goal of this paper is to give the variational problem (2.4)

a feature space interpretation. To this end, we assume G : � → A+(X ) is expressed in

terms of a feature map � : � × X → W , where W is a Hilbert space with inner product

〈·, ·〉W and corresponding norm ‖ · ‖W . That is, for each x, y ∈ X and θ ∈ �, we have that

G(θ )(x, y) = 〈�(θ, x), �(θ, y)〉W . For example, when � = Nn , we construct K(G) as the

convex hull of the finite set of kernels G(θ1), . . . , G(θN ). In addition, when W is finite di-

mensional, say W = RM , then each of the kernels is constructed from a finite number of
features.

We require that the feature map has the property that, for each x ∈ X , the function

�(·, x) : � → W is continuous. In particular, we conclude that ‖�(·, x)‖ is a continuous
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real-valued function on �. From this it easily follows that, for each x, y ∈ X , G(·)(x, y) is

a continuous function on �. Let us use the notation C(�,W) for the set of all continuous

functions on � with values in W , where we give any � ∈ C(�,W) the norm

‖�‖∞,W := max {‖�(θ )‖W : θ ∈ �} .

Therefore, by our assumptions above for every x ∈ X the function �(·, x) ∈ C(�,W).

We introduce feature functions � j : � → W induced by the inputs x and defined, for

every θ ∈ �, as � j (θ ) = �(θ, x j ) and assume that they are linearly independent on �. This

is equivalent to the assumption that G maps into A+(X ). We use the standard notation

C∗(�,W) for the space of all continuous linear functionals on C(�,W). A precise descrip-

tion of C∗(�,W) can be given by using the representation theorem for C(�, R) in term of

regular Borel measures on �. However, this information is not needed in our presentation.

Instead, corresponding to any feature map and any regularization error function as described

above we introduce a feature space regularization functional V : C∗(�,W) → R given, for

any B ∈ C∗(�,W), by

V (B) = q(Dx(B), ‖B‖2), (2.5)

where Dx : C∗(�,W) → Rm is the linear operator defined as Dx(B) = (B(� j ) : j ∈ Nm).

Recall that the norm of the linear functional B is defined as

‖B‖ := sup{B(�) : ‖�‖∞,W ≤ 1}.

We introduce the variational problem

V� := inf{V (B) : B ∈ C∗(�,W)} (2.6)

which we will henceforth refer to as the feature space variational problem. Any linear func-

tional B̂ ∈ C∗(�,W) for which V� = V (B̂) is called an optimal linear functional. Our main

result is the following fact.

Theorem 2.1. Under the above hypotheses, we have that EG = V�. Moreover, there exist a
finitely supported measure p̂ ∈ M(�) with at most m + 1 atoms and a vector ĉ ∈ Rm such
that the kernel

K̂ =
∫

�

G(θ )d p̂(θ )

is an optimal kernel, the function

fK̂ =
∑
j∈Nm

ĉ j K̂ j

is an optimal function and the linear functional B̂ ∈ C∗(�,W) defined, for any � ∈
C(�,W), as

B̂(�) =
∫

�

〈	̂(θ ), �(θ )〉Wd p̂(θ )
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is an optimal linear functional, where the function 	̂ = ∑
j∈Nm

ĉ j� j has the property, for

every atom θ of p̂, that ‖	̂(θ )‖W = ‖	̂‖∞,W = ‖B̂‖.

This theorem not only shows that the values of the extremal problems (2.4) and (2.6)

are the same, that is EG = V�, but also connects their solutions. In particular, the kernel K̂
defined in the theorem is an optimal kernel and the optimal linear functional for the feature

space variational problem is connected to K̂ by means of the vector ĉ and function 	̂ as

described in the theorem.

We also wish to point out another connection between the optimal function, optimal linear

functional and the feature map, namely, for every x ∈ X , we have that

f K̂ (x) = B̂(�(·, x)).

We mention here an immediate corollary of the above theorem.

Corollary 2.1. Under the hypothesis above, we have that EG = V� where

EG = inf

{ ∑
j∈Nm

L(y j , f (x j )) + μJ
(‖ f ‖2

K

)
: f ∈ HK , K ∈ K(G)

}

and

V� = min

{ ∑
j∈Nm

L(y j , B(� j )) + μJ (‖B‖2) : B ∈ C∗(�,W)

}
.

Moreover, there exist a finitely supported measure p̂ ∈ M(�) with at most m + 1 atoms and
a vector ĉ ∈ Rm such that the kernel

K̂ =
∫

�

G(θ )d p̂(θ )

is an optimal kernel, the function

fK̂ =
∑
j∈Nm

ĉ j K̂ j

is an optimal function and the linear functional B̂ ∈ C∗(�,W) defined, for any � ∈
C(�,W), as

B̂(�) =
∫

�

〈	̂(θ ), �(θ )〉Wd p̂(θ )

is an optimal linear functional, where the function 	̂ = ∑
j∈Nm

ĉ j� j has the property, for
every atom θ of p̂, that ‖	̂(θ )‖W = ‖	̂‖∞,W = ‖B̂‖.

Before we prove Theorem 2.1 we describe several examples of some potential practical

importance in the next sections. We postpone the proof of Theorem 2.1 to Section 6.
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3 A practical example: Finitely many kernels

In this section, we specialize our analysis to the practically important case that � =
Nn . Thus, we express G as a finite collection of kernels, that is G = {Gr : r ∈ Nn} ⊆
A+(X ), M(�) = Sn , the n-dimensional simplex given by Sn = {(λr : r ∈ Nn) ∈ Rn : λr ≥
0,

∑
s∈Nn

λs = 1}, and

K(G) =
{∑

r∈Nn

λr Gr : (λr : r ∈ Nn) ∈ Sn

}
.

We let Wn be the n-fold cross product of W , that is,

Wn = {
w = (wr : r ∈ Nn) : wr ∈ W, r ∈ Nn

}
equipped it with the 


p
n norm, where 1 ≤ p ≤ ∞, given, for any w ∈ Wn , as

‖w‖p,W :=
(∑

r∈Nn

‖wr‖p
W

) 1
p

and denote the resulting Banach space by W p,n . In the case that p = 2, this is a Hilbert space

with inner product defined, for every u, w ∈ Wn as 〈w, u〉Wn := ∑
r∈Nn

〈wr , ur 〉W . Clearly,

the space C(�,W) is identified with W∞,n and its dual space, C∗(�,W), with W1,n . Thus,

a linear functional B ∈ C∗(�,W) corresponds uniquely to a vector w ∈ Wn by means of

the equation

B(u) = 〈w, u〉Wn , u ∈ Wn

and its norm is given by

‖B‖ = ‖w‖1,W .

We shall now specialize Corollary 2.1 to this case.

Corollary 3.1. Under the hypotheses above, we have that

EG = V�, (3.1)

where

EG = inf

{ ∑
j∈Nm

L(y j , f (x j )) + μJ
(‖ f ‖2

K

)
: f ∈ HK , K ∈ K(G)

}

and

V� = min

{ ∑
j∈Nm

L(y j , 〈w, �(x j )〉Wn ) + μJ
(‖w‖2

1,W
)

: w ∈ Wn

}
. (3.2)
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Moreover, there exist λ̂ ∈ Sn and a vector ĉ ∈ Rm such that the set R := {r : λ̂r > 0} has
cardinality at most min(m + 1, n), the kernel

K̂ =
∑
r∈R

λ̂r Gr (3.3)

is an optimal kernel, the function

fK̂ =
∑
j∈Nm

ĉ j K̂ j

is an optimal function and the vector

ŵ = (λ̂r 	̂r : r ∈ Nn)

is an optimal solution to problem (3.2), where the 	̂ = ∑
j∈Nm

ĉ j�(x j ) ∈ Wn has the prop-

erty, for every r ∈ R, that ‖	̂r‖W = ‖	̂‖∞,W = ‖ŵ‖1,W .

Note that the last statement in the corollary concerning the optimal vector ŵ = (ŵr : r ∈
Nn) says, for every r ∈ Nn , that

‖ŵr‖W = λ̂r‖	̂‖∞,W .

Thus, summing both sides of this equation over r ∈ Nn , we conclude that

‖ŵ‖1,W = ‖	̂‖∞,W

and, so

λ̂r = ‖ŵr‖W
‖ŵ‖1,W

. (3.4)

This formula demonstrate that a solution to the feature space variational problem provides a

choice for the optimal kernel in Eq. (3.3).

When W = R, problem (3.2) becomes

min

⎧⎨⎩ ∑
j∈Nm

L(y j , 〈w, �(x j )〉Rn ) + μJ

⎛⎝(∑
r∈Nn

|wr |
)2

⎞⎠ : w ∈ Rn

⎫⎬⎭ . (3.5)

This problem is closely related to some well-known function estimation techniques. In par-

ticular, when the loss function L is the square loss and J is chosen to be J (t) = √
t, t ∈ R+,

the variational problem (3.5) has been studied in statistics under the name of lasso (Tib-

shirani, 1996), in signal processing as basis pursuit denoising (Chen, Donoho, & Saun-

ders, 1998), and in linear programming (Fung & Mangasarian, 2004) as a feature selection
method. The common theme of these methods is that the solution ŵ of (3.5) is sparse, that

is, most of its components are zero. The nonzero components of ŵ identify informative fea-

tures for representing the given data. Indeed, Corollary 3.1 establishes that there exists an

optimal vector ŵ with at most min(n, m + 1) non zero components.
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We note that the equivalence between the functionals EG and V� described in Corollary

3.1 when the loss function L is the hinge loss used in support vector machines is also de-

scribed in Bach, Lanckriet and Jordan (2004). Moreover, a method similar to problem (3.2)

has been recently proposed in statistics under the name of cosso, where it has been proposed

as a generalization of the lasso (see Lin & Zhang, (2003) and Lee et al. (2004) for related

results). A specific instance of the above environment is provided by ANOVA kernels (see

Wahba, 1990; Lin & Zhang, 2003 for a detailed discussion).

We now present an alternate derivation of Eq. (3.1). To this end, we require the following

result of Aronszajn concerning the norm induced by a sum of reproducing kernels (Aron-

szajn, 1950, Section 7).

Theorem 3.1. If {Gr , r ∈ Nn} ⊆ A(X ) and K = ∑
r∈Nn

Gr then, for every f ∈ HK , we
have that

‖ f ‖2
K = min

{∑
r∈Nn

‖ fr‖2
Gr

: f =
∑
r∈Nn

fr , fs ∈ HGs , s ∈ Nn

}
.

Without elaborating on the technical details, we note, by Theorem 3.1 that

EG = min

{ ∑
j∈Nm

L

(
y j ,

∑
r∈Nn

fr (x j )

)
+ μJ

(∑
r∈Nn

‖ fr‖2
Gr

λr

)
: fr ∈ HGr , λ ∈ Sn

}

= min

⎧⎨⎩ ∑
j∈Nm

L

(
y j ,

∑
r∈Nn

fr (x j )

)
+ μJ

⎛⎝(∑
r∈Nn

‖ fr‖Gr

)2
⎞⎠ : fr ∈ HGr , r ∈ Nn

⎫⎬⎭
= min

{ ∑
j∈Nm

L
(
y j , 〈w, �(x j )〉W

) + μJ
(‖w‖2

1,W
)

: w ∈ Wn

}
= V�,

where the first equality follows by Theorem 3.1, the second follows by taking the minimum

over λ ∈ Sn and the third equality uses the feature map representation of the function fr , that

is, fr = 〈wr , �r 〉W , r ∈ Nn , where � = (�r : r ∈ Nn), and ‖ fr‖Gr = ‖wr‖W . Moreover,

the optimal value of λ = (λr : r ∈ Nn) is given by

λr = ‖wr‖W
‖w‖1,W

. (3.6)

As mentioned above, this derivation requires the result of Aronszajn in Theorem 3.1 whose

proof is elaborate and only applies easily to the case of finite number of kernels. The ap-

proach we use to prove the general result in Theorem 2.1 is self-contained and gives more

information. Indeed, note that the alternate derivation after Theorem 3.1 only reveals Eq.

(3.1) and does not provide information about the structure for the extremal solutions for the

associated variational problems. Nevertheless, it suggests an interesting extension of that
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equation. To this end, we choose h ∈ R+, set Sn,h := {(λr : r ∈ Nn) : λr ≥ 0,
∑

r∈Nn
λh

r =
1},

Kh(G) =
{∑

r∈Nn

λr Gr : λ ∈ Sn,h

}
,

EG,h = inf

{ ∑
j∈Nm

L(y j , f (x j )) + μJ
(‖ f ‖2

K

)
: f ∈ HK , K ∈ Kh(G)

}

and

E�,p = min

{ ∑
j∈Nm

L(y j , 〈w, �(x j )〉W ) + μJ
(‖w‖2

p,W
)

: w ∈ Wn

}
. (3.7)

Proposition 3.1. If h ∈ R+ and p = 2h
h+1

then EG,h = E�,p.

The proof of this proposition follows from Theorem 3.1, the following lemma, whose

proof can be found in the appendix of Micchelli and Pontil (2005) and the same technique

used above to give an alternate proof of Eq. (3.1).

Lemma 3.1. If h ≥ 0, p := 2h
h+1

, and a = (ar : r ∈ Nn) ∈ Rn then

min

⎧⎨⎩
(∑

r∈Nn

|ar |2
λr

) 1
2

: λ = (λr : r ∈ Nn) ∈ Sn,h

⎫⎬⎭ = ‖a‖2
p

and the equality occurs for

λr :=
( |ar |

‖a‖p

)2−p

, r ∈ Nn . (3.8)

We hope on a future occasion, to use this alternate approach to discover the structure of

the optimal solutions for EG,h and V�,p.

4 Single feature kernels and L1 regularization

In this section, we consider another case of our main result in Section 2 corresponding

to the choice W = R. Equivalently, the kernels in G are all expressed as a single feature.

We have already observed in the previous section that in this case, under the additional

assumption that � is a finite set, problem (3.2) reduces to problem (3.5) which is a type of

L1 regularization problem. An analogous observation is summarized in the corollary below

in the general case that � is any compact set. We note that in this case C(�, R) = C(�).
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Corollary 4.1. Under the hypothesis above, we have that EG = V� where

EG = inf

{ ∑
j∈Nm

L(y j , f (x j )) + μJ
(‖ f ‖2

K

)
: f ∈ HK , K ∈ K(G)

}

and

V� = min

{ ∑
j∈Nm

L(y j , B(� j )) + μJ
(‖B‖2

)
: B ∈ C∗(�)

}
.

Moreover, there exist a finitely supported measure p̂ ∈ M(�) with at most m + 1 atoms and
a vector ĉ ∈ Rm such that the kernel

K̂ =
∫

�

G(θ )d p̂(θ )

is an optimal kernel, the function

fK̂ =
∑
j∈Nm

ĉ j K̂ j

is an optimal function and the linear functional B̂ ∈ C∗(�) defined, for any � ∈ C(�), as

B̂(�) =
∫

�

	̂(θ )�(θ )d p̂(θ )

is an optimal linear functional, where the function 	̂ = ∑
j∈Nm

ĉ j� j has the property, for

every atom θ of p̂, that |	̂(θ )| = ‖	̂‖∞ = ‖B̂‖.

Note that we can rewrite the linear functional B̂ as a finitely supported signed measure,

namely,

B̂ =
∑
j∈Nk

γ̂ jδ(θ j − ·),

where {θi : i ∈ Nk} ⊆ � are the atoms of p̂, k ≤ m + 1, γ̂i = λ̂i‖	̂‖∞sgn	̂(θi ) and for each

θ ∈ �, we interpret δ(θ − ·) as the delta function concentrated at θ . Moreover, we can alter-

natively express the optimal function f K̂ as a linear combination of the features evaluated at

the atoms of p̂, that is

f K̂ =
∑
j∈Nk

γ̂ j�(θ j , ·).

We view the feature space variational problem appearing in the above corollary as the

analog of L1 regularization. We shall now change our perspective and explain in detail what

we have in mind. Our intention is also to have this discussion encompass an Lp extension

of the variational problem above for p ∈ (1, ∞). To this end, we describe the necessary

terminology and notation to cover this case too.
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The appropriate context for this discussion is a measurable space � with finite measure

ν and Lp(�, ν) the space of functions ω : � → R with norm ‖ω‖p defined, for p ∈ [1, ∞),

as

‖ω‖p :=
(∫

�

|ω(θ )|pdν(θ )

) 1
p

.

We wish to learn a function in Lp(�, ν) based on a finite set of linear functionals of

it, that is, we have a set of examples of the form {(M j , y j ) : j ∈ Nm} where M j are linear
functionals in Lr (�, ν), where 1

p + 1
r = 1, and y j ∈ R is a noisy measurement of M j (ω)

from the unknown target function ω. Furthermore, we assume that the linear functionals

{M j : j ∈ Nm} are linearly independent.
To estimate ω we consider the problem of minimizing the functional E p : Lp(�, ν) → R

defined, for ω ∈ Lp(�, ν), as

E p(ω) := q(M(ω), ‖ω‖p) (4.1)

over its domain, where q is an admissible regularization function and M : Lp(�, ν) → Rm

is the linear operator defined, for ω ∈ Lp(�, ν), as M(ω) = (M j (ω) : j ∈ Nm). Recall, for

p ∈ [1, ∞), that the linear functionals M j can be expressed as

M j (ω) =
∫

�

ϕ j (θ )ω(θ )dν(θ ),

where the function ϕ j ∈ Lr (�, ν) and 1
p + 1

r = 1 (see, for example, Royden, 1964, p. 103).

A special case of this setup is covered by the regularization error functional

E p(ω) :=
∑
j∈Nm

L(y j , M j (ω)) + μ‖ω‖p
p, ω ∈ Lp(�, ν), (4.2)

where L : R → R+ is some prescribed loss function and μ is a positive parameter.

As an example of the above we let N : � × � → R be a prescribed continuous function

and N : Lp(�, ν) → C(�) the associated integral operator, that is, for ω ∈ Lp(�, ν), we

define

Nω(·) =
∫

�

N (·, θ )ω(θ )dν(θ ).

We introduce a linear space of functions T := rangeN . We assume N is one-to-one and

observe that the norm of h ∈ T defined as ‖h‖ := ‖ω‖p where h = Nω makes T a Banach

space.

We choose ϕ j := N j , j ∈ Nm , where N j (·) := N (θ j , ·), and express the regularization

function (4.1) in the form

E p(ω) = q(Iθ(h), ‖h‖), (4.3)

where h = Nω and θ = {θ j : j ∈ Nm} is a prescribed set of inputs. Clearly, minimizing the

left hand side of equation above over ω ∈ Lp(�, ν) is equivalent to minimize the right hand

side of this equation over h ∈ T .
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In general, T is not a Hilbert space. However, for the special case that p = 2, T is a

reproducing kernel Hilbert space with inner product defined as 〈h, h′〉 = ∫
�

ω(θ )ω′(θ )dν(θ ),

where h = Nω, h′ = Nω′ and the reproducing kernel K is given by

K (θ, θ ′) =
∫

�

N (θ, s)N (θ ′, s)dν(s), θ, θ ′ ∈ �.

Indeed, to see that K is the reproducing kernel of T we observe that the above formula

means, for θ ∈ �, that K (θ, ·) = N (N (θ, ·)) and, so, if h = Nω, by definition we have that

〈K (θ, ·), h〉 =
∫

�

N (θ, s)ω(s)dν(s) = h(θ ).

In this special case, it is well-known that the unique minimizer ĥ of the functional in the

right hand side of Eq. (4.3) has the form

ĥ =
∑
j∈Nm

c j K j , (4.4)

where K j = K (θ j , ·) and the vector of coefficients c = (c j : j ∈ Nm) ∈ Rm is obtained by

substituting formula (4.4) for ĥ into the right hand side of Eq. (4.3) and minimizing over c.

Note that, if ĥ = N ω̂ then ω̂ is given by

ω̂ =
∑
j∈Nm

c j N j

or, equivalently, recalling the definition of ϕ j in this example, we have that ω̂ = ∑
j∈Nm

c jϕ j .

Let us turn our attention to the case that p = 1. We begin our discussion by observing

that, in general, E1 does not have a minimum on L1(�, ν). We illustrate this point with the

following example.

Example 1. Let dθ be the Lebesgue measure on [0, 1] and consider the problem of mini-

mizing the functional

W (ω; α) = α

∣∣∣∣1 −
∫ 1

0

ω(θ )θdθ

∣∣∣∣ +
∫ 1

0

|ω(θ )|dθ

over ω ∈ L1([0, 1], dθ ), where α is a nonnegative number. Call the value of this minimum

W∞(α) := inf{W (ω; α) : ω ∈ L1([0, 1], dθ )}. With minimal effort it follows that

W∞(α) =
{

1, α > 1

α, α ∈ (0, 1].

Moreover, the minimum does not exist in L([0, 1], dθ ) but does exist as a distribution ω̂

given, for θ ∈ [0, 1] by

ω̂(θ ) =
{

δ(θ − 1), α > 1

0, a.e., α ∈ (0, 1].
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If we embed L1([0, 1], dθ ) into C∗([0, 1]) and minimize W (·; α) over C∗([0, 1]) the min-

imum exists and is given as above. Likewise, in general, the minimum of functional E1

defined in (4.2) exists in C∗(�). Indeed, this corresponds to the feature space variational

problem treated in Corollary 4.1. Keep in mind that our description of the Lp regulariza-

tion above takes the point of view of learning ω from the data M(ω). However, in the case

p = 1, from our remarks above we also view it from the feature space perspective presented

in Corollary 4.1.

We complete this digression by describing a representer theorem for the Lp(�, ν) regu-

larization when 1 < p < ∞. Before doing so, we think it is advantageous to present another

proof for the L1 regularization case independent of the general theorem presented in Section

2.

Proposition 4.1. There exist an integer k ≤ m + 1, a set {θ j : j ∈ Nk} ⊆ � and λ̂ = (λ̂ j :

j ∈ Nk) ∈ Sk such that

B̂ =
∑
j∈Nk

λ̂ jδ(θ j − ·)

is a minimizer of the regularization functional E1 above. Moreover, there is a vector ĉ =
(ĉ j : j ∈ Nm) satisfying the constraint that (ĉ, ŷ) = 1, where ŷ := (B̂(ϕ j ) : j ∈ Nm), such
that the function 	̂ := ∑

j∈Nm
ĉ jϕ j has the property that, for every j ∈ Nk ,

|	̂(θ j )| = ‖	̂‖∞ = min

{∥∥∥∥∥ ∑
j∈Nm

d jϕ j

∥∥∥∥∥
∞

: d ∈ Rm, (d, ŷ) = 1

}
.

Proof: The existence of a minimum of E1 over C∗(�) follows from weak-∗compactness in

the unit ball in C∗(�) (see Royden, 1964, p. 173). If B̂ is a minimizer of E1, we set ŷ j =
B̂(ϕ j ), j ∈ Nm , choose any d ∈ Rm and note that, for every B ∈ C∗(�) such that B(ϕ j ) =
ŷ j , j ∈ Nm , that

(d, ŷ) =
∑
j∈Nm

d j B(ϕ j ) = B

( ∑
j∈Nm

d jϕ j )

)
≤ ‖B‖

∥∥∥∥∥ ∑
j∈Nm

d jϕ j

∥∥∥∥∥
∞

.

Consequently, we have that

‖B‖ ≥
∑

j∈Nm
d j ŷ j∥∥ ∑

j∈Nm
d jϕ j

∥∥
∞

≥ σ−1,

where we have defined

σ := min

{∥∥∥∥∥ ∑
j∈Nm

d jϕ j

∥∥∥∥∥
∞

:
∑
j∈Nm

d j ŷ j = 1

}
. (4.5)
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We observe that the variational problem (4.5) has a minimum because the function U :

Rm → R+ defined for each d = (d j : j ∈ Nm) by U (d) := ‖ ∑
j∈Nm

d jϕ j‖∞ is continuous,

homogeneous and nonzero for d �= 0. Hence, it tends to infinity as d → ∞.

Let ĉ ∈ Rm be a minimizer of U . Therefore, this vector is characterized by the fact that

the right directional derivative of U at ĉ in all directions a ∈ Rm such that (a, ŷ) = 1 is

nonnegative. We denote this derivative by U ′
+(ĉ; a) which is given by

U ′
+(ĉ; a) = max

{( ∑
j∈Nm

a jϕ j (θ )

)
sgn

( ∑
j∈Nm

ĉ jϕ j (θ )

)
: θ ∈ �(ĉ)

}
,

where the set �(ĉ) is defined as

�(ĉ) :=
{

θ : θ ∈ �,

∣∣∣∣∣ ∑
j∈Nm

ĉ jϕ j (θ )

∣∣∣∣∣ =
∥∥∥∥∥ ∑

j∈Nm

ĉ jϕ j

∥∥∥∥∥
∞

}
.

For each θ ∈ �, we define the vector z(θ ) := (ϕ j (θ )sgn(
∑

i ĉiϕi (θ )) : j ∈ Nm) ∈ Rm and

the set of vectors Z (ĉ) := {z(θ ) : θ ∈ �(ĉ)} ⊆ Rm .

The condition that ĉ is a solution to problem (4.5) means, for all a ∈ Rm satisfying

(a, ŷ) = 0, that

max{(z, a) : z ∈ Z (ĉ)} ≥ 0.

Clearly, Z (ĉ) is a bounded subset of Rm . Therefore, its closed convex hull A := co(Z (ĉ))

is compact. We claim that A intersects the line spanned by the vector ŷ. Indeed, if this is

not true then there exists a hyperplane H := {d : d ∈ Rm, (β, d) + α = 0}, α ∈ R, β ∈ Rm ,

which strictly separates A from the set {ρ ŷ : ρ ∈ R} (see, for example, Royden, 1964, p.

176). In other words, we must have that

(β, ρ ŷ) + α > 0, ρ ∈ R

and

(β, z) + α ≤ 0, z ∈ Z (ĉ).

The first condition implies that α > 0 and, so we conclude that

max{(β, z) : z ∈ Z (ĉ)} < 0

which contradicts our hypothesis that ĉ is a minimum of U . Hence, we have that ρ0 ŷ ∈ A
for some ρ0 ∈ R. By the Caratheodory theorem (see, for example, Borwein & Lewis, 2000,

Ch. 2), every vector in A can be expressed as a convex combination of at most m + 1 vectors

in Z (ĉ). In particular, there exists ρ0 such that

ρ0 ŷ =
∫

�

z(θ )d p̂(θ ), (4.6)
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where p̂ is a probability measure with k atoms, that is,

p̂ =
∑
j∈Nk

γ jδ(· − θ j )

k is at most m + 1, {θ j : j ∈ Nk} ⊆ �(ĉ), γ j ≥ 0, j ∈ Nm and
∑

j∈Nm
γ j = 1. Taking the

inner product of both sides of Eq. (4.6) with c we conclude that

ρ0 =
∥∥∥∥∥ ∑

j∈Nm

ĉ jϕ j

∥∥∥∥∥
∞

= ‖g‖∞ > 0,

where g = ∑
j∈Nk

ĉ jϕ j . Next, we introduce the linear functional B̂ : C(�) → R defined for

ω ∈ C(�) as B̂(ω) = ∫
�

	̂(θ )ω(θ )d p̂(θ ) where

	̂ = 1

ρ0

sgn(g) p̂ =
∑
j∈Nk

λ̂ jδ(θ j − ·),

where we have defined λ̂ j = γ j

ρ0
. The result follows by noting that B̂(ϕ j ) = ŷ j and ‖B̂‖ =

‖	̂‖−1
∞ . �

5 Regularization in Lp spaces

In this section, we provide a representation result for the minimizer of functional (4.1) when

p ∈ (1, ∞).

Proposition 5.1. If the function q : Rm × R+ → R+ is admissible and p ∈ (1, ∞) then
there exists a minimizer ω̂ ∈ Lp(�, ν) of functional (4.1), given by the form

ω̂ =
(∣∣∣∣∣ ∑

j∈Nm

ĉ jϕ j

∣∣∣∣∣
)r−1

sign

( ∑
j∈Nm

ĉ jϕ j

)
, (5.1)

where ĉ = (ĉ j : j ∈ Nm) ∈ Rm.

Proof: E p has a minimum in Lp(�, ν) since q is an admissible regularization function and

the unit ball in Lp(�, ν) is weakly compact, as it is well known (Royden, 1964, p. 173). Let

ω̂ a minimizer of E p, define data ŷ j = M j (ω̂), j ∈ Nm and choose ω̃ as the solution to the

minimal norm interpolation problem

min{‖ω‖p : ω ∈ Lp(�, ν), M j (ω) = ŷ j , j ∈ Nm}. (5.2)

Clearly ω̃ is also a minimizer of E p and, for any d ∈ Rm , we have that

(d, ŷ) =
∑
j∈Nm

d j M j (ω̃) =
∫

�

ω̃(θ )
∑
j∈Nm

d jϕ(θ )dν(θ ) ≤ ‖ω̃‖p

∥∥∥∥∥ ∑
j∈Nm

d jϕ j

∥∥∥∥∥
r

,
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where the last inequality follows by Hölder’s inequality. Consequently, we have that

‖ω̃‖p ≥
∑

j∈Nm
d j ŷ j∥∥ ∑

j∈Nm
d jϕ j

∥∥
r

≥ σ−1,

where we have defined

σ = min

{∥∥∥∥∥ ∑
j∈Nm

d jϕ j

∥∥∥∥∥
r

:
∑
j∈Nm

d j ŷ j = 1

}
. (5.3)

Let ĉ ∈ Rm be a minimizer of (5.3), define ϕ := ∑
j∈Nm

ĉ jϕ j , set ω̃ = ‖ϕ‖−r |ϕ|r−1sgn (ϕ)

and note that

‖ω̃‖p = ‖ϕ‖−r

(∫
�

|ϕ(θ )|p(r−1) dν(θ )

) 1
p

= ‖ϕ‖−r‖ϕ‖ r
p = ‖ϕ‖−1

r .

This proves the claimed result. �

In order to compute the coefficient vector ĉ = (ĉ j : j ∈ Nm) in Eq. (5.1) we substitute

this equation for ω̂ in the right hand side of Eq. (4.1) obtaining the function

Ê p(ĉ) := E p

⎛⎝∣∣∣∣∣ ∑
j∈Nm

ĉ jϕ j

∣∣∣∣∣
r−1

sgn

( ∑
j∈Nm

ĉ jϕ j

)⎞⎠ , ĉ ∈ Rm

and then optimize Ê p over the vector ĉ ∈ Rm . Unfortunately, the function Ê p is not, in

general, convex. In fact, for the square loss A(y, t) = 1
2
(y − t)2, t ∈ R with � = [0, 1],

m = 1, y1 = 1 and ϕ = 1 we have, for every p �= 2, that

Ê p(ĉ) = (1 − |ĉ|r−1sgn(ĉ))2 + γ |ĉ|r−1.

This function is not convex when γ < 1.

6 Proof of the main result

In this section, we present the proof of our main result in Theorem 2.1. We divide the proof

in two parts. In the first part we establish that

EG ≥ V�. (6.1)

Recall Eq. (2.3) and that, for every K ∈ K(G) we defined fK to be any function in HK such

that

E(K ) := min{Q( f, K ) : f ∈ HK } = Q( fK , K ).
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For every y ∈ Rm we use the notation ρ(K , y) to denote the minimum norm squared of all

functions f ∈ HK which interpolate y at x, that is, Ix f = y and set

ρ(K , y) := min
{‖ f ‖2

K : f ∈ HK , Ix f = y
}
. (6.2)

As we remarked earlier fK may not be unique and, hence, we are not certain of its struc-

ture. To overcome this difficulty we introduce the vector yK := Ix fK and let gK ∈ HK solve

the minimal norm interpolation problem

‖gK ‖2
K = ρ(K , yK ).

Hence, gK = I ∗
x cK for a unique cK ∈ Rm identified by the linear equation IxgK = yK . This

follows from the so-called representer theorem see, for example, Micchelli & Pontil, 2005

and references therein. Consequently, we have that

E(K ) = q
(
Ix fK , ‖ fK ‖2

K

) = q
(
yK , ‖ fK ‖2

K

) ≥ q
(
yK , ‖gK ‖2

K

)
.

Note that in the last step we used property 3 of an acceptable regularization error function

(see Definition 2.1).

Since K ∈ K(G), there exists p ∈ M(�) such that

K =
∫

�

G(θ )dp(θ ).

We observe, for any x ∈ X , that

gK (x) =
∫

�

〈	K (θ ), �(θ, x)〉dp(θ ),

where 	K := ∑
j∈Nm

cK, j� j and cK := (cK, j : j ∈ Nm). This computation suggests that we

introduce the linear functional BK defined, for every � ∈ C(�,W), as

BK (�) =
∫

�

〈	K (θ ), �(θ )〉dp(θ ). (6.3)

Therefore, with these observations we obtain that

yK = IxgK = Dx(BK ), (6.4)

where the linear operator D : C∗(�,W) → Rm was defined earlier, below Eq. (2.5). Also,

observe, for any � ∈ C(�,W) by the Cauchy-Schwarz’s inequality used twice (once in W
and then another time in L2(�, dp)), that

|BK (�)| ≤
∫

�

‖	K (θ )‖W‖�(θ )‖Wdp(θ )

≤
(∫

�

‖	K (θ )‖2
Wdp(θ )

) 1
2
(∫

�

‖�(θ )2‖Wdp(θ )

) 1
2
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and, so, we get the following inequality for the norm of BK ,

‖BK ‖2 ≤
∫

�

‖	K (θ )‖2
Wdp(θ ). (6.5)

A straightforward computation shows that∫
�

‖	K (θ )‖2
Wdp(θ ) = ‖gK ‖2

K . (6.6)

Consequently, combining Eqs. (6.5) and (6.6) we have demonstrated that

‖BK ‖ ≤ ‖gK ‖K . (6.7)

Now, we observe from Eqs. (6.4) and (6.7), and the definition of the functional V�, for any
K ∈ K(G), that

E(K ) = E(yK , fK ) ≥ q
(
yK , ‖gK ‖2

K

)
= q

(
Dx(BK ), ‖gK ‖2

K

) ≥ q(Dx(BK ), ‖BK ‖2) ≥ V�.

Since this lower bound for E(K ) holds for any K ∈ K(G), we have proved that

EG ≥ V�.

To show the reverse inequality we use a result from Micchelli and Pontil (2005). For

the convenience of the reader we describe it in detail. To this end, we recall some notation

used there. Before, we used ρ(K , y) for the minimum norm squared of all functions f ∈ HK

which interpolate the data at y, see Eq. (6.2). The infimum of this quantity over all K ∈ K(G)

will be denoted by ρ(K(G), y). Moreover, since K(G) ⊆ A+, for each y ∈ Rm there is a

unique cK ∈ Rm such that

(cK , Ix I ∗
x cK ) = ‖I ∗cK ‖2

K = ρ(K , y)

and Ix I ∗
x cK = y. Since Ix I ∗

x = Kx we also have that cK = K −1
x y. For the statement of the

theorem below we introduce the vector ĉK := ρ−1(K , y)cK which has the property that

(ĉK , y) = 1.

Theorem 6.1. If � is a compact Hausdorff topological space and G : � → A+(X ) is con-
tinuous then there exists a kernel K̂ = ∫

�
G(θ )d p̂(θ ) ∈ K(G) such that p̂ is a discrete prob-

ability measure in M(�) with at most m + 1 atoms. Moreover, for ĉ := ĉK̂ and any atom
θ ∈ � of p̂, we have that

(ĉ, Gx(θ )ĉ) = max{(ĉ, Gx(θ )ĉ) : θ ∈ �}, (6.8)

ρ(K(G), y) = ρ(K̂ , y) = (
y, K̂ −1

x y
)

(6.9)

and for every c ∈ Rm with (c, y) = 1 and every K ∈ K(G) there holds

(ĉ, Kxĉ) ≤ (ĉ, K̂xĉ) ≤ (c, K̂xc). (6.10)
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Returning to the proof of Theorem 2.1, we observe by weak∗–compactness in C∗(�,W)

that there is a solution to the problem of minimizing V� : C∗(�,W) → R+ over its domain

(see, for example Royden, 1964, p. 173). We call the minimum B̂ and set ŷ := Dx(B̂).

Hence, by definition we have that

V� = q(ŷ, ‖B̂‖2).

To estimate this quantity from below, we consider the problem

γ := min

⎧⎨⎩
∥∥∥∥∥ ∑

j∈Nm

c j� j

∥∥∥∥∥
2

∞,W

: c ∈ Rm, (c, ŷ) = 1

⎫⎬⎭ .

Vector–valued problems of this type were considered in Micchelli (1992). Note that the

minimum exists because the functions � j , j ∈ Nm were assumed to be linearly independent

over �. For the problem at hand we note that

γ = min

⎧⎨⎩max

⎧⎨⎩
∥∥∥∥∥ ∑

j∈Nm

c j� j (θ )

∥∥∥∥∥
2

: θ ∈ �

⎫⎬⎭ : c ∈ Rm, (c, ŷ) = 1

⎫⎬⎭
= min

⎧⎨⎩max

⎧⎨⎩
∫

�

∥∥∥∥∥ ∑
j∈Nm

c j� j (θ )

∥∥∥∥∥
2

dp(θ ) : p ∈ M(�)

⎫⎬⎭ : c ∈ Rm, (c, ŷ) = 1

⎫⎬⎭
= min{max{(c, Kxc) : K ∈ K(G)} : c ∈ Rm, (c, ŷ) = 1} = ρ−1(K(G), y),

where we recall that Kx = (K (xi , x j ) : i, j ∈ Nm). Thus, by Theorem 6.1 there is a discrete

probability measure p̂ ∈ M(�) of support ≤ m + 1 and a vector ĉ ∈ Rm such that for all

c ∈ Rm , K ∈ K(G), there holds the inequality

(ĉ, Kx, ĉ) ≤ (ĉ, K̂xĉ) ≤ (c, K̂xc),

where

K̂ =
∫

�

G(θ )d p̂(θ ).

Moreover, for each atom θ of p̂ we have that

ρ−1(K(G), y) = (ĉ, Gx(θ )ĉ) = max{(ĉ, Gx(θ )ĉ) : θ ∈ �} (6.11)

and the kernel K̂ , has the property that K̂xĉ = γ ŷ. As before, we let 	̂ := ∑
j∈Nm

ĉ j� j

and observe that ‖	̂(θ )‖2
W = (ĉ, Gx(θ )ĉ). Consequently, for each atom θ of p̂, we have that

‖	̂(θ )‖W = ‖	̂‖∞,W = √
γ .

Now, let us consider the linear functional F ∈ C∗(�,W) defined for each � ∈
C∗(�,W) as

F(�) = γ −1

∫
�

〈	̂(θ ), �(θ )〉Wd p̂(θ ).
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As before in the proof of (6.1), we conclude that ‖F‖ ≤ γ −1‖	̂‖∞,W . However, in the

present circumstance, since F(	̂) = γ −1‖	̂‖2
∞,W we additionally obtain, by the defini-

tion of the norm of F , that γ −1‖	̂‖2
∞,W ≤ ‖F‖‖	̂‖∞,W . In other words, we obtain that

γ
1
2 = γ −1‖	̂‖∞,W = ‖F‖.

To proceed further, we shall demonstrate that F is the minimal norm interpolant to the

data ŷ. First, we observe that the functional F interpolate the data at ŷ. Indeed, since Kxĉ =
γ y we have that

Dx(F) = γ −1 K̂ −1
x ĉ = ŷ.

Now, let B ∈ C∗(�,W) be any linear functional which interpolates the data, that is,

Dx(B) = ŷ. Therefore, we get that

1 = (ĉ, ŷ) = B

( ∑
j∈Nm

ĉ j� j

)
= B(	̂) ≤ ‖B‖‖	̂‖∞,W = √

γ ‖B‖

from which we obtain that ‖F‖ ≤ ‖B‖. In other words, we have established, as anticipated

above, that

‖F‖ = min{‖B‖ : B ∈ C∗(�,W), Dx(B) = ŷ j , j ∈ Nm}.

Next, we introduce the function ĝ := γ −1 I ∗
x ĉ and observe as before that ‖ĝ‖K̂ = ‖F‖. Fi-

nally, since Ixĝ = ŷ, we conclude that

V� = q(ŷ, ‖B̂‖2) ≥ q(ŷ, ‖F‖2) = q
(
Ixĝ, ‖ĝ‖2

K̂

) ≥ EG .

Thus, we have that V� = EG , gK is a minimizer for E(K̂ ), K̂ is optimal for E and F is

optimal for V�.

7 Summary

We have presented an equivalence between the problem of learning a kernel within a pre-

scribed set of continuously parameterized kernels studied by Argyriou, Micchelli, and Pontil

(2005) and Micchelli and Pontil (2005) and a feature space reformulation of it. This leads

us to study a variational regularization problem in the dual space of all continuous functions

with values in the Hilbert space associated with the features maps. This equivalence requires

only weak conditions on the form of the regularization error function. Not only does it es-

tablish that these variational problems are the same but, also, it provides a choice of the

optimal solutions to both problems. In particular, it generalizes some results from Argyriou,

Micchelli, and Pontil (2005) which required the loss function to be differentiable.

Furthermore, we demonstrated that the problem of learning the kernel, which has been

investigated extensively in the literature (see Argyriou, Micchelli, & Pontil, 2005; Bach,

Lanckriet, & Jordan, 2004; Bousquet & Herrmann, 2003; Cristianini et al., 2002; Lanckriet

et al., 2004; Lee et al., 2004; Lin & Zhang, 2003; Ong, Smola, & Williamson, 2003; Wu,

Ying, & Zhou, to appear), in special cases reduces to Lp regularization (Micchelli and Pontil,

2004). This connection highlights the importance of studying regularization in a non-Hilbert

space framework in machine learning. Indeed, special cases of the feature space problem
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have been widely studied under the names lasso (Tibshirani, 1996), basis pursuit denois-
ing (Chen, Donoho, & Saunders, 1998) and, recently, as the cosso method (Lin & Zhang,

2003).

There are a number of issues related to the work presented in this paper which would be

valuable to explore. For example, how does the form of the optimal solutions to the vari-

ational problems evolve with μ? Our results in Section 2 and the subsequent comments in

Section 3 say that there always exists a solution which uses at most m + 1 nonzero kernels

or features. Do the number of non-zero components diminish with μ, as was seen in Mic-

chelli and Pinkus (1994) for special cases? Finally, the study of generalization error bounds

for the methods presented in this paper would definitely be of interest (see Micchelli et

al., 2005 for recent progress on this issue). Of course, the central challenge not addressed

here is the practical implementation and numerical validation of the methods presented

here.
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