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Abstract.  This work is inspired by the so-called reranking tasks in natural language processing. In this paper,
we first study the ranking, reranking, and ordinal regression algorithms proposed recently in the context of ranks
and margins. Then we propose a general framework for ranking and reranking, and introduce a series of variants
of the perceptron algorithm for ranking and reranking in the new framework. Compared to the approach of using
pairwise objects as training samples, the new algorithms reduces the data complexity and training time. We apply
the new perceptron algorithms to the parse reranking and machine translation reranking tasks, and study the
performance of reranking by employing various definitions of the margins.
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1. Introduction

Ranking is one of the most important tasks of relation learning. In recent years, ranking has
become an important research topic in the field of machine learning. In the field of Natural
Language Processing (NLP), the so-called reranking techniques (Collins, 2004) have been
successfully used in the parameter estimation in many applications, which were previously
modeled as generative models.

In NLP research, it has been noticed that the use of global features is critical to the
performance of many NLP systems. However, the introduction of global features results
in difficulty for the dynamic programming of the generative models. The basic idea of the
reranking is as follows. A baseline generative model generates N-best candidates, and then
these candidates are reranked by using a rich set of local and global features. Usually, only
the top candidate of the reranked results is used, so reranking is also called selection or
voting in some cases.

Much research has been done on ranking and reranking recently, and various machine
learning algorithms have been adapted to the ranking and reranking tasks We will review
these works in the next section, emphasizing the similarity and difference in the ranking and
reranking problems. In this paper, we will explore the adaptation of the ranking algorithms
to the reranking problem.

Obviously, ranking is a problem that lies between classification and regression. In some
previous works, ranking was reduced to a classification problem by using pairwise items as
training samples (Herbrich, Graepel, & Obermayer, 2000), by item we mean a candidate
in the N-best list. This will increase the data complexity from O(n) to O(n?) in the case
of full set of pairs, where n is the size of the candidate list. To avoid this, a subset of
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the pairs are utilized. However, this results in the loss of some information in the training
data for reranking. In some other approaches (Crammer & Singer, 2001), extra biases are
introduced to avoid using pairwise items as samples; each bias represents the boundary
of two neighboring ranks on the score metric. But the use of extra biases prevents it from
being used in reranking tasks, as we will explain later.

In this paper, we will introduce a series of variants of the traditional perceptron algorithm
(Rosenblatt, 1958; Novikoff, 1962) for ranking and reranking, which fully utilize the key
properties of the ranking problem itself. The basic idea of these algorithms is that we
search dynamically for pairs of inconsistent objects and use them to update the weight
vector. Since the ranks are ordered, the dynamical search can be implemented efficiently.
These algorithms will be justified by modifying the proof for the perceptron training in
Novikoff (1962) and Krauth and Mezard (1987).

Based on the new perceptron algorithms, we study the margin selection problem for
the parse reranking and machine translation reranking. Experimental results show the
superiority of the uneven margins.

The paper is organized as follows. In Section 2, we summarize the previous works on
ranking and reranking. Then we investigate these works in the context of ranks and margins
in Section 3, and propose general models for ranking and reranking in Section 4. In Section
5 we propose two new perceptron based algorithms in the new framework. We will justify
these two algorithms in Section 6. The new algorithms are applied to the parse reranking
and the machine translation reranking problems in Section 7.

2. Previous works
2.1. Ranking and ordinal regression

Crammer and Singer (2001) proposed the PRank algorithm, a perceptron based ranking
algorithm. In their framework each instance is associated with a rank, which is an integer
from 1 to k. The goal of their ranking algorithm is to predict the correct rank of each
instance. The PRank algorithm is a variant of the perceptron algorithm. The difference is
that the PRank algorithm maintains a set of biases which are used as boundaries between
two neighboring ranks.

Harrington (2003) extended the PRank algorithm by approximating the Bayes point,
thus giving a good performance for generalization. The Bayes point is approximated by
averaging the weight vectors and boundaries associated with several PRank algorithms. It
is worth mentioning that the large margin effect achieved by approximating the Bayes point
can also be implemented by using margin updates (Krauth & Mezard, 1987) in PRank.
But there is added complication of the set of boundaries which are essential to the PRank
algorithm.

PRank and its extensions work very well for the ranking problems in which each sample
is associated with a rank. However, due to the introduction of a set of biases they are
constrained from their use in other ranking-like problems. For example, the PRank algorithm
cannot be trained on the data associated with a partial order instead of order on ranks.
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Furthermore, as we will show later, the PRank algorithm cannot handle the reranking
problems.

Herbrich, Graepel, and Obermayer (2000) proposed a margin based approach for ranking,
or ordinal regression as they called it in their paper. In their framework, each training sample
is associated with a rank which is an integer. The target function is required to maximize the
margins between the samples of neighboring ranks. The Support Vector Machines (Vapnik,
1998) (SVMs) were used to compute the linear function maximizing the margins. In
contrast to PRank, rank boundaries were not used explicitly in the training. Their approach
is implemented by using pairwise samples for training. For example, there are two samples,
u and v, where u ranks i and v ranks i 4 1, then u — v is used as a positive sample and v—u
is used a negative sample. The Preference Kernel was used to incorporate kernels defined
on the space of single items.

The underlying assumption of ordinal regression is that samples between consecutive
ranks are separable. This may become a problem in the case that ranks are unreliable when
ranking is too fine. This is just what happens in machine translation reranking. On the other
hand, if ranking is rather sparse, the size of generated training samples will be very large.
Suppose there are n samples evenly distributed on k ranks. The total number of pairwise
samples in Herbrich et al. (2000) is roughly n?/ k.

2.2. Reranking in NLP

Now we present a brief survey of the reranking task. In recent years, reranking has been
successfully applied to some NLP problems, especially to the problem of parse reranking.
Ratnaparkhi (1997) noticed that by ranking the 20-best parsing results generated by his
maximal entropy parser, the F-measure could be improved to 93% from 87%), if the oracle
parse was successfully detected. Charniak (2000) reranked the N-best parses by reestimating
a language model on a large number of features.

Collins (2000) first used machine learning algorithms in parse reranking. Two approaches
were proposed in that paper; one used Boost Loss and the other used Log-Likelihood Loss.
The approach of Boost Loss achieved better results. The Boost Loss model is as follows.
Let x; ; be the feature vector of the jth parse of the ith sentence. Let X; be the best parse for
the ith sentence.! Let F,, be a score function

Fo(xi j)=d -x;,
where « is a weight vector. The margin M, ; ; on example x; ; is defined as
My ;= F, (X)) — Fo(x; )

Finally the Boost Loss function is defined as

BoostLoss(a) = Z Z e~ Fa®)=Falxi) — Z Z e Maii
i i
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The Boosting algorithm was used to search the weight vector o to minimize the Boost
Loss.
We may rewrite the definition of the margin M, ; ; by using pairwise samples as follows.

S,',j E)’Z,' —X,',j
then
My ;= FoX) — Fo(Xi ;) = Fo (X — X ;) = Fo(si ;)

So the Boost Loss approach in Collins (2000) is the same as maximizing the margin
(Schapire et al., 1997) between 0 and F,(s; ;), where s; ; are pairwise samples as we have
described above.

In Collins and Duffy (2002), the voted perceptron and the Tree kernel were applied to
parse reranking. Similar to Collins (2000), pairwise samples were used as training samples,
although implicitly. The perceptron updating step was defined as

r+1 t 2
w =W +X,'—Xl‘,j,

where w' was the weight vector at the rth updating. This is equivalent to using pairwise
sample s; ; which we have defined above.

wt+l

=W +s,;

Shen and Joshi (2003) applied Support Vector Machines (SVMs) and Tree kernels to parse
reranking. In that paper, pairwise samples were used explicitly through the Preference
kernel. uifj and w; ;, defined below, were used as positive samples and negative samples
respectively.

ul= & x), 0= (X, %)

The SVM was used to maximize the margin between positive samples and negative
samples, which in turn was proportional to the margin between the best parse of each
sentence and the rest of the N-best parses.

In summary, in the previous works on ranking or ordinal regression, the margin is defined
as the distance between two consecutive ranks. Two large margin approaches have been
used. One is to extend the perceptron algorithm by using multiple biases to represent the
boundaries between every two consecutive ranks. The other approach is to reduce the
ranking problem to a classification problem by using pairwise samples.

In the works on reranking, the margin is defined as the distance between the best candidate
and the rest. The reranking problem is reduced to a classification problem by using pairwise
samples implicitly or explicitly.
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3. Ranks and margins

Our initial goal is to adapt ranking algorithms to reranking. However, we note that there
are a few fundamental differences between ranking and reranking, which make it hard to
use ranking directly on reranking. On the other hand, both ranking and reranking employ
pairwise samples to transform the original problem into a classification problem. We will
examine these issues in the this section.

3.1. Locality of ranks

First, in the previous works on ranking, ranks are defined on the whole training and test
data. Thus we can define boundaries between consecutive ranks on the whole data. In the
reranking problem, ranks are defined over a cluster of the samples in the data set. For
example, in the parse reranking problem, the rank of a parse is only the rank among all the
parses for the same sentence. The training data include 36,000 sentence, with an average
of over 27 parses per sentence (Collins, 2000).

As a result, we cannot use the PRank algorithm in the reranking task, since there are no
global ranks or boundaries for all the samples. If we introduce auxiliary variables for the
boundaries for each cluster, the number of the parameters will be as large as the number
of samples. Obviously this is not a good idea. However, the approach of using pairwise
samples still works. By pairing up two samples, we actually compute the relative distance
between these two samples with respect to the scoring metric. In the training phase, we are
only interested in whether the relative distance is positive or negative, and we do not need
to compare it with any specific numbers.

To sum up, the locality of ranks in the reranking problem leads us to the approach of
using pairwise samples.

3.2.  Density of ranks

In the previous works on ranking, the number of samples is much larger than the number
of ranks. For example, the Information Retrieval (IR) data used in Herbrich, Graepel,
and Obermayer (2000) has only 3 ranks (“document is relevant”, “document is partially
relevant”, and “irrelevant document”), the synthetic data sets used in Herbrich, Graepel,
and Obermayer (2000), and Crammer and Singer (2001) have 5 ranks, and the EachMovie
dataset used in Crammer and Singer (2001) and Harrington (2003) has 6 ranks. In these
applications, difference between samples of different ranks is significant, so it is natural to
define margin as distance between consecutive ranks.

However, this approach is problematic if ranks become denser and the samples of con-
secutive ranks become linearly inseparable. For example, in the IR data used in Herbrich,
Graepel, and Obermayer (2000), we are not only interested in whether a document is
relevant or not, but also the extent to which the document is relevant. In this case, pairwise
samples defined only on the consecutive ranks are not enough for training, since ranks
within a small range is unstable; it is hard to say if a document ranked 7 is more relevant
than a document ranked i + 1.
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a. The need for full pairwise samples b. The need for uneven margins

Figure I Comparison of score metrics.

However, ranks in a large range is reliable; a document ranked 5 is more relevant than a
document ranked 15. So we may want to use more pairwise samples. For example, we may
use (docs, docys) as a positive sample, and use (docs, docs) as a negative sample. The
extreme case is pairing up all the samples. This will increase the size of sample space by N
times, where N is size of a cluster. To sum up, in the case of dense ranks, the full pairwise
samples or a subset ofthe full pairwise samples are required in training.

Obviously, the ranks in reranking are dense. Each training cluster has a ranked list of
N-best candidate. For parse reranking N = 27 on average (Collins, 2000), and for machine
translation reranking N = 1000 or more (Och et al., 2004). Therefore, pairwise samples
defined only on consecutive ranks are not enough in the training of reranking.

3.3.  Full pairwise for reranking

As we have shown above, in the previous works on reranking, we search for the hyperplane
that separates the best candidate from the rest of the candidates within each cluster. Given
a cluster, let r; be the ith best item within the cluster. If we only look for the hyperplane
to separate the best one from the rest, we, in fact, discard the order information of r;...ry.
For example, we did not employ the information that r; is better than rsg in the training, as
shown in Figure 1(a).

We may regard the weight vector w as a score metric, whichassigns the highest score
to the best item within each cluster, i.e. r;. So the question is whether it should assign the
second highest score to r;, the third highest score to r3, and so on so forth, since w is a
score metric. Therefore, in Figure 1(a), w, is more preferable than w;, since w, is able to
keep the order of items with respect to their goodness.

In order to search for w, instead of w;, we need to employ more ordering relations
in the training. One solution is to use a set of items as good candidates, Igooq, and use
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the rest as bad candidates, ryaq. For candidates rgood, Ipag Within the same cluster, rgooq —
I'had 1s defined as a positive sample, and Ipag — 004 18 defined a negative sample. In Section
4, we will use the splitting model to capture this idea.

However, there is still a problem with this solution, i.e. it does not distinguish the
differences between the good samples. In the case of machine translation for which N can
be as large as 1000 or even more, r; and r3yy will be both regarded as good candidates for
example, so the splitting model does not try to assign a higher score to r; than to rsg.

As far as this aspect is concerned, we apply the ordinal regression model to reranking
with full pairwise samples. That is to say, for every two candidates r; and r;, i < j, within
the same cluster, r; — r; is used as a positive sample, and r; — r; is used as a negative
sample. However, in the next section we will show that ordinal regression is not a desirable
model for reranking either.

34. Uneven margins

Reranking is not an ordinal regression problem. In reranking evaluation, we are only
interested in the quality of the item with the highest score in each cluster, and we do not
care the order of the other items. Therefore we cannot simply regard a reranking problem
as an ordinal regression problem, since they have different loss functions.

Especially, we want to maintain a larger margin in items of high ranks and a smaller
margin in items of low ranks. For example, in Figure 1(b), w;, meets the condition of ordinal
regression by keeping the order of all candidates within a cluster. However, there is a small
margin between r; and rp, which means that if we are given two candidates similar to
r; and r; in the test set, w;, is very likely to switch their order. However, w, maintains a
large margin between r; and r;. Hence, w, is more desirable even it fails to keep the order
of some bad candidates, i.e. r3y and rsg, but they are far away from the top candidates.
According to the loss function, we are penalized if we switch the order of r; and r;, but
not for r3y and rsg.

In order to handle this, we will introduce the idea of uneven margins in the training.
The technique of uneven margins has been previously employed in binary classification on
unbalanced data (Li et al., 2002), for which there are many more negative samples than
positive samples. Similarly, with respect to the loss function, the penalty on errors over
positive samples is much more than the errors on negative samples. In that paper, the idea
of uneven margins is to maintain a large margin for the positive samples, and a relatively
narrow margin for the negative samples.

Therefore, Ordinal Regression with Uneven Margins (ORUM) is more desirable for
reranking. Specifically, we search for a linear function separating items in each cluster with
uneven margins, for example

margin(ry, r3p) > margin(ry, ryp) > margin(ry, rap) (1)
It is not difficult to exhibit a function that satisfies (1), for example

1
g, r;) = 1_ -

2
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It would be interesting to investigate which margin function is theoretically desirable.
However, in this paper, we will simply use this margin function in our experiments.

4. Models for ranking and reranking
4.1. Problem definition

We first formalize the reranking problem.

Item x € R is a d-dimensional vector on the real number. It represents a single parse, or
a single translation in applications.

Cluster ¢ = (x1, ..., x;) € (RY)"is a vector of k items. It represents a ranked list of parses
or translations for the same source sentence in applications.
Rank ro = (31, ..., yr) € N*, where y; is the rank of item x; ine¢, 1 < y; < k.

Learning Let X be the space of clusters, X' = (R4, and let ) be the space of ranks,
Y = N*. The hypothesis class H is ¥ — ). A learning algorithm £((X x ))™) takes m
i.i.d. drawn training clusters associated with ranks from X x ) according to distribution
Dyrxy, and outputs a hypothesis 1 € H.

Margin is a functionon X x Y x H — R.

4.2. Splitting

In this framework, we will first propose a splitting model, which is similar to previous
works on reranking, but in a more general form.
Let the training samples be

S={&xij,y)I1<i<m, 1<j<k}

where m is the number of clusters and £ is the length of ranks for each cluster.
Let f(x) = w - x be a linear function, where X is an item, and w is a weight vector. We
construct a hypothesis function 4 : X — ) with f as follows.

hp(Xy,...Xp) = rank(f(x1), ..., f(X),

where rank is a function that returns the vector of ranks for the input vector. For example
rank(4.2,9.0,6.5,8.8) = (4, 1, 3, 2).
Anr-splitting algorithm searches for a linear function f(x) = w-x that successfully splits
. . . f— (v _
the top r-ranked items from the rest of the items in every cluster. Lety/ = (y;, ..., y;) =
h (X1, ...x¢) for any linear function f. We look for a function f such that

vl <r ify<r 3)
yl.f >r ify>r 4)
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Suppose there exists a linear function f satisfying (3) and (4), we say {(x; j, yi ;)} is 7-
splittable by f. Furthermore, we can define the splitting margin y for cluster ¢; as follows.

y(fir,i) = min f(x; ;) — max f(x; ;)
Jiyigsr Jyig>r
The minimal splitting margin, y", for f and r is defined as follows.

y T for) = miny(f.r. i) = min ((min £(x,;) = max £(x,,))
i i i Yij>T

Yij=
Obviously, if » = 1, the r-splitting searches for a linear function f that can successfully

separate the best item from the rest in every cluster, which is similar to some previous
reranking algorithms (Collins, 2000; Collins, & Duffy, 2002; Shen & Joshi, 2003).

4.3. Ordinal regression on clusters
In this section we will model a more complicated problem, ordinal regression on clusters.

Letx; ;, x;; be two items where y; ; < y;;. It means that the rank of x; ; is higher than the
rank of x; ;. We are interested in finding a weight vector w, such that

WeXi > WX+ 1, ifyi <y
Let the training samples be
S={xj, i)l 1<i<=m, 1=<j=<k}

where m is the number of clusters and k is the length of ranks for each cluster. Let
f(x) = w - x. We say fis an ordinal regression function for the training set S if

W'X,',j > W-X;/, lfy,j < Vil
forl <i<m, 1 <j,l<k

Suppose fis an ordinal regression function for the training set S, the regression margin
for cluster ¢; is defined as follows

y(f,i)= min f(x;;)— f(xi1)

Vi, j<Yil
The minimal regression margin, y°, for fis defined as follows.

Yo f) = min y(f, i)
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4.4. Pairwise classification

The two models described in the previous two sections can be generalized as a classification
problem by using pairwise samples. Let the training samples be

S={&xij,y)I1<i<m, 1<j=<k}

where m is the number of clusters and « is the length of ranks for each cluster.
Let f(x) = w - x. We say the training data is separable with respect to T by f if

w-x;,;>w-x;;, if(yj,vin)eT,
forl <i <m, 1 < j,l <k,andT C K x K is a partial order on K, where =
{1,2,...,k}.

It is not difficult to see that both splitting and ordinal regression can be reduce to the
model given above. For splitting,

Gijp i) €T &y <1 <y,
and for ordinal regression
i yi) €T & yij < yig-
Furthermore, this model can be transformed into a binary classification problem as
follows. V(i j, yi1) € T, X; ; — X;; is defined as a positive sample, and x; ; — X; ; is defined
as a negative sample. Therefore, the model above is equivalent to finding a linear function

separating the positive and negative samples. Furthermore, the classification margin is
equivalent to splitting and regression margin respectively.

4.5. Pairwise classification with uneven margins
Let the training samples be
S={xj,y)l1<i<m, 1 <)<k}
where m is the number of clusters and k is the length of ranks for each cluster.

Let f(x) = w - x, where ||w| = 1. We say the training data is separable with respect to
T by f with margin T weighted with margin function g if

w- X —Xi)> g, yi0r, if (i, yineT, )

forl <i<m, 1<j,l<kT gICxICisapanialorderonIC,andgGIC2—>Risa
margin function, where K = {1, 2, ..., k}.
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4.6. Single cluster

These models for multi-cluster samples can be easily reduced to 1-cluster case, which can
be used to model the ranking problem.

Item x € R¢ is a d-dimensional vector on the real number.

Rank y € NV, where 1 < y < k for some fixed number k.

Learning Let X" be the space of items, X = R4, and let ) be the space of ranks, ) = N.
The hypothesis class H is X — ). A learning algorithm L((X x ))™) takes m i.i.d.
drawn training clusters associated with ranks from X x ) according to distribution
Dx«y, and outputs a hypothesis 7 € H.

Margin is a function definedon X x ) x H — R.

In the case of a single cluster, items, instead of clusters, are drawn i.i.d. with respect to
some distribution.

5. Perceptron algorithms

There are quite a few linear classifiers that can separate samples with large margin, such
as Support Vector Machines (Vapnik, 1998), Boosting (Schapire et al., 1997), Winnow
(Zhang 2000) and Perceptron (Krauth & Mezard, 1987). In this paper, we will investigate
the perceptron algorithm for the following reasons. First, the perceptron is fast in training,
which allows us to do experiments with various margin selections on real-world data.
Further, the perceptron algorithm is simple, which makes modification easy to implement.

In this paper, we will investigate uneven margins for reranking with the new perceptron
algorithms. The results with perceptron experiments can be extended to other machine
learning algorithms too.

5.1. Perceptron over full pairwise samples

Algorithm 1 is used to solve the Pairwise Classification with Uneven Margins (PCUM)
model proposed in Section 4.5. The idea of Algorithm 1 is as follows. For every two items
X; ; and x; 7, if

- (yij»yip) €T, and
— the weight vector w can not successfully separate X; ; and x;; with a learning margin

ei,j, Yi)T,

then we need to update w with the addition of g(y; ;, yi)(Xi,; — X /).

In Section 6 we will give the theoretic justification of Algorithm 1.

If T is the full order, the size of T is k(k — 1)/2, where k is the size of a cluster. If we
represent all the pairwise sample explicitly, the data complexity will be dmk(k — 1)/2,
where d is the dimensionality of a sample. In the research of machine translation reranking
(Och et al., 2004), we have roughly 1000 source sentences, each of which has 1000 best
translations, and each candidate is represented with a vector of 20 real-valued features. In
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Algorithm 1 Pairwise Classification with Uneven Margins

Require: {(x;;,yi;)} is separable with respect to T.
Require: a margin function g
Require: a positive learning margin T.

1: ¢ « 0, initialize w?;

2: repeat

3 for(i=1,...,m)do

4 for (1< j,/<k)do

5 if ((yi,j»yi,l) €T and W - (X,‘J - X,"[) < g(yi,j,yi,l)T) then
6 W — W+ gy j,ia) (X1 — Xi1)

7: t—t+1

8 end if

9 end for
10:  end for

11: until no updates made in the outer for loop

this case, the size of pairwise samples is roughly 40G bytes. Thus, we can only compute
pairwise samples dynamically in our algorithm.

In Algorithm 1, for each iteration of a cluster, we need execute the dot product operation
for |T'| times, which is usually O (k?). Thus the complexity of outer iteration is O (k*d). In
the next section, we will give an alternative algorithm, with which we reduce the complexity
of outer iteration to O (k? + kd).

5.2. Fast perceptron training

Algorithm 2 is similar to Algorithm 1 except that the updating operation is executed on the
cluster level instead of sample level. For each iteration of a cluster, we first compute w - x; ;
for each item x; ;. Then we use these values to check whether an update on w is required
for each pair in 7. However, the update is not executed immediately. Instead, for each item,
there is a valuable u; ; that records all the updates. After all the pairs are checked, updating
is executed once and for all.

It is easy to show that the complexity of each iteration of a cluster is O (k> + kd). In
Section 6 we will show that Algorithm 2 is theoretically correct, and in the experimental
section we will show the superiority of Algorithm 2 over Algorithm 1.

5.3. The landscape of perceptron based algorithms

So far we have presented two new perceptron based algorithms which are inspired by
the ranking and reranking problems. Compared to the previous works, our perceptron-like
algorithm is more general as shown in Table 1. Nov62 = (Novikoff, 1962), KM87 =
(Krauth & Mezard, 1987), CSO1 = (Crammer & Singer, 2001), WH60 = (Widrow & Hoff,
1960), and CD02 = (Collins & Duffy, 2002).

First, we have three different tasks—classification, ranking, and regression, in the order
of increasing difficulty. Classification is the easiest and regression is the most difficult. Now
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Algorithm 2 Fast Pairwise Classification with Uneven Margins

Require: {(x;;,yi )} is separable with respect to T'.
Require: a margin function g
Require: a positive learning margin .

1: t « 0, initialize w¥;

2: repeat

3 for(i=1,...,m)do

4 for (j=1,...,k) do

5 compute W -x; ; for all j’s;

6: Uj— 0;

7: end for

8: for(1<j,l<k)do

9: if (vij,yi1) € T and W' - (X j — X; 1) < g(i,j,yi1)7) then
10: uj —uj+gWi i) —u—gWi i)
11: end if

12: end for

13: if (3 [u;] > 0) then

14: W — WS U

15: t—t+1;

16: end if

17:  end for

18: until no updates made in the outer for loop

Table 1. The landscape of perceptron based algorithms.

Model explicit + single sub-model implicit + single implicit + multi

Classification Nov62, KM87 1:n - CDO02
m:n Alg1

Ranking CS01 - Alg1

Regression WH60 - - -

we have two different kinds of data. The simpler case is that the whole data contains only
one cluster. The perceptron style algorithms for these three tasks are listed in column 2 of
Table 1. They all use biases in training explicitly.

In some cases, the training data contains more than one cluster, such as the reranking
tasks in NLP. For these problems, we cannot use biases explicitly in training, and the
solution is to use pairwise samples so that bias is treated implicitly. This method can also
be used in a one-cluster problem (Herbrich, Graepel, & Obermayer, 2000).

There are two sub-models for the classification problem using pairwise samples. One
is to divide, in every cluster, top candidate from the rest, the 1 : n model. Almost all the
previous works on NLP reranking tasks fall into this category. A more general model, m : n
splitting, is handled by the splitting model as described in Section 4.2.

It is worth mentioning that, in recent years, the perceptron-like algorithms have also been
adapted to multi-label setting and topic ranking problems, such as Crammer and Singer
(2003), which are related to our work, but are not shown in Table 1.
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6. Theoretical justification

In the previous sections, we have proposed two perceptron based large margin algorithms
for splitting and ordinal regression models. Now we show that these two algorithms stop
in finite steps if the training data is separable, and present a lower bound of the resulting
margin which is used to constrain the expected error rate.

The method of reducing a complicated task into simple binary classification tasks has
been used in problems like multi-class classification (Crammer & Singer, 2002) and con-
straint classification (Har-Peled, Roth, & Zimak, 2002). One potential problem is that,
in the binary classification tasks, the expanded samples are not generated i.i.d., which
is important for margin-based bounds. The remedy is to reduce the dependent samples
(Herbrich, Graepel, & Obermayer, 2000) and to introduce a new distribution with re-
spect to which classification samples are drawn independently (Har-Peled, Roth, & Zimak,
2002).

6.1. Justification for Algorithm I

Theorem 1 gives us an upper bound on the number of steps needed for Algorithm 1 to stop,
if the training data is separable. The proof for Theorem 1 is given the Appendix.

Theorem 1. Suppose the training samples {(X; j, yi,j)} are separable with respect to T
by a linear function defined on the weight vector w* with a margin y weighted on margin
function g as in (5), where ||W*|| = 1. Let R = max; ; ||X; ;|| and A = min; j; §(yi j, Yi.1)-
Then we have

(a) Algorithm I stops in t steps of updates, where

2t +4R?
T ©)
v
(b) The resulting weight vector separates any two item X; ; and X; ;, where y; ; < y; 1, with
margin

)

T
Vija = &Wi s yi)Y 2t 1 AR?

According to (7), if t >> R, Algorithm 1 stops with resulting margins at least half of
the optimum margins, g(y; ;, yi,))y-

Then we can apply margin-based generalization bounds (Vapnik, 1998; Cristianini
& Shawe-Taylor, 2000). A potential problem is that pairwise samples defined on S =
{(x;,j, yi,/)} are not independent, thus violating the i.i.d. assumption. The way to avoid
this problem is to employ only & — 1 independent pairwise samples for each cluster, as in
Herbrich et al. (2000).
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Further, we transform the uneven margins to a unique margin by redefining the pairwise
samples as

;. { Xij — X,
gWij,yin)

i,j» yia) € T} (8)

In order to give the error bound on the test data, we transform the test data in the same way.
Given the resulting margin, y 55 according to (7) and (8), on §’, we can easily

bound the error on the transformed test data under PAC frame by using margin-based

generalization bounds given in Vapnik (1998) Cristianini & Shawe-Taylor (2000).

Then we can obtain the expected error bound for the binary classification. However, it
is well known that the bound given in this way is a loose one. It will be interesting to
search for a tight bound for the reranking problem, for example by employing the growth
function of ranking (Har-Peled, Roth, & Zimak, 2002) and utilizing its difference with
ordinal regression as described above.

6.2. Justification for Algorithm 2

For Algorithm 2, we will show that if the training data is separable, the algorithm will
stop in a finite number of step with a resulting margin on the training data. For the sake of
simplicity, we will only take a weak version of the algorithm, by assuming g(y; j, yi;) = 1
forall i, j, [. However, the theorem and the proof given here can be extended to the original
algorithm.

Theorem 2.  Suppose the training samples {(X; j, yi j)} are separable by a linear function
defined on the weight vector w* with a margin y, where ||wW*|| = 1. Let R = max; ; |IX; ;||
Then we have

/ 2 p2
(a) Algorithm 2 makes at most 25K
Y

(b) Algorithm 2 stops in t steps of updates, where

mistakes on the pairwise samples during the training.

2t + k*R?
== ©)
(c) The resulting margin on the training data is at least
- (10)
Yor + k2R?

The proof of Theorem 2 is given in the Appendix.

It is worth mentioning that Algorithm 2 needs more iterations for convergence than
Algorithm 1 theoretically, while the former runs much faster in each iteration. Experiments
given in the next section show that the running time for Algorithm 2 is shorter, and the
result is more stable.
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7. Experiments and discussion

In this section, we show the experimental results on two NLP tasks, parse reranking and
discriminative reranking for machine translation, which were partially reported in Shen and
Joshi (2004) and Shen et al. (2004) respectively. A single Pentium III 1.13 GHz cpu with
2 GB memory is used for all experiments. The algorithms are coded with Java, running on
the Linux operating system.

7.1. Parse reranking

For parse reranking, we use the same data set as described in Collins (2000). Section 2-21
of the WSJ Penn Treebank (PTB) (Marcus, Santorini, & Marcinkiewicz, 1994) are used as
training data, and Section 23 is used for testing. The training data contains around 40,000
sentences, each of which has 27 distinct parses on average. Of the 40,000 training sentences,
the first 36,000 are used to train perceptrons. The remaining 4,000 sentences are used as
development data for parameter estimation, such as the number of rounds of iteration in
training. The 36,000 training sentences contain 1,065,620 parses in total. We use the feature
set generated by Collins (2000). There are 521,498 features in all.

We use Algorithm 2 in the first set of experiments. By using different settings of the
pairwise samples and the margins, we design the experiments as follows.

— 1-splitting, CDO02: This setting is used to simulate the perceptron algorithm introduced
in Collins and Duffy (2002).2 Only one of the best parses for each sentence is used as the
good parse and the other best parses are dropped. Other parses are used as bad parses.

— r-splitting, even margins: all the best parses are used as good parses. Other parses are
used as bad parses.

— r-splitting, uneven margins: all the best parses are used as good parses. The margin
function g(r;, r;) = ll — 5, which was previously defined in (2), is employed.

— ordinal regression, even margins: 7T = {(j,]) | j < [}.

— ordinal regression, uneven margins: 7 = {(j,/) | j < /}. The margin function defined
in (2) is employed.

By estimating the number of rounds of iterations on the development data, we get the
results on the test data as shown in Table 2. Ordinal regression with uneven margins
achieves the best result in f-score.? It verifies that using more pairs in training is helpful for
the reranking problem. Uneven margins are crucial for employing full pairwise models to
reranking.

We compare the performance of Algorithm 1 and Algorithm 2 on our best model, ordinal
regression with uneven margins. Figure 2 shows the comparison of the learning curves
of these two algorithms. For Algorithm 1, we compute the score of all pairwise samples,
w' - X; ; — W - X, on the fly.

Algorithm 1 converges faster than Algorithm 2 in terms of rounds, which is consistent
with the theoretical justification. However, Algorithm 2 converges faster in terms of running
time. The results for f-score are similar, But the result of Algorithm 2 is more stable; it
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Table 2.  Experimental results.

Section 23, <100 words (2416 sentences)

Model Recall% Precision% F-score%
baseline Collins (1999) 88.1 88.3 88.2
1-splitting, CD02 89.2 89.8 89.5
r-splitting, even margins 89.1 89.8 89.5
r-splitting, uneven margins 89.3 90.0 89.6
ordinal regression, even margins 88.1 87.8 88.0
ordinal regression, uneven margins 89.5 90.0 89.8
0.9 T T T
0.895
0.89 4
o i
g o0.885 .
0.88 - —
0.875 - i
Algorithm 1 (100 rounds) --------
Algorithm 2 (3000 rounds)
0.87 L L
0 5 10 15 20
hours

Figure.2 Learning curves of Algorithm 1 and Algorithm 2 on PTB Section 23.

does not over-fit the training data even after 3000 rounds of iteration, while Algorithm 1
over-trains quickly in terms of rounds. We think the reason is that Algorithm 1 updates
the weight vector whenever there is a classification error on a pairwise sample, thus it is
more likely to drop into a local optimum. While Algorithm 2 to some extent alleviates the
ill-posed problem* of the perceptron algorithm.

7.2. Discriminative reranking for machine translation

We provide experimental results on the NIST 2003 Chinese-English large data track eval-
uation, which was partially reported in Shen, Sarkar, and Och (2004). We use the data set
used in Och et al. (2004). The training data consists of about 170 M English words, on
which the baseline translation system is trained. The training data is also used to build
language models which are used to define feature functions on various syntactic levels.
The development data consists of 993 Chinese sentences. Each Chinese sentence is as-
sociated with 1000-best English translations generated by the baseline MT system. The
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Figure. 3  Splitting with uneven margins.
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Figure.4 Ordinal regression with uneven margins.

development data set is used to estimate the parameters for the feature functions for the
purpose of reranking. The test data consists of 878 Chinese sentences. Each Chinese sen-
tence is associated with 1000-best English translations too. The test set is used to assess

the quality of the reranking output.

In Och et al. (2004), aggressive search was used to combine features (Och, 2003). After
combining about a dozen features, the BLEU score (Papineni, Roukos, & Ward, 2001) did
not improve any further, and the score was 32.9%. In our experiments, we will use the top
20 individual features developed by Och et al. (2004). Algorithm 2 is used with the three
different settings as follows. A distinct dimension is introduced for each sample to make

the training data separable, as in Li et

al. (2002).
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— bestvsrest: T = {(1, j) | j > 1} and even margin.

— splitting, uneven margins: T = {(j,/) | j <= 300and/ >= 700}. The margin
function defined in (2) is employed.

— ordinal regression, uneven margins: 7 = {(j,/) | j *2 < [l and j + 20 < [}. The
margin function defined in (2) is employed.

The best vs. rest setting is used to simulate the previous perceptron reranking algorithm
(Collins & Duffy, 2002). It converged in 7 iterations, and achieved BLEU score of 30.9%.
The learning curve of the Splitting and the ORUM is shown in Figures 3 and 4. The Splitting
algorithm achieved BLEU score of 32.6%, and the ORUM algorithm achieved BLEU score
of 32.9%, which is significantly better than the best vs. rest model.

According to the learning curves, we notice that whenever the log-loss on the development
set decreases, the BLEU score on the test set increases. This experimentally verifies the
theoretical justification of these two algorithms.

8. Conclusions

In this paper, we have proposed a general framework for ranking and reranking. In this
framework, we have proposed two variants of perceptron, which are trained on pairwise
samples. Using these two algorithms, we can employ more pairwise samples, which are
useful in training a ranker or reranker. We also keep the data complexity unchanged and
make the training efficient with these algorithms.

Using these two algorithms, we investigated the margin selection problem for the rerank-
ing tasks. By using uneven margins on ordinal regression, we achieves an f-score of 89.8%
on sentences with < 100 words in Section 23 of Penn Treebank. In machine translation
reranking, our perceptron-like algorithm matches the state-of-the-art discriminative MT
reranking system reported in Och (2003). The idea on uneven margins on full pairwise
samples can be employed in reranking systems based on other machine learning algo-
rithms, such as Winnow, Boosting and SVMs, via the definition of the margins or loss
functions.

Appendix
Proof of Theorem 1

Proof. We show it by bounding ||w’ |> from above and below. Suppose {(x; ;, yi,;j)} is
separable with respect to T with margin y weighted on a margin function g as in (5), and
g(a,b) = —g(b, a) if b < a. The training data can be noted as S = {(u,, v,)} with margin
weight {A,} where

u =X ; — X/,

1 i,y eT,
: =1 if(yip, i) €T,
A =08 s Yisl)s

v =



92 L. SHEN AND A K. JOSHI

fori, j,Is.t. (i, yi1) € T or (yiy, yi,;) € T. Therefore, we have
v (W u,) > Ay, an

where 1 <r <| S |, ||w*|" = 1. Thus
According to algorithm 1,

w =w oA ifu'w T ouf < At

Thus
||wt||2 — (Wt—l _|_ Ut)\,tut)z

— ”Wtfl ”2 + 2)\.tth171 . ut + A’At||u’||2
< W% 4+ 20 A + AT (2R)?

t
< ) APAPQ2T +4R?) (12)
p=1
On the other hand,

w* . W[ = w. (Wt—l + Ut)utll[) = wt ~Wt_l + 'Ut)\.tW* .ut

t
>whew Tl Ay > Z)Jj)»”y (13)
p=1

Combining (12) and (13), we have

t 2 t
(ZMM’y) < W WP = [w* < Y APAPQT +4R%)
p=l1

p=1
Z’:kpkp - 2,1 MPAPQT +4R?) 27 4 4R? 1
p=1 a Z[P=1 )Lp)‘pyz ),2

Let Apjn = min, A,.. With (14), we have
Y APAP 2r 4 4R2
t < <
B )"2 )"rzm'n y2

min

15)

Therefore claim a of Theorem 1 holds. Now we show claim b. With (12) and (14) we
have,

27 +4R? 27 +4R?

t
IW[? < Y APAPQ2T +4R?) < — (21 +4R) = ( ), so
Y
p=1
2T +4R?
W' < ——— (16)



RANKING AND RERANKING WITH PERCEPTRON 93

Then the resulting margin for x, given by w' is bounded from below.

. vwo-u, - MT _— T (17)
I T T wi T v ar
Therefore claim b of Theorem 1 holds. O
Proof of Theorem 2

Proof. We show it by bounding [|w'||> from above and below. Suppose {(xi,j, yi,j)} is
separable by w* with margin y, so

WX WX >y, (18)

where 1 <i <m, 1 < j,I <k.Letus consider each updating w' = w'~! + 3" u,x; , for
some fixed i. According to the algorithm, we have

1 k(k—1)/2  k?
155;'”3'5f<z (19)
ZMin,s = Z Xij— X1, (20)
s (j,DeS:

where S, = {(j,)) | 1< j.l <k ,W-(x;—x) <7} =3, | u |foreach
iteration. Here % >, | us | represents the number of mistakes made by w' on sentence i at
the ¢ updating. We define ¢; as e, = % Do lus |

We first bound ||w’||? from below. We have

wew =wtwl 4 E UW* - X,

N
=w' w4+ E W (Xi,j — Xi1)
(.DES—

>wew 4 Yy
(i)eSi-1

t—1
=w-w" +e_1y

t—1
> ey

p=I

t—1 2
W12 = w2 w1 = (w* - w')? = (Zep) y? 1)

v
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Then we bound ||w' || from above.

2
W 1P = w2 2w Y i +
-

E usxi,s
s

2

—12 -1
= WP Y oW X+
(J,DES-1

E UsXi s

s

2

< WP+ 2e T +

E UsXi s

A

< [IW T 4 2¢,_17 + 4e? |R?

t—1 t—1
<2) e +4) R (22)
p=1 p=1

Combining (21) and (22), we have

t 2 t t
(Ze,,) yP<2) et +4) R (23)
p=1 p=1 p=1
Therefore, the number of mistakes made in the first # updates is

iep g 22{:;711 eyt N 43 _ e R?
— Z,;:l epy? th:] epy?
I 4K /HY_ epR
—y? th:1 epy?
kK’R* + 2t

= (24)

SinceVp, 1 < ep,thust < Z'p:l e,,. Therefore Algorithm 2 stops after f updates, where

Therefore claim @ and b of Theorem 2 hold. For claim ¢, we use the same technique as
in the proof of Theorem 1, and we have

T
>y
=V T i2R?

t

14
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Notes

1. By best we mean the parse that is the most close to the gold standard.

2. In Collins & Duffy (2002), the tree kernel is used as features on all tree segments. Here we use the feature set
used in Collins (2000), and Shen and Joshi (2003).

3. f-score =2 x precision x recall/(precision+recall).

4. The result of the algorithm depends on the order in which the training samples are used.
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