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Abstract. Current statistical machine translation systems are mainly based on statistical word lexicons. How-
ever, these models are usually context-independent, therefore, the disambiguation of the translation of a source
word must be carried out using other probabilistic distributions (distortion distributions and statistical language
models). One efficient way to add contextual information to the statistical lexicons is based on maximum entropy
modeling. In that framework, the context is introduced through feature functions that allow us to automatically
learn context-dependent lexicon models.

In a first approach, maximum entropy modeling is carried out after a process of learning standard statistical
models (alignment and lexicon). In a second approach, the maximum entropy modeling is integrated in the
expectation-maximization process of learning standard statistical models.

Experimental results were obtained for two well-known tasks, the French–English Canadian Parliament
HANSARDS task and the German–English VERBMOBIL task. These results proved that the use of maximum
entropy models in both approaches, can help to improve the performance of the statistical translation systems.

Keywords: statistical machine translation, maximum entropy modeling, context-dependent lexicon models

Abbreviations: ME: Maximum Entropy, SMT: Statistical Machine Translation, EM: Expectation–
Maximization.

1. Introduction

The performance of a statistical machine translation system depends directly on the quality
of the lexicon, the alignment and the target language models used. Most of the statistical
machine translation systems are based on single-word alignment models, as described in
Brown et al. (1993), which are trained by using existing parallel corpora. Typically, the
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lexicon models used in these systems do not include any linguistic or contextual information,
which often yields inadequate alignments in pairs of sentences. Those lexicon models lack
context information that can be extracted from the same parallel corpus. This additional
information could be:

– Simple context information: Information of the words surrounding a word pair.
– Syntactic information: Part-of-speech (POS) information, syntactic constituent, sentence

mood.
– Semantic information: disambiguation information (e.g. from WordNet), cur-

rent/previous speech or dialog act, etc.

To include this additional information within the statistical framework, we use the max-
imum entropy approach. Other alternatives are based on extended lexicon models such as
phrase-based models (Tomás & Casacuberta,2001, 2003).

The ME approach has been applied in natural language processing and machine trans-
lation to a variety of tasks during the last few years. In Berger, Della Pietra, and Della
Pietra (1996), this approach is applied to the so-called IBM Candide system to build
context-dependent models, to compute automatic sentence splitting and to improve word
reordering in translation. Similar techniques are used in Papineni et al. (1998), and Foster
(2000b) for so-called direct translation models instead of those proposed in Brown et al.
(1993). In Foster (2000a), two methods for incorporating information about the relative
position of bilingual word pairs into a ME translation model are described. In Och and
Ney (2002), a general framework for SMT based on direct ME models is presented, where
the different components of a SMT system (i.e. lexicon, alignment/distortion, and fertility
models) are treated as feature functions, and can be combined in different ways. Other
authors have also applied this approach to language modeling (Rosenfeld, 1996; Ratna-
parkhi, 1997; Martin, Ney, & Zaplo, 1999; Peters & Klakow, 1999; Khudanpur & Wu,
1999, 2000), to natural language understanding (Bender et al., 2003), to natural language
parsing (Charniak, 1999; Ratnaparkhi, 1999), and to POS tagging (Ratnaparkhi, 1996).

In this paper, we define a set of context-dependent ME lexicon models. We show how
to learn these models in order to generally improve existing statistical machine translation
systems in a way similar to the one in Garcı́a-Varea et al. (2001) where ME models are used
in a completely decoupled way to reduce translation test perplexities and translation errors
by means of a rescoring algorithm. On the other hand, as in Garcı́a-Varea et al. (2002), we
present a procedure for an efficient training of these ME models within the conventional
EM training to the family of statistical alignment models proposed in Brown et al. (1993).
In each iteration of the training process, the set of ME models is automatically generated by
using the set of possible word-alignments between each pair of sentences. The ME models
are trained with the Generalized Iterative Scaling (GIS) algorithm (Darroch & Ratcliff,
1972) and then used in the next iteration of the EM training process in order to recompute
a new set of parameters of the translation models. In contrast to Och and Ney (2002),
where the ME approach is used to replace source-channel paradigm while preserving the
translation probability component, here ME is used to enhance the translation probability
component itself.
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The paper is structured as follows: in Section 2, a short overview of a statistical machine
translation systems is presented; next, in Section 3, the ME principle is stated as well
as all the issues concerning the definition of context-dependent ME models. In Section
4, a first experimentation is presented in order to set some parameters to be used in
future experiments. In Section 5, we go further and we present how the ME models
can be completely integrated into a conventional EM training of statistical alignment
models, paying special attention to the effectiveness of the integration and also presenting
some alignment quality experiments. Finally, the main conclusions of this work and future
direction plan are presented.

Experimental results are given for two well-known tasks the French–English Canadian
Parliament HANSARDS task and the German–English VERBMOBIL task. The experimentation
presented demonstrates that the use of ME models in the framework of single-word based
statistical alignment models can help to improve the performance of the system.

2. Statistical machine translation

The goal of the translation process in statistical machine translation can be formulated as
follows: A source language string f = f J

1 = f1 . . . f J is to be translated into a target
language string e = eI

1 = e1 . . . eI . Every target string is regarded as a possible translation
for the source language string with maximum a-posteriori probability Pr(e | f). According
to Bayes’ decision rule, we have to choose the target string that maximizes the product of
both the target language model Pr(e) and the string translation model Pr(f | e).

Many existing systems for statistical machine translation (Berger et al., 1994; Wang &
Waibel 1997, Tillmann et al., 1997, Nießen et al., 1998) use a special way of structuring the
string translation model like the one proposed by Brown et al. (1993): the correspondence
between the words in the source and the target string is described by alignments that assign
one target word position to each source word position. The lexicon probability p( f | e) of
a certain target word e to occur in the target string is assumed to depend basically only on
the source word f aligned to it. These alignment models are similar to the concept of hidden
Markov models (HMM) in speech recognition. The alignment mapping is j → i = a j from
source position j to target position i = a j . The alignment a = a J

1 may contain alignments
a j = 0 with the ‘empty’ word e0 to account for source words that are not aligned to any
target word. In statistical alignment models, Pr(f, a | e), the alignment a is introduced as a
hidden variable.

The translation probability Pr(f, a | e) can be rewritten as follows:

Pr(f, a | e) =
J∏

j=1

Pr
(

f j , a j

∣∣ f j−1
1 , a j−1

1 , eI
1
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a j
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Figure 1. Architecture of the translation approach based on Bayes’ decision rule.

Typically, the search is performed using the so-called maximum approximation:
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The search space consists of the set of all possible target language strings eI
1 and all possible

alignments a J
1 .

The overall architecture of the statistical translation approach based on Bayes’ decision
rule is depicted in Figure (1).

3. Maximum entropy modeling

3.1. Motivation

Typically, the probability Pr( f j | f j−1
1 , a j

1 , eI
1) in Eq. (1) is approximated by a lexicon

model p( f j | ea j ) by dropping the dependencies on f j−1
1 , a j−1

1 , e
a j−1

1 , and eI
a j+1

. Obviously,
this simplification is not true for many natural language phenomena. On the other hand, we
could think that the random process that generates the word f given e not only depends on e
but also on some contextual information where the pair ( f, e) appears. The straightforward
approach to include more dependencies in the lexicon model would be to add additional
dependencies (e.g. p( f j |ea j , ea j−1 )). This approach would yield a significant data sparseness
problem. For this reason, we define a set of context-dependent ME lexicon models, which
easily allow us to take into account relevant contextual information. Also, as we will see
later, these ME models can be directly integrated into a conventional EM training of the
statistical alignment models.

In this case, the role of ME is to build a stochastic model that efficiently takes a larger
context into account. In the remainder of the paper, we shall use pe( f | x) to denote the
probability that the ME model (which is associated to e) assigns to f in the context x.
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3.2. Maximum entropy principle

In the ME approach, we denote all properties that we deem to be useful by so-called feature
functions φe,k(x, f ), k = 1, . . . , Ke. For example, let us suppose that the k-th feature for
word e tries to model the existence or absence of a specific word e′

k in the context of an
English word e, which can be translated by f ′

k . We can express this dependence using the
following feature function:

φe,k(x, f ) =
{

1 if f = f ′
k and e′

k ∈ x

0 otherwise
. (3)

Consequently the k-th feature for word e has the pair ( f ′
k, e′

k) associated to it.
The ME principle suggests that the optimal parametric form of a model pe( f | x) taking

into account the feature functions φe,k, k = 1, . . . , Ke is given by (Berger, Della Pietra, &
Della Pietra, 1996):

pe( f | x) = 1

Z�e (x)
exp

(
Ke∑

k=1

λe,kφe,k(x, f )

)
. (4)

Here, Z�e (x) is a normalization factor. The resulting model has an exponential form
with free parameters �e ≡ {λe,k, k = 1, . . . , Ke} (Berger, Della Pietra & Della Pietra,
1996). The parameter values that maximize the likelihood for a given training corpus can
be computed using the so-called GIS algorithm or its improved version IIS (Della Pietra,
Della Pietra, & Lafferty, 1997).

It is important to stress that, in principle, we obtain one ME model for each target
language word e. To avoid data sparseness problems for rarely seen words, we use only
words that have been seen a certain number of times.

3.3. Contextual information and training events

In order to train the ME model pe( f | x) associated to a target word e, we need to
construct a corresponding training sample from the entire bilingual corpus, depending on
the contextual information that we want to use. To construct this sample, we need to know
the word-to-word alignment between each sentence pair in the corpus. That is obtained
using the Viterbi alignment provided by a translation model as described in Brown et al.
(1993). Specifically, we use the Viterbi alignment that was produced by IBM Model 5.
To obtain the Viterbi alignment, we use the program GIZA++ (Och, 2000), which is an
extension of the training program available in EGYPT (Al-Onaizan et al., 1999).

Once we know the alignment of each target word, we need to define the contextual
information to be extracted. As in Berger, Della Pietra, and Della Pietra (1996), we use a
window of 3 words to the left and 3 words to the right of the target word as contextual
information. As in Garcı́a-Varea et al. (2001), in addition to a dependence on the words
themselves, we also use a dependence on the word classes. Thereby, we improve the
generalization of the models and include some semantic and syntactic information; we also
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use a dependence on the source context. More specifically, we use the following contextual
information:

– Target context: As in Berger, Della Pietra, and Della Pietra (1996), we take into account
a window of 3 words to the left and to the right of the target word considered. With these
contexts, we try to catch some linguistic phenomena like the article-noun pairs or the
interchange adjective-noun to noun-adjective between target and source.

– Source context: In addition, we consider a window of 3 words to the left of the source
word f which is connected to e according to the Viterbi alignment. Obviously, the word
f in question is considered, too. With this information we can take into account the
information that the language model provides us, like for example bistant n-grams or the
well-known trigger pairs (Tillmann & Ney, 1996, 1997; Zhou & Lua, 1998).

– Word classes: Instead of using a dependency on the word identity, we also include
a dependency on word classes. By doing this, we improve the generalization of the
models and include some semantic and syntactic information. The word classes are
computed automatically using another statistical training procedure (Och, 1999), which
often produces word classes including words with the same semantic meaning in the
same class.

A training event, namely ( f, e, x), for a specific target word e, is composed by three
items:

– The specific word e.
– The source word f aligned to e.
– The context x in which the aligned pair (f,e) appears.

The number of occurrences of the event in the training corpus is also considered as a part
of the training events. We will refers to this number as a count of the training event.

3.4. Feature definition and selection

Table 1 summarizes the feature functions that we use for a specific pair of aligned words
( f j , ei ): Category 1 features give rise to constraints that enforce equality between the
probability of any source translation f j of ei according to the model and the probability of
that translation in the empirical distribution. A ME model that uses only category 1 features
predicts each source translation f j with the probability p̃e( f j ) determined by the empirical
data. This is exactly the distribution employed in the translation model described in Brown
et al. (1993). Categories 2 and 3 describe features that also depend on an additional word
e′ that appears one position to the left or to the right of ei , respectively. The features of
category 4 and 5 depend on an additional target word e′ that appears in any position of the
context x. In categories 6 and 7 the source context is used instead of the target context.
Analogous features are defined using the word class associated to each word instead of
the word identity. In our experiments, 50 non-ambiguous word classes were used for each
language. A more intuitive idea about these categories is shown in Table 1.
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Table 1. Meaning of different feature categories where � represents a specific target word (to be placed in •)
and � represents a specific source word, where k has the pair(�, �) associated to it.

The number of possible features that can be used according to the source and target
vocabularies and word classes is huge. In other words, the size of the source vocabulary
for features of Category 1 and the size of the source vocabulary times the size of the target
vocabulary for the rest of the feature categories. In order to reduce the number of features,
we perform a threshold-based feature selection. Any feature that occurs less than T times
is not used. The aim of the feature selection is two-fold. First, we obtain smaller models by
using fewer features. Secondly, we hope to avoid overfitting on the training data.

4. Experimental study

At this point, we are able to use the ME models defined in the previous section in the
framework of a statistical machine translation system.

The first question we should answer, taking in to account the definition of the ME
context-dependent lexicon models in the previous section, is how these ME models could
help to improve existing SMT systems?

In this section, we try to answer this question by means of two different experiments:

– The first one is to carry out a comparison of different models with and without the use
of the ME models. We do this by performing a model perplexity experiment.

– The second one is a translation experiment by using the ME lexicon models as a post-
process to the output of a SMT system by means of a hypothesis rescoring algorithm.

In addition, these experiments will give us an idea of what kind of contextual information
is useful and help us to establish a reasonable value of the threshold T for future experiments.
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Table 2. Corpus characteristics for the VERBMOBIL task.

German English

Training Sentences 50,000

Running Words 454,619 482,350

Vocabulary 7,456 4,420

Validation Sentences 8,073

Running Words 64,904 67,571

Vocabulary 2,579 1,666

Test Sentences 147

Running Words 1,968 2,173

PP (trigr. LM) (40.3) 28.8

As commented above, the starting point to make use of the ME models within the
framework of a statistical machine translation system is to have an aligned parallel corpus
to make it possible to consider all aspects concerning the training of the specific ME models.
Thus, we use the IBM Model 5 Viterbi alignment provided by the program GIZA++ (Och,
2000).

For the experiments shown in this section, we used the well-known VERBMOBIL task
(Wahlster, 2000). The VERBMOBIL task is a German-English speech translation task in
the domain of appointment scheduling, travel planning, and hotel reservation. The task
is difficult because it consists of spontaneous speech and the syntactic structures of the
sentences are less restricted and highly variable. The training, validation and test corpora
characteristics for this task are described in Table 2.

4.1. A model perplexity experiment

In order to obtain the threshold T, we compared the training and validation corpora perplex-
ities for various thresholds. The different thresholds used in the experiments ranged from
0 to 512. The threshold is used as a cut-off for the number of occurrences that a specific
feature must appear. So a cut-off of 0 means that all features observed in the training data
are used. A cut-off of 32 means those features that appear 32 times or more are considered
to train the maximum entropy models.

Another thing to take into account is the fact that not all words in the vocabulary can
provide valuable information to the models. Therefore, for training the ME models, we
selected the English words that appear at least 150 times in the training sample. The
number of such words was 348 (in total) of the 4,673 words contained in the English
vocabulary. Table 3 shows the different number of features considered for the 348 English
words selected using different thresholds and contexts.

In choosing a reasonable threshold, we have to balance the number of features and the
observed perplexity.
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Table 3. Number of features used according to different cut-off thresholds. The number of features used when
only the English context is considered is shown in the second column of the table. The third column corresponds
to English, German and Word-Class contexts.

T English English + German

0 846,121 1,581,529

2 240,053 500,285

4 153,225 330,077

8 96,983 210,795

16 61,329 131,323

32 40,441 80,769

64 28,147 49,509

128 21,469 31,8050

256 18,511 22,947

512 17,193 19,027

Table 4. Training and Validation perplexities using different contextual information and different thresholds T.
The reference perplexities obtained with the basic translation IBM Model 5 are TrainPP = 10.38 and ValiPP =
13.22.

English English + German

T TrainPP ValiPP TrainPP ValiPP

0 5.03 11.39 4.60 9.28

2 6.59 10.37 5.70 8.94

4 7.09 10.28 6.17 8.92

8 7.50 10.39 6.63 9.03

16 7.95 10.64 7.07 9.30

32 8.38 11.04 7.55 9.73

64 9.68 11.56 8.05 10.26

128 9.31 12.09 8.61 10.94

256 9.70 12.62 9.20 11.80

512 10.07 13.12 9.69 12.45

The training and validation perplexities are shown in Table 4, where English stands for
only English context and English + German stands for English, German and Word-Class
contexts.

As expected, the perplexity reduction in the validation corpus was lower than in the
training corpus; however in both cases, better perplexities were obtained using the ME
models. The best value was obtained when a threshold of 4 was used.
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We expected to observe strong overfitting effects when a cut-off for features was too
small got used. Yet, for most words, the best validation corpus perplexity was observed
when we used all features including those that occurred only once.

4.2. A translation experiment

In order to make use of the ME models in a completely decoupled way within a statistical
translation system, we implemented a rescoring algorithm. This algorithm takes the stan-
dard lexicon model (not using maximum entropy) and the 348 models obtained with the
ME training as input. For a hypothesis sentence eI

1 and a corresponding alignment a J
1 , the

algorithm modifies the probability/score Pr( f J
1 , a J

1 | eI
1) according to the refined maximum

entropy lexicon model. In other words, the algorithm divides this by the probability associ-
ated to the conventional translation model (p( f | e)) and multiplies that by the probability
computed with the ME models (pe( f | x)) for each word pair ( f, e) which is aligned.

We carried out some experiments with a N-best list of hypotheses provided by a translation
system (Tillmann & Ney, 2000) in order to make a rescoring of each i-th hypothesis and
reorder the list according to the new probability/score computed with the refined lexicon
models. Unfortunately, the N-best extraction algorithm is sub-optimal, i.e. the true best N
translations were not extracted. We had to use a limit of only 10 translations per sentence.

For the evaluation of the translation quality, we used the automatically computable
Word Error Rate (WER). The WER corresponds to the edit distance between the produced
translation and one predefined reference translation. A shortcoming of the WER is the fact
that it requires a perfect word order. This is particularly a problem for the VERBMOBIL

task, where the word order of the German-English sentence pair can be quite different.
As a result, the word order of the automatically generated target sentence can be different
from that of the target sentence but still be acceptable. Therefore, the WER measure
alone can be misleading. In order to overcome this problem, we introduced an additional
measure, the position-independent word error rate (PER). This measure compares the
words in the two sentences without taking the word order into account. Words that have
no matching counterparts are counted as substitution errors. Depending on whether the
translated sentence is longer or shorter than the target translation, the remaining words
result in either insertion or deletion errors in addition to substitution errors. The PER is
guaranteed to be less than or equal to the WER.

We used the top-10 list of hypotheses provided by the translation system described in
Tillmann and Ney (2000), which is a dynamic programming-like search algorithm based
on the IBM Model 4 statistical alignment model. These 10-best hypotheses were rescored
using the ME models and sorted according to the new maximum entropy probability/score.
The translation results in terms of error rates are shown in Table 5.

We observed that the translation quality improves slightly with respect to the WER and
PER. Table 5 shows that the translation quality results are quite small compared to the
improvements in perplexity. We tested these results using the Wilcox statistical hypothesis
test and we can not conclude that these results have statistical significance. However, they
do show a consistent tendency towards improvement. We attribute this to the fact that the
algorithm used to compute the N-best lists is suboptimal. However, we consider that this
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Table 5 Translation results for the VERBMOBIL Test-147 for different contextual information and different
thresholds using the top-10 translations. The baseline translation results for IBM Model 4 are WER=54.80 and
PER=43.07.

English English + German

T WER PER WER PER

0 54.57 42.98 54.02 42.48

2 54.16 42.43 54.07 42.71

4 54.53 42.71 54.11 42.75

8 54.76 43.21 54.39 43.07

16 54.76 43.53 54.02 42.75

32 54.80 43.12 54.53 42.94

64 54.21 42.89 54.53 42.89

128 54.57 42.98 54.67 43.12

256 54.99 43.12 54.57 42.89

512 55.08 43.30 54.85 43.21

Table 6 Four examples showing the translation obtained with the IBM Model 4 (M4) and the ME model for a
given German source sentence. SRC stands for source sentence, in that case German.

SRC: Danach wollten wir eigentlich noch Abendessen gehen.

M4: We actually concluding dinner together.

ME: Afterwards we wanted to go to dinner.

SRC: Bei mir oder bei Ihnen?

M4: For me or for you?

ME: At your or my place?

SRC: Das wäre genau das richtige.

M4: That is exactly it spirit.

ME: That is the right thing.

SRC: Ja, das sieht bei mir eigentlich im Januar ziemlich gut aus.

M4: Yes, that does not suit me in January looks pretty good.

ME: Yes, that looks pretty good for me actually in January.

experiment shows that ME models could improve translation quality if optimal and larger
N-best lists or word translation graphs were used, or if the ME models were used in a
completely integrated system instead of using the rescoring algorithm.

Table 6 shows some examples where the translation obtained with the rescoring procedure
was better than the best hypothesis provided by the translation system.
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5. Integration of the ME lexicon models within the training
of statistical alignment models

As discussed in previous section, to make use of the ME models, we need to know the
word-by-word alignment of a parallel corpus for one main reason: to be able to extract
the contextual training events to carry out the training of the refined ME lexicon models.
However, why not directly use the already proven more valuable contextual information
provided by ME models to obtain better statistical alignment models?

In this section, we want to go further; that is, to show how the training of the ME
models can be directly integrated within the Expectation–Maximization (EM) training
of conventional statistical alignment models. Other works that combine iterative scaling
and EM techniques for ME estimation have been carried out, like (Lauritzen, 1995) for
graphical association models and (Riezler et al., 2000) for constrained-based grammars.
Also, in Wang, Schwurmans, and Zhao (2004) the maximum entropy principle with latent
variables is presented.

In the remainder of the section, first, as an introduction, we show how a conventional
EM training of statistical alignment models is performed. Then, we show how the EM-
ME training integration can be done and how to carry it out in an efficient way. We also
present experimental results in order to show the alignment quality obtained for the different
approaches.

5.1. Conventional EM training (review)

In this section, we describe the training of the model parameters. Every model has a
specific set of free parameters. For example, the parameters θ for Model 4 (Brown et al.
1993) consist of lexicon, alignment and fertility parameters:

θ = { {p( f | e)} , {p=1(� j)} , {p>1(� j)} , {p(φ | e)} , p1
}
. (5)

To train the model parameters θ , we pursue a maximum likelihood approach using a
parallel training corpus consisting of S sentence pairs {(fs, es) : s = 1, . . . , S}:

θ̂ = arg max
θ

S∏
s=1

∑
a

pθ (fs, a | es). (6)

We do this by applying the EM algorithm. The different models are trained in succession
on the same data, where the final parameter values of a simpler model serve as the starting
point for a more complex model.

In the E-step, the lexicon parameter counts for one sentence pair (f, e) are calculated:

c( f | e; f, e) = N (f, e) ·
∑

a

Pr(a|f, e)
∑

j

δ( f, f j )δ(e, ea j ). (7)
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Here, N (f, e) is the training corpus count of the sentence pair (f, e). In the M-step, we want
to compute the lexicon parameters p( f | e) that maximize the likelihood on the training
corpus. This results in the following re-estimation (Brown et al., 1993):

p( f | e) =
∑

s c( f | e; f(s), e(s))∑
s, f c( f | e; f(s), e(s))

. (8)

Similarly, the alignment and fertility probabilities can be estimated for all other alignment
models (see Brown et al. (1993) for details). When bootstrapping from a simpler model to
a more complex model, the simpler model is used to weight the alignments and the counts
are accumulated for the parameters of the more complex model.

5.2. EM-ME training integration

Using a ME lexicon model for a target word e, we have to train the model parameters
�e ≡ {λe,k : k = 1, . . . , Ke} instead of the parameters {p( f | e)}. We pursue the following
approach. In the E-step, we perform a refined count collection for the lexicon parameters:

c( f | e, x ; f, e) = N (f, e) ·
∑

a

Pr (a | f, e)
∑

j

δ( f, f j )δ(e, ea j )δ(x, x j,a j ) . (9)

Here, x j,a j should denote the ME context that surrounds f j and ea j . In the M-step, we want
to compute the lexicon parameters that maximize the likelihood:

�̂e = arg max
�e

∏
f,x

c( f | e, x ; f, e) · log pe( f | x) . (10)

Hence, the refined lexicon counts c( f | e, x ; f, e) are the weights of the set of training
samples ( f, e, x), which are used to train the ME models.

The re-estimation of the alignment and fertility probabilities does not change if we use
a ME lexicon model.

Thus, we obtain the following steps of each iteration for the EM algorithm:

1. E-step:

(a) Collect counts for alignment and fertility parameters.
(b) Collect refined lexicon counts and ME training events generation.

2. M-step:

(a) Re-estimate alignment and fertility parameters.
(b) Perform GIS training for ME lexicon parameters.

With respect to a conventional EM loop, steps 1b and 2b involve overhead in space and
computation time. In the next subsection, we outline how to address this overhead to make
the integrated training as efficient as possible.
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5.3. Efficient training

As an introduction to the integration of the ME training within the EM algorithm, let us
suppose that we are in the k-th iteration of the EM process. In the E-step of this iteration, for
every sentence pair in the training corpus ( f J

1 , eI
1) and every possible alignment between

them, we need to use the ME lexicon probability of every word pair ( f j , ei ) computed
in the (k − 1)-th iteration. We will then need a priori to recompute pei ( f j | x) for every
computation of Pr(f, a | e) (and also J times for the J words). To perform this computation
efficiently, we precompute all possible pei ( f j | x) in a translation matrix (I × J ) of ME
lexicon probabilities. Thus, each time we need to compute this probability, we only need
to access the corresponding matrix element. In the E-step, the specific ME training events
( f j , ei , x) generation of current iteration is also performed.

After the E-step is carried out for each sentence pair in the corpus, we have all possible
ME events ( f, e, x) for each word e. Then, with these events, in the M-step we perform a
GIS training for every e word we considered (a priori) relevant to our problem and obtain
the set of �e parameters that define our specific ME model.

The following factors specially contribute to the computational overhead introduced by
the ME lexicon models:

1. The computation time of the translation matrix. This involves an increase of one order
of magnitude.

2. The computation of the GIS training for each word e to be modeled by ME; in the worst
case, when all words e from the target vocabulary are used. In the experiments, the
computation time of the GIS algorithm ranges from 5 to 10 seconds on average. This
could yield an increase of two orders of magnitude depending on the number of ME
models to be considered.

Hence, the additional time consumption directly depends on the number of words e to
be modeled by ME. As described at the end of Section 3.4, we developed a ME model for
every word that appeared in the training corpus more than a fixed number of times. In our
experiments, this word selection yielded only about 5–10% of the vocabulary.

With respect to the space overhead, we will need to store every possible ME training
event ( f, e, x), that is, every possible combination of e from the target vocabulary, f from
the source vocabulary and context x. Obviously this requires a huge quantity of memory, as
the word selection described above also plays an important role in the efficiency of space
overhead.

The number of training events is an important factor for the computational overhead
of the GIS algorithm. Therefore, a pruning of these training events is also applied. As
described in the previous subsection, the refined lexicon count (fractional counts (Brown
et al., 1993)) are the weights of the ME training events. We prune those training events
with fractional counts smaller than 1.0 in order to avoid very rare events. Very rare events
are thereby discarded and the ME training is faster, and a better parameter estimation is
performed. In addition, the space overhead is also reduced.

In the following, we suggest a simplified approach which reduces the overhead required
by this approach. First, we perform a regular training of the EM algorithm. Then, after the
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Table 7 Time consumption in seconds of different approaches per EM iteration (on average for the five
IBM models). # of e means the number of target words to be modeled by ME after the counting-based word
selection.

Task Size of train. # of e Conv. train ME-train
Simp.

ME-train

VERBMOBIL 0.5 K 29 1 29 1.5

8 K 84 18 235 68

35 K 209 60 2,290 675

HANSARDS 0.5 K 15 2.5 29 3

8 K 80 35 1,180 100

128 K 1,214 655 16,890 6,870

final iteration, we perform the ME training of the ME lexicon parameters but use only the
Viterbi alignment of each sentence pair instead of the set of all possible alignments. Finally,
a new EM training is performed where the lexicon parameters are fixed to the ME lexicon
models obtained previously. In this case, the more informative contextual information is
also used but in a decoupled way. It is important to stress that in this approximation only one
ME training is needed. Interestingly, the alignment quality obtained with this simplification
and the fully integrated approach are practically the same.

The time consumption in seconds per iteration of the EM algorithm of the different
approaches are shown in Table 7. This experiment was carried out on a Pentium-III machine
at 600 MHz. The results are presented for the corpora described in Table 8, regarding the
EM training of the experiments presented in Section 5.4.

5.4. Alignment quality experimental results

We present results on the VERBMOBIL task and the HANSARDS task. The French–English
HANSARDS task consists of debates in the Canadian Parliament. This task has a very large
vocabulary of more than 100,000 French words.

The corpus statistics for these experiments are shown in Table 8. The number of running
words and the vocabularies are based on full-form words including the punctuation marks.
For these experiments we used a subset of the complete corpus of the VERBMOBIL corpus
because of the availability of the annotation scheme (described below) and in order to make
the results comparable to previously related work as in Och and Ney (2003).

We produced smaller training corpora by randomly choosing 500, 8,000 and 34,000
sentences from the VERBMOBIL task and 500, 8,000 and 128,000 sentences from the
HANSARDS task.

To train the context-dependent statistical alignment models, we extended the publicly
available toolkit GIZA++ (Och, 2000)(which will be also available shortly). The training of
the ME models was carried out using the YASMET toolkit (Och, 2001). For the experiments
shown below we considered a value of T to the optimal value obtained in the previous
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Table 8 Corpus characteristics for alignment quality experiments.

VERBMOBIL HANSARDS

German English French English

Training Sentences 34,446 128,000

Running Words 329,625 343,076 2,120,212 11,309,283

Vocabulary 5,936 3,505 37,532 29,414

Figure 2. Two examples of manual alignments with S(ure) (�) and P(ossible) (�) connections

experiments, that is a value of 4. Also, only target context (that is English context) plus
word-classes were used as contextual information for the ME models.

5.4.1. Evaluation methodology. We use the same annotation scheme for single-word
based alignments and a corresponding evaluation criterion as described in Och and Ney
(2000). The annotation scheme explicitly allows for ambiguous alignments. The people
performing the annotation were allowed to specify two different kinds of alignments: a
S(ure) alignment, which is used for alignments that are certain or unambiguous and a
P(ossible) alignment, which is used for ambiguous or doubtful alignments. The P label is
used particularly to align words within idiomatic expressions, free translations, and missing
function words (S ⊆ P).

The reference alignment thus obtained may contain many-to-one and one-to-many re-
lationships. Figure 2 shows two examples (of the HANSARDS task) of manually aligned
sentences with S and P labels.

The quality of an alignment A = {( j, a j ) | a j > 0} is then computed by appropriately
redefined precision and recall measures and the alignment error rate, which is derived from
the well known F-measure:



MAXIMUM ENTROPY MODELING 151

Table 9 AER [%] on Hansards task.

Size of training corpus

Training scheme Model 0.5 K 8 K 128 K

15 IBM1 48.0 35.1 29.2

IBM1 + ME 47.7 32.7 22.5

1525 IBM2 46.0 29.2 21.9

IBM2 + ME 44.7 28.0 19.0

152533 IBM3 43.2 27.3 20.8

IBM3 + ME 42.5 26.4 17.2

15253343 IBM4 41.8 24.9 17.4

IBM4 + ME 41.5 24.3 14.1

1525334353 IBM5 41.5 24.8 16.2

IBM5 + ME 41.5 24.5 14.3

Table 10 AER [%] on VERBMOBIL task.

Size of training corpus

Training scheme Model 0.5 K 8 K 34 K

15 IBM1 27.7 19.2 17.6

IBM1 + ME 24.6 16.6 13.7

1525 IBM2 26.8 15.7 13.5

IBM2 + ME 25.3 14.1 10.8

152533 IBM3 25.6 13.7 10.8

IBM3 + ME 24.1 11.6 8.8

15253343 IBM4 23.6 10.0 7.7

IBM4 + ME 22.8 9.3 7.0

1525334353 IBM5 22.6 9.9 7.2

IBM5 + ME 22.3 9.6 6.8

recall = | A ∩ S|
|S| , precision = |A ∩ P|

|A| , AER(S, P; A) = 1 − |A ∩ S| + |A ∩ P|
|A| + |S|

Thus, a recall error can only occur if a S(ure) alignment is not found. A precision error
can only occur if the alignment found is not even P(ossible).

The set of sentence pairs, for which the manual alignment was produced, was randomly
selected from the training corpus. It should be emphasized that all the training was done in
a completely unsupervised way, i.e. no manual alignments were used. From this point of
view, there is no need to have a separate test corpus.
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Table 11 Training perplexity for HANSARDS task for different training sizes and schemes.

Size of training corpus

Training scheme Model 0.5 K 8 K 128 K

15 IBM1 34.7 47.3 72.9

IBM1 + ME 33.9 43.4 51.9

1525 IBM2 11.1 25.5 40.2

IBM2 + ME 10.5 23.5 30.9

152533 IBM3 21.3 43.3 69.8

IBM3 + ME 20.8 39.2 49.8

15253343 IBM4 47.4 72.8 104.1

IBM4 + ME 46.1 65.7 68.1

1525334353 IBM5 8.2 13.2 19.9

IBM5 + ME 8.1 11.9 14.1

Table 12 Training perplexity for VERBMOBIL task for different training sizes and schemes.

Size of training corpus

Training scheme Model 0.5 K 8 K 34 K

15 IBM1 22.2 27.6 29.9

IBM1 + ME 20.7 24.0 24.5

1525 IBM2 7.7 14.6 16.9

IBM2 + ME 7.1 13.0 14.2

152533 IBM3 12.9 23.1 26.8

IBM3 + ME 11.7 19.8 20.2

15253343 IBM4 24.0 32.9 35.0

IBM4 + ME 22.0 27.7 26.9

1525334353 IBM5 5.3 7.1 7.7

IBM5 + ME 4.9 6.1 6.1

5.4.2. Alignment quality results. The assessment of the conventional and the integrated
approaches was performed by comparing the quality of the word alignments produced
by the models of each approach. A measure of this quality can be computed from the
deviation that can be observed in the above word alignments with respect to a reference
word alignment obtained manually. According to the experiments we have carried out so
far, the differences in alignment quality of the ME integration training with respect to the
simplification proposed at the end of Section 5.3 were small. Taking into account the high
time consumption of the ME integration, the results presented below were computed by
using the simplified approach.
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Figure 3. Precision and Recall [%] results for HANSARDS task for different corpus sizes, for every iteration of
the training scheme.

Tables 9 and 10 shows the alignment quality for different training sample sizes of the
HANSARDS and VERBMOBIL tasks respectively. These tables show the baseline AER for
different training schemes and the corresponding values when the integration of the ME
is done. The training scheme was defined in accordance with the number of iterations
performed for each model (43 means 3 iterations of IBM Model 4).

The precision and recall results for the HANSARDS task (with and without ME training)
for different sizes of the training corpus are shown in Figure 3. The corresponding precision
and recall results for the VERBMOBIL task are shown in Figure 4. In all these figures, Base
stands for the conventional training, and MaxEnt stands for the integrated maximum entropy
training.
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Figure 4. Precision and Recall [%] results for VERBMOBIL task for different corpus sizes, for every iteration of
the training scheme.

In Tables 11 and 12, the training perplexity for different training schemes (with and
without the use of the integration of the ME) are shown. These values corroborate the
perplexity experiments carried out in the previous section; that is, in all cases, better model
perplexity is obtained when the ME integration is used.

We observe that the alignment error rate improved when using the context-dependent
lexicon models. For the VERBMOBIL task, the improvements were smaller than for the
HANSARDS task, which might be due to the fact that the baseline alignment quality was
already very good. It can be seen that greater improvements were obtained for the simpler
models.
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As can be observed in the precision and recall figures for both tasks, in all cases, higher
precision and higher recall were obtained when using the context-dependent lexicon models.
It can also be observed that the differences were small when small sizes of the training
corpora were used, being practically the same for the 500-sentence training corpus.

As expected, the ME training plays a more important role when larger sizes of the corpus
are used. For the smallest corpora, the number of training events for the ME models was
very low, so it is not possible to disambiguate some translations/alignments for different
contexts. For larger sizes of the corpora, greater improvements were obtained. Therefore,
we expect to obtain better improvements when using even larger corpora.

After observing the common alignment errors, we plan to include more discriminant
features that would provide greater improvements. We also expect improvements by per-
forming a refined modeling of the rare/infrequent words, which are currently not taken into
account by present ME models.

5.4.3. Conclusions. In this section, we have shown how an efficient and straightforward
integration of ME context-dependent models within a maximum likelihood training of
statistical translation models can be done.

The results presented here are directly comparable with those presented in Och and Ney,
(2003). We obtained better results when using ME context-dependent models when they
are applied to the family of the IBM alignment models. In that work, the authors used the
HMM alignment model presented in (Och & Ney, 2000) instead of IBM Model 2 in the
training scheme as a starting point to train the fertility models (IBM models 3, 4 and 5)
yielding slightly better results. According to those results the alignment quality when using
the HMM model instead of IBM Model 2 is better. We also plan to include the ME models
within the EM training of the HMM alignment model in order to obtain even better results.

According to the experiments, it is clear that the use of the refined lexicon models within
the EM training also helped to the rest of the models involved in the training, that is fertility
and alignment/distortion models. This is actually due to the fact that the information of
the alignment/distortion and fertility parameters is also used during the estimation of the
lexicon parameters, as can be seen in Brown et al. (2003).

We evaluated the quality of the alignments obtained with this new training scheme
comparing the results with the baseline results. In all cases better alignment quality was
obtained using the context-dependent lexicon model.

It might be possible to design a bootstrapping strategy to combine the experiments of
the previous section with the alignment models obtained with the integration. Moreover,
we consider it more valuable to include the ME models within the search process stated in
Eq. (2) in order to build completely integrated ME statistical machine translation systems.

6. Concluding remarks

In this paper, we have introduced refined lexicon models for statistical machine translation
by using maximum entropy models. We have been able to obtain a significantly better
test corpus perplexity. Despite the fact that the translation results were not statistically
significant, we did obtain a slight but consistent improvement in translation quality. We
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believe that by performing a rescoring on translation word graphs, we will be able to obtain
a greater improvement in translation quality.

In addition, we have presented an efficient and straightforward integration of ME context-
dependent models within a maximum likelihood training of statistical translation models.
We have also evaluated the quality of the alignments obtained with this new training scheme
comparing the results with the baseline results. In all cases, better alignment quality was
obtained when using the context-dependent lexicon model.

For the future we plan to:

– Investigate the inclusion of more features in the ME model, such us dependencies on other
source and target words, syntactic features such as POS tags and syntactic constituents,
semantic features, and features that go beyond sentence boundaries.

– Investigate more refined feature selection methods in order to make the maximum entropy
models smaller and better generalizing.

– Include ME refined lexicon models into the EM training of the HMM alignment model
in order to evaluate the usefulness of the ME models in other statistical alignment models
which are different from the classical IBM models.

– Design ME alignment and fertility models. This will permit easy integration of more
dependencies, such as second-order alignment models, without running into the problem
of an unmanageable number of alignment parameters.

– Integrate the ME models within the search process in order to have a completely integrated
ME statistical machine translation system.
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