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Abstract.  This paper introduces a setting for multiclass online learning with limited feedback and its application
to utterance classification. In this learning setting, a parameter & limits the number of choices presented for selection
by the environment (e.g. by the user in the case of an interactive spoken system) during each trial of the online
learning sequence. New versions of standard additive and multiplicative weight update algorithms for online
learning are presented that are more suited to the limited feedback setting, while sharing the efficiency advantages
of the standard ones. The algorithms are evaluated on an utterance classification task in two domains. In this
utterance classification task, no training material for the domain is provided (for training the speech recognizer or
classifier) prior to the start of online learning. We present experiments on the effect of varying k and the weight
update algorithms on the learning curve for online utterance classification. In these experiments, the new online
learning algorithms improve classification accuracy compared with the standard ones. The methods presented are
directly relevant to applications such as building call routing systems that adapt from feedback rather than being
trained in batch mode.
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1. Introduction

Data collection and manual labeling can be the most expensive components, in terms of
human effort, of applying classification systems to real world problems. This is particularly
true if the characteristics of the application (input features or classes or the way inputs
are mapped to classes) change over time requiring further collection and training. Online
learning algorithms hold the promise of systems that learn and adapt gradually during
operation without distinct phases for collection, labeling, training, and operation.

The general setting adopted in the machine learning and pattern recognition fields for
online classification tasks involves a sequence of trials. At each trial the “learner” receives
an input, predicts the class of the input, and then receives the correct class from the
“environment”. The learner then uses this feedback from the environment to update its
internal state with the aim of improving the chance of correctly classifying the input from
the next trial in the sequence. There are variations on the basic setting such as the binary

*The work reported in this paper was carried out while the author was at AT&T Labs.
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classification case in which the input belongs to one of two output classes, the multiclass case
in which it belongs to exactly one of K possible classes, and the multiclass multilabel case
in which inputs may belong to zero or more possible classes. In addition to classification,
some of the same online algorithms have been adapted to perform regression tasks with
real number output.

This idealized general setting is unrealistic in some learning situations since the correct
class is not always available after making a prediction attempt. A good example of a situation
with limited feedback from the environment is the one we consider in our experiments in
this paper. Here the learner is an utterance classification system directing calls based on the
caller’s first utterance. After receiving the utterance, the system presents k (with £ < K))
possible options to the caller who selects the appropriate destination (if presented) from this
limited set of options; presenting all possible options for selection would be too burdensome
to the user. (In the special case of k£ = 1, the system can only ask the user a yes-no question
corresponding to confirmation or disconfirmation of one of the possible K alternatives.)
These considerations led us to investigate a “k-way” version of online classification in
which feedback is limited by the parameter k.

Some of the simplest and most efficient, yet most successful, online learning algorithms
are linear classifiers that maintain a set of weights. Each weight can be thought of informally
as indicating the strength of association between an input feature and a target class. The
weights are applied to the input for a trial, typically using a simple linear threshold decision
rule, and are then updated in response to receiving the correct class for the input. One of the
earliest schemes for updating weights was the simple additive one used in the perceptron
algorithm for pattern recognition (Rosenblatt, 1958). A major improvement introduced by
Littlestone (1988) was the use of a multiplicative weight update scheme. This algorithm,
called Winnow, has the advantage of reducing the weights of irrelevant input features
quickly toward zero, making the algorithm more effective when there are a large number
of features but only few of them are important to the classification task. A number of
variations of the Winnow algorithm have since been studied, both in terms of provable error
bounds (Littlestone & Warmuth, 1994; Kivinen & Warmuth, 1997; Crammer & Singer,
2001; Mesterharm, 2002) and empirical performance on natural language processing tasks
such as document categorization (Dagan, Karov, & Roth, 1997) and spelling correction
(Golding & Roth, 1999). However, the error rates for both the additive and multiplicative
algorithms are significantly higher when feedback is limited, especially for the important
case of k = 1 (simple confirmation), as illustrated by the empirical results presented in
this paper. This is the motivation for introducing modified versions of these algorithms that
improve performance on our task under the k-way limited feedback setting.

Utterance classification has previously been applied to call routing using batch training
(Gorin, Riccardi, & Wright, 1997; Carpenter & ChuCarroll, 1998). The work presented
here can be thought of as trying to achieve a more extreme degree of automation compared
with our previous work on utterance classification described in Alshawi (2003). In that
work, one aspect of human effort used conventionally for the utterance classification task
was eliminated, specifically, the manual effort of transcribing training audio files into text.
This was done by automatically training an unsupervised phonotactic model from training
utterances and building a phone string classifier from the output of this unsupervised
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model. In the experiments presented here, we also eliminate the human effort of assigning
class labels to training audio files; the system learns to classify based on feedback from
users during system operation. In these experiments, we further assume that no domain-
specific speech audio files are available prior to the start of online learning for training
domain specific phonotactic or word n-gram models, so generic recognition models (both
word and subword models) are used to provide utterance features for online learning.
Overall then, the experiments investigate the suitability of a method for bootstrapping a call
routing system without prior application-specific data collection, class labeling, or batch
training.

In Section 2 we review the setting for online multiclass learning and define the k-way
limited feedback version of this setting. Section 3 presents basic and modified versions of
additive and multiplicative online algorithms. The spoken language call routing application
using online utterance classification with feedback is explained in Section 4 together with
the features from generic speech recognition output used by the classifiers. The setup for
our online utterance classification experiments is described in Section 5, and the results of
these experiments are presented in Section 6.

2. Online multiclass learning with k-way limited feedback
2.1. Online multiclass learning

The most basic setting for online learning studied in machine learning is a type of binary
classification, i.e. learning a function to map an input instance x to a class y € {true, false}.
Under the online setting, learning proceeds in a sequence of frials which we will number
with positive integers starting at 1. Ateach trial 7, the “learner” first receives an input instance
x; to be classified and predicts the class of the instance to be y! based on its current state.
(Here the superscript 1 simply indicates the class ranked highest by the learner.) The learner
then receives the “correct” class assignment y, for this instance from the “environment”,
and it uses this information to update its state. The updated state is used for predicting the
class of x,1; in the next trial of the sequence. Some algorithms used for this setting only
update the learner’s state when a prediction mistake is made, i.e. when y # y;, though in
general the learner is not constrained in this way.

This setting extends naturally to multiclass classification, under which the number of
classes K may be larger than 2. (Where the sequence of trials is infinite, the number of
classes can be unbounded, though that case has not received much attention.) The online
multiclass setting can be further extended to a multilabel setting in which each instance is
classified (by the environment) into zero or more classes rather than a single class as in the
basic multiclass setting. We will not be considering the multilabel case in the present work
even though the techniques presented here can be modified to accommodate that setting as
well. In other words, we will assume here that the environment provides exactly one class
y, for the input instance x, of trial .

Following the mistake-bounded online learning paradigm, the main way of evaluating
how well an algorithm performs against a sequence of trials is in terms of maximizing the
number of trials 7 in the entire sequence for which y! = y,. (In the experiments, we will
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also look at how well the algorithms perform on a fixed number of trials at the end of the
sequence.)

2.2, k-way limited feedback

In this paper, we define k-way limited feedback, with K > k > 0, as an online multiclass
learning setting in which each trial ¢ proceeds as follows:

—_

The learner receives a new input instance x;.

2. The learner presents an ordered list of at most k classes, y, ... y," to the environment,
y/! being its prediction for classifying x;.

3. The environment indicates which of the proposed classes corresponds to the correct
classification y, of x;, or else explicitly indicates that none are correct.

4. The learner updates its internal state based on the information provided by the

environment.

The restriction to presenting k classes in the second step makes learning under this
setting more difficult than the standard setting: The learner does not always have access to
the correct class for every trial since that class may not have been presented and therefore
cannot be identified by the environment in the third step.

We will make an additional assumption that, in evaluating the performance of the learner,
it is penalized as much for proposing the wrong class as for not proposing any classes. This
assumption simplifies the setting and implies that there is no advantage to “passing” on
a trial. (It might be interesting to consider algorithms for settings in which this is not the
case, for example ones in which the learner is penalized less for passing than for an explicit
error.)

Under this assumption, when K = 2 (and provided the learner knows there are only
two classes), online classification with k-way feedback is essentially the same as online
binary classification, since the environment’s response will always unambiguously indicate
the correct class for a trial. For K — 1 > k, compared with the standard online multiclass
setting, the most important difference is that the learner does not necessarily find out the
correct classification of the input for each trial. In the limiting case of £ = K, multiclass
k-way feedback is equivalent to the standard multiclass setting since the learner will always
receive the same information for each trial under either setting. (Incidentally, the case
k = K — 1l isequivalent to k = K if K is fixed and known to the learner since the identity of
the correct class will always be discernible even if none of the presented classes is indicated
as correct by the environment.)

Online learning with k-way feedback is an appropriate setting for applications in which it
is impractical or impossible for the environment to provide information on the correctness
of the entire set of classes. For example, in the application we consider in the paper, &
corresponds to the number of routing destinations a user is asked to select between during
the operation of a call routing system that is trained online. Increasing k increases the
burden on the user; high values of & are possible but impractical since this would make the
system unusable. A similar example is a tune-guessing system in which the user hums a
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tune and the system only has time to play a few (i.e. k) candidate recordings. Since both the
set of available recordings and users’ taste change over time, online learning is appropriate
for this application.

2.3. [Initial and boostrapping conditions

There are several different ways of providing the initial conditions for multiclass online
learning. For example, one possibility (which we do not adopt) would be to assume that
all the categories and features the system will encounter are known in advance. However,
since the aim of online learning is to adapt automatically, there are situations in which
this assumpution would be too inflexible: an online text categorizer might encounter new
words, or new categories could be added during the lifetime of the system.

To keep the learning setting very general and true to the spirit of online learning, we adopt
the following protocol for bootstrapping the k-way online learner. Prior to the first trial in
the sequence, the learner does not have any knowledge about the feature set. An open ended
set of features is assumed and features become known to the learner as it encounters new
inputs (as with the infinite attribute space of Blum, 1992). The set of target classes known
to the learner prior to the first trial is also empty. Then, whenever the correct class for a trial
is not in the set of classes known to the learner, that trial is treated as a conventional (not
k-way limited) online learning trial: the environment provides this class to the learner even
though it will not (in fact cannot) be one of the & classes proposed by the learner in this trial.
We can think of such trials as “definitional” trials. To illustrate, in the text categorization
example, a definitional trial could be inserted into the stream of trials by an operator who
wishes to introduce a new category to the system.

3. Online classification algorithms

3.1. Prediction function

To predict the class for trial ¢, the algorithms discussed in this paper construct a function:
fro,y)=>r

where r is a real number. Since we do not assume that the set of possible classes is known in

advance of the trials, f; will in general be a partial function on the cross product of possible
inputs and classes. At trial #, the algorithm will predict class y,' as

y,1 = argmax f;(x;, y)
y

where the maximization is over classes encountered so far. Similarly, y,2 is the class with
the second highest value of f;(x;, .), and so on.

The function f; will be computed as a sum of real-valued feature weights which the
algorithms maintain (implicitly or explicitly). More specifically, let w;"“ be the weight
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associated with feature (or attribute) a and class y prior to trial #, and let s, be a function
from input instances to non-negative real numbers representing the value (“strength”) of
feature a in the instance. We will assume that for any input x, the number of features for
which s,(x) > 0 is finite. f; will be computed as follows:

fl, y) =Y wisa(xo).

Thus, assuming the feature functions s, are fixed, as we take them to be here, the task of
this class of online learning algorithm is simply to compute the weights w; given w;
and the outcome of trial ¢.

3.2. Contingency accumulators

In most accounts of online algorithms with feature weight updates, the set of weights w;"“
are described (if this level of description matters to the discussion) as being maintained
explicitly as a set of real valued quantities. The stored weights w;"“ are used to compute the
weights w,)fl for the next trial according to the outcome of trial ¢, and the specific update
rule, and the new weights then replace the old ones in the storage data structure. However,
for both numerical computation reasons as well as increased flexibility in the choice of
update algorithms, we prefer to treat the weights as functions defined on “contingency
accumulators” related to trial outcomes.

The contingency accumulators keep track of the (strength-weighted) occurrences of a
feature a and a class y when y is the prediction (the first in the list of proposals) and is
correct, y is the prediction but is incorrect, or when y is the “true” class but is one of the
second to k-th proposals made by the learner. Specifically, the accumulators are defined as
follows, where ¢’ ranges over the trials so far:

Pl =D 80y, 38 (v, v )salxe)
1<t'<t

= Z 3y, y)8(y, v )salxe)
1<t'<t

A= 80 yS(y Avi i )satae).
1<t'<t

Here 8(y,z)is 1 if y = z or y € z and 0 otherwise, and 8(y, z) is 1 if 8(y, z) is 0 and 0
otherwise. To reiterate, with limited feedback, the identity of y, will not be known for some
trials. Informally, we can think of the accumulators p;™“, 5}, and 7}, as the accumulated
weight of a for which y is, respectively, a true positive, a false positive, and a false negative.
The factor 6(y, {ytz/, ceey y,k,}), for the false negative case, reflects the fact that the learner
does not always have access to the “true” class for every trial since only k classes are

presented. When k = K, i.e. the full set of classes, 7; " simplifies to:
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D7 8 y8 (3, i) salxe).

1<t'<t

It should be clear that these three accumulators can be maintained incrementally after
each trial based only on the features in the input for the trial, the classes proposed in the
trial, and the outcome of the trial. (There is no iteration over the entire set of possible
features, or even over classes not included in the k proposed classes as there would be for a
true negative accumulator n;"* defined in a parallel way.) If the feature strength functions
are integers, as they are in the experiments reported below, then the accumulators will be
integers. In the general case, however, these accumulators will be real valued quantities.

3.3. Weight computation

As mentioned, the online classification algorithms compute the prediction function f;(x;, y)
as a sum of weights w;". We compute these weights from accumulator values on an as
needed basis as required for computing the prediction function. As the last step of each
trial, the accumulator values relevant to the trial are updated according to the outcome of
the trial. To complete the description of the different online algorithms, it only remains to
describe the specific method used by each algorithm to compute the weights w;"“ from the
accumulator values. We provide this for four algorithms used in our experiments: Additive,
Multiplicative, Modified Additive, and Modified Multiplicative. For all algorithms, if all
the accumulators for a class-feature pair (y, a) are zero, then the weight w”-“ is taken to be
Zero.

Additive
y.a _ ~y.a ~y.a
W =m — D

This is a multiclass version of the well-known Perceptron algorithm (Rosenblatt, 1958).
The weight increases when y is a false negative with respect to a trial and decreases when
y is a false positive with respect to a trial. One way to think of this algorithm is that it is
trying to set the weights so that false positive errors are balanced by false negative errors.

In particular, if x, is correctly classified, w;: will be the same as w; .
Multiplicative

t+1

wh = o

This algorithm is parametrized by a real constant « > 1 which can be used to control
the learning rate. It is a multiclass version of the Winnow algorithm (Littlestone, 1988).
The weight for class y in the presence of feature a is increased by multiplying it by «
when y is a false negative with respect to the trial. Conversely, the weight is reduced by
multiplying it by 1/a when y is a false positive with respect to the trial. In the Win-
now algorithm, a different constant 0 < 8 < 1 may be used when reducing weights,
so here we are fixing § = 1/, giving the formula above for the weight computation.
(Empirically, we have observed that lifting the restriction 8 = 1/o does not necessarily
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lead to improved performance, and brings the additional difficulty of choosing 8.) The
motivation for the Winnow algorithm is to quickly push down the weights of irrelevant
features toward zero: if a feature is irrelevant to a class but its weight is too high, this leads
to false positive predictions and hence (repeated) multiplication of the feature weight by
1/a.

Modified additive

Wiy = = min (1, 5)
The inclusion of the last term in the weight expression, ; min(p;"*, p;"“), is intended to
overcome a problem that arises for the simple additive algorithm for low values of «.
To motivate the term, consider the case k = 1 (simple confirmation) for which ;" will
be zero and the weight computation becomes simply p;** — 5" (or 0 if p;"* > p;").
In other words, for k¥ = 1 we are using the true positive accumulators to make up for
not being able to make use of false negative feedback to balance false positive feedback.
As k increases, false negative feedback becomes more likely, so the need for using the
true positive accumulators decreases, hence the 1/k coefficient. Since we would like to
avoid making large adjustments to the weights when there are no errors, we introduce
the minimization over true and false positives to prevent true positives from continu-
ing to push the weights upward even if they vastly outnumber false positives. As k in-
creases (and so long as y appears in conjunction with a as a false positive less frequently
than as a true positive), the modified additive algorithm approaches the simple additive
algorithm.
Modified multiplicative
vy =y va sy

w’ = o + min(p?™, 5"
t

Compared with the simple multiplicative algorithm, the additional term in the exponent
is motivated by the same considerations as it is for the modified additive algorithm: It
compensates for the reduction in negative feedback when & is small compared to K, while
still limiting undesirable increases in the weights when there are few errors in predicting
y in the presence of feature a. As k increases, the modified multiplicative weight compu-
tation approaches that of the simple multiplicative algorithm provided that ;" < p;*“. In
particular, weights are not adjusted when this condition holds for all accumulators for the

features in x; and the learner correctly classifies x;.

3.4. Computational complexity

All four algorithms have low runtime computational complexity. Let N be the number of
features in an input x. Assuming that it takes constant time to store or retrieve an accumulator
value, the number of arithmetic operations needed to process a trial after feature extraction
is O(K (N +1log(K))). (Feature extraction, will, of course, depend on the nature of the input
and the complexity of the features used.) To see this, recall that computing f(x, y) requires
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the sum of O(N) weights. For the prediction step, we need to compute f for all K classes.
Since computing each weight requires only a constant number of arithmetic operations, this
takes O (K N) operations. (We are assuming that exponentiation is a primitive operation for
this purpose.) We also need to identify the k highest ranked classes for presentation to the
environment; this can done by sorting with O (K log(K')) comparisons. In the accumulator
update step, we only need to update O(N) accumulators for the prediction and/or for the
correct class, each such update requiring a constant number of arithmetic operations, giving
O (N) arithmetic operations. This gives the total number of arithmetic operations for a trial
as O(KN)+ O(K log(K)) + O(N) which is the same as O(K (N + log(K))).

3.5. Remarks on error bounds

The reader may be wondering about formal bounds on the classification error of the
update algorithms under the limited feedback setting. To date, we have only investigated
these algorithms empirically and are unaware of error bounds for the algorithms, though
we now point out some properties of the algorithms that preclude immediate transfer of
known bounds for batch and online classification algorithms. First, unlike batch learning
algorithms, in the online setting of most interest to us, the update algorithms are aimed
at applications for which the target function is not assumed to be fixed. The prediction
function is meant to adapt in order to track changes in the target function over time, rather
than converging to a fixed prediction function that approximates a fixed target as closely
as possible. Specifically, we do not assume that the example input-output pairs (x, y) in
our trials are generated i.i.d. at random from a fixed underlying distribution. In the online
setting, error bounds have been derived, under various assumptions, initially for the binary
case (e.g. Littlestone, 1988) and later for the multiclass case (e.g. Crammer & Singer, 2001).
The analysis of the classic binary Winnow algorithm (with K = k = 2 in our notation)
makes use of the so called conservative property of that algorithm, i.e. weights are adjusted
only for trials in which errors are made by the learner. In contrast, our modified algorithms
are not conservative in this sense since the weights depend on the values of true positive
accumulators, a modification that our experiments (Section 6) show to be beneficial in
the call routing application. Nevertheless, there is a growing understanding of the formal
properties of online algorithms and their connection to other types of learning. Particularly
promising in this regard is the analysis of the “drifting games” framework by Schapire
(2001), which subsumes some well known error bound results for boosting and on-line
learning.

4. Online utterance classification
4.1. Call routing application
In the application we focus on in this paper, automated call routing, online learning with

k-way feedback is a natural fit: the learner is the call routing system and the environment
is the user placing the call. The first step in the trial corresponds to the user speaking
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an utterance expressing their desired action (typically transfer to a call destination). The
utterance is processed by generic speech recognition models (i.e. ones not trained on this
application), and the resulting recognition output is passed to the learner. In the second
step, the learner identifies the k actions which it takes to be most likely to correspond to
the user’s request. The step of presenting the & classes to the environment corresponds to
asking the user to clarify the desired routing action by selecting one of & actions, it being
too burdensome to the user to select from a list consisting of all possible actions. The case
of k = 1 corresponds to asking the user to confirm the system’s best guess of the correct
destination.

4.2.  Utterance features

For a truly online setting, we are constrained to not using training material for the specific
application domain prior to running the sequence of online training trials. Applying this
principle to online utterance classification, we do not use any domain specific speech audio
files for the domain prior to the online training run, and no human transcriptions of the
speech files are used at any stage. (A less extreme alternative would be to make some audio
files available for recognition training and only learn the mapping between domain-specific
recognition output and call destinations.)

Using a generic speech recognizer increases the chance that an utterance will include
words outside the recognizer’s vocabulary, or ones that appear in n-gram contexts that the
recognizer deems improbable, leading to word recognition errors. The features we provide
to the learner are therefore a mixture of word and phoneme n-grams. These features are
derived from the output of two recognizers applied to an input utterance:

— A word trigram recognizer for spontaneous telephone speech for which the acoustic
and language models were trained on data from domains different from the online trials
domain. The features derived from the best-path recognition output were word unigrams,
word bigrams, and gapped ngrams of length two (i.e. trigrams with the middle word
missing).

— A phonetic string recognizer for spontaneous telephone speech, again trained on domains
different from the online trials domain. The “language model” for this recognizer is a
5-gram phone model; the phone sequences used to train this model were produced
from transcriptions using the AT&T text-to-speech system. The features derived from
the best-path output of this recognizer were phone bigrams, phone trigrams, and phone
4-grams.

Both recognizers use an acoustic model with discriminatively trained 3-state HMMs with
10 Gaussians per state similar to the models described in Ljolje et al. (2000). The word
trigram model and phone 5-gram language models in these recognizers were constructed
using the stochastic language modeling techniques described by Riccardi, Pieraccini, and
Bocchieri (1996).
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Although only feature counts were used as feature strengths, it is possible that better
classification accuracy could result from continuously weighted features, including those
taken from weighted word or phone lattices.

5. Setup of experiments

We would like to measure the accuracy and learning rates of k-way feedback online learning
algorithms for utterance classification on real data. To do so we make use of utterances
collected from a large number of callers accessing existing spoken language systems in
two domains. We will only classify the first user utterance from each call placed to the
system. These initial user turns are in response to a general prompt such as “Welcome to
... How may I help you?”. The spoken language systems from which these utterances were
collected use batch classification methods and specific interaction strategies for processing
the initial utterance and subsequent utterances in the interaction. We need not be concerned
with these methods and strategies—using the first utterances only in our experiments means
that the results reported here are independent of the techniques used in the original spoken
language systems.

The collected utterances each have associated with them a single action or routing
destination assigned by a human labeler. This association between the utterances and
actions provides us with the experimental data to evaluate the accuracy and learning rates
of our algorithms as well as allowing us to simulate the “environment” in our experiments.
The sequence of utterances input to the learner are ordered chronologically (by collection
date), providing a more realistic setting for an online system.

For both the Multiplicative and Modified Multiplicative algorithms, the learning rate «
was set to 1.2, a setting found to give reasonable results in informal experimentation with
data from a third domain.

We will refer to the two domains for the online utterance experiments as Domain M and
Domain T:

— Domain M. The online sequence for Domain M consisted of 11930 trials. The average
length for the 11930 utterances was 9.5 words. There were 89 target actions. As an
indication of drift in the target function, the KL divergence between the class distribu-
tions for the first 2000 trials and for the last 2000 trials was 0.23. The word trigram
model and phone 5-gram model used for recognition of Domain M utterances were
trained on 257024 utterances (3574223 words) from other domains. These out of domain
training utterances included utterances from both human-human and human-machine
conversations. Recognition accuracy was 64% for words and 68% for phones.

— Domain T. The online sequence for Domain T consisted of 13902 trials. The average
length of input utterances in these trials was 7.8 words. There were 59 target actions.
The KL divergence between the class distributions for the first 2000 trials and for
the last 2000 trials was 0.21. The word trigram model and phone 5-gram model used
for recognition of Domain T utterances were trained on 318407 utterances (4175679
words) from other domains. Recognition accuracy was 54% for words and 66% for
phones.
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Table 1.  Classification accuracy (%) over entire learning sequence for Domain M.

k=1 k=2 k=3 k=K

Additive 8.05 30.7 35.8 57.7
Modified additive 39.0 40.7 43.6 57.8
Multiplicative 16.6 443 49.7 60.0

Modified multiplicative 439 53.7 55.4 59.9

Table 2. Classification accuracy (%) over entire learning sequence for Domain T.

k=1 k=2 k=3 k=K

Additive 31.9 51.0 54.7 68.7
Modified additive 62.1 59.0 59.1 68.9
Multiplicative 31.2 57.8 60.4 69.8
Modified multiplicative 65.6 65.1 62.5 70.3

Table 3.  Classification accuracy (%) for last 2000 trials of learning sequence for Domain M.

k=1 k=2 k=3 k=K
Additive 13.4 35.1 41.1 61.9
Modified additive 49.0 51.6 51.3 62.2
Multiplicative 14.4 47.6 53.6 62.3
Modified multiplicative 52.1 57.8 59.4 62.8

6. Results of experiments

Table 1 shows the classification accuracy of the algorithms for domain M for the entire
learning sequence with k set to 1, 2, 3, and K. (Recall that K is the number of possible
classes for the domain.) Table 2 shows the same results for Domain T.

Table 3 shows the classification accuracy for different algorithms for domain M for
the last 2000 trials of the learning sequence. Compared with Table 1, Table 3 gives an
impression of the attained accuracy of the algorithms with the benefit of most of the
learning sequence, though the accuracy is still increasing near the end of the sequence for
some of the algorithms. Table 4 gives the corresponding results for Domain T.

To give a better impression of how quickly the different algorithms are learning to classify
utterances, we present cumulative learning curves for the different algorithms for k = K
for Domain M in Figure 1 and Domain T in Figure 2. These results are cumulative in the
sense that each point in the plot shows (on the vertical axis) the accuracy on all prior trials
after processing the percentage of the trials shown on the horizontal axis. (The points on the
plot are at 1% increments of the number of trials processed; they do not represent individual
trials.) The accuracy attained at the end of the curves thus corresponds to the results given
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Figure I. Cumulative learning curves for Domain M with k = K.

in Tables 1 and 2 rather than the higher accuracies shown in Tables 3 and 4 for the last
2000 trials of the sequences. Figures 3, 5, and 7 show the cumulative learning curves for
Domain M when £ is set to 1, 2, and 3, respectively. The corresponding cumulative learning
curves for Domain T are shown in Figures 4, 6, and 8.

A number of patterns emerge from these results which are broadly true for both domains
but seem to be more pronounced for Domain M which appears to be the more difficult
task. For £ = K, i.e. when feedback is not limited, the multiplicative algorithms have a
slight edge over the additive algorithms. This observed difference between the additive
and multiplicative algorithms is consistent with the conclusions of Kivinen and Warmuth
(1997) since a large number of the input features are not relevant to our classification task.
It also appears that for k = K there is little difference in accuracy between the basic and
modified versions of the additive algorithm or between the basic and modified versions of
the multiplicative algorithm.

As can be expected, the algorithms are less accurate for the limited feedback settings
of k than for the more standard full-feedback setting of K = k. Differences between the
algorithms increase for lower values of k. In particular, for k¥ = 1 the basic additive and
basic multiplicative algorithms perform poorly on the entire sequence as well as on the

Table 4.  Classification accuracy (%) for last 2000 trials of learning sequence for Domain T.

k=1 k=2 k=3 k=K
Additive 43.8 57.9 58.9 732
Modified additive 67.6 64.4 63.9 732
Multiplicative 24.6 64.6 6855 73.8

Modified multiplicative 67.8 66.9 70.7 74.0
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H. ALSHAWI

last 2000 trials. In general, the multiplicative versions of the algorithms perform better
than their additive counterparts (except for Domain T with ¥ = 1). More importantly for
the conclusions of this paper, for all three limited feedback settings (k = 1,2, 3), the
modified additive algorithm outperforms the simple additive algorithm and the modified
multiplicative algorithm outperforms the simple multiplicative algorithm. As expected,
these effects are stronger for k = 1 than for k =2 and k = 3.
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Figure 5. Cumulative learning curves for Domain M with & = 2.

On a practical note, in the most common current applications of utterance classification,
such as customer care call routing, a confidence measure is used to reject the predicted
classification if the confidence value falls below a threshold. When this happens, the user
is asked to simplify the phrasing of their request or is passed to a human operator. In
the current setting, one confidence measure is the difference between the values of the
prediction function for the two highest ranked classes, normalized by dividing by the
number of features in the input. (This normalization is necessary so that a single threshold
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is applicable across utterances of different lengths.) If, for example, the threshold is set so
that 30% of the inputs are rejected, then the classification accuracy for the algorithms on
the remaining 70% of the last 2000 utterances is as shown in Table 5 for domain M and
Table 6 for Domain T. As might be expected, the accuracy figures are generally higher than
when rejection is not in play, suggesting that the algorithms can be used in conjunction

with confidence

thresholds when this is appropriate to the application.



ONLINE LEARNING WITH k-WAY FEEDBACK FOR UTTERANCE CLASSIFICATION 113

Table 5.  Classification accuracy with 30% rejection for last 2000 trials, Domain M.

k=1 k=2 k=3 k=K
Additive 17.1 49.1 56.4 77.7
Modified additive 66.1 70.6 69.1 78.0
Multiplicative 16.7 61.3 68.6 78.7
Modified multiplicative 69.6 75.3 763 78.2

Table 6.  Classification accuracy with 30% rejection for last 2000 trials, Domain T.

k=1 k=2 k=3 k=K
Additive 58.9 79.4 81.2 90.8
Modified additive 86.6 87.9 86.4 91.8
Multiplicative 28.1 83.5 86.5 90.5
Modified multiplicative 87.7 88.4 90.3 90.3
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Figure 8. Cumulative learning curves for Domain T with £ = 3.

7. Conclusions and future directions

We have introduced a limited feedback setting for multiclass online classification where
the amount of feedback is controlled by a parameter & which limits the number of classes
available for possible confirmation after each trial. This setting is effectively equivalent to
the standard one when k = K, the size of the full set of classes. With k-way limited feed-
back, well known additive and multiplicative update algorithms for online linear classifiers
perform poorly for low values of k. This is particularly true in the important case of k = 1
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for which false negative information is not available to the learner. We therefore introduced
modified versions of these algorithms aimed at overcoming this problem in applying the
basic update algorithms to our setting. The modified algorithms, like the standard ones,
have low computational complexity: after feature extraction, processing each trial requires
only O(K (N + log(K))) arithmetic operations, where N is the number of features in the
input for the trial.

We applied the basic and modified algorithms to utterance classification for call routing
in two domains. Generic (domain independent) speech recognizers were used to produce
word n-gram and phone n-gram features from input utterances, thus avoiding the need to
have domain-specific speech data available prior to the online learning trials. The results
of these experiments showed that the modified algorithms give significant classification
accuracy improvements over the basic algorithms for low values of k without reducing
accuracy when £ is not limited.

Work in progress includes extending limited feedback online multiclass algorithms to
handling the multiclass multilabel setting. Derivation of non-trivial formal error bounds for
the algorithms still remains to done, and it would be interesting to investigate k-way feed-
back versions of the more complex additive online algorithms proposed by Crammer and
Singer (2001). Another avenue worth exploration might be the application of k-way online
algorithms to speech recognition lattices in conjunction with complex kernel functions such
as the rational kernels defined by Cortes, Haffner, and Mohri (2003).

We believe that the empirical results presented here demonstrate the feasibility of efficient
utterance classification systems that do not make use of batch data collection or class
labeling, but instead learn to classify utterances from user feedback. This is made possible
by the combination of domain-independent speech recognition with new limited feedback
online learning algorithms.
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