
Machine Learning, 59, 99–123, 2005
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Maximizing Agreements with One-Sided Error
with Applications to Heuristic Learning

NADER H. BSHOUTY∗ bshouty@cs.technion.ac.il
Department of Computer Science, Technion, Haifa 32000, Israel

LYNN BURROUGHS lynnb@cpsc.ucalgary.ca
Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Editor: Philip M. Long

Abstract. We study heuristic learnability of classes of Boolean formulas, a model proposed by Pitt and Valiant.
In this type of example-based learning of a concept class C by a hypothesis class H , the learner seeks a hypothesis
h ∈ H that agrees with all of the negative (resp. positive) examples, and a maximum number of positive (resp.
negative) examples. This learning is equivalent to the problem of maximizing agreement with a training sample,
with the constraint that the misclassifications be limited to examples with positive (resp. negative) labels. Several
recent papers have studied the more general problem of maximizing agreements without this one-sided error
constraint. We show that for many classes (though not all), the maximum agreement problem with one-sided
error is more difficult than the general maximum agreement problem. We then provide lower bounds on the
approximability of these one-sided error problems, for many concept classes, including Halfspaces, Decision
Lists, XOR, k-term DNF, and neural nets.

Keywords: maximizing agreements, heuristic learning, example-based learning, agnostic learning, Boolean
formulas, approximation

1. Introduction

Many papers have studied the problem of maximizing agreements, especially in connection
to agnostic and co-agnostic learning (see for example Angluin & Laird, 1987; Kearns &
Li, 1993; Höffgen, Simon, & Van Horn, 1995; Bartlett & Ben-David, 1999; Ben-David,
Eiron, & Long, 2003; Kuhlmann, 2000; Bshouty & Burroughs, 2002b). In the co-agnostic
learning model for concept classes C and H , a learning algorithm A(ε, δ) requests random
examples drawn according to some distributionD over {0, 1}n ×{0, 1} in order to determine
a hypothesis h ∈ H that performs at least as well at fitting D as the best f ∈ C does. That
is, with probability at least 1 − δ, h will satisfy Pr[h(x) = y] ≥ Pr[f (x) = y] − ε for a
random example (x, y) chosen according to D. The learning algorithm A(ε, δ) must run in
time polynomial in n, δ−1 and ε−1.

∗This research was supported by the fund for promotion of research at the Technion. Research no. 120-025.

100 N. H. BSHOUTY AND L. BURROUGHS

It is implicit in the papers of Pitt and Valiant (1988) and Ben-David, Eiron, and Long
(2003) that co-agnostic learning is equivalent to solving the following problem of maxi-
mizing agreements.

C/H -MA

Input: Multiset S of examples from {0, 1}n × {0, 1}.
Output: Hypothesis h ∈ H such that

|{(x, y) ∈ S | h(x) = y}| ≥ max
f ∈C

|{(x, y) ∈ S | f (x) = y}|.

When C ≡ H , we just write C-MA. For many classes (indeed, for all the classes we examine
in this paper), finding a formula with the highest agreement rate in the class is an NP-hard
task (Kearns & Li, 1993; Höffgen, Simon, & Van Horn, 1995; Håstad, 1997; Ben-David,
Eiron, & Long, 2003; Bshouty & Burroughs, 2002b). It may be tractable, however, to find
formulas with agreement rates within some fixed multiplicative factor α of the optimal rate.
For 1 > α > 0, a polynomial-time algorithm is said to be an α-approximation algorithm
for C/H -MA if it solves the following.

α-Approximation of C/H -MA

Input: Multiset S of examples from {0, 1}n × {0, 1}.
Output: Hypothesis h ∈ H such that

|{(x, y) ∈ S | h(x) = y}| ≥ α max
f ∈C

|{(x, y) ∈ S | f (x) = y}|.

It is interesting to explore the values α for which α-approximation of C/H -MA is hard,
and the values for which it is tractable. Since the constants 0 and 1 are in the classes C we
consider, there is always a hypothesis that agrees with half the examples, and thus C/H -
MA has a trivial 1

2 -approximation algorithm. Several researchers (Amaldi & Kann, 1995;
Bartlett & Ben-David, 1999; Ben-David, Eiron, & Long, 2003; Kuhlmann, 2000; Bshouty
& Burroughs, 2002b) have found constants α (dependent on the classes C and H under
study) such that the α-approximation of C/H -MA is NP-hard. All of the classes C that we
examine in this paper have some constant α lower bound for approximating C-MA (Håstad,
1997; Ben-David, Eiron, & Long, 2003; Bshouty & Burroughs, 2002b).

For some applications, errors among the positive examples may incur a different cost
than errors among the negative examples. It may be desirable to have a learning algorithm
produce hypotheses that limit their classification errors to one specified side (either the
positive or the negative examples). This motivated Pitt and Valiant (1988) to define two
variants of the co-agnostic learning model, called α-heuristic NFP (No False Positives)
learning and α-heuristic NFN (No False Negatives) learning. In these models the learner
makes a query by asking for either a positive or negative example, which are drawn according
to distributions D+ and D−, respectively. The requirements for the hypotheses are given in
the next definition.

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 101

Definition 1. α-Heuristic NFN and NFP Learning Models

1. A learning algorithm A α-heuristically NFN learns a class C by a class H if for any
distributionsD+ on {0, 1}n ×{1} andD− on {0, 1}n ×{0}, and any ε, δ > 0, the algorithm
A(ε, δ) makes label-specific queries to receive positive examples (x, 1) drawn according
to D+ and negative examples (x, 0) drawn according to D−, and with probability at least
1 − δ outputs h ∈ H such that

Pr
D+

[h(x) = 0] < ε and Pr
D−

[h(x) = 0] ≥ α max
f

Pr
D−

[f (x) = 0] − ε,

such that f ∈ C satisfies PrD+ [f (x) = 0] < ε.

2. If the constraint on h ∈ H above is changed to

Pr
D−

[h(x) = 1] < ε and Pr
D+

[h(x) = 1] ≥ α max
f

Pr
D+

[f (x) = 1] − ε,

such that f ∈ C satisfies PrD− [f (x) = 1] < ε, then we say that A α-heuristically NFP
learns C by H .

It can be shown that α-heuristic NFN and NFP learning are equivalent to finding α-approxi-
mation algorithms for two variants of the maximum agreement problems, which we call
maximum negative agreement (MNA) and maximum positive agreement (MPA) respec-
tively. We give the definitions of C/H -MNA and C/H -MPA next.

C/H -MNA

Input: Multisets P ⊆ {0, 1}n × {1} and N ⊆ {0, 1}n × {0}, of positive and negative exam-
ples respectively.

Output: Hypothesis h ∈ H s.t. h(y) = 1 for all (y, 1) ∈ P , and

|{(u, 0) ∈ N | h(u) = 0}| ≥ max
g∈C∩P

|{(u, 0) ∈ N | g(u) = 0}|,

where C ∩ P contains g ∈ C that are consistent on P . If no such h ∈ H exists, the
output can be anything.

C/H -MPA

Input: Same as for C/H -MNA.
Output: Hypothesis h ∈ H s.t. h(y) = 0 for all (y, 0) ∈ N , and

|{(u, 1) ∈ P | h(u) = 1}| ≥ max
g∈C∩N

|{(u, 1) ∈ P | g(u) = 1}|,

102 N. H. BSHOUTY AND L. BURROUGHS

where C ∩ N contains g ∈ C that are consistent on N . If no such h ∈ H exists, the
output can be anything.

When C ≡ H , we will just write C-MNA and C-MPA.
This paper studies the approximability (resp. non-approximability) of C/H -MNA and

C/H -MPA for a variety of classes C and H . That is, we are interested in determining for
which values of α the following are tractable (resp. hard).

α-Approximation of C/H -MNA

Input: Same as for C/H -MNA.
Output: Hypothesis h ∈ H s.t. h(y) = 1 for all (y, 1) ∈ P , and

|{(u, 0) ∈ N | h(u) = 0}| ≥ α max
g∈C∩P

|{(u, 0) ∈ N | g(u) = 0}|,

where C ∩P contains g ∈ C that are consistent on P . If no such h ∈ H exists, the output
can be anything.

α-Approximation of C/H -MPA

Input: Same as for C/H -MPA.
Output: Hypothesis h ∈ H s.t. h(y) = 0 for all (y, 0) ∈ N , and

|{(u, 1) ∈ P | h(u) = 1}| ≥ α max
g∈C∩N

|{(u, 1) ∈ P | g(u) = 1}|,

where C ∩ N contains g ∈ C that are consistent on N . If no such h ∈ H exists, the
output can be anything.

If the α-approximation of C/H -MNA (resp. C/H -MPA) is solvable in polynomial time,
we say that C/H -MNA (resp. C/H -MPA) is approximable within α. The constants 0 and
1 are in all classes C we study, so a hypothesis that agrees with all positive (or negative)
examples always exists.

1.1. Concept classes

We consider the following concept classes over the variable set X = {x1, . . . , xn}. Each
class contains the constants 0 and 1. With the exception of Ball, all classes are defined over
the Boolean domain.

Monomial is the set of conjunctions of literals over X .
Clause is the set of disjunctions of literals over X .
Halfspace is the set of functions of the form [a1x1+· · ·+an xn ≥ b] where a1, . . . , an, b ∈ R,

and [E] = 1 if E is true, [E] = 0 otherwise.

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 103

Ball is the set of functions of form [(a1 −x1)2 +· · ·+(an −xn)2 ≤ θ], where a1, . . . , an, θ ∈
R, and x1, . . . , xn take values from {0, 1, −1}.

Decision List is the set of functions of the form D(x1, . . . , xn) = (�1, c1), . . . , (�m, cm),
where �m is the constant 1, �1, . . . , �m−1 are literals, and c1, . . . , cm ∈ {0, 1}. Then

D(x) = ck if �1(x) = · · · = �k−1(x) = 0 and �k(x) = 1.
k-term DNF is the set of disjunctions of k terms (monomials), i.e., functions of the form

M1 ∨ · · · ∨ Mk where each Mi is a Monomial.
k-clause CNF is the set of conjunctions of k clauses.
k-CNF is the set of conjunctions of clauses, where each clause contains at most k literals.
k-DNF is the set of disjunctions of monomials, each containing at most k literals.
k-term MP (k-term multivariate polynomials) is the set of XORs of k terms (monomials).
XOR is the set of linear equations mod 2, i.e., functions of the form

∑n
i=1 a1x1 mod 2,

where each ai ∈ {0, 1}.
∩kC is the intersection of k concepts from class C, i.e., functions of the form f1 ∧ · · · ∧ fk

where each fi ∈ C.

1.2. Previous results

Valiant (1984) showed that k-CNF-MNA and k-DNF-MPA can be solved in polynomial
time. Since a Monomial is a 1-CNF, and a clause is a 1-DNF, the polynomial-time solvability
of Monomial-MNA and Clause-MPA are implied by Valiant’s result. Thus Monomial-MNA
and Clause-MPA are easier than their MA counterparts, which are NP-hard (Kearns &
Li, 1993), and not α-approximable within some constant α (Ben-David, Eiron, & Long,
2003; Bshouty & Burroughs, 2002b).

Höffgen, Simon, and Van Horn (1995) proved that it is NP-hard to r -approximate
Halfspace-MPA for any constant r > 0. Amaldi and Kann (1995) improved this by show-
ing that Halfspace-MPA and Halfspace-MNA cannot be approximated within nγ−1 for any
γ > 0 unless ZPP = NP. Pitt and Valiant (1988) showed that n-term DNF/Monomial-
MPA is not c-approximable for any constant c. Subsequent improvements to the non-
approximability of MAX INDEPENDENT SET (Håstad, 1996) improves their result as well, and
proves that n-term DNF/Monomial-MPA cannot be approximated within nγ−1 or |P|γ−1

unless ZPP = NP. So for these classes, MPA appears harder than MA, which has a 1
2 -

approximation algorithm. The result for n-term DNF/Monomial-MPA gives lower bounds
of nγ−1 and |N |γ−1 for n-clause CNF/Clause-MNA, by a kind of duality (see Lemma 3).

Blum and Rivest (1988) showed that ∩kHalfspace-MNA is as hard as coloring an n-vertex
k-colorable graph with O(k log n) colors. It has not yet been shown whether this coloring
problem is NP-hard, or tractable.

1.3. Our results

We extend the result of Pitt and Valiant (1988) for Monomial-MPA to k-term-DNF-MPA,
and show that it is not approximable within (n/k)γ−1 or (|P|/k)γ−1 for any γ > 0 unless
ZPP = NP. By the Duality Lemma 3, k-clause-CNF-MNA is not approximable within

104 N. H. BSHOUTY AND L. BURROUGHS

(n/k)γ−1 or (|N |/k)γ−1. Although Monomial-MNA is tractable (Valiant, 1984), we show
that k-term-DNF-MNA is not, even for k ≥ 2. Also, for any constant γ > 0, k-term-DNF-
MNA is not approximable within 16/17 + γ when k = 2, and not approximable within
21/22 + γ for larger k, unless P = NP.

We extend the result of Amaldi and Kann (1995), and show that C/H -MPA, for C, H ∈
{Halfspace, Decision List} cannot be approximated within nγ−1 or |P|γ−1 for any γ > 0,
and the MNA versions cannot be approximated within nγ−1 or |N |γ−1 unless ZPP =
NP. Under the same complexity assumption, we show that MNA for the intersection of k
Halfspaces is not approximable within (n/k)γ−1 or (|N |/k)γ−1, thus improving the result
of Blum and Rivest (1988).

We then give new hardness results for some other classes. We show that unless ZPP = NP,
for any γ > 0, Ball-MNA cannot be approximated within nγ−1 or |N |γ−1, Ball-MPA cannot
be approximated within nγ−1 or |P|γ−1, and MNA for the intersection of k Balls cannot be
approximated within (n/k)γ−1 or (|N |/k)γ−1.

For the class of XOR functions, we give a 1
2 -approximation algorithm for both XOR-

MPA and XOR-MNA. Then we show that there exists a c such that XOR-MNA cannot
be approximated within 1/2 + 2−(log n)c

and XOR-MPA cannot be approximated within
2/3+2−(log n)c

unless NP ⊆ RT I M E(nO(log log n)). We also show that for 2-term-MP (XOR
of two monomials), 2-term-MP-MNA cannot be approximated within 16/17 + γ for any
constant γ > 0 unless P = NP.

Negative results for these problems are summarized in Table 1.
The paper is organized as follows. In Section 2 we give some preliminary results for

MNA and MPA, for general concept classes, and give the results from the literature on
which we base our work. In Section 3 we give negative results for several specific concept
classes. In Section 4 we give positive and negative results for the XOR class.

2. Preliminaries

2.1. General results for MNA and MPA

In this section we give some general results for MNA and MPA.
Let Xm = {0, 1}m and X = ⋃

m Xm . Let Ct be a concept class over Xt and let C = ⋃
t Ct .

Let G be an ordered table of functions gm,i : Xm → {0, 1} for all m ≥ 0 and 1 ≤ i ≤ t(m),
where t : N → N. Let Gm = (gm,1, . . . , gm,t(m)). Define the concept class

Ct(m)(Gm) = {
f (gm,1, . . . , gm,t(n)) | f ∈ Ct(m)

}
,

and

C(G) =
⋃

m≥0

Ct(m)(Gm).

We will provide an example of a class C(G) after we prove the following.

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 105

Table 1. Negative results for MNA and MPA.

Negative Results

Problem Lower bounds Condition Where

Halfspace-MNA nγ−1, |N |γ−1 ZPP �= NP (ak)

Decision List-MNA nγ−1, |N |γ−1 ZPP �= NP Thm. 15

Halfspace-MPA nγ−1, |P|γ−1 ZPP �= NP (ak)

Decision List-MPA nγ−1, |P|γ−1 ZPP �= NP Thm. 15

∩kHalfspace-MNA (n
k)γ−1, (|N |

k)γ−1 ZPP �= NP Thm. 19

Ball-MNA nγ−1, |N |γ−1 ZPP �= NP Thm. 16

Ball-MPA nγ−1, |P|γ−1 ZPP �= NP Thm. 17

∩kBall-MNA (n
k)γ−1, (|N |

k)γ−1 ZPP �= NP Cor. 20

Clause-MNA nγ−1, |N |γ−1 ZPP �= NP (pvh)

Monomial-MPA nγ−1, |P|γ−1 ZPP �= NP (pvh)

2-term-DNF-MNA 16/17 + γ P �= NP Thm. 21

k-term-DNF-MNA 21/22 + γ P �= NP Thm. 22

k-clause-CNF-MNA (n
k)γ−1, (|N |

k)γ−1 ZPP �= NP Thm. 25

k-term DNF-MPA (n
k)γ−1, (|P|

k)γ−1 ZPP �= NP Thm. 25

XOR-MNA 1/2 + 2−(log n)c
(∗) Thm. 29

XOR-MPA 2/3 + 2−(log n)c
(∗) Thm. 30

2-term-MP-MNA 16/17 + γ P �= NP Thm. 26

(∗): NP �⊆ RTIME(nO(log log n)).
(ak): (Amaldi & Kann, 1995),
(pvh): (Pitt and Valiant, 1988; Håstad, 1996).

Lemma 2 (Composition Lemma). If C/H-MNA has an α(|N |)- (resp. β(n)-) approxi-
mation algorithm that runs in time T (n) then C(G)/H (G)-MNA has an α(|N |)- (resp.
β(t(n))-) approximation algorithm that runs in time T (t(n)). If C/H-MPA has an α(|P|)-
(resp. β(n)-) approximation algorithm that runs in time T (n) then C(G)/H (G)-MPA has
an α(|P|)- (resp. β(t(n))-) approximation algorithm that runs in time T (t(n)).

Proof: Let t = t(n) and gi = gn,i . We give the proof for MNA. The proof for MPA
is similar. Let A(n,P ∪ N) be an α(|N |)-approximation algorithm for C/H -MNA that
runs in time T (n). For h ∈ Ht , let hG(x) = h(g1(x), . . . , gt (x)). For x ∈ {0, 1}n let
xG = (g1(x), . . . , gt (x)). Define the following algorithm for C(G)/H (G)-MNA.

AlgorithmB
Input : P ∪ N ⊆ {0, 1}n × {0, 1}

CreatePG = {(yG, 1) | (y, 1) ∈ P} ⊆ {0, 1}t × {1}
CreateNG = {(yG, 0) | (y, 0) ∈ N } ⊆ {0, 1}t × {0}

106 N. H. BSHOUTY AND L. BURROUGHS

Run A(t,PG ∪ NG)togeth ∈ H

CreatehG = h(g1, . . . , gt)

ReturnhG

For each example (y, 1) ∈ P , we have hG(y) = h(g1(y), . . . , gt (y)), but since (g1(y), . . . ,
gt (y), 1) is an example in PG , and A is an algorithm for C/H -MNA, we have hG(y) = 1.
By a similar argument, hG agrees with k examples from N if and only if h agrees with
k examples from NG . Since A is an α(|NG |)-approximation algorithm with running time
T (n), and |NG | = |N |, B is an α(|N |)-approximation algorithm, with running time T (t).
If A’s approximation ratio depends on the dimension n, then the approximation ratio for B
depends on t(n), the dimension for PG ∪ NG .

As an example, consider the class C of monotone monomials (monomials that have no
negated literals). Let G be a table of functions gn,i with 1 ≤ i ≤ 2n defined by

gn,i (x1, . . . , xn) =
{

xi if 1 ≤ i ≤ n

x̄i−n otherwise.

Let f : X2n → {0, 1} be a monotone monomial, and define fG : Xn → {0, 1} by
fG(x1, . . . , xn) = f (gn,1(x1, . . . , xn), . . . , gn,2n(x1, . . . , xn)) = f (x1, . . . , xn, x1 . . . , xn).
Then fG is a monomial, Ct(n)(G) for t(n) = 2n is the class of monomials, and the Compo-
sition Lemma states that any α-approximation algorithm for Monotone-Monomial-MNA
gives an α-approximation algorithm for Monomial-MNA.

Let C be a concept class over {0, 1}n . We define the dual class Cd = { f (x) | f̄ (x) ∈ C},
where x = (x1, . . . , xn) and x = (x̄1, . . . , x̄n). Our unconventional use of the term “dual”
is borrowed from Pitt and Valiant (1988). Then C/H -MNA and Cd/H d -MPA are related
in the expected way:

Lemma 3 (Duality). C/H-MNA is α(|N |)-approximable if and only if Cd/H d-MPA is
α(|P|)-approximable.

We will also make use of the following trivial result.

Lemma 4. If C/H-MNA is not α-approximable then for any C ′ ⊇ C , C ′/H-MNA is
not α-approximable. In particular, if C ⊂ H and C/H-MNA is not α-approximable then
H-MNA is not α-approximable.

For classes that are PAC-learnable we prove the following bound.

Theorem 5. If C is PAC-learnable from H then there is a randomized α-approximation
algorithm for C/H-MNA for

α = c log |N |
|N | log log |N |

for any constant c.

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 107

Proof: Let T = P ∪ N be a training set. Let f ∈ C agree with all the examples in P
and a maximum number of examples in N . Let N ′ ⊆ N be the negative examples that f
agrees with. We now have two cases.

Case 1. |N ′| ≤ 1/α. In this case we can use the PAC learning algorithm to find a hypothesis
h ∈ H consistent with P and one example from N . That is, we run the algorithm on
P ∪ {(y, 0)} for all possible (y, 0) ∈ N with a uniform distribution and error ε =
1/(2 |P | + 2). The approximation ratio will be 1/|N ′| ≥ α.

Case 2. |N ′| ≥ 1/α. In this case we choose α|N | random examples N ′′ from N and
using the PAC learning algorithm, we find a consistent hypothesis for P ∪ N ′′. If we
do find a consistent hypothesis then the ratio is |N ′′|/|N ′| > |N ′′|/|N | = α. Now the
probability of success is at least

Pr[N ′′ ⊆ N ′] = (Pr[x ∈ N ′])|N
′′|

≥
(

1

α|N |
)α|N |

≥ 1

|N |O(c)
.

Therefore the expected time for this case is polynomial.
The algorithm tries Case 2 and if it fails after poly(N) trials, it applies Case 1.

It is easy to see using the techniques of Bshouty and Burroughs (2002a) that when the class
is PAC learnable and the VC-dimension of the class is constant then there is a polynomial
time algorithm that α-approximates C-MNA for any constant α.

The next result shows that if C/H -MNA has a 1 − β-approximation algorithm then
C/(∩k H)-MNA has a 1 − βk-approximation algorithm. Notice that this implies that if
C/H -MNA has an α-approximation algorithm then for any constant λ there is a Ĥ such
that C/Ĥ -MNA has a λ-approximation algorithm.

Theorem 6. If C/H-MNA has a 1−β-approximation algorithm then C/(∩k H)-MNA has
a 1 − βk-approximation algorithm.

Proof: Let A and B be 1 − β1 and 1 − β2-approximation algorithms for C/H1-MNA
and C/H2-MNA, respectively. We will give a new algorithm that 1 − β1β2-approximates
C/(H1 ∧ H2)-MNA. This will prove the result.

Let T = P ∪ N be a training set. We run A on P ∪ N and get h1 ∈ H1. Then we run
B on P ∪ N ′ where N ′ = {(x, 0) ∈ N |h1(x) �= f (x)} and get h2 ∈ H2. Then we output
h = h1 ∧ h2.

Let m be the maximum possible points in N that any f ∈ C can agree with, while being
consistent with P . The first hypothesis h1 agrees with γ1 ≥ (1 − β1)m points from N . The
second hypothesis h2 agrees with γ2 ≥ (1 − β2)(m − γ1) more points from N . Since h1

108 N. H. BSHOUTY AND L. BURROUGHS

and h2 are consistent on P , the function h = h1 ∧ h2 is also consistent on P and it agrees
with γ1 + γ2 points from N . This gives the ratio

γ1 + γ2

m
≥ γ1 + (1 − β2)(m − γ1)

m

= (1 − β2)m + β2γ1

m

≥ (1 − β2)m + β2(1 − β1)m

m
= 1 − β1β2.

From the theorem, we get this corollary.

Corollary 7. If C/H-MNA is 1−β-approximable then C/(∩k H)-MNA has a randomized,
polynomial-time algorithm when k = 1 + log |N |/ log(1/β).

Proof: When k = 1 + log |N |/ log(1/β) then 1 − βk > 1 − 1/|N | and the output
hypothesis is optimal.

On the other hand we have the following.

Theorem 8. If C/(∩k H)-MNA has an α-approximation algorithm then C/H-MNA has
an α/k-approximation algorithm.

If C/H-MNA has an α-approximation algorithm then (∩kC)/H-MNA has an α/k-
approximation algorithm.

Proof: Suppose C/(∩k H)-MNA has an α-approximation algorithm A. Let T = P ∪ N
be a training set. We run A and get some hypothesis h = h1 ∧ · · · ∧ hk . Then we choose i0

that maximizes |{x ∈ N |hi0 (x) = 0}|. Since A is an α-approximation algorithm we have
h(x) = 1 for all (x, 1) ∈ P and

|{(x, 0) ∈ N |h(x) = 0}| ≥ α max
f ∈C

|{(x, 0) ∈ N | f (x) = 0}|.

Since

|{(x, 0) ∈ N |h(x) = 0}| ≤ k|{(x, 0) ∈ N |hi0 (x) = 0}|

we have

|{(x, 0) ∈ N |hi0 (x) = 0}| ≥ α

k
max
f ∈C

|{(x, 0) ∈ N | f (x) = 0}|.

The result follows.

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 109

The second claim of the theorem can be proved in a similar way.

As a corollary we have the following.

Corollary 9. If C-MNA is not α-approximable then (∩kC)-MNA is not kα-approximable.

Proof: If C-MNA is not α-approximable then by Theorem 8, C/(∩kC)-MNA is not kα-
approximable. Then by Lemma 4, (∩kC)-MNA is not kα-approximable.

Now we give a negative result with the assumption that DNF is not PAC-learnable.
This result is implicit in many computational learning theory papers in different forms and
settings (see Blum et al., 1994, for example). Learning DNF is still one of the outstanding
open problems in computational learning theory. For people that believe that DNF is not
learnable these negative results are convincing enough that heuristic learning even for the
simplest classes is hard.

Theorem 10. If DNF is not PAC-learnable then for any constants c and γ < 1, no
n−c|P|γ−1 -approximation algorithm for Monomial/H-MPA exists for any class H.

Proof: Let α = n−c|P|γ−1. Suppose for some class H , Monomial/H -MPA has an α-
approximation algorithm A. We use A to PAC-learn DNF as follows. Let f = T1 ∨ T2 ∨
· · · ∨ Tm be the target DNF. We take a sample T = N ∪ P , whose size will be specified
later. Since f = 0 implies Ti = 0 and

1 = Pr
x∈P

[f = T1 ∨ · · · ∨ Tm] ≤
m∑

i=1

Pr
x∈P

[f = Ti]

there is Ti0 that agrees on all the points of N and agrees on at least |P|/m of the points of
P . We run A and get a function T ′

1 ∈ H that is consistent with N and agrees with α/m of
the points in P . We remove the points in P that T ′

1 agrees with. Let P1 be the remaining
points of P . Then |P1| ≤ (1 − α/m)|P|. We run the algorithm again for N ∪P1 and again
get T ′

2 ∈ H that agrees with all the points in N and α/m of the points in P1. We continue
as before. That is, we remove the points in P1 that agree with T ′

2 and get P2. Then we run
again the algorithm on N ∪ P2. Notice that |Pi | ≤ (1 − α/m)|Pi−1| and therefore after

k = m

α
log |P| = mnc|P|1−γ log |P|

iterations we find a consistent hypothesis T ′
1 ∨ · · · ∨ T ′

k for T = N ∪ P . By the Occam
Theorem (Blumer et al., 1987) it is enough to start from a sample T of size

|T | =
(

mnc

ε

) 1
1−γ

.

which is polynomial for constants c and γ < 1.

110 N. H. BSHOUTY AND L. BURROUGHS

Corollary 11. For C ∈ {Halfspace, Decision List, k-term DNF, k-term MP} if DNF is
not learnable then for any constant c and γ < 1 there is no n−c|P|γ−1-approximation
algorithm for C/H-MPA for any class H.

For C ∈ {Clause, k-clause CNF, Decision List} if DNF is not learnable then for any
constant c and γ < 1 there is no n−c|P|γ−1-approximation algorithm for C/H-MNA for
any class H.

Proof: Follows from Lemmas 3 and 4 because Monomial⊂ C .

On the other hand, in the next sections we will give a n1−k- approximation algorithm
for k-clause CNF-MPA and k-term DNF-MNA and a 1/2-approximation algorithm for
XOR-MPA and XOR-MNA.

2.2. Proving non-approximability results

In Sections 3 and 4 we give results of the form “Maximization problem 	 is not approx-
imable within α unless complexity class C has O(T)-time algorithms.” We prove such
a non-approximability result by reducing a C-hard problem
 to 	 such that it remains
C-hard to distinguish instances x of 	 with opt(x) > ξ from instances x with opt(x) < β,
where ξ and β satisfy αξ > β. T measures the time taken for the reduction plus the
polynomial time of the α-approximation algorithm.

Once a result is established for 	, results for other optimization problems � can be
achieved by demonstrating a polynomial-time, gap-preserving reduction from 	 to �. A
reduction f between maximization problems is gap-preserving if there exists factors ξ > β

and γ < λ such that for any instance x of 	 mapped to f (x) of �, we have

if opt(x) > ξ ⇒ opt(f (x)) > γ

if opt(x) < β ⇒ opt(f (x)) < λ.

Note that such a reduction proves that if it is hard to distinguish whether an instance x
of 	 has opt(x) > ξ or opt(x) < β, then � is hard to approximate within λ/γ . It is not
enough, however, to prove that if � has an λ/γ -approximation algorithm, then 	 has a β/ξ -
approximation algorithm. The non-approximability result is based on the ability to solve a
decision problem, while an approximability result must give a solution to an optimization
problem. For a reduction from 	 to � to be part of an approximation algorithm for 	,
there must be two total mappings, one from instances of 	 to instances of �, the other
from solutions of � to solutions of 	. Together, these mappings must achieve the stated
approximation ratio for 	. Papadimitriou and Yannakakis (1991) defined L-reductions
for this purpose. For our non-approximability results, however, the weaker reductions
suffice.

Our results in the next two sections build on non-approximability results proved for the
problems MAX INDEPENDENT SET, MAX CUT and MAX-k-CUT. We state the definitions of
these problems for reference. Then, in Theorem 12, we list the results on which we base our
work.

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 111

MAX INDEPENDENT SET

Input: Graph G = (V, E) on n = |V | vertices.
Output: Subset I ⊆ V of maximum cardinality such that for all (u, v) ∈ E , either u �∈ I

or v �∈ I .

MAX CUT

Input: Multigraph G = (V, E) on n = |V | vertices.
Output: Subset S ⊆ V that maximizes the number of edges (u, v) with exactly one

endpoint in S.

MAX-k-CUT

Input: Multigraph G = (V, E) on n = |V | vertices.
Output: Partition V1, . . . , Vk of V that maximizes the number of edges (u, v) such that u

and v are in different sets.

Theorem 12.

1. (Håstad, 1996) (MAX INDEPENDENT SET) For any constant γ > 0 there exist functions
c(n) and s(n) with s(n)/c(n) = nγ−1, such that if a polynomial-time algorithm can
distinguish whether a graph’s largest independent set has size at least c(n) or at most
s(n), then ZPP = NP.

2. (Håstad, 1997) (MAX CUT) There exists a method for generating graphs with 20m0 +
22m1 edges where m1 ≤ m0, such that for some small constants γ, ξ > 0, a maximum
cut in this graph has size at least (16−2γ)m0 + (18−2γ)m1, or at most (15+ ξ)m0 +
(17 + ξ)m1 edges, and it is NP-hard to distinguish the two cases.

3. (Bshouty & Burroughs, 2002a) (XOR-MA) There exists a method for generating a la-
beled example set I such that for some small constants c1,c2, either there exists an
XOR function that agrees with at least (1 − 1

(log n)c1)|I | examples, or no XOR function
can agree with more than (1

2 + 1
O(2(log n)c2)

)|I | examples. The two cases cannot be distin-
guished (and thus XOR-MA cannot be approximated within 1

2 + 1
2(log n)c2) in polynomial

time unless NP ⊆ RTIME(nO(log log n)). There is always an XOR function that agrees
with 1

2 |I | examples.

4. (Håstad, 1997) MAX CUT cannot be approximated within 16
17 +γ for any constant γ > 0

unless P = NP.
5. (Kann et al., 1996) There exist values c and s with s/c = 1 − 1

21k−25 such that it is
NP-hard to distinguish instances of MAX-k-CUT with optimal solutions of size at least
c from those with size at most s. Thus MAX-k-CUT cannot be approximated within
1 − 1

21k−25 + γ for any constant γ > 0 unless P = NP.

Item 5 is not explicit in Kann et al. (1996), but it follows from their reduction and item
2 above. Note that it includes the item 4 result when k = 2.

112 N. H. BSHOUTY AND L. BURROUGHS

We also use a result for the MAX k-COLORABLE INDUCED SUBGRAPH problem.

MAX k-COLORABLE INDUCED SUBGRAPH

Input: Graph G = (V, E) on n = |V | vertices.
Output: Subset V ′ ⊆ V of maximum cardinality such that the subgraph of G induced by

V ′ is k-colorable.

Panconesi and Ranjan (1993) show that when k is part of the input, MAX k-COLORABLE

INDUCED SUBGRAPH is as hard as MAX INDEPENDENT SET. We show that for every fixed k
MAX k-COLORABLE INDUCED SUBGRAPH is similarly hard.

Theorem 13. For all γ > 0 and all integer constants k > 0 there exist functions c′(n)
and s ′(n) with s ′(n)/c′(n) = (n/k)γ−1 such that unless ZPP = NP, no polynomial-time
algorithm can distinguish whether an instance of MAX k-COLORABLE INDUCED SUBGRAPH

has a k-colorable subgraph on at least c′(n) vertices, or if the largest k-colorable sugraph
has at most s ′(n) vertices.

Proof: We give a reduction from MAX INDEPENDENT SET to MAX k-COLORABLE INDUCED

SUBGRAPH (which looks for k disjoint independent sets). The reduction is easier to see in the
complement graphs, where independent sets become cliques. Given a complement graph
Ḡ, we simply make k disjoint copies of it to get a graph Ḡk . Clearly if Ḡ has a clique of
size λ then Ḡk contains k disjoint cliques on a total of kλ vertices. The converse is also true
since any clique in Ḡk must contain vertices from only a single copy of Ḡ.

If Ḡ contains n vertices, then Ḡk contains M = nk vertices. Thus distinguishing M-
vertex graphs that have k-colorable subgraphs on at least c′(M) = c(n)k vertices from
those whose largest k-colorable subgraphs have at most s ′(M) = s(n)k vertices, is just as
hard as distinguishing graphs with independent sets of size at least c(n) from those graphs
with independent sets of size at most s(n). The result then follows from Theorem 12, part
1, since s ′(M)/c′(M) = nγ−1 = (M/k)γ−1.

The reduction above also holds for some non-constant values of k. Specifically, if k(n)
is an integral function with 1 ≤ k(n) ≤ M1−c for some constant c > 0, then the reduction
above remains polynomial-time, and we get the following.

Corollary 14. For all γ > 0 and 1 ≤ k(n) < n1−c for some c > 0, there exist functions
c(n) and s(n) with s(n)/c(n) = (n/k(n))γ−1 such that unless ZPP = NP, no polynomial-
time algorithm can distinguish whether an instance of MAX k(n)-COLORABLE INDUCED

SUBGRAPH has a k(n)-colorable subgraph on at least c(n) vertices, or if the largest k(n)-
colorable sugraph has at most s(n) vertices.

3. Negative results

In this section we give lower bounds on the approximability of MPA and MNA for several
familiar concept classes. We use the following notation throughout our proofs.

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 113

Notation 1. Let puv ∈ {0, 1}n have 0s in positions u and v, and 1s everywhere else.
Similarly let pu have a 0 in position u and 1s everywhere else. Let zuv ∈ {0, 1}n have 1s in
positions u and v, and 0s everywhere else. Let zu have a 1 in position u and 0s everywhere
else.

3.1. Decision lists, Halfspaces and balls

Amaldi and Kann (1995) showed that Halfspace-MPA and Halfspace-MNA are as hard to
approximate as MAX INDEPENDENT SET. The next theorem expands this result to learning
Halfspaces from Decision Lists and vice versa.

Theorem 15. For all γ > 0, Decision List-MPA, Decision List/Halfspace-MPA and Half-
space/Decision List-MPA cannot be approximated within nγ−1 or |P|γ−1 unless ZPP = NP.
For all γ > 0 Decision List-MNA, Decision List/Halfspace-MNA and Halfspace/Decision
List-MNA cannot be approximated within nγ−1 or |N |γ−1, unless ZPP = NP.

Proof: We use the fact (see Höffgen, Simon, & Van Horn, 1995, for example) that Decision
List ⊆ Halfspace. Then we give a reduction from MAX INDEPENDENT SET to C/H -MPA,
where C, H ∈ {Decision List, Halfspace}.

Let G = (V, E) be an instance of MAX INDEPENDENT SET with |V | = n. Create

N = {(0, 0)} ∪ {(zuv, 0) | (u, v) ∈ E} and P = {(zu, 1) | u ∈ V }.

Let S = {v j1 , . . . , v jk } ⊆ V be a maximum independent set in G, and C = {vi1 , . . . , vi�} =
V \ S be the corresponding vertex cover. Define decision list D as

D(x1, . . . , xn) = (xi1 , 0), . . . , (xi� , 0), (x j1 , 1), . . . , (x jk , 1), (1, 0).

Note that D agrees with (0, 0). Since C is a vertex cover, D agrees with all examples (zuv, 0)
fromN . Furthermore, D agrees with all examples (zu, 1) inP where u is in the independent
set S. Thus D agrees with |S| positive examples.

Now let H (x1, . . . , xn) = [a1x1 + · · · + an xn ≥ b] be a halfspace that is consis-
tent with N and agrees with a maximum number of examples from P . Let I = {u |
H agrees with (zu, 1)}. Then I is an independent set in G, which we prove by contradic-
tion: Suppose u, v ∈ I and (u, v) ∈ E . Since (zu, 1) and (zv, 1) agree with H , we have
au ≥ b and av ≥ b, which gives au + av ≥ 2b. Since example (0, 0) agrees with H , we
have b > 0 which implies au + av ≥ 2b > b. But then H disagrees with negative example
(zuv, 0) – a contradiction. So I is an independent set in G, and thus H agrees with |I | ≤ |S|
positive examples.

Thus a Decision List or Halfspace which agrees with all negative examples, is optimal
iff it agrees with |S| positive examples, where S is the maximum independent set in G. The
results for the MPA problems listed above then follow from Theorem 12, part 1.

114 N. H. BSHOUTY AND L. BURROUGHS

Note that halfspace H we describe above would satisfy the proof even if the inequality in
the halfspace function were replaced with a strict inequality. The dual of that class is again
Halfspace. Decision List is its own dual class, so the results listed above for MNA follow
by the Duality Lemma 3.

Balls are formulas of the form B(x1, . . . , xn) = [(w1 − x1)2 + · · · + (wn − xn)2 ≤ θ],
where x1, . . . , xn take values from {0, 1, −1}. On the Boolean domain, Ball and Halfspace
are equivalent classes. That is, the ball above, when restricted to the {0, 1}n domain, is
equivalent to the halfspace H (x1, . . . , xn) = [a1x1 + · · · + an xn ≥ b] for wi = (ai + 1)/2
and θ = −b +∑

i w2
i . Thus the reduction of Theorem 15 gives the following result for Ball

over {0, 1, −1}n .

Theorem 16. For all γ > 0, Ball-MNA cannot be approximated within nγ−1 or within
|N |γ−1 unless ZPP = NP.

Theorem 17. For all γ > 0, Ball-MPA cannot be approximated within nγ−1 or within
|P|γ−1 unless ZPP = NP.

Corollary 18. For all γ > 0, Halfspace/Ball-MPA and Decision List/Ball-MPA cannot
be approximated within nγ−1 or within |P|γ−1, and Halfspace/Ball-MNA and Decision
List/Ball-MNA cannot be approximated within nγ−1 or within |N |γ−1, unless ZPP = NP.

3.2. Neural nets: Conjunction of k halfspaces

Combining the result of Amaldi and Kann (1995) and Theorem 8, we have that ∩kHalfspace-
MNA cannot be approximated within knγ−1 unless ZPP = NP. We improve that slightly
in the next Theorem.

Theorem 19. For all γ > 0, ∩kHalfspace-MNA cannot be approximated within (n/k)γ−1

or within (|N |/k)γ−1 unless ZPP = NP.

Proof: Let G = (V, E) be an instance of MAX k-COLORABLE INDUCED SUBGRAPH. The
instance of ∩kHalfspace-MNA will be

P = {(0, 1)} ∪ {(zuv, 1) | (u, v) ∈ E} and N = {(zu, 0) | u ∈ V }.

Let V ′ ⊆ V induce a k-colorable subgraph with k-coloring χ : V ′ → {1, . . . , k}. Let

f (x1, . . . , xn) =
k∧

i=1

[
a(i)

1 x1 + · · · + a(i)
n xn ≥ Ai

]

where A1 = · · · Ak = −1 and a(i)
u = −2 if u ∈ V ′ and χ (u) = i , a(i)

u = 3 otherwise. Clearly
f agrees with example (0, 1). Now consider (zuv, 1). Since u and v cannot be the same color,

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 115

we do not have a(i)
u = a(i)

v = −2, thus a(i)
u + a(i)

v ≥ 1 ≥ Ai for all i , which implies f agrees
with (zuv, 1). For the (zu, 0) examples, note that if u �∈ V ′ we have a(i)

u = 3 �< Ai for all
i , and thus (zu, 0) does not agree with f . For u ∈ V ′ there exists an i such that χ (u) = i
and since a(i)

u = −2 < Ai , the example (zu, 0) does agree with f . So f agrees with |V ′|
examples.

Now suppose g(x1, . . . , xn) = ∧k
i=1[b(i)

1 x1 +· · ·+b(i)
n xn ≥ Bi] agrees with all examples

in P and a maximum number of examples in N . Let Ṽ = {u | g(zu) = 0} and χ :
Ṽ → {1, . . . , k} be defined by χ (u) = i if and only if i is the smallest index such that
b(i)

u < Bi . Now suppose u, v ∈ Ṽ and (u, v) ∈ E and χ (u) = χ (v) = i . This implies that
b(i)

u < Bi and b(i)
v < Bi . Since g agrees with (0, 1) we must also have Bi < 0. But then

b(i)
u + b(i)

v < 2Bi < Bi , which contradicts g’s agreement with example (zuv, 1). Thus χ is a
valid coloring of V ′, and graph G has a k-colorable subgraph of size equal to the negative
agreement.

So G has a k-colorable subgraph of size t if and only if there is a function in ∩kHalfspace
consistent with P that agrees with t examples in N . The result follows from Theorem 14.

Corollary 20. For all γ > 0, ∩kBall-MNA cannot be approximated within (n/k)γ−1 or
within (|N |/k)γ−1 unless ZPP = NP.

3.3. DNF and CNF

For k-term DNF and k-clause CNF we have the following.

Theorem 21. For all γ > 0, 2-term-DNF-MNA and 2-clause CNF-MPA cannot be ap-
proximated within 16

17 + γ unless P = NP.

Proof: We consider 2-term-DNF-MNA. Let G = (V, E) be an instance of MAX CUT.
Create

P = {(pu, 1) | u ∈ V } and N = {(puv, 0) | (u, v) ∈ E}.

Let S ⊆ V cut k edges in G. Let fS(x1, . . . , xn) = m1 ∨ m2 where

m1 =
∏

u∈S

xu, m2 =
∏

u �∈S

xu .

Then since each xu appears in just one monomial, fS agrees with all the (pu, 1) examples.
Furthermore, fS agrees with precisely those examples (puv, 0) for which xu and xv appear
in different monomials. So fS agrees with k examples in N .

Now, let f (x1, . . . , xn) = M1 ∨ M2 be a 2-term DNF that agrees with all examples in
P , and a maximum number of examples in N . Let S f = {u | M1(pu) = 1}. Suppose
(puv, 0) agrees with f . Since f agrees with (pu, 1) and (pv, 1), we have Mi (pu) = 1 and
M j (pv) = 1 for i, j ∈ {1, 2}. Since Mi (puv) = 0 = M j (puv), and puv differs from pu

116 N. H. BSHOUTY AND L. BURROUGHS

only in position v, and similarly, puv and pv differ only in position u, this implies that Mi

contains xv while M j contains xu . If Mi also contains xu (likewise, M j also contains xv),
then Mi (pu) = 0 (M j (pv) = 0), a contradiction. So i �= j and (u, v) is cut by S f . Thus if
f agrees with k examples from N , there is a cut of size k in G.

So a 2-term DNF agrees with k negative examples if and only if G has a cut of size k.
The result follows from the hardness of MAX CUT.

The proof above extends to general k using the MAX-k-CUT result of Kann et al. (1996).
This would prove that k-term DNF-MNA and k-clause CNF-MPA cannot be approximated
within 1 − 1

21k−25 + γ unless P = NP. The lower bound approaches 1 as k increases. This
seems intuitively correct, since the more terms a DNF has, the more flexible it is in adapting
to the character of the sample. However, we note that in the proof of Kann et al. (1996),
k always remains polynomially smaller than the dimension n. For such values of k, we
provide the following lower bound that is independent of k.

Theorem 22. For all constants γ ,δ > 0 and every even k < n1−δ , k-term-DNF-MNA and
k-clause CNF-MPA cannot be approximated within 21

22 + γ unless P = NP.

Proof: We give a reduction from MAX CUT to k-term-DNF-MNA. Let G = (V, E) be an
instance of MAX CUT as described in Theorem 12, part 2. We will create examples (p, b)
where p will have length |V | k

2 . We will view p as being the concatenation of k
2 blocks,

each of length |V |. Let 1(j) ∈ {0, 1} k
2 |V | have 1s in all block j positions, and 0s elsewhere

(i.e., 1(1) = 1|V |0|V | · · · 0|V |, 1(2) = 0|V |1|V |0|V | · · · 0|V |, etc.). Let p(j)
u have 1s in all block

j positions except for a 0 in position u, and have 0s in all other blocks. Similarly, let p(j)
uv

have 1s in all block j positions except for 0s in positions u and v. All blocks other than j
contain 0s. Finally, let 0 = 0

k
2 |V | be the zero vector. Create the following example set:

P = {(1(j), 1) | j = 1, . . . , k/2} ∪ {
(p(j)

u , 1)
∣
∣ j = 1, . . . , k/2, u ∈ V

}
,

N = {
(p(j)

uv , 0)
∣
∣ j = 1, . . . , k/2, (u, v) ∈ E

} ∪ {(0, 0)}.

Example (0, 0) appears λ = k
2 (5m0 + 5m1) times. All other examples appear once.

Let S be a cut of β edges in G, and define

f
(
x1,1, . . . , x|V |, k

2

) =
k/2∨

j=1

(
∏

u∈S

xu, j ∨
∏

u �∈S

xu, j

)

.

Then f agrees with all the positive examples and the (0, 0) examples. It agrees with (p(j)
uv , 0)

iff (u, v) ∈ E is cut by S. Thus f agrees with all the positive examples and λ+ k
2β negative

examples.
Now, let g = M1 ∨ · · · ∨ Mk agree with all the positive examples and an optimal number

of negative examples. If g does not agree with (0, 0), then it agrees with at most k
2 |E |

negative examples.

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 117

Assume now that g agrees with (0, 0), which implies that each Mi contains at least one
positive literal. If some Mi contains positive literals from different blocks, then, since the
1s in each example vector are confined to a single block, Mi is 0 on all the example vectors,
and is thus redundant. So assume w.l.o.g. that the positive literals in each Mi are from the
same block. We will say that Mi represents block j if Mi ’s positive literals are from block j .
Note that Mi (p(j)) = 0 if Mi does not represent block j . In order to agree with all (p(j)

u , 1),
each block j must be represented by at least one Mi . If just one Mi represents block j ,
then Mi contains at least one positive literal xu, j , and we have g(p(j)

u) = Mi (p(j)
u) = 0, a

contradiction. Therefore, each block is represented by at least two Mi s. Since there are k/2
blocks, and k Mi s, each block is represented by exactly two Mi s.

Now let’s concentrate on block j . Suppose it’s represented by Mi and M�. A positive
literal xu, j cannot be in both monomials or we have Mi (p(j)

u) = M�(p(j)
u) = g(p(j)

u) = 0. So
each positive, block j literal is in at most one of Mi , M�. If xu, j appears in neither monomial,
it can be added to Mi without affecting the positive agreement (we still have m�(p(j)

u) = 1),
but possibly increasing negative agreement. So assume w.l.o.g. that each positive literal
xu, j appears in exactly one of Mi , M�. Then g(p(j)

uv) = 0 if and only if xu, j and xv, j appear
in different monomials. The number of agreements with the (p(j)

uv , 0) examples thus gives
the size of a cut in G by setting S = {u | xu, j ∈ Mi }. Thus g can agree with at most
λ+ k

2β examples. Note that since β ≥ 15m0 + 17m1 and λ = k
2 (5m0 + 5m1), this is at least

k
2 (20m0 + 22m1), which is the maximum number of negative examples that a k-term DNF
can agree with if it disagrees with (0, 0).

So G has a cut of size β if and only if there exists a k-term DNF that agrees with all the
positive examples, and λ + k

2β negative examples. By Theorem 12, part 2, this implies that
it is NP-hard to α-approximate k-term DNF-MNA if

k

2
((20 + ξ)m0 + (22 + ξ)m1) < α

k

2
((21 − 2γ)m0 + (23 − 2γ)m1),

i.e., if α < 21
22 + γ ′. The vector dimension is n = k

2 |V |, and for this to be a polynomial
reduction, we require k < n1−δ for some δ > 0.

We now show the following positive result.

Theorem 23. There is an n1−k-approximation algorithm for k-term DNF-MNA and k-
clause CNF-MPA.

The proof will use the following Lemma. Define Monomial∪G to be the set {T ∨ g |
T ∈ Monomial, g ∈ G}.

We first prove

Lemma 24. Let G be a set of polynomial number of functions. Then (Monomial ∪G)-MNA
is in P.

Proof: Let P ∪N be an instance for Monomial∪G-MNA. Suppose T ∨ g is the optimal
function. Let Pg = {(x, 1) ∈ P|g(x) = 1} and Tmax is the largest possible term that is

118 N. H. BSHOUTY AND L. BURROUGHS

consistent with P\Pg . Notice first that since T is consistent with P\Pg we must have
Tmax ⇒ T . If for some (y, 0) ∈ N , (T ∨ g)(y) = 0 then (Tmax ∨ g)(y) = 0 and therefore
Tmax ∨ g is also optimal. Therefore, the algorithm can just exhaustively search Tmax ∧ g as
follows.

1. For all g ∈ G
2. Define Pg = {(x, 1) ∈ P|g(x) = 1}.
3. Find the maximal possible term Tmax consistent with P\Pg .
4. W ← {g ∨ Tmax}
5. Find an h ∈ W that minimizes the error.

This algorithm runs in polynomial time when |G| is polynomial.

Now we are ready to prove the theorem.

Proof of Theorem 23: Let k-Clause be the set of all clauses that contain at most k literals.
Notice that every k-term DNF, f = T1 ∨ T2 ∨ · · · ∨ Tk can be written as

f =
∧

l2∈T2,...,lk∈Tk

(T1 ∨ l2 ∨ l3 ∨ · · · ∨ lk)

where li is a literal in Ti for i = 2, 3, . . . , k. Therefore,

k-term DNF ⊆ ⋂nk−1

(Monomial ∪ (k − 1)-Clause).

By Lemma 24 (Monomial ∪(k − 1)-Clause)-MNA is in P (so it has an α-approximation
algorithm for α = 1). By Theorem 8 we have (k-term DNF/Monomial∪(k − 1)-Clause)-
MNA has an n1−k-approximation algorithm. Since (Monomial ∪(k −1)-Clause) ⊂ k−term
DNF, the same algorithm is an n1−k-approximation algorithm for k-term-DNF-MNA.

The result for k-clause CNF-MPA follows from Lemma 3.

Theorem 25. For all γ > 0, k-clause CNF-MNA and k-term DNF-MPA cannot be ap-
proximated within (n/k)γ−1 unless ZPP = NP.

Proof: This is similar to the proofs for ∩kBall and ∩k Halfspace. We use the sample
P = {(zuv, 1) | (u, v) ∈ E},N = {(zu, 0) | u ∈ V }. If the graph has k independent sets
S1, . . . , Sk , then the k-term CNF

(
∨

u �∈S1

xu

)

∧ · · · ∧
(

∨

u �∈Sk

xu

)

agrees with all (zuv, 1) ∈ P because each clause contains either literal xu or xv . If u ∈ Si

for some i , then the i th clause has only positive literals which do not include xu , and is zero

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 119

on pu . If u �∈ Si for all i , then all clauses contain xu and thus the function is 1 on xu . So the
CNF agrees with all examples in P and |V1| + · · · + |Vk | examples in N .

Now let f = c1 ∧ · · · ∧ ck agree with all examples in P and a maximum number of
examples in N . Let Vi contain all vertices u such that ci (zu) = 0. Suppose u, v ∈ Vi where
(u, v) ∈ E . Then since ci (zu) = 0, the literals in ci are among {x̄u, x� : � �= u}. Since we
also have ci (zv) = 0, the literals in ci are among {x� : � �∈ {u, v}}. But then ci (zuv) = 0, a
contradiction. So V1, . . . , Vk are k disjoint independent sets whose total cardinality equals
the total negative agreement of f .

So there is a k-clause CNF that agrees with all positive and t negative examples if and
only if G has a k-colorable subgraph on t vertices. The result follows from Theorem 14.

3.4. 2-term MP

Theorem 26. For any γ > 0, 2-term-MP-MNA cannot be approximated within 16
17 + γ

unless P = NP.

Proof: Let G = (V, E) be an instance of MAX CUT. The instance of 2-term-MP-MNA
will be

P = {(pu, 1) | u ∈ V } and N = {(puv, 0) | (u, v) ∈ E}.

Let S ⊆ V cut k edges in G and let fS(x1, . . . , xn) = ∏
u∈S xu ⊕ ∏

u �∈S xu . Then fS

agrees with all (pu, 1) since fS contains one monotone monomial with xu and one without.
Furthermore, for each (u, v) ∈ E cut by S, one monomial of fS contains xu while the other
contains xv , so fS agrees with (puv, 0). Thus fS agrees with k examples in N .

Now, let f (x1, . . . , xn) = M0 ⊕ M1 agree with all examples in P and a maximum
number of examples in N . No literal can appear in both monomials. If xu is in both, then
M0(pu) = M1(pu) = 0. If x̄u is in both, then M0(pw) = M1(pw) = 0 for each w �= u. Both
cases contradict f ’s agreement with P . Suppose now that xu appears in neither monomial.
Since f agrees with (pu, 1), w.l.o.g. let M0(pu) = 0 and M1(pu) = 1. Let M ′

0 = M0xu (i.e.,
add literal xu to M0) and set f ′ = M ′

0 ⊕ M1. This change does not affect the agreement with
P . Suppose it harms the negative agreement, i.e., for some edge (a, b), we have f (pab) = 0
but f ′(pab) = 1. Since M ′

0 ⇒ M0, this implies M0(pab) = 1 and M ′
0(pab) = 0 So pab has

a 0 in position u and is thus puv for some v. But since neither M0 nor M1 contained xu ,
we have M1(pv) = M1(puv) = 1 = M0(pv) = M0(puv), which contradicts f ’s agreement
with (pv, 1). So each xu appears in exactly one monomial.

Let S f = {u | M1(pu) = 1}. Suppose u, v ∈ S f . Then M1(pu) = M1(pv) = 1 and
M0(pu) = M0(pv) = 0. This implies M1 contains neither xu nor xv , which in turn implies
that M0 contains both xu and xv . Then M1(puv) = 1 and M0(puv) = 0 and (puv, 0) does
not agree with f . By symmetry, this is also true if u, v �∈ S. Now suppose u ∈ S and v �∈ S.
Then M1(pu) = 1, M1(pv) = 0, M0(pu) = 0 and M0(pv) = 1, which implies xu is in M0

and xv is in M1. Thus M1(puv) = M0(puv) = 0 and (puv, 0) agrees with f . So the number
of edges cut by S f is exactly the number of examples in N that agree with f .

120 N. H. BSHOUTY AND L. BURROUGHS

So G has a cut of size k if and only if there exists a 2-term-MP that agrees with all
examples in P and k examples in N . Therefore 2-term-MP-MNA is at least as hard as MAX

CUT. The result follows from Theorem 12, part 2.

4. XOR

In this section we give upper and lower bounds for XOR-MNA, and XOR-MPA.

Theorem 27. XOR-MNA and XOR-MPA are 1
2 -approximable.

Proof: We give the proof for XOR-MNA. XOR-MPA is similar.
For an instance P ∪ N of XOR-MNA, a valid hypothesis is either the constant 1 func-

tion, or an XOR formula h(x1, . . . , xn) = ∑n
i=1 ai xi mod 2, which is fully defined by its

coefficients a1, . . . , an ∈ {0, 1}. Each example (y, b) ∈ P ∪ N for y = (y1, . . . , yn) and
y1, . . . , yn, b ∈ {0, 1}, puts a linear constraint cy(a1, . . . , an) :

∑n
i=1 ai yi = b (mod 2) on

these coefficients. The following algorithm finds a hypothesis that satisfies all the constraints
given by P , and at least half the optimal number of constraints given by N .

Input: P ∪ N given as sets LP , LN of linear constraints
1 If LP is inconsistent,
2 Return the constant function h(x1, . . . , xn) = 1.
3 Else
4 Let r be the rank of LP
5 Find SP = {a j = s j (t1, . . . , tn−r) | j = 1, . . . , n}, a general

solution for LP in the Boolean parameters t1, . . . , tn−r

6 Build L ′
N = {e ∈ LN | LP ∪ {e} is feasible.}

7 Replace each equation e(a1, . . . , an) ∈ L ′
N with an equation

e′(t1, . . . , tn−r) by substituting s j (t1, . . . , tn−r) in place of
a j for j = 1, . . . , n.
(Treat L ′

N as a multiset. Do not delete duplicates).
8 For i ∈ {1, . . . , (n − r)} do
9 Let Ei ⊆ L ′

N be the multiset of equations from L ′
N

whose satisfiability depends only on parameter ti .
10 Choose b ∈ {0, 1} such that at least half the equations

in Ei are satisfied by setting ti = b
11 Replace ti with b in all the equations in L ′

N ∪ SP
12 Return h(x1, . . . , xn) = ∑n

i=1 ai xi , for a1, . . . , an given by SP .

The algorithm first checks that there are no contradictions among the constraints given by
the examples in P . If LP is inconsistent, then no equation

∑n
i=1 ai xi (mod 2) can agree

with all examples in P . In this case, the only solution is the constant 1 function. This is the
optimal solution.

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 121

Since the constraints are linear, Gaussian elimination can be used to check the consistency
of LP , as well as to find its reduced row echelon form, from which a parametrized solution
SP can be extracted.

If an equation e ∈ LN arising from an example (y, 0) ∈ N is contradicted by the
constraints in LP (that is, LP ∪ {e} is infeasible), then no hypothesis that satisfies all the
examples in P can also agree with (y, 0). We remove all such e at line 6. The number of
remaining equations from LN gives an upper bound on the number of negative examples
from N that a hypothesis can agree with, while also agreeing with all examples in P .

At line 7, each equation in L ′
N is subjected to the constraints of LP by substituting each

variable a j with its parametrized equivalent s j (t1, . . . , tn−r) from SP . It should be clear
that any Boolean assignment to the parameters t1, . . . , tn−r will give (via SP) a Boolean
assignment to a1, . . . , an that will satisfy all the equations inP . At lines 8–11, the algorithm
sets a parameter ti to 0 or 1, depending on which value will satisfy the larger number of
equations in Ei (equations from L ′

N that contain the single parameter ti . Since we replace
parameters with their assigned value on each iteration, every equation in L ′

N will be placed
in Ei on some iteration i). At each iteration i , at least as many equations are satisfied by the
choice of ti , as are left unsatisfied by it. Therefore, by line 12, at least half of the equations
in L ′

N (that is, at least half the optimal number) are satisfied.
The hypothesis h(x1, . . . , xn) = ∑n

i=1 ai xi mod 2 returned at line 12 agrees with an
example (y, b) ∈ P ∪ N for y = (y1, . . . , yn) if and only if the coefficients a1, . . . , an

satisfy the constraint c(a1, . . . , an) :
∑n

i=1 ai yi = b. So h agrees with all (y, 1) ∈ P and
at least half the optimal number of (y, 0) ∈ N . Therefore, this is a 1/2-approximation
algorithm for XOR-MNA.

We now may apply Corollary 7 to get the following.

Theorem 28. XOR/(∩k XOR)-MNA and XOR/(∪k ′
XOR)-MPA for k = 1 + log |N | and

k ′ = 1 + log |P| are in P.

Theorem 29. For some small constant c, XOR-MNA cannot be approximated within
1
2 + 1

2(log n)c unless NP ⊆ RT I M E(nO(log log n)).

Proof: We reduce XOR-MA to XOR-MNA. Let I ⊆ {0, 1}n × {0, 1} be an instance of
XOR-MA. We create an instance P ∪ N ⊆ {0, 1}n+1 × {0, 1} of XOR-MNA as follows.
For each example (a, b) in I , put an example (ab, 0) in N (that is, append label b to the
vector a and label the resulting vector 0). Then set P = {(0n1, 1)}. Note that any XOR
function �(x1, . . . , xn+1) consistent withP must be �(x1, . . . , xn+1) = f (x1, . . . , xn)⊕xn+1

for some other XOR function f . Now, for each example (ab, 0) that agrees with �, we
have f (x1, . . . , xn) = b, and for each example (ab, 0) that does not agree with �, we
have f (x1, . . . , xn) �= b. Thus an α-approximation algorithm for XOR-MNA gives an α-
approximation algorithm for XOR-MA (find � and return f). The result then follows from
the non-approximability of XOR-MA, Theorem 12, item 3.

Theorem 30. For some small constant c, XOR-MPA cannot be approximated within 2
3 +

1
2(log n)c unless NP ⊆ RT I M E(nO(log log n)).

122 N. H. BSHOUTY AND L. BURROUGHS

Proof: We give a reduction from XOR-MA to XOR-MPA. Let I ⊆ {0, 1}n × {0, 1}
be an instance of XOR-MA as described in Theorem 12, item 3. We create an instance
P ∪ N ⊆ {0, 1}n+1 × {0, 1} of XOR-MPA as follows. For each (a, b) ∈ I , we put an
example (ab̄, 1) inP . We add toP , 1

2 |I | copies of example (0n1, 1). We setN = {(0n+1, 0)}.
Now, let f (x1, . . . , xn+1) be an XOR function that agrees with (0n+1, 0) and a maximum
number of the positive examples. Without loss of generality, f is not a constant function. If
f disagrees with example (0n1, 1), then it agrees with at most |I | examples. On the other
hand, if f agrees with (0n1, 1), then by Theorem 12 it agrees with at least |I | examples.
So assume w.l.o.g. f agrees with (0n1, 1). This implies that f = g(x1, . . . , xn) ⊕ xn+1

for some XOR function g. Then for each example (ab̄, 1) that agrees with f , we have
g(a) ⊕ b̄ = 1, which implies g(a) = b. For each example (ab̄, 1) that does not agree with
f , we have g(a) �= b. So f agrees with k + 1

2 |I | examples in P if and only if g agrees with
k examples from I . If XOR-MPA has a polynomial-time β-approximation algorithm where
β(1 − 1

(log n)c1 + 1
2) > 1

2 + 1
2(log n)c2 + 1

2 , then by Theorem 12 NP ⊆ RTIME(nO(log log n)). The
result follows.

In the reduction above, we set N = {(0n+1, 0)} to ensure that optimal f is not the
constant 1 function (recall that we define the XOR class to contain the constant 1). If we
remove the constant 1 from our definition of XOR, the proof above works with N = φ.
The resulting instance (with positive examples only) is an instance of the MAX WEIGHT

problem discussed by Itoh (2000), for which we seek a codeword whose Hamming weight
(number of 1s) is as large as possible. Itoh showed that MAX WEIGHT cannot be approximated
within 9

10 , unless P = NP. Our result improves this to 2
3 + 1

2(log n)c under the assumption that
NP �⊆ RTIME(nO(log log n)).

Acknowledgments

We would like to thank the anonymous referees for their helpful comments.

References

Amaldi, E., & Kann, V. (1995). The complexity and approximability of finding maximum feasible subsystems of
linear relations. Theoretical Computer Science, 147:1/2, 181–210.

Angluin, D., & Laird, P. D. (1987). Learning from noisy examples. Machine Learning, 2:4, 343–370.
Bartlett, P. L., & Ben-David, S. (1999). Hardness results for neural network approximation problems. In Proceed-

ings of the 4th European Conference on Computational Learning Theory (pp. 50–62).
Ben-David, S., Eiron, N., & Long, P. M. (2003). On the difficulty of approximately maximizing agreements.

Journal of Computer and System Sciences, 66:3, 496–514.
Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., & Rudich, S. (1994). Weakly learning DNF and char-

acterizing statistical query learning using Fourier analysis. In Proceedings of the 26th Annual ACM Symposium
on Theory of Computing (pp. 253–262).

Blum, A. L., & Rivest, R. L. (1988). Training a 3-node neural network is NP-complete. In Proceedings of the 1988
Workshop on Computational Learning Theory (pp. 9–18).

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam’s razor. Information Processing
Letters, 24:6, 377–380.

MAXIMIZING AGREEMENTS WITH ONE-SIDED ERROR 123

Bshouty, N. H., & Burroughs, L. (2002a). Bounds for the minimum disagreement problem with applications
to learning theory. In Proceedings of the 15th Annual Conference on Computational Learning Theory (pp.
271–286).

Bshouty, N. H., & Burroughs, L. (2002b). Maximizing agreements and coagnostic learning. In Proceedings of the
13th International Conference on Algorithmic Learning Theory.

Håstad, J. (1996). Clique is hard to approximate within n1−ε . In Proceedings of the 37th Annual IEEE Symposium
on Foundations of Computer Science (pp. 627–636).

Håstad, J. (1997). Some optimal inapproximability results. In Proceedings of the 29th Annual ACM Symposium
on Theory of Computing (pp. 1–10).

Höffgen, K.-U., Simon, H.-U., & Van Horn, K. S. (1995). Robust trainability of single neurons, JCSS, 50:1,
114–125.

Itoh, T. (2000). Approximating the maximum weight of linear codes is APX-complete. On Fundamentals of
Electronics, Communications and Computer Sciences, E83-A:4, 606–613.

Kann, V., Khanna, S., Lagergren, J., & Panconesi, A. (1996). On the hardness of approximating max-k-cut and its
dual. In Proceedings of the Fourth Israeli Symposium on Theory of Computing and Systems (pp. 61–67).

Kearns, M., & Li, M. (1993). Learning in the presence of malicious errors. SIAM Journal on Computing, 22:4,
807–837.

Kuhlmann, C. (2000). Hardness results for general two-layer neural networks. In Proceedings of the 13th Annual
Conference on Computational Learning Theory (pp. 275–285).

Panconesi, A., & Ranjan, D. (1993). Quantifiers and approximation. Theoretical Computer Science, 107:1, 145–
163.

Papadimitriou, C., & Yannakakis, M. (1991). Optimization, approximation and complexity classes. Journal of
Computer and System Sciences, 43, 425–440.

Pitt, L., & Valiant, L. G. (1988). Computational limitations on learning from examples. JACM, 35:4, 965–984.
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27:11, 1134–1142.

Received November 8, 2002
Revised May 4, 2004
Accepted October 4, 2004

