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Abstract
We present a general approach to quantified modal logics that can simulate most
other approaches. The language is based on operators indexed by terms which allow
to express de re modalities and to control the interaction of modalities with the first-
order machinery and with non-rigid designators. The semantics is based on a primitive
counterpart relation holding between n-tuples of objects inhabiting possible worlds.
This allows an object to be represented by one, many, or no object in an accessible
world. Moreover by taking as primitive a relation between n-tuples we avoid some
shortcoming of standard individual counterparts. Finally, we use cut-free labelled
sequent calculi to give a proof-theoretic characterisation of the quantified extensions
of each first-order definable propositional modal logic. In this way we show how to
complete many axiomatically incomplete quantified modal logics.

Keywords Quantified modal logics · Counterparts · Completeness · Sequent calculi ·
Structural rules

1 Introduction

It is well known that the interaction of standard modal operators with the first-order
machinery generates many possibilities and difficulties, cf. [6, 17, 25]. Semantically
we have to choose whether the domains of quantification are the same, grow, shrink,
or vary in moving from one world to another; moreover, we have to choose whether
terms have the same denotation at all worlds or not—i.e., whether they are rigid
or non-rigid designators. These different choices have consequences with respect to
proof-theoretic characterisations of quantifiedmodal logics (QML). To illustrate, if we
extend the axiomatisation of the propositional modal logic (PML)Kwith the standard
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axioms and rules for the quantifiers and identity, let’s call this system Q.K−,1 then
the Converse Barcan Formula

�∀x A ⊃ ∀x�A (CBF)

and the necessity of identity
s = t ⊃ � s = t (NI)

are theorems. This notwithstanding, the first is not valid when quantifier domains vary
and the latter is not valid if terms are non-rigid. More problematically, the combina-
tion of an axiomatisation of a complete PML with that of the first-order machinery
usually determines an incomplete system—i.e., the axiomatic calculus does not have
as theorems all formulas that are valid over the intended class of Kripke frames. In
some cases we have completable logics—e.g., Q.K− is completable by adding the
necessity of distinctness

s �= t ⊃ � s �= t (ND)

to our set of axioms,Q.S4M by adding ♦∀�x(A ⊃ �A ) [11], andQ.K2.BF by adding
some presently unknown axiom [10].2 In many other cases we have incompletable
logics—e.g., Q.GL is not recursively axiomatisable [31].

As Garson puts it, the main problem of QML is that

[t]he lack of a unified framework in which to view QML and their complete-
ness properties puts pressure on those who develop, apply, and teach QML to
work with the (allegedly) simplest systems, namely those that adopt the Barcan
Formulas and predicate logic rules for the quantifiers. [19, p. 621]

In order to develop such a unified framework it is necessary to overcome the limitations
of Kripke semantics for QML, and this has been done in two different ways. Some
proposals—e.g., [15, 19, 28]—are based on replacing quantification over world-bound
objects with quantification over individual concepts, where an individual concept is a
function from worlds to objects. Some other proposals—e.g., [2, 3, 7, 8, 18, 21, 22,
27, 39]—are based on keeping quantification over world-bound objects, as in Kripke
semantics, while at the same time enriching the semantics with (functions or) relations
between these objects, either defined in categorial terms or as a primitive counterpart
relation. These additional (functions or) relations are then used to evaluate modal
formulas involving free variables.

In this paper we present an approach to QML—where a QML is defined semanti-
cally as the set of formulas that are valid in some class of structures—that follows the
second strategy.3 Our proposal generalises the counterpart-theoretic semantics studied
in [2, 3, 7, 8] by replacing (the accessibility relation and) the two-places counterpart
relation between objects with a primitive two-place relation between n + 1-tuples

1 Q.K−, is the calculus called QK= in [6, pag. 555] that is obtained by extending a calculus for K with
axioms and rules for classical quantifiers and identity.
2 The paper [10] shows the incompleteness ofQ.K2.BF by presenting a formula that is consistent with the
axiomatic calculus while at the same time being not satisfiable in the corresponding class of Kripke-frames.
On the other hand, we know that the set of formulas valid over that class of Kripke-frames is recursively
enumerable, and hence the logic is completable, because that class is first-order definable and its validities
can be embedded in classical first-order logic by means of the standard translation, see [18].
3 We refer the reader to [15, 28] for comparisons between the two strategies.
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composed of one world and n objects inhabiting that world. As we will show, this
move allows to cover a wider range of modal contexts. Moreover, we replace the
axiomatic calculi considered in [7, 8] with labelled sequent calculi in the style of [33].
These calculi provide a cut-free proof-theoretic characterisation of a wide class of
QML: each quantified extension of a first-order definable PML has a complete proof
system and the completeness proof is modular. We hope in this way to dispel some
locus communis on the intractability of QML. The rest of this introduction explains
the main ingredients of our proposal.

Following a proposal made in [7, 8], standard modal operators—� and ♦—are
replaced by indexed modal operators: modalities indexed by a set of pairs made of
a term and a variable. Indexed modal operators allow for a fine-grained distinction
between formulas expressing de re modal claims—i.e., formulas expressing that
some object has some modal property as in ‘the number of planets is such that it is
necessarily even’—and formulas expressing de dicto modal claims—i.e., formulas
expressing that some sentence is modally true as in ‘it is necessary that the number
of planets is even’. Roughly, the indexed modal language is obtained from a standard
modal language by replacing formulas of shape �A with formulas of shape [ �t�x ]A,
where �x is a sequence of (pairwise disjoint) variables containing all variables free in
A—to be denoted by FV(A)— and �t is a sequence of terms having the same length of
�x , see Section 3 for the details. We have indexed modal sentences such has4

[ t1x1 . . . tnxn ]P(x1, . . . , xn) (1)

expressing the following de re claim

It is necessary/known of t1, . . . , tn that they have property P .

The sentence (1) has to be contrasted with

[ ∅∅]P(t1, . . . tn) (2)

expressing the de dicto modal claim

It is necessary/known that P(t1, . . . , tn).

Indexed modalities provides a scoping mechanism for non-rigid terms that is equiva-
lent toλ-abstraction [17] (cf. Section 2.1).Moreover, in the given counterpart-theoretic
setting they are needed to validate all de re instances of some theorem of PML
(cf. Section 2.4).

The semantics we adopt is a generalisation of the counterpart-theoretic semantics
considered in [2, 3, 7, 8]: a skeleton will be defined as a triple made of a set of worlds,
a set of world-dependent domains, and a binary transition relation between n + 1-
tuples made of one world and n objects inhabiting that world. This generalisation of
individual’s counterparts—which resembles the move from presheaf semantics [6, 21,

4 We are assuming that t1, . . . , tn are closed terms, and, for brevity, we consider only the alethic and the
epistemic reading of the modalities.
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22] to metaframes [18, 39] in categorial semantics for QML—is needed to avoid the
validity of (CBF) without having to weaken the classical theory of quantification and
to avoid problems with essential relational properties. As we shall see, all results given
in [7, 8] are easily generalisable to the present setting.

Indexed modal logics (IML) will be defined as the sets of indexed modal formulas
that are valid on some (first-order definable) class of skeletons. In giving a proof-
theoretic characterisation of IMLwe avoid the use of axiomatic calculi since theymake
completeness results hard to find [10, 11]. We will instead opt for labelled sequent cal-
culi that allow to internalise the semantics into the syntax of the calculus. This approach
has already shown to provide a well-behaved proof-theoretic characterisation of the
PML in the cube of normal modalities [33], of their standard quantified extensions [36,
37], of their epistemic indexed extensions [9], and of many non-normal QML [35].
In these calculi all rules are height-preserving invertible, weakening and contraction
are height-preserving admissible, and cut is syntactically admissible. Moreover each
calculus is sound and complete with respect to its intended semantics. In particular, the
completeness proof is a direct Tait-Schütte-Takeuti-style one: a procedure that takes as
inputs a calculus and a sequent and outputs a countermodel (in the appropriate class)
for each underivable sequent. As a consequence we also have a semantic proof of the
admissibility of cut. In this paper we show these results holds also in the present set-
ting. Moreover, by applying the technique of semidefinitional extensions introduced
in [12], we extend these results to calculi capturing the indexed quantified extensions
of each first-order definable PML. In this way we obtain a general completeness result
that is stronger than other results obtained in the context of counterpart-theoretic or
categorial semantics, since they cover at most the quantified extension of canonical
PML [39].5 The present approach to the (in)completeness phenomenon inQML can be
seen as the opposite of that in Goldblatt’s [23]: whereas Goldblatt introduces a general
frames-style semantics validating only the formulas that are derivable, we consider
stronger calculi which derive all valid formulas.

The rest of the paper is organised as follows. Section 2 explains the need for indexed
modalities and for a semantics based on a transition relation between n + 1-tuples.
Sections 3 and 4 introduce the syntax and the semantics of IML. Section 5 shows
that this approach can simulate QML based on Kripke semantics. Section 6 intro-
duces the minimal labelled sequent calculus GIM.K and Section 7 shows how to
define a calculus for the quantified extensions of each first-order definable PML.
Section 8 shows that these calculi have the good structural properties ofG3-style cal-
culi. Section 9 proves that each calculus is sound and complete with respect to its
intended semantics. Finally, Section 10 presents some conclusive remarks and some
open questions.

5 It is also more general then the completeness result with respect a semantics based on individual concepts
given in [19] since the latter (i) does not cover classes of frames defined by some natural first-order existential
property such as weak convergence and (ii) it does not cover QML based on classical quantification where
the Barcan Formula (∀x�A ⊃ �∀x A) fails.
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2 Motivating IndexedModalities

2.1 Non-rigid Terms

Let us consider QML based on the standard quantified modal language—i.e., the lan-
guage (L�) of Definition 10—that are based on Kripke frames with constant domains:
a frame is a triple made of a non-empty set of worldsW , a binary accessibility relation
R ⊆ W ×W , and a non-empty domain of objects D. A model is a frame together
with a function V mapping each w ∈W to a classical first-order interpretation Vw of
the signature over D, a modal sentence �A is true at a world w when A is true at all
worlds accessible from w; finally, a sentence is valid in a class of frames when it is
true at all worlds of each model based on some frame in that class. See Section 5 for
the details.

In this setting it is usual to assume that terms are rigid designators: if c is an
individual constant denoting a given object in a world w of a model then it has to
denote the same object in each world (accessible from w) of that model. Nonetheless,
for many interpretations of modalities terms should be non-rigid. Rigid terms make
the necessity of identity (NI) valid and, therefore, under an epistemic reading of�, the
fact that the names ‘Hesperus’ and ‘Phosphorus’ denote the planet Venus entails that
the ancient Babylonians knew that Hesperus is Phosphorus. Non-rigid terms avoid this
problem, but present some technical difficulties. Once we allow for non-rigid terms
the modal sentence

�P(t) (3)

becomes semantically ambiguous: it might mean that P(t) is true at all accessible
worlds for the denotation of t in those worlds—this is a de dicto reading—or it might
mean that the object actually denoted by t has property P in all accessible worlds—this
is a de re reading. It is immediate to realise that if t is non-rigid then the two readings
can have distinct semantic values. This is illustrated by the model depicted in Fig. 1:
�P(t) is true atw under the de dicto reading but not under the de re one. The standard
modal language cannot disambiguate the two readings, thus we have either to read all
formulas under one of the two or to supplement the standard modal language.

In a serie of works [14, 15, 17] Fitting proposes to disambiguate themodal language
by supplementing it with λ-abstraction. The idea, roughly, is that λ abstracts the
predicate 〈λx .A〉 from the formula A (having x free) and that a non-rigid individual
constant t is an expression that can be applied to a predicate (abstracted froma formula)
in such a way that we know whether it has narrow or broad scope with respect to a

Fig. 1 A Kripke model where t is non-rigid
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modal operator. To illustrate, the de dicto sentence �〈λx .P(x)〉(t) is evaluated at a
world w by first moving to worlds accessible from w and then by seeing whether the
object denoted by t in these worlds satisfies P(x) therein. This has to be contrasted
with the de re sentence 〈λx .�P(x)〉(t) that is evaluated by first picking the object o
denoted by t in the actual world w and then by seeing whether the formula P(x) is
true of the object o at all worlds accessible from w. In the model in Fig. 1 the sentence
�〈λx .P(x)〉(t) is true at w, since P(t) is true at v, and 〈λx .�P(x)〉(t) is false, since
o1 does not satisfy P(x) at v.

Indexed modalities are an alternative way to obtain the same result: we have the de
dicto sentence [∅∅]P(t) and the de re one [ tx ]P(x). As we will show in Section 5, IML
can simulate the QML with λ-abstraction for non-rigid designators. Technically, the
indexed operator occurring in [ tx ]P(x) binds the occurrence of x in P(x) and applies
the term t to the modal predicate ‘being necessarily P’ (like λ in 〈λx .�P(x)〉(t) ).
Thus, indexed operators provide a scoping mechanism for non-rigid terms in modal
contexts that is alternative to λ-abstraction.6 They also allow to control substitutions
in modal contexts: in applying the substitution [s/x] to the formula [ tx ]P(x) we will
substitute instances of x with instances of s in the term t occurring in [ tx ], and not in
the (atomic) formula P(x) occurring in the scope of the indexed operator.7 Among
other things, this is needed to make first-order principles such as

∀x A ⊃ A[t/x] (UI)

and
s = t ⊃ (A[s/x] ⊃ A[t/x]) (Repl)

valid when A is a formula involving modalities. If, e.g., some non-modal property
〈λx .P(x)〉 is necessary of all objects then it is necessary of t , without further implying
that the sentence P(t) is necessary. To sum up, indexed modalities, like λ-abstraction,
give us control over non-rigid designators and their interaction with the first-order
machinery.

2.2 Trans-world Identity and de reModalities

Both Fitting’s proposal and QML based on the indexed language can invalidate the de
dicto formula expressing that the ancient Babylonians knew that Hesperus is Phospho-
rus: if we consider themodel given in Fig. 1 andwe impose that Vw(h) = Vw(p) = o1,
Vv(h) = o1, and Vv(p) = o2, then the de dicto version of (NI)—i.e., the for-
mula 〈λx .〈λy.x = y〉(p)〉(h) ⊃ �〈λx .〈λy.x = y〉(p)〉(h)—is false at w. One
limitation of Fitting’s proposal is that de re modalities are evaluated by means of
trans-world identity: to see if an object o necessarily has property 〈λx .P(x)〉 at a
world w, we have to check if o satisfies P(x) at all worlds accessible from w. More-
over, to avoid truth value-gaps or other complications, Fitting’s proposal, like most

6 In this respect indexed operator behave like the binding modalities studied in [16].
7 Indexed modalities make modal context opaque as advocated by Kaplan [26].
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approaches based on trans-world identity,8 requires that the object o exists at all worlds
accessible from w. As a consequence the de re version of (NI)—i.e., the formula
〈λx .〈λy.x = y〉(p)〉(h) ⊃ 〈λx .〈λy.�x = y〉(p)〉(h)— is valid since if two terms
denote the same object in the actual world then that object is self-identical at each
accessible world. One famous counterexample to the validity of the de re version of
(NI) has been provided in [20] by Gibbard: consider a statue and the piece of clay from
which it is composed. Even if the two are identical, they might have been distinct, e.g.,
that piece of clay might have been used to make a vase instead of that statue.

Another unwelcome consequence of the adoption of trans-world identity is that the
Ghilardi Formula

∃x�A ⊃ �∃x A (GF)

is valid when we adopt the classical theory of quantification: if at w there is an object
o having the modal property 〈λx .�A〉, then o has the property 〈λx .A〉 at each world
accessible from w. Nonetheless, (GF) is disputable under many interpretations of
modalities—e.g., the fact that actually there is something that is necessarily a human
being would entail that it is necessary that there are human beings. Obviously this
last claim is highly controversial: the mass extinctions of human beings is a sad but
real possibility! To invalidate (GF) trans-world identity must be coupled with a vary-
ing domains semantics and, consequently, a weaker theory of quantification where
universal instantiation (UI) and existential generalisation (EG) have to be restricted.
Nonetheless, there might be modal contexts where (GF) fails that require classical
quantification.

2.3 Adding a Primitive Counterpart Relation

One well-know way to avoid these problems is to evaluate de re formulas with respect
to a primitive counterpart relation holding between objects inhabiting possible worlds
instead of relying on trans-world identity, see [2, 3, 6–8, 27]. One way to sketch the
counterpart-theoretic semantics is the following: a C-frame is a tuple 〈W,R,D, C〉
whereW andR are as for Kripke frames; D contains, for each w ∈W , a non-empty
set of objects Dw, where w �= v implies Dw ∩ Dv = ∅; C ⊆ D × D is the binary
counterpart relation holding between objects. It is also imposed that o1Co2, o1 ∈ Dw,
and o2 ∈ Dv jointly imply that wRv. A C-model is a C-frame augmented with a
function V mapping each w ∈ W to a classical first-order interpretation Vw of the
signature over Dw. A de dicto modal formula is evaluated as in standard QML. A de
re modal formula, instead, is evaluated by means of the counterpart relation: �A is
true of the objects o1, . . . , on at the world w they inhabit when A is true at each world
v accessible from w with respect to all tuples o∗1, . . . , o∗n of objects inhabiting v and
such that oiCo∗i , for all i ∈ {1, . . . , n}. C-validity is defined as truth at all worlds of
each model in the given class of C-frames.

There are two main motivations for adopting a counterpart-theoretic semantics:
one is mathematical and the other philosophical. Mathematically, it provides a sim-
ple relational version of some of the categorial generalisations of Kripke semantics

8 See [4] for an exception.
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considered in [6, 18, 21, 22, 39]. These semantics are defined by taking as primitive
a family of first-order domains and a family of functions or relations between these
domains, which are then used to define the accessibility relation. The advantage of
these categorial semantics is that they have enough mathematical structure to under-
stand and overcome some intrinsic limitation of Kripke semantics for QML. Presheaf
semantics has been used in [21] to prove the following general incompleteness result:
if L is a PML such that S4.3⊂L⊂S5, then the axiomatic calculus Q.L for the (stan-
dard) quantified extension of L is incomplete with respect to Kripke frames. On the
other hand, categorial semantics allow for general completeness results:

Theorem 1 If L is a PML such that (i) L⊇S4 and (ii) L is canonical, then

1. Q.L is complete with respect to metaframe semantics [39];
2. IfL is also closed under a ‘cluster expansion’ condition thenQ.L is complete with

respect to presheaf semantics [22].

As convincingly argued in [27], a counterpart-theoretic semantics has twomain advan-
tages with respect to its categorial twin: it weakens the base PML from S4 toK and it
is mathematically simpler, thus providing ‘a useful tool for philosophers, linguists or
people working in AI’ [27, pag. 293]. In particular, C-frames are twin to presheaves
and they allow to extend Theorem 1.2 to the quantified extension of PML below S4,
cf. [6, 27].

From the philosophical perspective, already David Lewis [30] proposed to replace
trans-world identity with a counterpart relation in order to avoid validating some
problematic de re modal formulas. The adoption of a counterpart relation between
objects to evaluate de re modalities provides a way to falsify the indexed version of
(GF):9

∃y[ �x y]A ⊃ [ �x]∃yA (GF)

that is compatible with the classical theory of quantification. In a C-frame an object
can have one, many, or no counterpart in an accessible world. A de re claim about an
object o inhabiting w is true therein if at each world accessible from w where there
are counterparts of o, all these counterparts have the property under consideration.
In particular, even if it is necessary of me, and thus of someone, that I am an human
being, there might be accessible worlds where I have no counterpart, and the same
holds for all other human beings. A de dicto existential claim, instead, is true at w if
at each accessible world there is an object satisfying that property. The adoption of a
counterpart-theoretic semanticsmakes de re and de dicto claimsmutually independent.
To illustrate, in the C-frame depicted in Fig. 2 every property is necessary of b (and
thus of something), but this does not entail any de dicto claim. In particular, b falsifies
the following instance of (GF): ∃x([ x]x �= x) ⊃ [∅]∃x(x �= x). ∃x([ x]x �= x) is true
at w because b has no counterpart and, hence, the formula [ x]x �= x is vacuously true
of b. On the other hand, [∅]∃x(x �= x) is false at w since ∃x(x �= x) is false at each
world of every model and v is accessible from w.

9 We use the same name for formulas over the standard modal language and their indexed version and we
rely on the context to disambiguate. Moreover, we use [ �x] as short for [�x�x ].
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Fig. 2 A C-frame falsifying GF, NI, and ND

It is thus helpful to accept a counterpart-theoretic relation where an object might
have no counterpart at some accessible world, as this gives us a way to falsify (GF)
without having to weaken the classical theory of quantification.10 It is also helpful to
accept that an object can havemore than one counterpart in one and the same accessible
world: this vindicates Gibbard’s [20] claim that even if a given statue and a given piece
of clay are identical they might have been distinct. If we agree with Gibbard then we
must concede that one and the same object can be represented by more than one
object in some accessible world: there are de re instances of (NI) that could be false.
Moreover, it is easy to modify Gibbard’s example to argue that two distinct actual
objects can be represented by a singe object in an accessible world: there are de re
instances of (ND) that could be false. In IML neither ∀x, y(x = y ⊃ [ x y]x = y) nor
∀x, y(x �= y ⊃ [ x y]x �= y) are valid as shown, respectively, by objects a and d in
Fig. 2.

Observe that the failure of (NI) does not involve the need to restrict Leibniz’s law
of replacement (Repl). To obtain (NI) from the instance of Repl

s = t ⊃ ([ sx z[s/z]y ]x = y ⊃ [ sx z[t/z]y ]x = y)

we need [ sx z[s/z]y ]x = y to be C-valid, but this holds only when we impose that
the counterpart relation is functional—i.e., that each object has at most one coun-
terpart in each accessible world, see Theorem 8. In the present context, the standard
axioms of identity entail only the following innocuousmodal claim about self-identity:
∀x[x](x = x)—i.e., it is necessary of each object that it is self-identical.

2.4 Counterparts and Box-distribution

By replacing trans-world identity with a counterpart relation we avoid the validity
of many formulas that are disputable under some interpretation of the modalities.
Now we show that a counterpart-theoretic semantics has to be backed up by indexed
modalities in order to validate some acceptable principle. In C-frames an object can
be represented by no object in some accessible world, but this pose a problem with
respect to the validity of Box-distribution

�(A ⊃ B) ⊃ (�A ⊃ �B) (K)

10 If, as in [27], it is assumed that the counterpart relation is total, then the only way to falsify (GF) is to
weaken the classical theory of quantification as in approaches based on Kripke semantics.
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Fig. 3 A problematic C-model for axiom (K)

In general a formula �C where the objects (denoted by) t1, . . . , tn occur de re is true
at a world only if at each accessible world where counterparts o1, . . . on of these object
exist, the formula C is true of o1, . . . on . Let us assume that A is the atomic formula
x �= y and B is the atomic formula P(x), and let us consider the model in Fig. 3.
�(A ⊃ B) is true at world w if we interpret x over a and y over b: v is the only world
where both a and b have counterparts and their counterparts make true both A and
B. As a consequence, also �A is true at w. Nonetheless, it is not the case that B is
true at all worlds having counterparts of a—it is false at u—and, hence, �B is false
at w. We have a counterexample to axiom (K). The problem is that we are distributing
a modal operator over two formulas not sharing the same free variables and, hence,
we are quantifying over different sets of worlds. 11 To solve this problem we have to
ensure that we can distribute modalities only over formulas having the same set of free
variables. This can be achieved by keeping track of the de re terms under consideration
also in formulas where they do not occur. In the context of IML it is imposed that [ �t�x ]C
is well-formed only if all the variables free in C are contained in �x and it is possible to
distribute only modalities that are indexed by the same sets of terms. The first things
is needed because the free variables in the scope of an indexed modalities represent
the objects about which we are making a de re claim. The second one to make axiom
(K) C-valid. If we reconsider the example above with indexed modalities in place of
�, we have the following true (and C-valid) instance of axiom (K):

[ x y](x �= y ⊃ P(x)) ⊃ ([ x y]x �= y ⊃ [ x y]P(x))

that, as shown by the model in Fig. 3, becomes false if we replace [ x, y]P(x) with
[ x]P(x).

To sum up, indexedmodalities are needed to keep track of the de re objects inmodal
formulas and to discriminate between ‘good’ and ‘bad’ instances of distribution.12

11 This also shows that (K) is not valid in the semantics for QML considered by van Benthem in [4] where
trans-world identity is a partial function.
12 It is possible to obtain the same result while keeping the standard modal operators by adopting typed
languages and using finitary assignments in the semantics as it is done in [2, 6]. Nonetheless, we believe
the present approach is simpler. Another possibility is to assume that the counterpart relation is total—i.e.,
each object inhabiting a world w has at least one counterpart in all worlds accessible from w. This solution
has been adopted in [27], but we agree with [2] that this assumption is rather strong and philosophically
unmotivated.
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Fig. 4 Axiomatic derivation of GF [7]

Moreover, they correct the proof-theoretic interaction between (GF) and (K): (GF)
is derivable by axiom (K) together with the classical axiom EG: A[y/x] ⊃ ∃x A,
cf. [4]. With indexed modalities (GF) is not derivable by axioms (K) and EG alone:
the operator in its consequent is indexed by �x and we can distribute only with respect
to �x, y. As shown by the axiomatic derivation in Fig. 4, to make (GF) derivable we
need also

[ �x y]A ⊃ [ �x]A, where FV(A) ⊆ {�x} (SHRT)

which, like (GF), is C-valid only if the counterpart relation is total [7].

2.5 Transitions of Tuples

In C-frames the counterparts of a n-tuple are obtained by composing the counterparts
of its individual members: the pair 〈c, d〉 is a counterpart of 〈a, b〉 if and only if c is a
counterpart of a and d of b, we’ll call this the composition approach. As a consequence,
the formulas

[ �x]A ⊃ [ �x y]A (LNGT)

and
[ �x]∀yA ⊃ ∀y[ �x y]A (CBF)

are C-valid. Nonetheless, there are arguments against the composition approach as
well as against the validity of (CBF). We address these issue in order.

As convincingly argued by Hazen [24], the composition approach is in tension with
the assumption that there are essential relational properties. This can be illustrated
with the following example taken from [29]. Let us assume with D. Lewis [30] that
the counterpart relation is a relation of qualitative similarity, that modalities express
metaphysical necessity, and that the father-daughter relation is an essential relation—
i.e., a relation that if true, is necessarily true. IfAdam isBerta’s father then the following
sentence has to be true

It is necessary of Adam and Berta that he is her father. (4)

Fig. 5 Fatherhood in C-models
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Fig. 6 Axiomatic derivation of CBF [7]

Nonetheless, this sentence is false under the composition approach if there is an acces-
sible world where each object has an indistinguishable duplicate. This is shown by the
C-model in Fig. 5: at v the pair 〈e, f 〉 is a duplicate of 〈c, d〉, which is a counterpart
of the F-pair 〈a, b〉. Hence the relation F holds for the pairs 〈c, d〉 and 〈e, f 〉. The
problem is that F does not hold for the ‘mixed’ pairs 〈c, f 〉 and 〈e, d〉 even if these
pairs are counterparts of 〈a, b〉 (this follows from the composition approach). The
formula [ ax by]xFy, expressing (4), is false at w: 〈c, f 〉 is a counterpart of 〈a, b〉 and it
does not satisfy F . The problem, roughly, is that even if e and f are indistinguishable
from c and d, respectively, the ‘mixed’ pairs 〈c, f 〉 and 〈e, d〉 are distinguishable from
〈c, d〉 and 〈e, f 〉.

To avoid this problem we generalise the counterpart relation into a transition rela-
tion T holding between n-tuples of objects inhabiting worlds. In doing so we follow
Hazen [24] and metaframe semantics [18, 29, 39]. In this way c can be a counter-
part of a and f of b without 〈c, f 〉 being a counterpart of 〈a, b〉—or vice versa.13 If
the transition relation expresses a relation of qualitative similarity, then it has to be
defined for n-tuples by considering similarity with respect to predicates of length n. In
particular, in the model in Fig. 5 the transitions holding between pairs are represented
by the solid and the dotted lines and, hence, the formula [ ax by]xFy is true at w. This
shows that a primitive notion of transition of tuples solves the problem with essential
relations.

Now we consider (CBF). Under an epistemic reading of modalities, it entails that if
an agent knows that all objects of a given domain have some property then she knows
of each of them that it has that property, but this is acceptable only if she knows the
composition of that domain. To illustrate, an agentmight know that all real numbers are
expressible as decimal expansions without knowing of each given real number that it is
expressible as a decimal expansion: shemight not knowwhether some given number is
real or imaginary. (CBF) is disputable under an epistemic reading. Nonetheless it (and
(LNGT)) is C-valid, cf. [7]. Axiomatically (CBF) is derivable in standard QML from
the classical axiom (UI): ∀x A ⊃ A[y/x] and axiom (K). As shown in Fig. 6, in IML
we need also (LNGT) because we are distributing a modality indexed by �x, y and we
have to pass from [ �x y]∀yA to [ �x]∀yA (this case is dual to that of (GF)). This move

13 In [24] and in metaframe semantics it is assumed that transitions can be decomposed—i.e., if 〈c, d〉 is a
transition of 〈a, b〉 then c is a transition of a and d of b. For the sake of generality, we will take transition
of a n-tuples to be independent from transitions of m-tuples (for n �= m). This is feasible because we are
not assuming that the transition relation expresses qualitative similarity and we don’t want to have (CBF)
unrestrictedly valid.
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is feasible under the composition approach: the worlds where there are counterparts
of �x, y are a subset of those where there are counterparts of �x and the formula ∀yA,
having free only variables in �x , is evaluated over the same objects in these two sets of
worlds. Things are different if we replace individual counterparts with transitions of
n-tuples. The transitions of �x, y and those of �x are mutually independent: there might
be worlds where there are transitions of only one of these two sets and they might
select different objects for the variables in �x in a world where both are defined. As a
consequence (LNGT) and (CBF) are valid only if we assume that the transitions of
an n-tuple are decomposable into their subsets. Thus, a primitive non-decomposable
notion of transition of tuples allows to make (CBF) invalid without having to weaken
the classical theory of quantification (or axiom (K)).14

3 Syntax

Let us consider a signature � containing, for each n ∈ N, an at most countable set of
n-ary relational symbolsReln and an at most countable set of n-ary functional symbols
Funn . Let, moreover, Var be a denumerable set of individual variables. The set Ter of
terms is generated by:

t ::= x | f n(t1, . . . , tn) (Ter)

where x ∈ Var and f n ∈ Funn . Variables will be denoted by x, y, z; 0-ary functions
(individual constants) by a, b, c; and terms by t, s, r . Sequences of terms and variables
are denoted using the vector arrow.Moreover, by �tπ we denote some fixed permutation
of the sequence �t .

The logical symbols are =,⊥,�,∧,∨,⊃,∀, ∃, [ ··], and 〈··〉.15 Formulas of the
language L� and their free variables are defined simultaneously as follows:

Definition 2 (Language and free variables).

• If Pn ∈ Reln then Pn(t1, . . . , tn) ∈ L� and its free variables are all variables in
{t1, . . . , tn};

• t = s ∈ L� and its free variables are all variables in {t, s};
• ⊥,� ∈ L� and they contain no free variable;
• If A, B ∈ L� and ◦ ∈ {∧,∨,⊃} then A ◦ B ∈ L� and FV(A ◦ B) = FV(A) ∪
FV(B);

• If A ∈ L� and Q ∈ {∀, ∃} then Qx A ∈ L� and FV(Qx A) = FV(A)− x ;
• If A ∈ L� and FV(A) ⊆ {x1, . . . , xn} then [ t1x1 . . .

tn
xn ]A and 〈t1x1 . . .

tn
xn 〉A are in L�

and their free variables are all variables in {t1, . . . , tn}.
The terms inside an indexed modal operator [ �s�x ] are a sequence of pairs 〈si , xi 〉. The
sequence �s (�x) is called the numerator (denominator) of [ �s�x ]. Observe that we have

14 Observe that the problem of essential relations and the validity of CBF are dual to each other in the
following sense: the first problem is avoided by imposing that transitions of n-tuples cannot be composed
and the latter by imposing that they cannot be decomposed. Thus, e.g., themetaframes semantics considerted
in [29] validates CBF and avoids the problem of essential relations.
15 The context disambiguate whether ‘〈·〉’ is a diamond-operator or an ordered tuple.

123



E. Orlandelli

defined formulas and their free variables simultaneously to impose that the denomi-
nator of an indexed operator contains (at least) all the variables occurring free in its
scope. This is needed because the variables free in the scope of an indexed operator
denote the objects about which we are expressing a de re modal claim and we want
de re instances of (K) to be valid.

We follow the usual conventions for parentheses and we call bound any occurrence
of a variable that is not free. A sentence is a formula without free occurrences of
variables. A formula is atomic if no logical operator other than= occurs in it. We use
A, B,C for arbitrary formulas and P, Q for atomic ones. We use A(�x) to highlight
that the free variables of A are among �x . The formulas ¬A, s �= t , and A ⊃⊂ B are
defined as usual. [ �x]A is short for [�x�x ]A and �A is short for [ ∅]A (we use analogous
abbreviations for diamonds). The weight of a formula A, w(A), is the number of
occurrences of operators that are not =,⊥,� in A.

Substitution of terms for free variables in terms is defined as expected and for
formulas it is defined as follows (where ≡ stands for syntactical identity):

Definition 3 (Substitution).
(Pn(s1, . . . , sn))[t/x] ≡ Pn(s1[t/x], . . . , sn[t/x])
(s1 = s2)[t/x] ≡ s1[t/x] = s2[t/x]
†[t/x] ≡ †, for † ∈ {⊥,�}
(B ◦ C)[t/x] ≡ B[t/x] ◦ C[t/x], for ◦ ∈ {∧,∨,⊃}

(QyB)[t/x]
for Q ∈ {∀, ∃}

≡

⎧
⎪⎪⎨

⎪⎪⎩

QyB if y ≡ x,
Qz((B[z/y])[t/x]) if y �≡ x and y ∈ t
z /∈ {B, x, t}
Qy(B[t/x]) if y �≡ x and y /∈ t

([ s1x1 . . .
sn
xn ]B)[t/x] ≡ [ s1[t/x]x1 . . .

sn [t/x]
xn ]B

(〈s1x1 . . .
sn
xn 〉B)[t/x] ≡ 〈s1[t/x]x1 . . .

sn [t/x]
xn 〉B

Observe that substitution is always defined: for quantifiers it involves α-conversion
to avoid capturing free variables. Moreover, substitution is performed inside indexed
operators instead of permuting with them, as it happens for standard modal operators.
To illustrate, ([ x]P(x))[t/x] stands for [ tx ]P(x) and not for [ x]P(t). We will also
make extensive use of simultaneous substitution: A[�s/�x], where the xi are pairwise
disjoint, is the formula obtained by replacing each free occurrence of xi with si .

4 Semantics

Definition 4 A skeleton is a tuple S = 〈W,D, T 〉, where:
• W is a non-empty set of (possible) worlds;
• D = ⋃{Dw : w ∈W} is the union of a family of non-empty and pairwise disjoint
sets (the domains) indexed by possible worlds;
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• T ⊆ ⋃{(W ∗ (D)n)× (W ∗ (D)n) : n ∈ N} is the transition relation; we impose
that T is closed under permutations: 〈w, �o1〉T 〈v, �o2〉 implies 〈w, �o1π 〉T 〈v, �o2π 〉
for an arbitrary permutation π .
If 〈w, �o1〉T 〈v, �o2〉 we say that �o2 is a v-w-counterpart of �o1.16
A model M is a skeleton augmented with a function V mapping each world w to

a classical valuation Vw interpreting symbols in � over Dw. We say that M is based
on S if the latter is contained in the former.

Given a world w of a modelM, a w-assignment is a function σ mapping variables
to objects in Dw. If σ is a w-assignment, we use σ x�o for the w-assignment mapping
x to o ∈ Dw and behaving like σ for all other variables. IfM = 〈W,D, T ,V〉 and σ

is a w-assignment, for some w ∈W , then we use σ(t) as shorthand for Vw(t) when t
is not a variable; σ(�s) stands for 〈σ(s1), . . . σ (sn)〉.

Now we have all elements to define the notion of satisfaction.

Definition 5 (Satisfaction). The notion of satisfaction of a formula A at a point w of a
model M under a w-assignment σ—σ |�M

w A, omitting M whenever convenient—
is defined in the standard way for the extensional operators (with quantifiers ranging
over Dw) and as follows for indexed modalities:

σ |�M
w [ �s�x ]B iff for all worlds v and all v-assignment τ , if

〈w, σ(�s)〉T 〈v, τ (�x)〉 then τ |�M
v B

σ |�M
w 〈�s�x 〉B iff there are a world v and a v-assignment τ s.t.

〈w, σ(�s)〉T 〈v, τ (�x)〉 and τ |�M
v B

Observe that the assumption that T is closed under permutations implies that the
sequences in [ �s�x ]B and 〈�s�x 〉B behave semantically as sets of pairs 〈si , xi 〉 and not as a
sequences thereof.17 We have defined them syntactically as sequences for the sake of
precision, cf. [16, p. 151].

The notions of truth in a world, |�M
w A, truth in a model, |�M A, and validity in

a class C of skeletons, C |� A, are defined in the standard way. An IML is the set of
all L�-formulas that are valid in a given class of skeletons.

We present here a standard lemma relating assignments and substitutions that will
be useful later on.

Lemma 6 Let w be a world of a model M, σ a w-assignment, t a term, and A an
L�-formula,

σ x�σ(t) |�M
w A iff σ |�M

w A[t/x]
Proof A straightforward induction on the weight of A. ��

Transition semantics has a very rich correspondence theory. The first class of corre-
spondence results are extensions of the analogous results for PML [5]. The language
of PML is defined by the following grammar (for i ∈ N):

φ ::= pi | ⊥ |� |φ ∧ φ |φ ∨ φ |φ ⊃ φ |�φ |♦φ (L�
p )

16 For simplicity, we can assume that (w, �o1)T (v, �o2) implies �o1 ( �o2) is made of objects from Dw (Dv).
The limit case wT v is (a notational variant of) the propositional accessibility relation wRv.
17 To be fully precise, they behave as multisets without repetitions: the pairs are distinct since the denom-
inator of an indexed modal operator is made of distinct variables.
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If φ is a propositional modal axiom having ψ as only schematic letter, then (φ)n ,
for n ∈ N, stands for the L�-formula obtained by replacing each instance of ψ with
A(x1, . . . , xn) and each instance of� (♦) with an instance of [ x1, . . . xn] (respectively,
〈x1 . . . xn〉).18 We can extend correspondence results in PML to the indexed case as
follows:

Theorem 7 (Propositional correspondence). If the propositional axiom φ corresponds
to the first-order formula α (over the signature {R}), then (φ)n, for n ∈ N, is valid over
the class of all skeletons satisfying the formula (α)Tn ; where (α)Tn is the (two-sorted)
first-order formula obtained from α by replacing occurrences of R with (n + 1) ×
(n + 1)-ary occurrences of T and quantifiers (identities) ranging over worlds in W
with quantifiers (identities) ranging over n + 1-tuples made of a world w ∈W and n
objects in Dw.

Proof (sketch). Assume that φ(∈ L�
p ) corresponds to α. We show by induction on

n ∈ N that for all n ∈ N, (φ)n corresponds to (α)Tn . If n = 0 there is nothing to prove.
Suppose that n = m + 1 and that the claim holds for m, the claim holds also for n
since indexes of length m and n behave analogously. ��
Example 1 We present here some propositional correspondences (‘∀x ∈ Dw’
expresses ‘for all n ∈ N and all n + 1-tuple made of one w ∈ W and n objects
from Dw’).

T. [ �x]A ⊃ A corresponds to the reflexivity of T :
∀x ∈ Dw(xT x)

4. [ �x]A ⊃ [ �x][ �x]A corresponds to the transitivity of T :
∀x ∈ Dw, y ∈ Dv, z ∈ Du(xT y ∧ yT z ⊃ xT z)

2. 〈�x〉[ �x]A ⊃ [ �x]〈�x〉A corresponds to the weak convergence of T :
∀x ∈ Dw, y ∈ Dv, z ∈ Du(xT y ∧ xT z ⊃ ∃t ∈ Dw′(yT t ∧ zT t))

M. Over reflexive and transitive skeletons, [ �x]〈�x〉A ⊃ 〈�x〉[ �x]A corresponds to the
finality of T :19

∀x ∈ Dw, ∃y ∈ Dv(xT y ⊃ ∀z ∈ Du(yT z ⊃ y = z))

Observe that in the proof of Theorem 7 and in Example 1 we have considered classes
of skeletons satisfying (α)Tn for all n ∈ N, and not those satisfying (α)Tk for some
particular k. The reason for doing so is that we are interested in IML closed under
second-order substitution—i.e., substitution of arbitrary formulas for atomic ones—
and not in IML closed under first-order substitution only, see [1, 27] for this distinction
in counterpart-theoretic semantics. If, e.g., we had considered the class of all skeletons
satisfying (∀w(wRw))T0 but not (∀w(wRw))Tm form > 0, we would have�A ⊃ A

18 For simplicity we consider correspondence axioms involving a single fixed schematic letter ψ . For an
axiom φ involving more than one schematic letter, such as 3: �(�ψ ∧ ψ ⊃ ξ) ∨ �(�ξ ∧ ξ ⊃ ψ), the
procedure is analogous, but each modal operator has to be indexed by all variables occurring free in in
(φ)n—e.g., (3)n is the following indexed formula [ �x]([�x]A ∧ A ⊃ B) ∨ [ �x]([�x]B ∧ B ⊃ A). We are
grateful to Melvin Fitting for having pressed us to clarify this issue.
19 Where y = z is short for

∧{yi = zi : yi ∈ y and zi ∈ z} ∧ v = u.
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valid, but [ �x]B ⊃ B not valid when �x is not empty. Thus, we restrict ourselves to
skeletons satisfying (α)Tn for all n ∈ N.

Next, we present correspondence results relating indexed modalities with quanti-
fiers and identity.

Theorem 8 (Transitional correspondence).

CBF. [ �x]∀yA ⊃ ∀y[ �x y]A corresponds to the decomposability of T :
∀w, v∈W,∀�x1, �x2∈ Dw,∀�y1, �y2∈ Dv(〈w, �x1, �x2〉T 〈v, �y1, �y2〉 ⊃ 〈w, �x1〉T 〈v, �y1〉)
GF. ∃y[ �x y]A ⊃ [ �x]∃yA corresponds to the totality of T :
∀w, v∈W,∀�x1, �x2∈ Dw,∀�y∈ Dv(〈w, �x1〉T 〈v, �y〉 ⊃ ∃�z∈ Dv(〈w, �x1, �x2〉T 〈v, �y, �z〉))
BF. ∀y[ �x y]A ⊃ [�x]∀yA corresponds to the surjectivity of T :
∀w, v∈W,∀�x1, �x2 ∈ Dv,∀�y∈ Dw(〈w, �y〉T 〈v, �x1〉 ⊃ ∃�z∈ Dw(〈w, �y, �z〉T 〈v, �x1, �x2〉))
NI. x = y ⊃ [ x y]x = y corresponds to the functionality of T :
∀w, v ∈W,∀x ∈ Uw∀y, z ∈ Uv(〈w, x, x〉T 〈v, y, z〉 ⊃ y = z)

ND. x �= y ⊃ [ x y]x �= y corresponds to the injectivity of T :
∀w, v ∈W,∀x, y ∈ Dw∀z ∈ Dv(〈w, x, y〉T 〈v, z, z〉 ⊃ x = y)

Proof Some cases of the right-to-left direction are given in Example 2. The proofs of
the left-to-right direction are standard. We detail only the case of CBF. Assume that
S is a skeleton such that (�) 〈w, �o1, �o2〉T 〈v, �p1, �p2〉 and consider a w-assignment
σ such that σ(�x) = �o1. Let Vu(P), for u ∈ W , be such that 〈�q1, �q2〉 ∈ Vu(P) iff
〈w, σw(�x)〉T 〈u, �q1〉. By construction we have that σ |�w [ �x]∀�yP(�x, �y) and, thanks
to CBF, σ |�w ∀�y[ �x �y]P(�x, �y). Given (�), this means that 〈 �p1, �p2〉 ∈ Vv(P) and,
thanks to definition of Vu(P), we can conclude that 〈w, �o1〉T 〈v, �p1〉. ��

Finally, we present two correspondence results allowing to import and export of
substitution in modal contexts. Taken together these two results make closed terms
behave like rigid terms in standard modal logic.20 These results pertain to classes of
models and not of skeletons, but we disregard this difference for the sake of simplicity.

Theorem 9 (Rigidity).

RG. [ . . . tx . . . ]A ⊃ [ . . . ]A[t/x], for t a closed term, is true in a model
iff for each 〈w, �o1〉 and 〈v, �o2〉,

if 〈w, �o1〉T 〈v, �o2〉 then 〈w, �o1,Vw(t)〉T 〈v, �o2,Vv(t)〉.
RG−. [ . . . ]A[t/x] ⊃ [ . . . tx . . . ]A, for t a closed term, is true in a model

iff for each 〈w, �o1〉 and 〈v, �o2〉,
if 〈w, �o1,Vw(t)〉T 〈v, �o2, o3〉 then 〈w, �o1〉T 〈v, �o2〉 and Vv(t) = o3.

Proof The right-to-left direction of RG is proved in Example 2. ��

20 Indexed modalities behave better than Fitting’s λ-formulas in that only the former make importation
and exportation mutually independent, cf. [17, Proposition 10.2.4].
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5 Simulation of Standard QML

In this section we show that IML can simulate QML based on Kripke semantics,
including those with λ-abstraction for non-rigid terms.21

We introduce here two languages based on the signature � (without function sym-
bols of arity grater than 0, for simplicity). The first language (L�) is a standard
language for QML with only variables as terms. The language (Lλ) is (L�) together
with non-rigid individual constants that can be applied to formulas by means of λ-
abstraction as in Fitting’s approach.22

Definition 10

φ ::= P(�x) | x = y | ⊥ |� |φ ∧ φ |φ ∨ φ |φ ⊃ φ | ∀xφ | ∃xφ |�φ |♦φ (L�)

φ ::= P(�x) | x = y | ⊥ |� |φ ∧ φ |φ ∨ φ |φ ⊃ φ | ∀xφ | ∃xφ |�φ |♦φ | 〈λx .φ〉(t)
(Lλ)

We introduce twoclasses of frames for defining logics over these languages: increas-
ing and constant domains ones.23

Definition 11 (Kripke frames). A (first-order) Kripke frame is a triple F =
〈WF ,R,DF 〉 where W is a non-empty set of worlds; R is a binary accessibility
relation overW;DF is a function mapping each w ∈W to a non empty set of objects
DF

w satisfying the following condition: wRv implies DF
w ⊆ DF

v .
A frame has constant domains if DF

w = DF
v for allw, v ∈W; else it has increasing

domains.

A Kripke model M is a Kripke frame augmented with a valuation function VF

mapping each world w of the model to an interpretation (VF
w ) of the symbols in �

over DF
w . A model with rigid terms is a Kripke model where VF is such that if wRv

then VF
v (c) = VF

w (c) for each individual constant c.
Aw-assignment is a function σ mapping variables to objects in Dw. Observe that if

wRv then a w-assignment is also a v-assignment since wRv implies DF
w ⊆ DF

v . We
make use of all the (relevant) definitions and abbreviations that have been introduced
in Sections 3 and 4.

We are now ready to introduced the notion of satisfaction.

21 An analogous result is given in [2] with respect to C-frames with finitary assignments and a typed
language with modal operators � and ♦ (but without λ-abstraction and without individual constants). C-
frames can be easily simulated by skeletons where T is decomposable, and typed languages and finitary
assignments can be simulated by indexed modal operators. See also [3] for a similar result for QML based
on a varying domain Kripke semantics with respect to C-frames and the indexed language (but without
identity, λ-abstraction, and individual constants).
22 Indexed modal operators are weaker than λ-abstraction in that they cannot deal with non-denoting terms
in the style of [17].
23 Varying (and decreasing) domains frames can be simulated by extending the language with a unary
existence predicate E and by introducing quantifiers restricted by E , cf. [25].
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Definition 12 (Satisfaction). Satisfaction is defined as in Def. 5 for the extensional
operator and as follows for � and λ:

σ |�M
w �φ iff for all v ∈WF , wRv implies σ |�M

v φ

σ |�M
w 〈λx .φ〉(t) iff σ x�σ(t) |�M

w φ

Validity and logics are defined as in Section 4. In particular, it is well known that
(CBF) is valid over all frames and BF—∀x�φ ⊃ �∀xφ— over constant domain
ones. Moreover, frames with rigid terms validate (NI) and (ND), as well as the full
substitutivity of terms—�〈λx .φ〉(c) ⊃⊂ 〈λx .�φ〉(c).

We can now show that QML based on Kripke frames be simulated by IML. More
precisely, we will introduce two truth-preserving translations: ◦mapping Kripke mod-
els to transition models where T is Kripkean: it is decomposable, total, functional,
and injective; and • that does the inverse.
Definition 13 The translation function ◦ : Lα∈{�,λ} −→ L� is defined as follows:

(P)◦ ≡ P
(φ�ψ)◦ ≡ (φ)◦�(ψ)◦
where � ∈ {∧,∨ ⊃}
(〈λx .φ〉(t))◦ ≡ (φ)◦[t/x]

(†)◦ ≡ †, † ∈ {⊥,�}
(Qxφ)◦ ≡ Qx(φ)◦
where Q ∈ {∀, ∃}

(x = y)◦ ≡ x = y
(�φ(�x))◦ ≡ [ �x](φ)◦
(♦φ(�x))◦ ≡ 〈 �x〉(φ)◦

Definition 14 Given a Kripke model M = 〈WF ,R,DF ,VF 〉, its derived (indexed)
model MM = 〈W,D, T ,V〉 is defined as follows:

• W =WF ;
• D is the union of all sets Dw where Dw = {ow : o ∈ DF

w } and w ranges inW;
• T is a Kripkean transition relation such that: 〈w, �ow〉T 〈v, �ov〉 iff wRv;
• V is thus defined: Vw(c) = (ow) iff VF

w (c) = o and �ow ∈ Vw(P) iff �o ∈ VF
w (P).

Moreover, ifM has constant domain then T is surjective and ifM is rigid then T and
V satisfy the conditions given in Theorem 9.

Additionally, given a w-assignment σ (over M), the assignment σv (over MM), with
v = w or wRv, is such that if σ(x) = o then σv(x) = ov .24

Lemma 15 Let M be a Kripke model and let MM be its derived indexed model. For
each world w of M, each w-assignment σ , and each formula φ of the language Lλ

(or L�) we have that:

σ |�M
w φ iff σw |�MM

w (φ)◦

Proof By induction on the weight of φ. The basic cases hold by construction and the
extensional cases are straightforward.

Let φ be �ψ and let its free variables be �x . σ |�M
w �ψ is equivalent to ∀v ∈

WF (wRv implies σ |�M
v ψ) which, by construction of MM and by induction, is

equivalent to ∀v ∈ W(〈w, σw(�x)〉T 〈v, σv(�x)〉 ⊃ σv |�MM

v (ψ)◦). Given that T is

24 This is needed to make variable behave like rigid designators in transition semantics.
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Kripkean, the last fact is equivalent to ∀v,∀τv(〈w, σw(�x)〉T 〈v, τv(�x)〉 ⊃ τv |�MM

v

(ψ)◦), which is the same as σw |�MM

w [ �x](ψ)◦. If φ ≡ ♦ψ , the proof is similar.
If φ ≡ 〈λx .ψ〉(t), then σ |�M

w φ is equivalent to σ x�σ(t) |�M
w ψ . By induction

σ x�σ(t) |�M
w ψ is equivalent to σ

x�σw(t)
w |�MM

w (ψ)◦ which, by Lemma 6, is equivalent

to σw |�MM

w (ψ)◦[t/x] ��
Next we show that IML based on Kripkean skeletons can be simulated by QML

based on the language Lλ.

Definition 16 The (back-)translation function • : L� −→ Lλ is defined as follows:
(P)• ≡ P
(A�B)• ≡ (A)•�(B)•
where � ∈ {∧,∨ ⊃}

(†)• ≡ †, † ∈ {⊥,�}
(Qx A)• ≡ Qx(A)•
where Q ∈ {∀, ∃}

(x = y)• ≡ x = y
([ �t�x ]A)• ≡ 〈λ�x .�(A)•〉(�t)
(〈 �t�x 〉A)• ≡ 〈λ�x .♦(A)•〉(�t)

Definition 17 Given a Kripkean transition model M = 〈W,D, T ,V〉, its derived
Kripke model MM = 〈WF ,R,DF ,VF 〉 is defined as follows:

• WF =W;
• wRv iff wT v:

• DF maps w ∈WF to {DF
w :

{
o ∈ DF

w if o ∈ Dv and ∃o′(〈v, o〉T 〈w, o′〉)
o′ ∈ DF

w if o′ ∈ Dw and ¬∃v, o(〈v, o〉T 〈w, o′〉) };
• VF is such that:

– VF
w (c) =

{
Vv(c) if ∃v, o(〈v,Vv(c)〉T 〈w, o〉)
Vw(c) else

;

– �o′ ∈VF
w (P) iff �o∈ Vw(P), for oi ∈ �o s.t.:

{
oi =o′′ if o′′ ∈ Dv and 〈v, o′′〉T 〈w, o′〉
oi =o′i if ¬∃v, o′′(〈v, o′′〉T 〈w, o′〉) .

It is easy to see that MM is well-defined. Given that T is decomposable 〈w, �o1〉
T 〈v, �o2〉 implies wT v. Given that T is total and functional we know that wT v

implies ∀x ∈ Dw∃!y ∈ Dv〈w, x〉T 〈v, y〉 and, by injectivity, if 〈w, x1〉T 〈v, y1〉 and
〈w, x2〉T 〈v, y2〉 and x1 �= x2, then y1 �= y2. Thus, eachDF

w is well-defined and wRv

implies DF
w ⊆ DF

v . Moreover, if T is surjective, wRv implies DF
w = DF

v . Finally,
VF is well-defined and if M satisfies one of the two condition of Theorem 9 then it
satisfies also the other and inMM individual constants are rigid designators.

Lemma 18 Let M be a Kripkean indexed model and MM its derived Kripke model.
For each world w of M, each w-assignment σ , and each formula A of the indexed
language we have that:

σ |�M
w A iff σ |�MM

w (A)•

Proof By induction on the weight of φ. We consider only the case where A ≡ [ �t�x ]B.
σ |�M

w [ �t�x ]B is equivalent to ∀v, τ (〈w, σ(�t)〉T 〈v, τ (�x)〉 ⊃ τ |�M
v B). By induction

this is equivalent to ∀v, τ (〈w, σ(�t)〉T 〈v, τ (�x)〉 ⊃ τ |�MM
v (B)•). By the properties of

T and the definition ofR, we rewrite this as ∀v(wRv ⊃ σ �x�σ(�t) |�MM
v (B)•). This is

the same as σ �x�σ(�t) |�MM
w �(B)•, which is equivalent to σ |�MM

w 〈λ�x .�(B)•〉(�t).��
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Theorem 19 For each FO-definable class of Kripke frames (with or without rigid
designators) there is a class of skeletons that is equivalent to it with respect to validity.

Proof An immediate consequence of Lemmas 15 and 18 since T inMM satisfies all
the first-order properties satisfied by R inM and the same holds for M and MM. ��

6 The Basic Labelled Calculus GIM.K

Labelled sequent calculi for first-order L �-logics have been considered in [35–37]
and for some indexed epistemic logic in [9]. These calculi are based on extending the
modal language in order to internalise the semantics. The systems introduced here are
similar to those in [9].

First of all, we introduce a set L AB of fresh variables, called labels. Labels will
be denoted by w, v, u, . . . and will represent worlds. Next, we extend the set of
formulas by adding formulas of shape (w, �t)R(v, �s)— the so-called transition atoms
expressing that �s is v-w-counterpart of �t—and formulas of shape w ≈ v—the l-
identities expressing that w and v represent the same world. Lastly, we replace each
L �-formula A with the labelled formula w : A—expressing that A holds at w. The
weight of a transition atom or of an l-identity is 0 and the weight of w : A is the same
as that of A. A labelled sequent is an expression:

� ⇒ 

where � is a multiset composed of transition atoms, l-identities, and transition atoms;
and  is a multiset of labelled formulas. Substitution is made sensitive to labels as
follows:

• (w : A)[v : t/x] ≡
{

w : A[t/x] if w ≡ v,

w : A else

• ((w, �t)R(v, �s))[u : r/x] ≡

⎧
⎪⎪⎨

⎪⎪⎩

(w, �t[r/x])R(v, �s) if w ≡ u and v �≡ u,

(w, �t)R(v, �s[r/x]) if w �≡ u and v ≡ u,

(w, �t[r/x])R(v, �s[r/x]) if w ≡ u and v ≡ u,

(w, �t)R(v, �s) else

Given a formula E of this extended language, E[w/v] is the formula obtained by
substituting each occurrence of v in E with an occurrence ofw. Notice that the substi-
tution of labels works also on the label occurring in a label-sensitive substitution—e.g.,
((w : A)[v : t/x])[u1/u] ≡ (w[u1/u] : A)[v[u1/u] : t/x]. Substitutions are extended
to multisets by applying them componentwise.

Given a calculus L, a L-derivation of a sequent � ⇒  is a tree of sequents,
whose leaves are initial sequents, whose root is � ⇒ , and which grows according
to the rules of L. We consider only derivations of pure sequents—i.e., sequents where
no variable has both free and bound occurrences and where all eigenvariables are
distinct. The height of a L-derivation is the number of nodes of its longest branch.
We say that � ⇒  is L-derivable (with height n), and we write L  (n) � ⇒ , if
there is an L-derivation (of height at most n) of � ⇒  or of an alphabetic variant
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Table 1 Rules of GIM.K

Initial sequents: w : P, � ⇒ ,w : P , with P atomic

Logical rules:

w : ⊥, � ⇒ 
L⊥

� ⇒ , w : � R�

w : A, w : B, � ⇒ 

w : A ∧ B, � ⇒ 
L∧ � ⇒ , w : A � ⇒ , w : B

� ⇒ , w : A ∧ B
R∧

w : A, � ⇒  w : B, � ⇒ 

w : A ∨ B, � ⇒ 
L∨ � ⇒ , w : A, w : B

� ⇒ ,w : A ∨ B
R∨

� ⇒ , w : A w : B, � ⇒ 

w : A ⊃ B, � ⇒ 
L⊃ w : A, � ⇒ ,w : B

� ⇒ ,w : A ⊃ B
R⊃

w : A[t/x], w : ∀x A, � ⇒ 

w : ∀x A, � ⇒ 
L∀ � ⇒ , w : A[y/x]

� ⇒ , w : ∀x A R∀, y fresh

w : A[y/x], � ⇒ 

w : ∃x A, � ⇒ 
L∃, y fresh � ⇒ , w : ∃x A, w : A[t/x]

� ⇒ , w : ∃x A R∃

v : A[�s/�x], (w, �t)R(v, �s), w : [ �t�x ]A, � ⇒ 

(w, �t)R(v, �s), w : [ �t�x ]A, � ⇒ 
L�

(w, �t)R(u, �y), � ⇒ , u : A[�y/�x]
� ⇒ ,w : [ �t�x ]A

R�, u, �y fresh

(w, �t)R(u, �y), u : A[�y/�x], � ⇒ 

w : 〈�t�x 〉A, � ⇒ 
L♦, u, �y fresh

(w, �t)R(v, �s), � ⇒ ,w : 〈�t�x 〉A, v : A[�s/�x]
(w, �t)R(v, �s), � ⇒ ,w : 〈�t�x 〉A

R♦

Coherent rules: E is a transitional atom or an atomic formula

w : t = t, � ⇒ 

� ⇒ 
Ref

E[w : t/x], w : s= t, E[w : s/x], �⇒

w : s= t, E[w : s/x], � ⇒ 
Repl

w : t = f (. . . , f (. . . , t, . . . ), . . . ), w : t = f (. . . , t, . . . ), � ⇒ 

w : t = f (. . . , t, . . . ), � ⇒ 
Replc

w ≈ w,� ⇒ 

� ⇒ 
Ref≈

F[v/u], w ≈ v, F[w/u], � ⇒ 

w ≈ v, F[w/u], � ⇒ 
Repl≈

F is a transitional atom, an l-identity or an atomic formula

(w, �tπ )R(v, �sπ ), (w, �t)R(v, �s), � ⇒ 

(w, �t)R(v, �s), � ⇒ 
Perm

of � ⇒ . A rule is said to be (height-preserving) admissible in L, if, whenever its
premisses are L-derivable (with height at most n), also its conclusion is L-derivable
(with height at most n). In each rule displayed in Tables 1 and 2, the multisets � and
 are called contexts, the formulas occurring in the conclusion are called principal,
and the formulas occurring in the premiss(es) only are called active.

The rules of the calculus GIM.K are given in Table 1, where the rules for identity,
for ≈, and the rule Perm—which ensures that the indexes of an indexed operator
are sequences of pairs where the order is irrelevant—are left coherent rules that will
be discussed in the next section. Observe that l-identities are not needed in GIM.K,

123



Quantified Modal Logics: One Approach to Rule (Almost) them All!

Table 2 Some coherent rules

Propositional rules:

(w, �t)R(w, �t), � ⇒ 

� ⇒ 
RefR

(w, �t)R(u, �r), (w, �t)R(v, �s), (v, �s)R(u, �r), � ⇒ 

(w, �t)R(v, �s), (v, �s)R(u, �r), � ⇒ 
Trans

(u, �r)R(u1, �x), (v, �s)R(u1, �x), (w, �t)R(v, �s), (w, �t)R(u, �r), � ⇒ 

(w, �t)R(v, �s), (w, �t)R(u, �r), � ⇒ 
Conv, u1,�x fresh

(w, �t)R(v, �s), (v, �s)R(u1, �x), � ⇒ 

(w, �t)R(v, �s), � ⇒ 
Convc, u1,�x fresh

Transitional rules:

(w, �s1)R(v, �t1), (w, �s1, �s2)R(v, �t1, �t2), � ⇒ 

(w, �s1, �s2)R(v, �t1, �t2), � ⇒ 
Dec

(w, �s1, �s2)R(v, �r , �y), (w, �s1)R(v, �r), � ⇒ 

(w, �s1)R(v, �r), � ⇒ 
Tot, �y fresh

(w, �s, �y)R(v, �r1, �r2), (w, �s)R(v, �r1), � ⇒ 

(w, �s)R(v, �r1), � ⇒ 
Sur j, �y fresh

v : t = r , (w, s, s)R(v, t, r), � ⇒ 

(w, s, s)R(v, t, r), � ⇒ 
Func

w : t = r , (w, t, r)R(v, s, s), � ⇒ 

(w, t, r)R(v, s, s), � ⇒ 
I n j

Rules for rigidity (t closed):

(w, �s, t)R(v, �r , t), (w, �s)R(v, �r), � ⇒ 

(w, �s)R(v, �r), � ⇒ 
Rig

v : t = r , (w, �s)R(v, �r), (w, �s, t)R(v, �r , r), � ⇒ 

(w, �s, t)R(v, �r , r), � ⇒ 
Rig−

nevertheless theywill be essential to give a calculus for extensions ofK that are defined
by properties of T involving identities between worlds.

7 Calculi extendingGIM.K

In order to define calculi for the IML extending K, we will express the properties of
T defining these logics as left coherent rules [32]. In order to do so we will use the
algorithm presented in [12] to convert any first-order formula into an equivalent (for
our purposes) coherent first-order formula.

A coherent implication is the universal closure of an extensional first-order implica-
tive formula whose antecedent and consequent are positive formulas.

Definition 20 (Coherent implication).

• A formula is Horn iff it is built from atoms and � using only ∧;
• A formula is coherent iff it is built from atoms,�, and⊥ using only ∧, ∨, and ∃;
• A sentence is a coherent implication iff it is of the form ∀�x(A ⊃ B) where A and

B are coherent formulas.
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Coherent formulas can be written in normal form as follows:

Theorem 21 (Coherent normal form (CNF)). Any coherent implication is equivalent
to a conjunction of sentences of shape

∀�x(A ⊃ B) (CNF)

where A is Horn and B is a disjunction of existentially quantified Horn formulas.25

As explained in [32], from a sentence C in (CNF) we can extract a coherent rule LC

that can be added to a calculus without altering its structural properties. To illustrate,
let us consider the following sentence in (CNF):

∀�x(P1(�x) ∧ · · · ∧ Pk(�x) ⊃
�∨

n=0
∃�y(Qn1(�x, �y) ∧ · · · ∧ Qnm (�x, �y))) (C)

Such a sentence determines the following coherent rule, having one premiss for each
disjunct in

∨�
n=0 ∃�y(Qn1(�x, �y) ∧ · · · ∧ Qnm (�x, �y)):

. . . Qn1(�x, �y), . . . , Qnm (�x, �y), P1(�x), . . . , Pk(�x), � ⇒  . . .

P1(�x), . . . , Pk(�x), � ⇒ 
LC

The variables in �x may be instantiated with arbitrary terms. The variables in �y, instead,
are chosen to be fresh with respect to the conclusion of the rule, since they are exis-
tentially quantified in (C). Henceforth we shall omit mention of the variables.

To ensure the height-preserving admissibility of contraction, we impose the fol-
lowing condition:

Definition 22 (Closure condition). If a calculus contains a coherent rule with an
instance with repetition of some principal formula such as:

. . . Q1, . . . , Qn, P1, . . . , Pk−2, P, P, � ⇒  . . .

P1, . . . , Pk−2, P, P, � ⇒ 
LC

then also the contracted instance

. . . Q1, . . . , Qn, P1, . . . , Pk−2, P, � ⇒  . . .

P1, . . . , Pk−2, P, � ⇒ 
Lc
C

has to be included in the calculus.

The condition is unproblematic: since each atomic formula contains only a finite
number of variables, the number of rules that have to be added for each coherent rule
is finite. Moreover, in many cases contracted instances need not be added since they
are already admissible in the calculus. To wit, in the coherent rules for identity given
in Table 1 we have added contracted instances of Repl only for the case where E

25 For brevity, we use B as short for � ⊃ B.
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is an identity and one of the two identical terms is a functional symbol: contracted
instances of rule Repl may arise only if E is an identity w : s = t ; moreover, if s and
t are variables or individual constants, the calculus is already closed under contracted
instances, see [13, Section 3].

By itself the method of left coherent rules is sufficient to define a calculus with
good structural properties for all logics defined by coherent properties of T . This
class covers all transitional correspondence results given in Theorem 8 as well as most
propositional ones, possibly using the rules for ≈ given in Table 1. To illustrate, we
consider the formula

〈�s�x 〉A ⊃ [ �s�x ]A (PF)

that corresponds to the partial functionality of T :

∀x ∈ Dw, y ∈ Dv, z ∈ Du(xT y ∧ xT z ⊃ z = y)

This property is expressed by the following left coherent rule:

u ≈ v, {u : z = y | z ∈ �z and y ∈ �y}, (w, �x)R(v, �y), (w, �x)R(u, �z), � ⇒ 

(w, �x)R(v, �y), (w, �x)R(u, �z), � ⇒ 
PFunc

and a straightforward proof-search shows that this rule make the sequent expressing
(PF) derivable (we use two lemmas that will be proved in the next section and a
double-line inference rule for many instances of the same rule):

v : A[�y/�x], v : A[�z/�x], u ≈ v, {u : z = y | y ∈ y& z ∈ z}, (w, �s)R(u, �z), u : A[�z/�x], (w, �s)R(v, �y) ⇒ v : A[�y/�x] Lem. 24

v : A[�z/�x], u ≈ v, {u : z = y | y ∈ y& z ∈ z}, (w, �s)R(u, �z), u : A[�z/�x], (w, �s)R(v, �y) ⇒ v : A[�y/�x] Lem. 31.3

u ≈ v, {u : z = y | y ∈ y& z ∈ z}, (w, �s)R(u, �z), u : A[�z/�x], (w, �s)R(v, �y) ⇒ v : A[�y/�x] Ref≈

(w, �s)R(u, �z), u : A[�z/�x], (w, �s)R(v, �y) ⇒ v : A[�y/�x] PFunc

(w, �s)R(v, �y), w : 〈�s�x 〉A ⇒ v : A[�y/�x] L♦

w : 〈�s�x 〉A ⇒ w : [ �s�x ]A
R�

Nonetheless, there are many first-order properties in propositional correspondence
theory that are not coherent—e.g., the finality of T considered in Example 1 where
we have a universal quantifier in the scope of an existential one:

∀x ∈ Dw, ∃y ∈ Dv(xT y ⊃ ∀z ∈ Du(yT z ⊃ y = z)) (Fin)

In order to make such cases amenable, we apply the method of semidefinitional
extensions introduced in [12]. Roughly, the method allows to transform any first-order
formula A into a coherent one by replacing non-coherent components of that formula
with new atomic predicates behaving like the components they have replaced. This is
done by applying the following algorithm:26

Algorithm 23 Let A be a first-order axiom (in a given signature).

1. We try to transform A into an equivalent formula A∗ in (CNF);

26 See [12] for a version of the algorithm based on the assumption that A is in prenex normal form with
the propositional part in disjunctive normal form.
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2. If A∗ is in (CNF), the algorithm ends; else we identify the outermost non-coherent
components of A∗, say B1(�x1), . . . , Bn( �xn), where each �xi is the set of bound
variables in Bi that are bound by quantifiers not occurring therein;

3. We extend the signature with new atomic predicates Pred1(�x1),…,Predn(�xn) and
we replace each Bi in A∗ with Predi ;

4. For each Predi we add the axiom Axi : ∀�xi (Predi (�xi ) ⊃ Bi (�xi ));
5. We apply steps 1–4 to each Axi .

After a finite number of runs through the algorithm we have replaced the axiom
A with a finite number of axioms in (CNF) which jointly imply A. We illustrate this
algorithm with the case of (Fin). In this case step 2 identifies ∀z ∈ Du(yT z ⊃ y = z)
that in step 3 is replaced by the fresh predicate Fin(y). Next, step 4 adds the axiom
∀y(Fin(y) ⊃ ∀z ∈ Du(yT z ⊃ y = z)). Finally, this axiom is transformed into (CNF)
by an instance of step 1. We have thus replaced the non-coherent axiom (Fin) with the
following pair of axioms in (CNF):

∀x∈ Dw(� ⊃ ∃y∈ Dv(xT y & Fin(y))) ∀y∈ Dv∀z∈ Du(Fin(y)& yT z ⊃ y=z)

which can be expressed by the following pair of left coherent rules:

(w, �s)R(v, �y), Fin(v, �y), � ⇒ 

� ⇒ 
Fin1, v,�y fresh

v ≈ u, {v : s = r | s ∈ �s& r ∈ �r}, Fin(v, �s), (v, �s)R(u, �r), � ⇒ 

Fin(v, �s), (v, �s)R(u, �r), � ⇒ 
Fin2

By applying this method, we can transform each first-order definable correspon-
dence result into a set of left coherent rules. As we are going to show in the next
sections, this means that for each first-order definable IML we have a labelled calcu-
lus with good structural properties that is sound and complete.

To have more examples of left coherent rules expressing correspondence results,
the reader can consult Table 2 where there are the left coherent rules for the properties
of T given in Example 1 and in Theorems 8 and 9. In the next example we show
that some of the formulas in Theorems 8 and 9 are derivable in calculi including the
appropriate rule.

Example 2

1. GIM.K + {Dec}  ⇒ w : [ �x]∀yA ⊃ ∀y[ �x y]A

v : A[�z/�x, z/y], v : ∀y(A[�z/�x]), (w, �x)R(v, �z), (w, �x, y)R(v, �z, z), w : [ �x]∀yA ⇒ v : A[�z/�x, z/y] L. 24

v : ∀y(A[�z/�x]), (w, �x)R(v, �z), (w, �x, y)R(v, �z, z), w : [ �x]∀yA ⇒ v : A[�z/�x, z/y] L∀

(w, �x)R(v, �z), (w, �x, y)R(v, �z, z), w : [ �x]∀yA ⇒ v : A[�z/�x, z/y] L�

(w, �x, y)R(v, �z, z), w : [ �x]∀yA ⇒ v : A[�z/�x, z/y] Dec

w : [ �x]∀yA ⇒ w : [ �x y]A R�

w : [ �x]∀yA ⇒ w : ∀y[ �x y]A R∀
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2. GIM.K + {Func}  ⇒ w : x = y ⊃ [ x y]x = y

v : z1 = z2, (w, y, y)R(v, z1, z2), (w, x, y)R(v, z1, z2), w : x = y ⇒ v : z1 = z2
(w, y, y)R(v, z1, z2), (w, x, y)R(v, z1, z2), w : x = y ⇒ v : z1 = z2

Func

(w, x, y)R(v, z1, z2), w : x = y ⇒ v : z1 = z2
Repl

w : x = y ⇒ w : [ x y]x = y
R�

3. GIM.K + {Rig}  ⇒ w : [ �y t
x ]A ⊃ [ �y]A[t/x], where t is a closed term.

v : A[t/x, �z/�y], (w, �y, t)R(v, �z, t), (w, �y)R(v, �z), w : [ �y t
x ]A ⇒ v : A[t/x, �z/�y] L. 24

(w, �y, t)R(v, �z, t), (w, �y)R(v, �z), w : [ �y t
x ]A ⇒ v : A[t/x, �z/�y] L�

(w, �y)R(v, �z), w : [ �y t
x ]A ⇒ v : A[t/x, �z/�y] Rig

w : [ �y t
x ]A ⇒ w : [ �y]A[t/x] R�

8 Structural properties

We can now prove that each calculus GIM.L that is obtained by extending GIM.K
with coherent rules expressing FO-definable properties of T has the good structural
properties that are peculiar to G3-style calculi.

Lemma 24 Sequents of shape w : A, � ⇒ ,w : A are GIM.L-derivable.

Proof By induction on the weight of w : A. For the inductive steps it is enough to
apply, root first, the rules for the principal operator of w : A and then the inductive
hypothesis (IH). ��
Lemma 25 (α-conversion). GIM.L  n � ⇒  entails GIM.L  n �′ ⇒ ′, where
�′ (′) is obtained from � () by renaming some bound variable (without capturing
variables).

Proof The proof, which is by induction on the height of the derivation of � ⇒ , is
straightforward since α-conversion is built into the notion of substitution. ��
Lemma 26 (Substitutions). The following rules of substitution are height-preserving
admissible in GIM.L:

� ⇒ 
�[w/v] ⇒ [w/v] Sl

� ⇒ 
�[w : s/x] ⇒ [w : s/x] St

Proof The proofs are by induction on the height of the derivation D of the premiss
� ⇒ . Most cases are as in [36, Lemma 12.4].

We consider only some interesting cases. First, we consider the case of rule St with
D ending as follows:

(u1, �t)R(u2, �y), � ⇒ , u2 : A[�y/�x]
� ⇒ , u1 : [ �t�x ]A

R�, u2, �y fresh
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If w ≡ u2, there is nothing to prove, thus we assume that w �≡ u2. If w �≡ u1 the
proof is immediate. If w ≡ u1, we proceed as follows (for �z new to s,D):

(w, �t)R(u2, �y), � ⇒ , u2 : A[�y/�x]
(w, �t)R(u2, �z), � ⇒ , u2 : A[�z/�x] I H

((w, �t)R(u2, �z))[w : s/x], �[w : s/x] ⇒ [w : s/x], (u2 : A[�z/�x])[w : s/x] I H

(w, �t[s/x])R(u2, �z), �[w : s/x] ⇒ [w : s/x], u2 : A[�z/�x]
(�)

�[w : s/x] ⇒ [w : s/x], w : [ �t[s/x]�x ]A
R�

�[w : s/x] ⇒ [w : s/x], (w : [ �t�x ]A)[w : s/x]
(�)

where the stepsmarkedby (�) are rewritings justifiedby the definition of label-sensitive
substitution.

Next, we consider the case St with D ending by the following instance of L�:

u2 : A[�r/�x], (u1, �t)R(u2, �r), u1 : [ �t�x ]A, � ⇒ 

(u1, �t)R(u2, �r), u1 : [ �t�x ]A, � ⇒ 
L�

We have sub-cases according to whether w is in {u1, u2}. Suppose that w ≡ u2 and
w �≡ u1. We transform D as follows:

u2 : A[�r/�x], (u1, �t)R(u2, �r), u1 : [ �t�x ]A, � ⇒ 

(u2 : A[�r/�x])[w : s/x], ((u1, �t)R(u2, �r))[w : s/x], (u1 : [ �t�x ]A)[w : s/x], �[w : s/x] ⇒ [w : s/x]
I H

u2 : A[�r [s/x]/�x], (u1, �t)R(u2, �r [s/x]), (u1 : [ �t�x ]A)[w : s/x], �[w : s/x] ⇒ [w : s/x]
(�)

(u1, �t)R(u2, �r [s/x]), (u1 : [ �t�x ]A)[w : s/x], �[w : s/x] ⇒ [w : s/x] L�

((u1, �t)R(u2, �r))[w : s/x], (u1 : [ �t�x ]A)[w : s/x], �[w : s/x] ⇒ [w : s/x]
(�)

The other sub-cases are similar.
Finally, we consider the case of rule Sl where the last step of D is as follows:

� ⇒ , u : A[z/x]
� ⇒ , u : ∀x R∀, z fresh

We proceed by applying the inductive hypothesis to the premiss and then an instance
of R∀. Observe that this is feasible only if the derivation of the premiss does not
contain a formula with an explicit label-sensitive substitution of shape [w : z/x] with
w ≡ u since by renaming w we could generate a clash with the eigenvariable of the
final instance of R∀. This assumption is not limitative since substitutions are a piece
of notation and not primitive operators. ��
Theorem 27 (Weakening). The following rules are height-preserving admissible in
GIM.L:

� ⇒ 

�′, � ⇒ 
LW

� ⇒ 

� ⇒ ,′ RW , ′ contains only labelled formulas
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Proof The proofs are by induction on the height of the derivation D of the premiss
� ⇒ . We consider just the case of D ending with an instance of R� and we refer
the reader to [36, Thm. 12.5] for most other cases. Suppose D ends as follows:

(w, �s)R(u, �y), � ⇒ , u : A[�y/�x]
� ⇒ ,w : [ �s�x ]A

R�, u, �y fresh

The following transformation shows that LW is hp-admissible:

(w, �s)R(u, �y), � ⇒ , u : A[�y/�x]
(w, �s)R(u, �z), � ⇒ , u : A[�z/�x] St

(w, �s)R(u′, �z), � ⇒ , u′ : A[�z/�x] Sl

(w, �s)R(u′, �z), �′, � ⇒ , u′ : A[�z/�x] I H

�′, � ⇒ ,w : [ �s�x ]A
R�

where u′ and �z are new to D and not occurring in �′. ��
Lemma 28 (Invertibility). Each rule of GIM.L is height-preserving invertible.

Proof For each rule we proceed by induction on the height of the derivation D of a
possible conclusion of an instance of that rule. The cases for the non-modal logical
rules have been proved in [36]. Rules L�, R♦ as well as all coherent rules are height-
preserving invertible thanks to Theorem 27. Finally the height-preserving invertibility
of rule R� and L♦ is straightforward. Suppose, e.g., thatD is a derivation concluding
� ⇒ ,w : [ �s�x ]A. If w : [ �s�x ]A is principal in the last rule applied in D then we
already have a (shorter) derivation of (w, �s)R(u, �y), � ⇒ , u : A[�y/�x], for some
u, �y. Else the last rule applied in D has principal formula(s) in �,. As usual, we
apply (an instance of substitution if that rule has a variable condition and) the inductive
hypothesis to the premiss and than an instance of the same rule to obtain a derivation—
having same height of D—of the desirered endsequent. ��
Theorem 29 (Contraction). The following rules are height-preserving admissible in
GIM.L:

�′, �′, � ⇒ 

�′, � ⇒ 
LC

� ⇒ ,′,′
� ⇒ ,′ RC

Proof The proof is handled by a simultaneous induction on the height of the derivations
of the premisses of LC and RC . Without loss of generality, we assume the multiset
we are contracting is made of only one formula E .

The base cases obviously hold, and the proof of the inductive cases depends on
whether zero, one, or two instances of E are principal in the last step R of the derivation
D of the premiss. If zero instances are principal in R, we apply IH to the premiss(es)
of R and then an instance of rule R, and we are done.

If one instance is principal and R is by a propositional rule or by one of R∀, L∃, R�,

and L♦, we proceed by first applying invertibility to that rule, then we apply IH as
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many times as needed, andwe conclude by applying an instance of that rule. If, instead,
one instance is principal and R is by a rule with repetition of the principal formula(s)
in the premiss, we apply directly IH—on LC and/or RC depending on the case we
are considering—and an instance of R.

If two instances are principal, R is a coherent rule and we know that contraction is
hp-admissible since R satisfies the closure condition given in Definition 22. ��

Theorem 30 (Cut). The following rule of Cut is admissible in GIM.L:

� ⇒ ,w : A w : A, �′ ⇒ ′
�′, � ⇒ ,′ Cut

Proof The proof, which extends that of [36, Theorem 12.9], considers an uppermost
instance of Cut which is handled by a principal induction on the weight of the cut-
formula with a sub-induction on the sum of the heights of the derivations D1 and D2
of the two premisses of cut (cut-height, for shortness). The proof is organised in three
exhaustive cases: in case 1 at least one of the two premisses is an initial sequent. In
case 2 the cut formula is not principal in at least one premiss. Finally, in case 3 it is
principal in both premisses.

Case 1 is treated in [36].
In case 2 we permute the cut upwards in the derivation of one premiss where the

cut formula is not principal, after having applied an instance of St and/or Sl if that last
rule has a variable condition. To illustrate, suppose we have the following derivation:

� ⇒ ,w : A
(v, �s)T (u, �y), w : A, �′ ⇒ ′′, u : B[�y/�x]

w : A, �′ ⇒ ′′, v : [ �s�x ]B
R�

�′, � ⇒ ,′′, v : [ �s�x ]B
Cut

We transform it into the following derivation having an admissible cut of lesser cut-
height:

� ⇒ ,w : A
(v, �s)T (u, �y), w : A, �′ ⇒ ′′, u : B[�y/�x]
(v, �s)T (u′, �z), w : A, �′ ⇒ ′′, u′ : B[�z/�x] Sl+St

(v, �s)T (u′, �z), �′, � ⇒ ,′′, u′ : B[�z/�x] I H

�′, � ⇒ ,′′, v : [ �s�x ]B
R�

where u′ and �z do not occur in the original derivation.
Finally, case 3 has sub-cases according to the principal operator of the cut-formula.

We consider only the case where the cut-formula is of shape w : [ �s�x ]B. The procedure
for w : 〈�s�x 〉B is analogous, and the other cases have been considered in [36]. We
transform the derivation:
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(w, �s)R(u, �y), � ⇒ , u : B[�y/�x]
� ⇒ ,w : [ �s�x ]B

R�
v : B[�t/�x], (w, �s)R(v, �t), w : [ �s�x ]B, �′′ ⇒ ′

(w, �s)R(v, �t), w : [ �s�x ]B, �′′ ⇒ ′ L�

(w, �s)R(v, �t), �′′, � ⇒ ,′ Cut

Into the following one:

(w, �s)R(u, �y), � ⇒ , u : B[�y/�x]
(w, �s)R(u, �t), � ⇒ , u : B[�t/�x] St

(w, �s)R(v, �t), � ⇒ , v : B[�t/�x] Sl
� ⇒ ,w : [ �s�x ]B w : [ �s�x ]B, v : B[�t/�x], (w, �s)R(v, �t), �′′ ⇒ ′

v : B[�t/�x], (w, �s)R(v, �t), �′′, � ⇒ ,′ I H2

(w, �s)R(v, �t), (w, �s)R(v, �t), �′′, �′, � ⇒ ,′,′ I H1

(w, �s)R(v, �t), �′′, � ⇒ ,′ LC+RC

Where I H1 refers to the principal inductive hypothesis and I H2 to the secondary one.
��

Lemma 31 (Properties of identity).

1. Identity is an equivalence relation in GIM.L;
2. The following sequents are GIM.L-derivable:

(a) ⇒ w : t = t
(b) w : t = s, w : A[t/x] ⇒ w : A[s/x]

3. The following rule of replacement is admissible in GIM.L:

w : A[s/x], w : t = s, w : A[t/x], � ⇒ 

w : s = t, w : A[t/x], � ⇒ 
ReplA

Proof The proofs of items 1 and 2(a) are left to the reader. We prove the following
instance of 2(b): w : s = t, w : [ �r [t/x]�y ]A ⇒ w : [ �r [s/x]�y ]A:

v : A[�z/�y], (w, �r [t/x])R(v, �z), w : s = t, (w, �r [s/x])R(v, �y), w : t = s, w : [ �r [t/x]�y ]A ⇒ v : A[�z/�y]
Lem. 24

(w, �r [t/x])R(v, �z), w : s = t, (w, �r [s/x])R(v, �y), w : t = s, w : [ �r [t/x]�y ]A ⇒ v : A[�z/�y]
L�

w : s = t, (w, �r [s/x])R(v, �z), w : t = s, w : [ �r [t/x]�y ]A ⇒ v : A[�z/�y]
Repl

(w, �r [s/x])R(v, �z), w : t = s, w : [ �r [t/x]�y ]A ⇒ v : A[�z/�y]
Sim=

w : t = s, w : [ �r [t/x]�y ]A ⇒ w : [ �r [s/x]�y ]A
R�

where rule
w : s = t, w : t = s, � ⇒ 

w : t = s, � ⇒ 
Sim= is admissible.

Finally, item (3) is a corollary of the admissibility of contraction and cut:

w : t = s, w : A[t/x] ⇒ w : A[s/x] Lem. 31.2(b)
w : A[s/x], w : t = s, w : A[t/x], � ⇒ 

w : s = t, w : A[t/x], w : s = t, w : A[t/x], � ⇒ 
Cut

w : s = t, w : A[t/x], � ⇒ 
LC

��
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9 Characterisation

9.1 Soundness

Definition 32 Given a model M = 〈W,D, T ,V〉, let α : L AB −→ W be a func-
tion mapping labels to worlds of the model, and let β : W −→ (Var −→ D)

be a function mapping worlds to assignments defined over that world. We say that:

M, α, β satisfies w : A iff β(α(w)) |�M
α(w) A

M, α, β satisfies 〈w, σ(�t)〉T 〈v, τ (�s)〉 iff (α(w), β(α(w))(�t))R(α(v), β(α(v))(�s))
where,

abusing notation, β(α(w))(t), for t not a variable, stands for Vα(w)(t).
Given a sequent � ⇒  and a logic L, we say that � ⇒  is L-valid iff for every

tripleM, α, β whereM is a model based on a skeleton for L, ifM, α, β satisfies all
formulas in � then it satisfies some formula in .

Theorem 33 (Soundness). If � ⇒  is GIM.L-derivable, then it is L-valid.

Proof The proof is by induction on the height of theGIM.L-derivation of� ⇒ . The
base case holds since either � and  have some atomic formula w : P in common or
� () contains an instance of w : ⊥ (w : �). It is also easy to see that the non-modal
logical rules preserve validity on every model, see [36, Thm. 12.13].

Let us consider the following instance of L�:

v : A[�s/�x], (w, �t)R(v, �s), w : [ �t�x ]A, � ⇒ 

(w, �t)R(v, �s), w : [ �t�x ]A, � ⇒ 
L�

and a tripleM, α, β satisfying all formulas in (w, �t)R(v, �s), w : [ �t�x ]A, �. This implies
that M is such that 〈α(w), β(α(w))(�t)〉T 〈α(v), β(α(v))(�s)〉 and, for each u ∈ W
and each u-assignment τ , 〈α(w), β(α(w))(�t)〉T 〈u, τ (�x)〉 implies β(α(u)) |�α(u)

A. In particular, we have that 〈α(w), β(α(w))(�t)〉T 〈α(v), β ′(α(v))(�x)〉, where
β ′(α(v))(�x) = β(α(v))(�s) and β ′ behave like β for other variables. It follows that
β ′(α(v)) |�α(v) A, which is equivalent to β(α(v)) |�α(v) A[�s/�x]. Since M, α, β sat-
isfies all formulas in the antecedent of the premiss, we conclude thatM, α, β satisfies
some formula in .

Suppose, instead, that D ends by the following instance of R�:

(w, �s)R(u, �y), � ⇒ , u : A[�y/�x]
� ⇒ ,w : [ �s�x ]A

R�, u, �y fresh

We consider a triple M, α, β satisfying all formulas in �. If it satisfies also some
formula in  we are done. If, instead, it satisfies no formula in , we show it satisfies
w : [ �s�x ]A. If there is no tuple made of a world v and a sequence of objects �o from its
domain such that 〈α(w), β(α(w))(�s)〉T 〈v, �o〉, we can already conclude thatM, α, β

satisfies w : [ �s�x ]A. Else, for one (generic) such v, �o we consider α′ and β ′ such that
α′(u) = v and β ′(α′(u))(�y) = �o and behaving like α and β for the other labels
and variables. The triple M, α′, β ′ satisfies all formulas in (w, �s)R(u, �y), � and, by
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induction, it satisfies also some formula in, u : A[�y/�x]. Given that it cannot satisfies
some formula in (otherwise alsoM, α, β would do so), it must satisfies u : A[�y/�x].
We can easily conclude that M, α, β satisfies w : [ �s�x ]A.

The proof that the rules for identity and l-identity, as well as rule Perm, preserve
validity is standard and can, thus, be omitted. The proof that each non-logical rule
preserves validity over the appropriate class of skeletons, is straightforward: each
triple satisfying all formulas in the antecedent of the conclusion must satisfies all
formulas in the antecedent of some premiss sinceM is based on a skeleton having the
property expressed by that rule. We conclude that the given triple satisfies also some
formula in the succedent of the conclusion of that rule instance. ��

9.2 Completeness

We prove that each calculus is complete over the appropriate class of skeletons by
the usual Tait-Schütte-Takeuti technique: we define a root first-procedure that outputs
the informations needed to build a derivation for each derivable sequent and a coun-
termodel (based on the appropriate class of skeletons) for each underivable one. This
strategy is direct and has the advantage of being modular, see [34] for an overview
of this and other strategies for proving completeness for modal logics. The proof is
articulated in the following steps:

1. We define the notion of a saturated branch of a tree of sequents, where, intuitively,
a branch is saturated if it contains no initial sequent nor instance of 0-premiss rules
and, moreover, whenever one of its nodes contains the principal formulas of an
instance of a rule, there is a node containing its active formulas.

2. We define a root-first proof-search procedure that either outputs the informations
needed to build a derivation or a tree containing at least one saturated branch.

3. We define the model generated by a saturated branch.
4. We show that the model thus generated is a countermodel for the end-sequent of

the proof-search and that it is based on a skeleton in the appropriate class.

Definition 34 (Saturated branch). Let B be a branch of a tree of sequents and let �

() be the union of all formulas occurring in the antecedents (succedents, resp.) of its
nodes. B is L-saturated if the following holds:

1. The branch contains no node that is an initial sequent or an instance of a 0-premiss
rule. In particular:

(a) No formula of shape w : P , for P atomic, occurs in � ∩;
(b) No instance of w : ⊥ (w : �) occurs in � ();
(c) � does not contain the principal formulas of a coherent 0-ary rule of GIM.L.

2. If B contains the principal formulas of a propositional rule, it contains also the
active formulas of one of its premisses—e.g., if � () contains w : A ∧ B then �

() contains w : A and w : B (w : A or w : B, respectively).
3. If the branch contains the principal formula of a rule for the quantifiers, then it

contains also its active formulas. For ∀ we have the following clauses:
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(a) If w : ∀x A occurs in � then � contains w : A[t/x] for all terms t occurring in
� in an expression of shape w : t = t (or for a fresh term if no w : t = t is in
�);

(b) If w : ∀x A occurs in  then w : A[t/x] occurs in  for some term t .

4. If the branch contains the principal formula(s) of a rule for the indexed modalities,
then it contains also its active formulas. For [ ·] we have the following clauses:

(a) If w : [ �t�x ]A and (w, �t)R(v, �s) occur in � then v : A[�s/�x] occurs in �;

(b) Ifw : [ �t�x ]A occurs in then, for some label u and some terms �s, (w, �t)R(u, �s)
occurs in � and u : A[�s/�x] occurs in .

5. If B contains the principal formula(s) of a n+ 1-ary coherent rule ofGIM.L then
it contains also its active formulas.27

Definition 35 (Proof-search tree). Given a sequent � ⇒  and a calculusGIM.L we
outline a procedure that applies root-first, all possible rules of inference.

At stage 0 we write the one-node tree � ⇒ .
At stage n + 1 we first check all leaves of the tree generated at stage n to see if

they are all initial sequents or instances of a 0-ary rule of GIM.L. If they are so, the
procedure ends. Else, we apply all possible (non 0-ary) rules of the calculus to each
branch not satisfying the above condition. In particular, we have 20 + m substages,
where m is the number of coherent rules of GIM.L (modulo the coherent rules of
GIM.K), and at each sub-stage we apply in parallel all possible instances of a rule of
GIM.L. To illustrate, at substage 13 we apply all possible instance of R�. If the leaf
is

� ⇒ ,w1 : [ �t1�x1 ]A1, . . . , wk : [�tk�xk ]Ak

and no formula in  has [ ·] as principal operator, we extend the branch with the node

(w1, �t1)R(u1, �y1), . . . , (wk , �tk)R(uk , �yk), � ⇒ , u1A1[�y1/�x1], . . . , uk : Ak [�yk/�xk ]

where u1, . . . , uk are fresh labels and �y1, . . . , �yk are fresh tuples of variables.
Two cases are possible: if the procedure ends, it outputs a finite tree containing the

informations to write a GIM.L-derivation of � ⇒ . Else, it outputs an infinite tree
which, by König’s lemma, contains an infinite branch. It is immediate to notice that
this infinite branch is L-saturated.

Definition 36 (ModelMB). let B be a L-saturated branch obtained by the procedure
in Def. 35 and let � () be the union of all formulas in its antecedents (succedents).
The model MB is thus defined:

WB is the set of all equivalence classes under l-identity of labels occurring in �;

27 If the rule has no principal formula, then it is enough if it contains all instances of its active formulas
containing (apart from eigenvariables) only labels w occurring in B and terms t occurring in � in an
expression of shape (w, �s) or occurring in B in a formula of shape w : A not inside the scope of an indexed
modality or (only) of its lower index.
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DB is the union of all sets Dw, for w ∈ WB, such that: tw ∈ Dw iff tw is the
equivalence class of all terms s such that w : t = s occurs in �;
T B is such that 〈w, �tw〉T B〈v, �sv〉 iff (w, �t)R(v, �s) occurs in �;
VB is the union of world-bound valuations Vw, for all w ∈ WB, such that
Vw( f (t1, . . . , tn)) = f w(tw1 , . . . , twn ) and
Vw(Pn) = {〈tw1 , . . . , twn 〉 : w : Pn(t1, . . . , tn) ∈ �}.

Lemma 37 (Truth lemma). Let MB be the model constructed from an L-saturated
branch B of a proof-search tree for the sequent � ⇒ � and let � () be the union
of all formulas occurring in the antecedents (succedents) of B. Let, moreover σv , for
v ∈ WB, be the v-assignment mapping each variable x to its equivalence class xv .
For each labelled formula w : A occurring in B we have that:

1. σw |�MB
w A if w : A occurs in �;

2. σw �|�MB
w A if w : A occurs in .

Proof The two claims are proved by simultaneous induction on the weight of w : A.
For the non-modal cases we refer the reader to [36].

Assume that w : A is w : [ �t�x ]B and that it occurs in �. Definition 34.4(a) ensures
that, for each formula of shape (w, �t)R(v, �s) occurring in �, v : B[�s/�x] occurs in
�. By induction we have that σv |�v B[�s/�x], which, by Lemma 6, is equivalent to
σ
�x�σv(�s)
v |�v B. We easily conclude that σw |�w [ �t�x ]B.
Suppose, instead, that w : [ �t�x ]B occurs in . By Definition 34.4(b) there are a

label u and variables �y such that (w, �t)R(u, �y) occurs in � and u : B[�y/�x] occurs
in . By induction, σu �|�u B[�y/�x] and, since 〈w, �tw〉T B〈u, �yu〉, we conclude that
σw �|�w [ �t�x ]B. ��
Theorem 38 (Completeness). Each L-valid sequent is derivable in GIM.L.

Proof Assume thatGIM.L � � ⇒ . Lemma 37 ensures thatMB is a countermodel
for � ⇒ —i.e., it satisfies all formulas in � and no formula in . To prove the
theoremwe have only to show thatMB is a model forL. This follows immediately by
clauses 1(c) and 5 of Definition 34: they ensure that whenever the principal formulas
of a coherent rule expressing a property α of T B are in �, also (at least one disjunct
of) the corresponding active formulas are in �. By construction of T B this means that
it satisfies α. ��
Corollary 39 The rule of Cut is semantically admissible.

Corollary 40 Validity overFO-definable classed ofKripke frames can be characterised
proof-theoretical by labelled sequent calculi.

Proof An immediate consequence of Theorems 19 and 38. ��

10 Conclusion

We have shown that IML provide a very expressive framework for QML: each formula
where the FO-machinery interacts with modalities corresponds to a FO-expressible
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property of the transition relation. This is a big advantage with respect to Kripke
semantics where there are formulas—like (CBF) and (GF)—that are valid when we
adopt the classical theory of quantification and there are distinct formulas—like (NI)
and (ND)—corresponding to the same semantical property.

We have also shown that labelled sequent calculi allow to give a proof-theoretic
characterisation of an extremely wide class of QML: each indexed extension of a
FO-definable PML has a cut-free and complete proof system. To our knowledge this
completeness result is more general than existing ones which cover, at most, quantified
extensions of canonical PML.28 We avoided the problem of incomplete but com-
pletable axiomatic systems since all problematic interaction formulas are derivable.
If, e.g., we consider the labelled calculus for the logic Q.S4M, an easy proof-search
shows that the sequent expressing the axiom used in [11] to complete it is derivable
in the corresponding labelled calculus. Analogously, the axiomatic system Q.K2.BF
is incomplete since the formula

♦(∀x(A ⊃ �A) ∧�¬∀x A) ∧ ♦∀x(A ∨�A) ∧ ∀x(♦A ⊃ �A) (Cr )

is Q.K2.BF-consistent but not satisfiable in the appropriate class of Kripke frames
[10]. A (long but) simple proof-search shows that the sequent⇒ w : ¬Cr is derivable
in the corresponding labelled calculus.

One question that remains open is whether the completeness result given here is
optimal: the quantified extensions of second-order definable PML studied in the liter-
ature are not recursively axiomatisable. To our knowledge, there is no general result
concerning the (non-)axiomatisability of quantified extensions of second-order defin-
able PML.29 Another direction for future research is the comparison of the present
approach with those based on metaframes [18, 29, 39] and with those based on quan-
tification over individual concepts [15, 19, 28].
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