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Abstract
Here I show that the one-variable fragment of several first-order relevant logics cor-
responds to certain S5ish extensions of the underlying propositional relevant logic.
In particular, given a fairly standard translation between modal and one-variable lan-
guages and a permuting propositional relevant logicL, a formulaA of the one-variable
fragment is a theorem of LQ (QL) iff its translation is a theorem of L5 (L.5). The
proof ismodel-theoretic. In one direction, semantics based on theMares-Goldblatt [15]
semantics for quantified L are transformed into ternary (plus two binary) relational
semantics for S5-like extensions of L (for a general presentation, see Seki [26, 27]).
In the other direction, a valuation is given for the full first-order relevant logic based
on L into a model for a suitable S5 extension of L. I also discuss this work’s relation to
finding a complete axiomatization of the constant domain, non-general frame ternary
relational semantics for which RQ is incomplete [11].

Keywords First-Order Relevant Logic · One-Variable Fragment · Modal Relevant
Logic

1 Introduction

The relation between one-variable fragments of quantified logics and S5-ish modal
logics with the same propositional base is a common subject of inquiry. For classical
logic, this relation is demonstrated well in Mints [19]. For Corsi logic this relation has
been shown in Caicedo et al. [4], who have also dealt with one-variable fragments of
some intermediate logics [5]. So far, at least in print, there has been a overalllack of
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results and interest in the one-variable fragment of relevant logics. However, there has
been a related result by Cintula et al. [6] that gives a proof-theoretic demonstration
of a correspondence between the one-variable fragments of certain first-order logics
and the S5-ish extensions of their propositional base. In particular, their results are for
logics extending the full Lambek calculus with exchange, some extensions of which
are extensions of logics considered in this paper.

The paper aims to accomplish two related tasks. The first is tomotivate the project to
the philosopher and the mathematician. The second is to prove a semantic equivalence
result between the one-variable fragment of LQ (QL) and the modal relevant logic
L5 (L.5).

There is philosophical and mathematical interest in Fine’s [11] incompleteness
result for RQ, a first-order relevant logic based onR, with respect to the most straight-
forwardway of generalizing the ternary relational semantic of Sylvan (né Routley) and
Meyer [24] where quantifiers are given the usual Tarskian interpretation. (We’ll call
this failed semantic approach the CD Semantics.) There is still no complete axiomati-
zation of the logic for theCD semantics.Moreover,RQ has received a natural, constant
domain semantics fromMares and Goldblatt [15]. Fine’s incompleteness result shows
that a particular formula is valid in the CD semantics, yet it is not a theorem of RQ.
This formula, which the reader will encounter below, is (with a little squinting or
harmless substitution) a formula in the one-variable fragment of RQ. Thus, the link
to modal logic may provide insight into the problems of (1) finding a proof system
for the CD Semantics, and (2) determining just what goes wrong in the CD Semantics
(from the point of view of RQ).

The paper is divided as follows: we first set out the preliminaries including axioma-
tizations and semantics for first-order and modal relevant logics, translations between
modal and one-variable fragment languages, and select formulas and their translations.
The section that follows gives the equivalence results using frame-based semantics.
We conclude by expanding on the relation of this work to other topics in relevant logic,
most notably Fine’s incompleteness result, and by suggesting further work.

2 Preliminaries

We define a modal propositional language, a first-order language, and first-order lan-
guage with a single variable. For modal propositional logics, we assume an at most
denumerable set of a atomic propositions or propositional variables, denoted as lower-
case letters from p through s, with or without subscripts. For any propositional logic,
the set of (well-formed) formulas is defined in the usual way using t (intensional truth
constant), ¬ (negation), ∧ (truth-functional conjunction), ∨ (truth-functional disjunc-
tion), ◦ (intensional conjunction) → (conditional), � (necessity) and ♦ (possibility).
We call this defined language a modal language. Without the modalities, we call the
language simply a propositional language.

For first-order logics, we assume a denumerable set of variables Var with a fixed
ordering. Variables will be denoted by lowercase letters near the end of the Latin
alphabet, often with integer decoration representing their place in the assumed fixed
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ordering (e.g. x, y, z, y4). A signature is a set L consisting of a non-empty but at most
denumerable set Pred of predicate symbols and an at most denumerable set Con of
individual constant symbols. Each predicate symbol is of the form Pn , where n is the
arity of the predicate. The arity is often omitted. I shall denote individual constants
by c, with or without subscripts. A term is denoted by τ , with or without integer
decoration. An L-term, for signature L, is the union of the variables and constants of
L. A term is closed when it contains no variables, otherwise it is open.

For a given signature L, the atomic formulas (atomic L-formulas) are those of the
form Pn(τ1, . . . , τn), where Pn ∈ L and τ1, . . . , τn are L-terms. The set of well-
formed formulas of a first-order logic with signature L is defined in the usual way,
extending the propositional connectives with the cases for ∀x (universal quantifica-
tion) and ∃x (existential quantification), for each variable x . We will use calligraphic,
uppercase Latin letters to range over the set of well formed formulas (of w f f , when
the language is clear) for both propositional and first-order logics.

We call this defined language a full first order language. When we restrict ourselves
to a single variable (wewill choose x for this variable by fiat), reject zero-ary predicate
letters (with the exception of t), and have the empty set worth of constants, we call
this a first order language in the one-variable fragment, although similar phrases are
employed.1 We write L(x) for the one-variable fragment for the variable x . To avoid
unnecessary typing, we will often use first order language, when it is reasonably clear
that we mean “in the one-variable fragment”.

An instance of a variable x is bound in the formulaA if either (1) the instance is the
x of an expression ∀x or ∃x occurring inA, or (2) the instance of x occurs within the
scope of a quantifier, ∀x or ∃x . A instance is free when it is not bound, and a formula
with no free variables is called a sentence. A term τ is free for (or freely substitutable
for) x in A if, for every variable y occurring in τ , there are no free occurrences of x
in A that are in the scope of a quantifier ∀y or ∃y.

We shallwriteA[τ/x] for the result of replacing every free occurrence of x inAwith
the term τ . Similarly, we will useA[τ0/v0, . . . , τn/vn] for the result of simultaneously
replacing v0 through vn with τ0 through τn respectively.

A variable assignment, g ∈ Uω, assigns an element of the domain U for each
variable. In detail, we order the variables and associate each position in that ordering
with an element of the domain, using gn to denote the nth element of the ordering.
That is, a variable assignment is a denumerable list of elements in the domain. An
x-variant of a variable assignment g differs from g in at most the assignment to the
variable x , and the set of all x-variants of g is denoted xg. We write g[ j/n] (or g[ j/x])

1 We note that the inclusion of only unary predicate symbols, to the exclusion of (non-constant) zero-ary
predicate symbols, is standard in the literature of one-variable fragments and their modal logic counterparts:
e.g., see [4–6]. (Strictly speaking, this is the monadic fragment, which is equivalent to the one-variable
fragment when there are no zero-ary predicate symbols.) The proofs below would appear to work with the
addition of zero-ary predicates with translations that differ from h and g (defined below in Section 2.5). A
zero-ary predicate must be translated into something that is equivalent to its boxed veriant: i.e., p ↔ �p
is a theorem. This is possible if we translate zero-ary predicates to a formula of the form �p. However,
in doing so we lose the facts that g(h(A)) = A and h(g(A)) = A, which are desirable in that they help
display the equivalence. The special propositional constant t , however, is already treated sufficiently in the
modal logic: � t ↔ t is a theorem.
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to represent the variable assignment just like g, except that the n-th element in g (or
x) is replaced by the element j .

2.1 First Order Relevant Logics Logics

Here we provide both an axiomatization and frame-based semantics for the propo-
sitional relevant logic extending B, and first order logics and their restriction to the
one-variable fragments (with variable x). The frame-base semantics (for the first-order
logic) is that introduced in [15] for QR and RQ (and extended to a wide range of first-
order (modal) relevant logics in Ferenz [9]), which is based on the ternary relational
semantics established in [22–24] by Sylvan and Meyer.

2.2 Axiomatic Presentations

We can define a range of logics from the following axioms schemes and rule schemes.

(A1) A → A
(A2) A → (A ∨ B)

(A3) B → (A ∨ B)

(A4) (A ∧ B) → A
(A5) (A ∧ B) → B
(A6) A ∧ (B ∨ C) → ((A ∧ B) ∨ (A ∧ C))

(A7) ((A → B) ∧ (A → C)) → (A → (B ∧ C))

(A8) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)

(A9) ¬¬A → A
(A10) (A → ¬B) → (B → ¬A)

(A11) (A → B) → ((B → C) → (A → C))

(A12) (A → B) → ((C → A) → (C → B))

(A13) (A → (A → B)) → (A → B)

(A14) A → ((A → B) → B)

(A15) A → (A → A)

(A16) (A → (B → C)) → (B → (A → C))

(∀E) ∀xA → A[τ/x], where τ is free for x in A
(∃I) A[τ/x] → ∃xA, where τ is free for x in A

(EC1) ∀x(A ∨ Bx ) → ∀xA ∨ Bx

(EC2) Ax ∧ ∃xB → ∃x(Ax ∧ B)

(MP) A,A → B � B
(ADJ) A,B � A ∧ B

(Prefix) A → B � (C → A) → (C → B)

(Suffix) A → B � (B → C) → (A → C)

(RCont) A → ¬B � B → ¬A
(R∀I) Ax → B � Ax → ∀xB
(R∃E) A → Bx � ∃xA → Bx

(R◦) A → (B → C) �� (A ◦ B) → C
(R←) A → (B → C) �� B → (C ← A)
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(R t) t → A �� A
In the schemes listed above, Ax indicates that x does not occur free in the formula
A. Further, � indicates a rule of proof in the sense of [14, 28], so A1, . . . ,An � B
should be read tomean that if eachAi is derivable, then so isB.We define an axiomatic
derivation to be a sequence of formulas, each of which is either an instance of an axiom
scheme or follows from previous formulas in the sequence by one of the rule schemes.
Logics will be identifiedwith their set of theorems (formulas provable from the axioms
alone), and we will write �L A for A is a theorem of L, dropping the subscript when
doing so introduces no ambiguity.

In a propositional language, we define the base affixing logicB as (A1)–(A9), (MP),
(ADJ), (Prefix), (Suffix), (RCont). The main results apply to logic with permutation,
so wewill stick to these logic.Most don’t have standard names in the literature, though
R and RQ are exceptions. Thus, for logics weaker than R with permutation (A16),
we will typically use a super-scripted ’P’. Thus, we have BP = B + (A16). We define
the permuting logics:2

DWP = BP + (A10) R = RW + (A13)

RW = DWP + (A11) + (A12) RM = R + (A15)

Note that, as defined, these logics are in a language with t , ◦, and ←. We explicitly
include ← and its governing rule, despite that it is definable in systems with permuta-
tion, because it allows us to have a more succinct axiom system for first-order logics.
We will not use any logics here that does not contain leftarrow and fusion, and so there
is no decoration on the name of a logic to denote this. However, this is an important
distinction: e.g., some first-order relevant logics (needing neighbourhood semantics)
are not conservatively extended by fusion or leftarrow [31].

For any propositional logic L (defined above), in a first-order language we define
two first-order extensions as follows:

QL = L + (∀E) + (∃I) + (R∀I) + (R∃E)
LQ = QL + (EC1) + (EC2)

The logics LQx and QLx , the one-variable fragments of LQ and QL, are defined
to be the theorems of LQ and QL, restricted to the one-variable language.

Due to the presence of the ← and ◦, we have easy proofs of the following theorem
(schemes):

(1) ∀x(Ax → B) → (Ax → ∀xB)

(2) ∀x(A → Bx ) → (∃xA → Bx )

Without the leftarrow, we would include (2) as an axiom scheme, and similarly for
(1).

2 Note that there are several ways to define these logic. In addition, the reader is directed to [25, Sections
4.1] for a more thorough list of axioms to extend BP with.
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2.2.1 Semantics

We rehearse the general frame-based semantics for first-order logics using the Mares-
Goldblatt interpretation of the quantifiers. This interpretation was introduced in [15]
for QR and RQ, and extended to a wider range of relevant logics in Ferenz [9] (and
with neighbourhood semantics in Tedder and Ferenz [31]).

First, we introduce frames for propositional relevant logics.

Definition 1 (Frames andModels for Propositional Logics) A ternary relational frame
forB (B-frame) is a tupleF = 〈W , N , R, ∗〉where ∅ �= N ⊂ W , R ⊆ W 3, ∗ : W −→
W , and we further define, for each a, b ∈ W , a ≤ b =d f ∃x ∈ N (Rxab). Moreover,
the following conditions are satisfied:

(c1) ≤ is a preorder on W ;
(c2) N is an (≤-)upset;
(c3) Ra′b′c′, a′ ≤ a, b′ ≤ b, and c ≤ c′ imply Rabc;
(c4) a ≤ b implies b∗ ≤ a∗;
(c5) a∗∗ = a

A model for B is an B-frame with a valuation function ||−|| that assigns an upset
||p|| ⊆ W to each propositional variable p. We define operations ¬,→,←, and ◦ on
subsets of W as follows:

¬X =d f {a ∈ K : α∗ /∈ X}
X → Y =d f {a ∈ K : ∀b, c ∈ K (Rabc & b ∈ X ⇒ c ∈ Y )}
X ← Y =d f {a ∈ K : ∀b, c ∈ K (Rbac & b ∈ X ⇒ c ∈ Y )}
X ◦ Y =d f {a ∈ K : ∃b, c ∈ K (Rbca & b ∈ X & c ∈ Y )}

The assignment ||−|| is extended to all formulas by the following:

|| t|| = N

||A ∧ B|| = ||A|| ∩ ||B||
||A → B|| = |A|| → ||B||

||A ◦ B|| = ||A|| ◦ ||B||

||¬A|| = ¬||A||
||A ∨ B|| = ||A|| ∪ ||B||

||A ← B|| = ||A|| ← ||B||

We briefly list a select few semantic conditions, where (cX) corresponds to the
axiom/rule scheme (X). For a more complete list, the reader is directed, e.g., to [25,
Sections 4.1, 4.4].

(c10) Rabc ⇒ Rac∗b∗
(c11) R2abcd ⇒ Rb(ac)d
(c12) R2abcd ⇒ Ra(bc)d
(c13) Rabc → R2abbc

(c14) Rabc → Rbac
(c15) Rabc ⇒ a ≤ c or b ≤ c
(c16) R2abcd ⇒ R2acbd

In the above list, R2abcd is defined as ∃x(Rabx & Rxcd) and Ra(bc)d as
∃x(Rbcx & Raxd).
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Definition 2 (Frames and Models for LQ/QL) Suppose that L is a propositional rel-
evant logic (restricted to those defined above). A Mares-Goldblatt frame for QL (an
QL-frame) is a tuple F = 〈W , N , R, ∗,U , Prop, PropFun〉, where 〈W , N , R, ∗〉
is an L-frame, U is a non-empty set, and, defining the ‘upsets’ as ℘(K )↑ = {X ∈
℘(K ) : ∀a, b,∈ K (a ∈ X & a ≤ b) ⇒ b ∈ X}, we have that Prop ⊆ ℘(K )↑,
PropFun ⊆ {ϕ : Uω −→ Prop}. Moreover, the following conditions are satisfied:

(cq1) Prop contains N , and is closed under ∩,∪,¬,→,←, ◦;
(cq2) PropFun contains a constant function ϕN (ϕN f = N ), and is closed under

∩,∪,¬,→,←, ◦,∀n and ∃n , for every n ∈ ω, where

(a) (¬ϕ) f = ¬(ϕ f )
(b) (ϕ ⊗ ψ) f = ϕ f ⊗ ψ f , for each ⊗ ∈ {∩,∪,→, ◦,←}
(c) (∀nϕ) f = �

g∈xn f
ϕg = ⋃{X ∈ Prop | X ⊆ ⋂

g∈xn f
ϕg}

(d) (∃nϕ) f = ⊔

g∈xn f
ϕg = ⋂{X ∈ Prop | ⋃

g∈xn f
ϕg ⊆ X}

The LQ-frames are defined as the QL-frames that further satisfying the following.
For every ϕ ∈ PropFun, X ,Y ∈ Prop, n ∈ ω, and f ∈ Uω:

(cEC1) X − Y ⊆ ⋂

j∈U
ϕ( f [ j/n]) only if X − Y ⊆ (∀nϕ) f

(cEC2)
⋃

j∈U
ϕ( f [ j/n]) ⊆ X ∪ Y only if |∃nϕ| f ⊆ X ∪ Y

A pre-model for QL/LQ is a tupleM = 〈F, |−|〉 such that F is a Mares-Goldblatt
frame for QL/LQ and |−| is a valuation function that assigns:

(i) an individual |c| ∈ U to each constant symbol c;
(ii) a function |Pn| : Un −→ ℘(K ) to each n-ary predicate symbol Pn ; and
(iii) a propositional function |A| : Uω −→ ℘(K ) to each formulaA such that, when

A is atomic, for every f ∈ Uω:

|Pnτ1, . . . , τn| f = |Pn|(|τ1| f , . . . |τn| f )

where “|τ | f ” is f n when τ is the variable xn , and |c| when τ is constant symbol
c. Moreover, when A is not atomic (or t), the valuation is extended as follows,
for every f ∈ Uω:

| t| f = ϕN f

|¬A| f = ¬|A| f
|A ∧ B| f = |A| f ∩ |B| f
|A ∨ B| f = |A| f ∪ |B| f

|A → B| f = |A| f → |B| f

|A ← B| f = |A| f ← |B| f
|A ◦ B| f = |A| f ◦ |B| f
|∀xnA| f = ∀n|A| f
|∃xnA| f = ∃n|A| f

A model for QL/LQ is a pre-model for QL/LQ that assigns an element of Prop to
each atomic formula. A formula A is satisfied by a variable assignment f in a model
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M, written M, f � A, when N ⊆ |A| f . A formula is valid in a model M (M � A)
when it is satisfied by every variable assignment in that model; valid in a frame F
(F � A) when it is valid in every model based on that frame; valid in a class of frames
C (C � A) when it is valid in every frame in that class.

In the full first-order language, QL/LQ is sound and complete with respect to the
above semantics [9]. As a corollary, a formulaA in the one-variable fragment is valid
in the class of all models for LQ iff it is a theorem of LQ.

2.2.2 Mares-Goldblatt Quantifier Interpretation

The Mares-Goldblatt interpretation of the quantifier using admissible propositions
and

�
/
⊔
, introduced in a pair of papers [15, 16], has both philosophical and for-

mal features. To focus on the universal quantifier, ∀xϕ is (modeled by) the weakest
proposition that implies all of the instances of ϕ.3 The major difference from the usual
approaches is that this need not been the generalized intersection of all instances of ϕ,
and that the generalized intersection need not be an admissible proposition. Ferenz [8]
describes the difference between

�
and the generalized intersection as a failure of the

generalized intersection to have the additional information that the listed intersectants
are exhaustive of the domain. Thus, we can think of the

�
as having more information

(sometimes) than the generalized intersection.
Formally this philosophical insight reflects powerful machinery used in obtaining

completeness results for quantifiedmodal logics. Using this interpretation of the quan-
tifiers, a completeness proof needs only assume that the prime filters in the canonical
model are just that: prime. It does not need to assume that they are ω-complete, where
a theory is ω-complete when the theory contains ∀xϕ if it contains every instance of
ϕ. In Goldblatt [13], this is put to work to obtain a wide range of completeness results
for quantified modal classical logics.

The incompleteness results of Fine [11] for the generalized intersection approach
left first-order relevant logics with only more complicated (and harder to interpret)
formal semantics (notably Fine [10] and Brady [2, 3]). That is, until the introduction
of the Mares-Goldblatt interpretation of the quantifiers. This approach is both philo-
sophically natural, easy to formalize, and leads to completeness results for first-order
relevant logics.

2.3 Modal Propositional Logics

Modal relevant logics are numerous. However, although the naming conventions are
fairly standard and track interesting and relevant distinctions (see Ferenz [9] for a
discussion of the naming conventions and their formal correspondences), these naming
conventions give long names with many decorations to each logic. This is especially
so for quantified modal relevant logics. However, for a given proposotional relevant

3 Here we say that a proposition X entails a proposition Y when X ⊆ Y , and that Y is weaker that X .
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logic L, our interest here is only in a single pair of modal relevant logic extending
L: two kinds of S5ish extension of L. Moreover, for some logics with strong enough
negation, one of these S5ish extensions contains the classical S5, written in {∧,∨,¬}
is its set of theorems.

We will hence subsequently define L5 and L.5 for each L defined above. These
names are in accordancewith naming conventionswith the followingminor comments:
(1) the phrase S5-ish extension of R invokedmany intuitions that are pulled apart in the
context of R (and hence over weaker relevant logics) (see Standefer [29] for details),
and (2) we suppress the urge to add additional decoration to denote the presence of ◦,
←, t and the two primitive modalities.

Note, however, that naming conventions are not completely standard. Standefer [29]
uses the name ‘RS5’ for the system defined by removing the axiom (BD)/(DB) from
our presentation of R5: that is, our R.5. For many modal relevant logics, lacking
(BD)/(DB) would impose a ‘dot’ in the name. Again, see Ferenz [9] for an explanation
of the mostly standard use of the dot-notation, as well as motivation for using the dot
to track an important distinction (the containment of the classical counterpart).

Definition 3 Given a propositional relevant logicL, the modal relevant logicsL.5 and
L5 are defined by taking the axiom and rule schemes of L, in a modal language (with
� primitive and ♦ defined by ♦A = ¬�¬A), and adding the following axiom and
rule schemes:

(K) �(A → B) → (�A → �B)

(�-∧) �(A ∧ B) ↔ (�A ∧ �B)

(T) �A → A
(4) �A → ��A

(BD) �(A ∨ B) → (�A ∨ ♦B)

(B) A → �♦A

(K♦) �(A → B) → (♦A → ♦B)

(♦-∨) ♦(A ∨ B) ↔ (♦A ∨ ♦B)

(T♦) A → ♦A
(4♦) ♦♦A → ♦A
(DB) (♦A ∧ �B) → ♦(A ∧ B)

(Nec) A � �A

Note that the axiomatization given above can be fairly redundant over some relevant
logics, especially because we define the ♦. E.g., over R, with a defined dual modality,
each ♦-heavy axiom is equivalent its usual �-heavy dual. The dual of (DB) we will
call (BD), and often refer to these as modal confinement axioms.4

The following lemma will prove useful, and highlights that the main results of this
paper apply to quite an interesting class of relevant logics. Note that the right-hand
side is equivalent to the left-hand side prefixed by a modality.

Lemma 1 Let L be a relevant logic extending BP . The following formula schemes and
rule scheme are derivable in L5:5

4 (BD) and (DB) are named after Dunn and Belnap. The axioms were suggested by Belnap to ensure that
R4 contained all the theorems of S4 under suitable translation, and they play an important role in Dunn’s
positive modal logics [7].
5 Note that the exact modality on the right-hand-side or each biconditional is irrelevant. From ♦C → C we
obtain¬�¬C → C using duality, the (K) axiom and 1. Then using contraposition, (T), and double negation
equivalence we obtain C → �C
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1. ¬�A ↔ �¬�A
2. ¬♦A ↔ �¬♦A
3. �A ∧ �B ↔ �(�A ∧ �B)

4. �A ∧ ♦B ↔ �(�A ∧ ♦B)

5. ♦A ∧ ♦B ↔ �(♦A ∧ ♦B)

6. ♦A ∨ ♦B ↔ ♦(♦A ∨ ♦B)

7. ♦A ∨ �B ↔ ♦(♦A ∨ �B)

8. �A ∨ �B ↔ ♦(�A ∨ �B)

9. �A ◦ �B ↔ �(�A ◦ �B)

10. �A ◦ ♦B ↔ �(�A ◦ ♦B)

11. ♦A ◦ ♦B ↔ �(♦A ◦ ♦B)

12. �A → �B ↔ ♦(�A → �B)

13. �A → ♦B ↔ ♦(�A → ♦B)

14. ♦A → ♦B ↔ ♦(♦A → ♦B)

15. �A ← �B ↔ ♦(�A ← �B)

16. �A ← ♦B ↔ ♦(�A ← ♦B)

17. ♦A ← ♦B ↔ ♦(♦A ← ♦B)

18. A� → B � A� → �B

Note thatA� indicates that every propositional variable inA is in the scope of some
modal operator: A is modally closed.

Proof We prove several items, with a focus on the more interesting cases. In the
following, ⊗,⊕ ∈ {�,♦,¬�,¬♦}.

(3)–(5): It is straightforward to show � ⊗ A ∧ � ⊕ B = ⊗A ∧ ⊕B.
(9)–(11): consider the follow derivation scheme:

1. ⊗A → (⊕B → ⊗A ◦ ⊕B) Theorem
2. � ⊗ A → (� ⊕ B → �(⊗A ◦ ⊕B)) 1. (K) (MP)
3. ⊗A → (⊕B → �(⊗A ◦ ⊕B)) 2. Equivalences
4. (⊗A ◦ ⊕B) → �(⊗A ◦ ⊕B) 3. (r◦)
The other direction of the biconditional is just the (T) axiom.

(12)–(14): consider the following derivation scheme:

1. (⊗A → ⊕B) → (⊗A → ⊕B) Axiom
2. ⊗A → ((⊗A → ⊕B) → ⊕B) 1. (A16), MP
3. � ⊗ A → �((⊗A → ⊕B) → ⊕B) 2. Nec, K�, MP
4. � ⊗ A → (♦(⊗A → ⊕B) → ♦ ⊕ B) 3. K♦, Transitivity
5. ⊗A → (♦(⊗A → ⊕B) → ⊕B) 4. Replacement of Provable Equivalents
6. ♦(⊗A → ⊕B) → (⊗A → ⊕B) 5. (A16), MP

The other direction is just an instance of the T♦ axiom.6

(15)–(17): There is a similar derivation to the previous cases, but with two appli-
cations of the (R←) rule.

(18): Suppose that there is a proof of A → B where every propositional variable
of A is in the scope of a modality. By the previous cases in this lemma, A = �A
or A = ♦A (rather both, as shown in the previous footnote). To generalize, notate
this by A = ⊕A. Then by assumption we obtain a proof of ⊕A → B, and then
� ⊕ A → �B by (K), (Nec), and (MP). But we have that � ⊕ A ↔ A, and so we
thus have a derivation of the theorem A → �B. ��
6 In logics in which ◦ and → are interdefinable, such as in R, we obtain another route to showing cases
(12)–(14):

⊗A → ⊗B = ¬(⊗A ◦ ¬ ⊗ B) Definition

= ¬�(⊗A ◦ ¬ ⊗ B) Applying (9)–(11)

= ♦¬(⊗A ◦ ¬ ⊗ B) Duality

= ♦(⊗A → ⊗B) Definition
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Unfortunately, the presence or permutation appears to be necessary over B. In
fact, not even the related assertion axiom (A14) is sufficient.7 The reader is left to
generate such a countermodel for logics with assertion (and lacking permuation), an
exercise which is made simple using MaGIC. We record that absent (both assertion
and) permutation we obtain counter-examples.

Lemma 2 In the logic E5, neither both ♦(⊗A → ⊕B) ↔ (⊗A → ⊕B) nor
�(⊗A → ⊕B) ↔ (⊗A → ⊕B) are theorems.

Proof We provide a counterexample found using MaGIC.8 Take the matrix to consist
of the integers 0 through 4, the usual ordering, where t = 1. Define the conditional,
negation, and modalities as in the following tables, and a ◦ b = ∧{c : a ≤ b → c}:
→ 0 1 2 3 4
0 2 2 2 2 2
1 0 1 2 2 2
2 0 0 2 2 2
3 0 0 0 1 2
4 0 0 0 0 2

¬ � ♦
0 4 0 0
1 3 1 1
2 2 1 3
3 1 3 3
4 0 4 4

It is easy to check that ♦(�A → �B) → (�A → �B) = 0 when A = B = 0.
Moreover, this matrix validates E5, and hence the formula in question is invalid in
logics contained in E5. The case is similar for (�A → �B) → �(�A → �B) ��

A countermodel can also be given in B+(A14).
Near the end of the paper we further discuss this need for permutation, and the

possibility of extending L5 with another axiom scheme (when it lacks permutation).

2.3.1 Semantics for Modal Relevant Logics

Here we follow Seki [27] in defining frames and models for L5 and L.5; however,
we do not use bounded frames, as we do not consider extensions which require them.
We use both S♦ and S�, although strictly speaking only one is required. That is, we
define S♦ in terms of S�.

Definition 4 (Frames and Models for L5 and L.5) A L.5-frame is a tuple F =
〈W , N , R, ∗, S�, Prop〉 where 〈W , N , R, ∗〉 is an L-frame, Prop is a subset of the
upsets of the frame, S� is a binary relation, we set S♦ by S�ab iff S♦a∗b∗, and the
following conditions hold:

(s1) S�bc and a ≤ b imply S�ac
(s2) S�aa
(s3) S�ab and a ∈ N imply b ∈ N
(s4) S�ab and S�bc imply S�ac
(s5) S�ab implies S�b∗a∗ (i.e.,

S♦ba)

(s1)′ S♦bc and a ≤ b imply S♦ac
(s2)′ S♦aa
(s4)′ S♦ab and S♦bc imply S♦ac
(s5)′ S♦ab implies S♦b∗a∗ (i.e., S�ba)

7 (A14) is equivalent to (A16) in the presence of (A11) and (A12).
8 The author thanks Andrew Tedder for running MaGIC on this and similar cases.
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(s6) ∃x(Rabx & S�xc) implies ∃x, y(S�ax & S�by & Rxyc)
(s6)′ ∃x(Rbxd & S♦xc) implies ∃x, y(S�bx & S♦dy & Rxcy)
(p1) Prop contains N and is closed under ∩,∪,¬,→, ◦,♦,�, where we define:9

(i) �X =d f {a ∈ W : S�ab ⇒ b ∈ X}
(ii) ♦X =d f {a ∈ W : S♦ab & b ∈ X}

An L5-frame is an L.5-frame that further satisfies:

(s7) S�ab implies ∃x ≤ b(S�ax & S♦ax)
(s7)′ S♦ab implies ∃x ≤ b(S�ax & S♦ax)

Note that in many logics, particularly logics with an axiom form of contraposition,
most of the ‘primed’ conditions are redundant. In fact, in any logic we consider, some
are already redundant.

A L5- or L.5-model is a tuple 〈F, ||−||〉 where F is an L5- orL.5-frame and ||−||
is a valuation function that assigns to each propositional variable an element of Prop
(and t to N ). The valuation is extended as above, with the following new cases:

||�A|| = �||A|| ||♦A|| = ♦||A||

A formula A is valid in a model when N ⊆ ||A||. Validity in a frame and class of
frames is defined as usual. We state the following fact:

Lemma 3 The logic L5 (L.5) is sound and complete w.r.t. the class of L5-frames (L.5-
frames).

For the proof, see Seki [27] (and for logics without t see Fuhrmann [12]).

2.4 Theories, Pair Extension, Squeeze

Definition 5 (Theories) Let L be a modal or first-order relevant logic (defined above).
Where �,	, and 
 are sets of L-formulas:

(i) � �L 	 is defined to mean that there are some A1, . . . ,An ∈ � and
B1, . . . ,Bm ∈ 	 such that (A1 ∧ · · · ∧ An) � (B1 ∨ · · · ∨ Bm) is a theorem of
L.

(ii) � �L A is shorthand for � �L {A}
(iii) When � ��L 	, we say the pair (�,	) is an L-independent pair.
(iv) A set of formulas � is an L-theory when, if � �L A, then A ∈ �.
(v) A theory � is prime if and only if, if A ∨ B ∈ �, then either A ∈ � or B ∈ �.
(vi) A theory � is L-regular if and only if it contains every theorem of L.
(vii) We define ternary R′ and binary S′

� and S′
♦ by the following:

(a) R′�	
 iff {A ◦ B : A ∈ � & B ∈ 	} ⊆ 
.
(b) S′

��	 iff {A : �A ∈ �} ⊆ 	

(c) S′
♦�	 iff {♦A : A ∈ 	} ⊆ �

9 It is straightforward to derive that ¬♦¬X = �X .
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Lemma 4 (Extensions, Pair-Extensions, Squeeze)LetL be either amodal or first-order
relevant logic, and let �,	,
 be appropriate sets of formulas.

(i) If (�,	) is an L-independent pair, then there is a prime L-theory �′ ⊇ � such
that (�′,	) is an L-independent pair.

(ii) If (�,	) is an L-independent pair and � ∪ 	 = w f f , then � is prime
(iii) If
 is prime and R′�	
, then there exist primeL-theories�′ ⊇ � and	′ ⊇ 	

such that R′�′	′
.
(iv) If 
 is a prime L-theory and � and 	 L-theories, R′
�	, and A /∈ 	, then

there is a prime L-theories �′ ⊇ � and 	′ ⊇ 	 such that R′
�′	′.
(v) If 
 is prime and A → B /∈ 
, then there exist prime theories � and 	 such

that R′
�	 where A ∈ � and B /∈ 	.
(vi) Suppose that S′

��	 and A /∈ 	, for prime L-theory � and L-theory 	. Then
there is a prime 	′ such that S′

��	′.
(vii) Suppose that � is a prime L-theory and�A /∈ �. Then there is a prime L-theory

	 such that A /∈ 	 and S��	 .

Proof The logics in question are pair extension acceptable (see, e.g., [21, 5.1–5.2]
or [1, pp. 123–126]). The remainder of the proof is quite standard in the literature. ��

2.5 Translations

We define the following two translation functions between first-order and modal lan-
guages, to facilitate the proof of equivalence between the first-order andmodal relevant
logics (with permutation):10

h(p) = P(x)

h( t) = t

h(A ∧ B) = h(A) ∧ h(B)

h(A ∨ B) = h(A) ∨ h(B)

h(A → B) = h(A) → h(B)

h(A ◦ B) = h(A) ◦ h(B)

h(A ← B) = h(A) ← h(B)

h(¬A) = ¬h(A)

h(�A) = ∀xh(A)

h(♦A) = ∃xh(A)

g(P(x)) = p

g( t) = t

g(A ∧ B) = g(A) ∧ g(B)

g(A ∨ B) = g(A) ∨ g(B)

g(A → B) = g(A) → g(B)

g(A ◦ B) = g(A) ◦ g(B)

g(A ← B) = g(A) ← g(B)

g(¬A) = ¬g(A)

g(∀xA) = �g(A)

g(∃xA) = ♦g(A)

It is easy to show that h(g(A)) = A and g(h(A)) = A. Using these translation
functions, we can examine several interesting formulas and their translations. First,
let’s consider the modal axioms (BD) and (DB), which are used by Dunn [7] to

10 We match the predicate letters and propositional variables one-to-one, a fact which we will implicitly
use.
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axiomatize positive modal logics. Take an instance of the axiom (BD):

h((BD)) = h(�(p ∨ q) → (�p ∨ ♦q))

= ∀x(p(x) ∨ q(x)) → (∀xp(x) ∨ ∃xq(x))

That is, h((BD)) is very close to the axiom (EC) which added to QL results in LQ.
In the other direction, start with an instance of (EC) in the one-variable fragment:11

g(EC) = g(∀x(Px ∨ ∀xQ(x)) → (∀x Px ∨ ∃x∀xQ(x)))

= �(p ∨ �q) → (�p ∨ ♦�q)

A similar relation between (EC) and (DB) (and their duals) is shown for some
intermediate intuitionistic modal and predicate logics, as reported by Ono [20] (see
also Suzuki [30]).

A large motivation for examining the one-variable fragment of RQ comes from
Fine [11], in which RQ is shown to be incomplete with respect to the more straight-
forward way of constructing constant domain ternary relational semantics.12 Starting
with the usual ternary relational frames for propositional relevant logics given above,
one obtains constant domain, (non-general) Tarskian frames by adding an set U of
individuals, and interpreting the universal quantifier (in the Tarskian way) as the gen-
eralized intersection of all ‘instances’. Fine showed that these frames determine a logic
stronger than RQ. Moreover, to this day the following question is unanswered: what
is the logic (axiomatically or proof-theoretically) of these frames? This question is at
least partially difficult because the first clue is given by the formula that Fine shows
valid in all of these models, which is invalid in RQ and does not wear its meaning on
its sleeve. The formula in question is A0 → A1, such that

A0 := (p → ∃xEx) ∧ ∀y((p → Fy) ∨ (Gy → Hy))

A1 := (∀z((Ez ∧ Fz) → q) ∧ ∀u((Eu → q) ∨ Gu)) → (∃vHv ∨ (p → q))

This formula is of interest to us because there are corresponding formulas in the one-
variable fragment of RQ. By noting the absence of scope overlap, we may replace
each propositional variable (zero-ary predicate) with a new sentence (assuming no
zero-ary predicates in this fragment), and further write out the formula using a single
variable. We thus obtain the following examples:

A′
0 := (∀x Px → ∃xEx) ∧ ∀x((∀x Px → Fx) ∨ (Gx → Hx))

A′
1 := (∀x((Ex ∧ Fx) → ∀xQx) ∧ ∀x((Ex → ∀xQx) ∨ Gx)) →

→ (∃xHx ∨ (∀x Px → ∀xQx))

11 We remind the reader we omit zero-ary predicates from the one-variable fragment, so we make suitable
substitutions with appropriate “∀xQ(x)” or “∃xQ(x)”.
12 A thanks to George Metcalfe, whose comments on a related conference presentation prompted this
inquiry into the one-variable fragment of relevant logics.
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A′′
0 := (∃x Px → ∃xEx) ∧ ∀x((∃x Px → Fx) ∨ (Gx → Hx))

A′′
1 := (∀x((Ex ∧ Fx) → ∃xQx) ∧ ∀x((Ex → ∃xQx) ∨ Gx)) →

→ (∃xHx ∨ (∃x Px → ∃xQx))

These formulas, A′
0 → A′

1 and A
′′
0 → A′′

1, henceforth F
′ and F ′′ are in the one-variable

fragment of RQ (with t but no zero-ary predicate symbols).
The reader will note that Fine’s formula is strictly not a formula in the one-variable

fragment because it contains propositional variables (i.e. zero-ary predicates), and
similarly for the the (scheme of) (EC). However, taken as a formula scheme, Fine’s
formula has many instantiations in the one-variable fragment, of which we have dis-
played but two.

The formula F ′, a one-variable variant of Fine’s formula above, can be translated
into amodal language using the translation function g.13 As a result,we obtain g(F ′) =
g(A′

0) → g(A′
1), where

g(A′
0) := (�P → ♦E) ∧ �((�P → F) ∨ (G → H))

g(A′
1) := (�((E ∧ F) → �Q) ∧ �((E → �Q) ∨ G)) → (♦H ∨ (�P → �Q))

Similarly, for F ′′ we obtain the following:

g(A′′
0) := (♦P → ♦E) ∧ �((♦P → F) ∨ (G → H))

g(A′′
1) := (�((E ∧ F) → ♦Q) ∧ �((E → ♦Q) ∨ G)) → (♦H ∨ (♦P → ♦Q))

One significant difference between first order relevant and first-order classical logic
is the lack of theoremhood for two formula (schemes) required for prenex normal
forms. This was shown by Meyer [18, p. 278], who also shows why the formulas in
question should not be valid in a relevant logic. These formulas are the following:

K ′
1 := (p → ∃xFx) → ∃x(p → Fx)

K ′
2 := (∀xFx → p) → ∃x(Fx → p)

To put these into the first-order fragment with no zero-ary predicates, we replace p
with ∀x Px , obtaining K1 and K2. By applying the translation above to the latter we
obtain the following modal formulas:14

g(K1) := (�p → ♦ f ) → ♦(�p → f )

g(K2) := (� f → �p) → ♦( f → �p)

13 So far, the author has been unable to find a (finite) counter-example to these translated formulas in R5,
with the aid of MaGIC. That there is a counter-example follows as a corallary from the main result of the
paper. Fine’s proof that RQ does not imply F , however, relies on an infinte counter-example.
14 We can, e.g., use the matrix for E5 above to show that these formulas are not valid. For g(K1) set
p = 3, f = 2; for g(K2) set p = f = 2.
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Wecould also replace pwith ∃x Px , giving K♦
1 and K♦

2 . Themodal translation outputs
the following:

g(K♦
1 ) := (♦p → ♦ f ) → ♦(♦p → f )

g(K♦
2 ) := (� f → ♦p) → ♦( f → ♦p)

2.6 (EC) and h((BD))

Lemma 5 (EC) and h((BD)) are equivalent over QB (=BQ−(EC)), in the one-
variable fragment.

Proof (EC) implies h((BD)):

(1) ∀x(Ax ∨ Bx) → (Ax ∨ Bx) (∀E)

(2) (Ax ∨ Bx) → (Ax ∨ ∃x Bx) Theorem

(3) ∀x(Ax ∨ Bx) → ∀x(Ax ∨ ∃x Bx) (1), (2),Trans, (r∀I)
(4) ∀x(Ax ∨ Bx) → (∀x Ax ∨ ∃x Bx) (3), (EC),Trans

h((BD)) implies (EC):

(1) ∀x(Ax ∨ ∃x Bx) → (∀x Ax ∨ ∃x∃x Bx) Instance of h((BD))

(2) (∀x Ax ∨ ∃x∃x Bx) → (∀x Ax ∨ ∃x Bx) Theorem

(3) ∀x(Ax ∨ ∃x Bx) → (∀x Ax ∨ ∃x Bx) (1),(2), Trans

��

3 Equivalence

The first main theorem of the paper is that, for any logic L extending BP (henceforth
any permuting logic), for any first order formula A, A is valid in the class of frames
for QL (LQ) if and only if its translation g(A) is valid in the class of frames for L.5
(L5).

3.1 Modal validity implies first-order validity

For this subsection we always suppose that the logic L is a permuting logic extending
B. For any formulaA in the one-variable fragment that is not a theorem of LQ (QL),
there is a model on which that formula is not satisfied. This implies that there is a
canonical model construction for a language that contains only the predicate letters
occurring in the formula (and denumerably many constants) which also fails to satisfy
the formula in question.We turn this canonicalmodel into amodel forL5 (L.5), and this
model will fail to satisfy the modal translation of the formulaA. The canonical model
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construction is employed to find a workaround to a problem of merely transforming
the original first-order model that fails to satisfy the formula. This is due to condition
(s7), which is existentially hungry. In the constructed model, (s7) is shown to hold via
arguments similar to those employed first in Mares and Meyer [17] (and modified for
the multi-relation frames in Ferenz [9] based on the work of Seki [26, 27]).

The following lemma is recorded, and is a mere corollary of the usual completeness
proof.

Lemma 6 Given any first-order formula A in the one-variable fragment, if A is not
valid in the class of LQ-frames (QL-frames) — i.e. there is an LQ-model (QL-model)
in which it is not valid — then there is a canonical model for the language restricted
to the predicates occurring in A. In particular, we note the following:

1. W is the set of prime theories; N of regular prime theories;
2. 〈a, b, c〉 ∈ R iff {A ◦ B : A ∈ a & B ∈ b} ⊆ c;
3. a∗ = {A : ¬A /∈ a};
4. U is an infinite set of constants;
5. For closed A, ||A||∀ = {a ∈ W : A ∈ a};15
6. Prop = {||A||∀ : A is closed};
7. PropFun is the set of functions ϕA : Uω −→ Prop, defined by ϕA f = ||A f ||∀,

where A is a formula;16

8. For every formula A, A f ∈ a iff a ∈ |A| f (i.e., ||A f ||∀ = |A| f ).
Lemma 7 Given any modal formula A, if A is valid in the class of L5-frames (L.5-
frames), then h(A) is valid on the class of LQ-frames (QL-frames). That is, if �L5 A
(�L.5 A), then �LQ h(A) (�QL h(A)).

Proof Suppose that h(A) is not valid in the class of LQ-frames (QL-frames), and
that we fix x as the variable in the one-variable fragment. There there is a model M′′
and variable assignment f such that h(A) is not satisfied by f onM′′. By Lemma 6,
there is a canonical model construction M′ on which h(A) is not valid. Fix f to be a
variable assignment where h(A) is not satisfied by f on M′.

We construct a modal model essentially by transforming M′ (modulo the variable
assignment f ). We construct the following model:

1. W = W ′; N = N ′; R = R′; ∗ = ∗′;
2. S� = {〈a, b〉|∀B ∈ L(x)((∀xB) f ∈ a ⇒ B f ∈ b)};
3. S♦ = {〈a, b〉|∀B ∈ L(x)(B f ∈ b ⇒ (∃xB) f ∈ a)};
4. Prop = PropFun′( f );17
5. ||p|| = |p(x)| f , for each atomic p; the valuation is extended as usual.

We aim to show two facts: that the defined structure is a well-defined L5-model
(L.5-model), and that a ∈ ||h(A)|| iff h(A) ∈ a. Hence the following sublemmas. ��
Lemma 8 The frame of the defined M is an L5-frame (L.5-frame).

15 We use the notationA, ||A||∀ to differentiate the case of truth sets for propositional and modal logics.
16 For any formula A and f ∈ Uω , A f is the result of simultaneously replacing every variable xn with
the constant f xn : i.e., it is a sentencification of A through the assignment f .
17 PropFun′( f ) is defined to {X ∈ Prop′|X = ϕ f , for some ϕ ∈ PropFun′}.

123



N. Ferenz

Proof It is straightforward and quite standard to show that the underlying frame is an
L-frame and that the subset relation on theories is the ≤ relation on the model. Prop
is indeed a subset of upsets, and the S� and S♦ relations are binary on W . It is also
easy to show that S�ab iff S♦a∗b∗. It remains to show (s1)–(s6) and (p1) hold, and,
when we have LQ, that (s7) holds.

Because ≤ is the subset relation among theories, (s1) holds. Condition (s2) follows
from the fact that |∀xB| f ⊆ |B| f , by (∀E). Assuming the antecedents of (s3), by the
derivable (UG), ∀xB ∈ a for each theorem B, and so each theorem is in b, as required.
If ∀xB ∈ a, then ∀x∀xB ∈ a by (UG). By the antecedents of (s4), we may obtain
that ∀xB ∈ b and then B ∈ c, ensuring that (s4) holds. For (s5) suppose that S�ab
and b∗ ∈ |∀xB| f . Then b /∈ |¬∀xB| f . Thus a /∈ |∀x¬∀xB| f = |¬∀xB| f . And so
a∗ ∈ |∀xB| f , and thus a∗ ∈ |B| f (by (∀E)), as required.

For (s6) suppose that Rabx and S�xc. Let a′′ = {A : ∀xA ∈ a} and b′′ = {A :
∀xA ∈ b}. By using the theorems ∀x(A ∧ B) ↔ ∀xA ∧ ∀xB and ∀x(A → B) →
(∀xA → ∀xB), we can show that a′′ and b′′ are LQ-theories (QL).18 Suppose that
A ∈ a′′and B ∈ b′′. Then ∀xA ∈ a and ∀xB ∈ b. Thus ∀xA ◦ ∀xB ∈ x . By the
theoremhood of ∀xA◦∀xB → ∀x(A◦B), we have ∀x(A◦B) ∈ x , which entails that
A ◦ B ∈ c. This is that Ra′′b′′c, when restricted to R is liberally applied to theories.
By applying Lemma 4, we extend a′′ and b′′ to prime theories a′ and b′, respectively,
such that the consequent of (s6) holds.

For (s7), suppose that S�ab. We show that there is an prime LQ-theory c ≤ b
such that, for every B, (i) if a ∈ |∀xB| f then c ∈ |B| f and (ii) if c ∈ |B| f then
a ∈ |∃xB| f .19 Consider the pair (∀−1a, (wff − b) ∪ (wff − ∃−1a)), where ∀−1a =
{B ∈ wff|∀xB ∈ a} and ∃−1a = {B ∈ wff|∃xB ∈ a}. We first show that this is
an independent pair. Suppose that it is not. Then there are A1, . . . ,Am ∈ ∀−1a, and
B1, . . . ,Bn ∈ (wff − b), and C1, . . . , Cp ∈ (wff − ∃−1a) where m, n + p ≥ 1 such
that:

�LQ A1 ∧ · · · ∧ Am → B1 ∨ · · · ∨ Bn ∨ C1 ∨ · · · ∨ Cp

The following steps subsequently follow:

�LQ A1 ∧ · · · ∧ Am → B1 ∨ · · · ∨ Bn ∨ ∃x(C1 ∨ · · · ∨ Cp)

�LQ ∀x(A1 ∧ · · · ∧ Am → B1 ∨ · · · ∨ Bn ∨ ∃x(C1 ∨ · · · ∨ Cp))

�LQ ∀x(A1 ∧ · · · ∧ Am) → ∀x(B1 ∨ · · · ∨ Bn ∨ ∃x(C1 ∨ · · · ∨ Cp))

By extensional confinement, we also have the theorem:

�LQ ∀x(B1∨· · ·∨Bn∨∃x(C1∨· · ·∨Cp)) → (∀x(B1∨· · ·∨Bn)∨∃x(C1∨· · ·∨Cp))

and so

�LQ (∀x(A1 ∧ · · · ∧ Am) → (∀x(B1 ∨ · · · ∨ Bn) ∨ ∃x(C1 ∨ · · · ∨ Cp))

18 E.g., suppose that A ∈ a′′ and that A → B is a theorem. Then it is also a theorem that ∀xA → ∀xB.
By the primness of a, and the fact that ∀xA ∈ a, B ∈ a′′, as required.
19 The proof is similar to that found in [17] for (s7) for the canonical model constructed using modal
theories. Here our models are defined using LQ-theories, so we present the arguments in full.
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The formula (∀x(A1 ∧ · · · ∧ Am) ∈ a, because each Ai ∈ ∀−1a. By the primeness
of a, either ∀x(B1 ∨ · · · ∨ Bn) ∈ a or ∃x(C1 ∨ · · · ∨ Cp) ∈ a. The former implies
that B1 ∨ · · · ∨ Bn ∈ b, which contradicts our assumptions because b is prime. The
latter implies ∃xC1 ∨ ∃xCp ∈ a. Primeness implies one of the disjuncts is in a, which
contradicts out assumptions. Thus, the pair (∀−1a, (wff − b) ∪ (wff − ∃−1a)) is an
LQ-independent pair. By Lemma 4, we can extend ∀−1a to a prime theory c where
(c, (wff− b) ∪ (wff− ∃−1a)) is an independent pair. It is straightforward that S�ac.
Suppose that c ∈ |B| f and a /∈ |∃xB| f . But such formulas were excluded from c in
the application of the pair extension lemma, thus S♦ac.

For (p1), suppose that X ,Y ∈ Prop. Then X = (ϕ′) f and Y = (ψ ′) f for some
ϕ,ψ ∈ PropFun′. For the non-modal cases, it is sufficient to show that (ϕ′) f ⊗
(ψ ′) f = (ϕ′ ⊗ψ ′) f , given the definition of Prop, for each binary connective ⊗, and
similarly for each unary connective. indeed, the non-modal cases are covered by the
canonical model construction. We consider the case for modality.

We show that �X = |∀xϕ
′| f . For the left-to-right direction, suppose that a ∈ �X .

Then S�ab implies b ∈ X , for each b ∈ W . For reductio, suppose that a /∈ |∀xϕ
′| f =

||∀xϕ′||∀. Consider the set c = {A : ∀xA ∈ a}. We have that S�ac, when the relation
is relaxed to theories. Note that (c, {(ϕ′) f }) is an independent pair: if it were not, then
it is straightforward to show that �(ϕ′) f ∈ a. By Lemma 4.(i), we can extend c to a
prime theory d such that S�ad and (ϕ′) f /∈ d. The former, with our first assumption,
contradicts the latter, completing the reductio.

The converse is direction is nearly trivial: suppose that a ∈ |∀xϕ
′| f = ||∀xϕ′||∀.

Thus (∀xϕ′) f ∈ a. Using S�ab we then obtain b ∈ (ϕ′) f , as required. ��
Thus we have an L5-frame, or L.5-frame, as desired. To show that this frame is a

model, note that each atomic proposition is mapped to an element of Prop (and t to
N ). The valuation is extended as usual, and this is well-defined given the frame satisfies
(p1), as shown in the previous sub-lemma. We now show the crucial sub-lemma.

Lemma 9 (Truth Lemma) Where f ∈ Uω is the variable assignment on which the
frame is based, for any modal formula A: a ∈ ||A|| iff (h(A)) f ∈ a. (That is,
a �L5/L.5 A iff (h(A)) f ∈ a or equivalently ||A|| = ||(h(A)) f ||∀.)
Proof The proof is by induction on the complexity of A. First note that, given the
canonical model construction for LQ (QL), a ∈ ||(h(A)) f ||∀ iff (h(A)) f ∈ a iff
a ∈ |h(A)| f . For the base case, suppose that A = p (and h(A) = p(x).) Then
||p|| = |h(p)| f by the definition of the valuation, and by the previously stated fact
we obtain a ∈ ||p|| iff (p(x)) f ∈ a, as required.

Using the arguments of the LQ- (QL)-construction, the inductive cases excepting
the quantifier-modality cases are all covered straightforwardly. We record only the
case for ∀/�.

Suppose A = �B. Then ||�B|| = �||B||∀. By the inductive hypothesis, we have
||B|| = ||(h(B)) f || = |h(B)| f . By the previous lemma, we have that �||B||∀ =
|∀xh(B)| f and given that x is the only variable that may occur inB, we have ∀xh(B) =
h(∀xB), which gives us ||�B|| = ||(h(∀xB)) f ||∀ completes the case.

By assumption, there is a prime, regular LQ-theory (QL-theory) a such that a /∈
|h(A)| f . By the Truth Lemma, we have that a � A (rather, a /∈ ||A||). Because the
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constructed structure is indeed amodel, this shows thatA is neither valid in the class of
L5-frames (L.5-frames), nor a theorem of L5 (L.5). Thus completes this main lemma
of this section.

3.2 First-order validity implies modal validity

Lemma 10 Given any first-order formula A in the one-variable fragment, if A is a
theorem of LQ (QL), then g(A) is valid in the class of L5-frames (L.5-frames), and by
Fact 3 also a theorem of L5 (L.5)). That is, if �LQ A (�QL A), then �L5 g(A) (�L.5
g(A)).

Proof The main idea of the proof is as follows: given a countermodel for the modal
sentence g(A), we evaluate the entirety of LQ (QL) into this model. The idea is to
map A onto g(A), when A is in the x-fragment (thus guaranteeing the valuation will
invalidate A), while simultaneously mapping at least all of the remaining theorems
of LQ (QL) onto modal theorems. We will overshoot, making many of the non-x-
fragment formulas in LQ (QL) valid, but such method is sufficient because all of LQ
(QL) is valid and A is not.

First we define an ‘extension’ of g that will map each formula of LQ (QL) onto a
modal formula. We define such a translation, gx (A), as follows:

1. If the formula contains any non-x variable:

(a) Remove all quantifiers from the formula,
(b) Replace each atomic formula P(y), even when x = y, with ∀x P ′x , where P ′

is a new predicate letter not appearing in A;

2. Apply g to the resulting formula, which is clearly in the x-fragment.

In other worlds, from the viewpoint of x , the modal translation of atomic formulas
containing other variables might as well be new pseudo-atomic propositions. The
new predicate letter and the closure under a ‘∀x’ with minimal scope ensure a kind
of ‘atomic’ behavior with respect to the lack of interaction with the x-fragment’s
translation.

We then define a modal as follows. Given a L5 (L.5) countermodel M ′ of g(A),
define a new valuation (of the formulas of LQ (QL)) into that very model. This model
M is defined by giving a valuation function |−| from first-order formulas into Prop′
(where Prop′ is of M ′) by the following:

|A| = ||gx (A)||

Given this model M , we show that it is appropriate for LQ (QL) (i.e., makes all of
LQ’s (QL’s) theorems true, despite not being an LQ-model (QL-model) as defined
above), and that it does not validate the formulaA in the statement of the lemma (i.e.,
that N � |A|).
Lemma 11 Every theorem of LQ (QL) is valid on M (defined on a L5-model (L.5-
model)).
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Proof The proof uses a fairly standard method for soundness: induction on the length
of a proof. We show that every axiom is valid in M and that the rules preserve validity.
The cases of the axioms of L are straightforward, because gx will affect identical
subformulas in identical ways. We show the cases for (MP) and some of the explicitly
first-order axioms and rules.

Case (MP): Suppose that �LQ A and �LQ A → B. By the induction hypothesis,
N ⊆ ||gx (A)||, ||gx (A → B)||. But then N ⊆ ||gx (B)|| by the properties of M .

Case (∀E): Consider B = ∀y(. . . Py . . . ) → (. . . Pz . . . ) with any non-x variable.
Either y and z are the same variable or they are not. In either case gxB is an instance of
A → A. On the other hand, suppose that the formula is in the one-variable fragment
(and thus x = y = z. Then it is easy to check the translation to be an instance of (T).
In every case, the translation of an instance of (∀E) is a theorem of the modal logic
L.5, and thus valid in M .

Case (EC1): We again deal with every combination of variables. Each axiom
instance has a required quantifier in its statement. If this quantifier is not x , then
we trivially get an instance of A → A, again because gx affects identical sub-
formulas identically. Now, if the variable in question is x , gxB = gB, which is
�(A� ∨ B) → (A� ∨ �B), itself a theorem of L5 (and not of L.5).

Case (R∀I): Suppose that � Ay → B. We know that gx (Ay) is modally closed
if x does not occur free in Ay . Assume that x does not occur free in Ay Since we
have N ⊆ ||gx (Ay → B)|| = ||gx (Ay) → gx (B))||, the modal closure along with
Lemma 1 entails that N ⊆ ||gx (Ay) → �gx (B))||.

Now, gx (Ay → ∀yB) depends on whether y = x . If y = x , then the already
demonstrated N ⊆ ||gx (Ay) → �gx (B))|| suffices. If y �= x , then N ⊆ ||gx (Ay →
B)|| is sufficient, because gx (Ay → B) = gx (Ay → ∀yB).

Now, if x does occur free in Ay . Then x �= y. The result follows from gx (Ay →
B) = gx (Ay → ∀yB). ��
Lemma 12 If g(A) is invalid on M ′ (and hence, A ∈ L(x)), then A is invalid on M.

Proof Suppose that g(A) is invalid onM ′. That is, N � ||g(A)||. However, ||g(A)|| =
||gx (A)||, and so N � |A|, as required. ��

Putting the previous sublemmas in place, suppose for reductio that A ∈ L(x) is
a theorem of LQ (QL), but that g(A) is not a theorem of L5 (L.5). The model
construction above entails that A is valid in M (Lemma 11), but this contradicts the
fact that A is not valid in M (Lemma 12). We this contradiction we complete the
lemma. ��

3.3 Conclusion

By combining Lemmas 10 and 7, we obtain our goal, which we record in the following
Theorem.

Theorem 13 (Semantic Equivalence) Where L is a permuting propositional relevant
logic extending B:

1. �LQx A iff �L5 h(A)
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2. �QLx A iff �L.5 h(A)

Note that, in one direction, we have to detour through the canonical model con-
struction (at least for the logics with (EC1)/(EC2) and (DB)/(BD)). It appears to the
author that this is a requirement, given the frame condition for (DB)/(BD), its existen-
tial hunger, and its striking difference from (cEC1)/(cEC2) in the first-order models.
It would an improvement to show this result without the canonical detour.

Note that permutation is needed in these proofs, so that the modal logic ‘matches’
the vacuous quantification in the corresponding first-order logic. Permutation is one
route to ensuring this matching, but another would be to require that A ↔ �A and
A ↔ ♦A, whenA is modally closed. This is not the route we opted for, but might be
a more natural route to take in the algebraic setting.
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