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Abstract
This paper examines the logic of conditional obligation, which originates from the
works of Hansson, Lewis, and others. Some weakened forms of transitivity of the
betterness relation are studied. These are quasi-transitivity, Suzumura consistency,
acyclicity and the interval order condition. The first three do not change the logic. The
axiomatic system is the samewhether or not they are introduced.This holds true under a
rule of interpretation in terms of maximality and strong maximality. The interval order
condition gives rise to a new axiom. Depending on the rule of interpretation, this one
changes. With the rule of maximality, one obtains the principle known as disjunctive
rationality. With the rule of strong maximality, one obtains the Spohn axiom (also
known as the principle of rational monotony, or Lewis’ axiom CV). A completeness
theorem further substantiates these observations. For interval order, this yields the
finite model property and decidability of the calculus.

Keywords Conditional obligation · Axiomatization · Betterness · Transitivity ·
Quasi-transitivity · Acyclicity · Suzumura consistency · Interval order · (Strong)
maximality

1 Introduction

This paper examines the logic of conditional obligation, which originates from the
works of Hansson [35], van Fraassen [80], Lewis [44] and others. Possible worlds are
ranked in terms of a preference relation, viewed as a relation of comparative goodness
or betterness. In that framework, the truth conditions for the conditional obligation
operator are phrased in terms of best antecedent-worlds. The main motivation for such
a semantics has to do with the analysis of so-called contrary-to-duty (CTD) obligation
sentences [19]. They tell us what comes into force when some other (primary) obli-
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gations are violated. A number of researchers in deontic logic have accepted the idea
that an appropriate semantics for contrary-to-duty obligation sentences calls for an
ordering on possible worlds, in terms of preference or relative goodness. An evalua-
tion of such a treatment, and of the substantive body of theory and research it spurred,
falls outside the scope of this paper.1

The paper deals with the meta-theory of such logics. It is part of a larger project,
whose aim is to axiomatize the latter logics taking into account two types of con-
sideration. First, the notion of best antecedent-worlds can be understood in different
ways. Second, like in traditional modal logic, different properties of the relation in
the models give rise to different systems. Only recently have we started to understand
what these systems are. Early results [44, 73, 80] were tailored to the case where the
betterness relation comes with the full panoply of the standard properties. These are
reflexivity, transitivity, totality (which rules out “gaps” in the ranking) and Lewis [44]’s
limit assumption (which requires that a set of worlds have a “limit” or best element).
These properties were criticized as being too demanding in some contexts. Therefore
subsequent research investigated how to extend these results to models equipped with
a betterness relation verifying less properties, if any at all [31–34, 55–57]. In this paper,
I will look into a problem left open in this previous work. It concerns the role of the
property of transitivity of the betterness relation and variant weaker forms discussed
in rational choice theory.

Weakenings of Transitivity
Transitivity tells us that, if a is at least as good as b (“a � b”) and b is at least as good
as c (“b � c”), then a is at least as good as c (“a � c”). Transitivity is often seen as a
conceptual truth. Defenders of such a view include Davidson [22] and Broome [13].
However, the intuitive plausibility of such a property has been called into question.
This has led some authors to either reject transitivity wholesale or weaken it.

In moral philosophy, it has been proposed to reject the assumption of transitivity to
avoid Parfit’s so-called repugnant conclusion. It reads: “For any possible population
of at least ten billion people, all with a very high quality of life, there must be some
much larger imaginable population whose existence, if other things are equal, would
be better, even though its members have lives that are barely worth living” [59, p. 331].
The reasoning leading to this conclusion is a continuum (or sorites-style) argument.
One starts with a population of ten billion people, all with a very high quality of life.
One increases gradually its size, and at the same time decreases the quality of life of
its inhabitants. Because the loss in the quality of life is outweighed by a sufficient
gain in quantity or whatever makes life worth living, one gets a series of increasingly

1 For further background on preference-based semantics for deontic logic, see Makinson [48, Section 7],
Hilpinen &McNamara [38, p. 112ff.] and references there cited. Preferences may also be used to model the
notion of defeasible obligation [1]. They provide a model-theoretic analysis of the notion of supererogation
and allied concepts. For an integration with the preference-based treatment of contrary-to-duty obligation
into a single framework, the reader may wish to consult McNamara [51]. For a combination with the
logic of time, see Åqvist [5]. For a combination with the modal logic of action (STIT) and with epistemic
logic, see Kooi & Tamminga [41] and Horty [39, 40]. The application to linguistics is discussed at length
in Cariani [15]. A faithful embedding of preference-based dyadic deontic logic into higher-order logic,
yielding automation, has been realized by Benzmüller & al. [8].
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better worlds. According to [77, 78], if transitivity of “better than” is denied, then the
reasoning leading to the repugnant conclusion is blocked.

In rational choice theory, weaker forms of transitivity have been advocated. The
following four deserve a special mention: quasi-transitivity [69]; acyclicity [71];
Suzumura consistency [76]; and the interval order condition [24]. Quasi-transitivity
demands that the strict part of the betterness relation be transitive. Acyclicity rules
out the presence of strict betterness cycles. Each was proposed as a means to avoid
Arrow [7]’s impossibility result, which assumes the transitivity of “better than”.
Suzumura consistency (named after its inventor, following a suggestion made by
Bossert [10]) rules out the presence of cycles with at least one instance of strict better-
ness. One motivation for Suzumura consistency is that a preference relation satisfying
this condition is not vulnerable to money pumps.2

The interval order condition is usually defined for the strict betterness relation. The
present paper focuses on its non-strict counterpart, which requires that� be a reflexive
relation that meets the so-called Ferrers condition: a � b and c � d imply a � d or
c � b.3 Interval orders were initially introduced to make room for the idea of non-
transitive equal goodness (or indifference)4 relation due to discrimination thresholds.
The idea is that agents tend to discriminate between two alternatives, only when their
difference exceeds a certain threshold [24, 79].5 Each world can then be represented
by an interval on the real line in such a way that � holds when the interval of the
lower-ranking word is completely to the left of the interval of the higher-ranking one,
or they overlap.

I will not take a position on the question of whether the assumption of transitivity
should be kept in its plain form, weakened, or rejected wholesale. I want to know if
or to what extent these different courses of action affect the logic of the conditional
obligation operator.

Maximality vs. Strong Maximality
The statement “It ought to be the case that B given A” (in symbolic notation,©(B/A))
is true if the best A-worlds are all B-worlds. However, the notion of best A-worlds
can in turn be characterized in terms of either “optimality” or “maximality”.6 The
distinction between the two is well-established in rational choice theory [11, 36, 70,
75]. It has been revived by Rott [64, 65] and Arló-Costa [6] in the context of the study

2 The “money pump” argument was initially put forth by Davidson, McKinsey and Suppes [23] in support
of transitivity. According to this argument, to abandon the assumption of transitivity leaves room for the
possibility of an agent being money-pumped: he will accept a series of trade offers that leaves him with
the same option he began with, but with less money. According to Bossert [10], Suzumura consistency is
“exactly” what is needed to avoid the phenomenon of a money pump.
3 I use reflexivity where most authors use totality (see, e.g., [60]). The two formulations are equivalent.
4 In rational choice theory, equal goodness is called indifference.
5 The classic example used to illustrate this point employs a series of objects so arranged that one cannot
distinguish between two adjacent members of the series. But one can differentiate members at a greater
distance. For instance, in Quinn [63]’s self-torturer example, a person is repeatedly given the option to
increase his torture level by an undetectable increment, in exchange for $10000.
6 I follow Sen’s terminology in [70]. Other names have been used. For instance, Herzberger [36] speaks of
“stringent vs. liberal”maximization, and Bossert and Suzumura [11] speak of “greatest element vs. maximal
element” rationalizability.
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Fig. 1 Violation of IBC. An arrow from a to b means a � b. No arrow from b to a means b � a. (Reflexive
loops are omitted)

of belief change theory. Roughly speaking, while optimizing involves choosing an
element that is as good as everymember of the reference set, maximizing only requires
choosing an element that is not worse than any other. The two notions coincide when
the betterness relation is total. But the choice between the two matters as long as there
are incomparabilities between possible worlds−a situation that cannot be ruled out.
Depending on what notion of “best” is used, one gets different truth conditions for the
conditional obligation operator, and also different forms of the limit assumption.

Maximality is often seen asmore appropriate than optimalitywhen the possibility of
incomparability is allowed (see, e.g., [70]). Previous research has shown that the choice
between the two has less impact on the logic of the conditional obligation operator than
one would have thought [33, 34, 55–57]. In this paper, I will be interested not so much
in the contrast between maximality and optimality, but rather in the contrast between
the standard notion of maximality and a variant notion called “strong maximality” by
Bradley [12]. Roughly speaking, a world a is strongly maximal if no world b is strictly
better than any c that is as equally good as a. The role of strongmaximality is to ensure
that the agent’s choice meets the seemingly plausible requirement of (as Bradley calls
it) “Indifference based choice” (IBC): two items that are regarded indifferently (or
equally good) should always be equally choiceworthy (or best).7 Here the items are
possible worlds. Such a requirement can be violated, if � is no longer transitive.
Suppose a is strictly better than b, and b and c are equally good. This is illustrated
with Fig. 1. The convention is that a higher vertical position signifies a greater degree
of goodness.8 Both a and c are maximal, and hence chosen. The fact that c is chosen
is counter-intuitive. For c is as equally good as b, which is strictly worse than a. One
could argue that only a should be chosen. Here is a concrete example.

Example (Trip to Australia) Let b be a world where I go on holiday to Australia, and
b+ a world where I go on holiday to Australia with a bonus of $100. b+ is strictly
better than b. Perhaps b is also a world where I go to the dentist for a filling. One can
envisage a finite sequence of worlds b1, ... bn starting with b = b1, where the pain
during the dental work gradually increases in intensity, all the way to bn . The pain
increase from one world to the next is too small to be perceptible. So each world is
as equally good as its predecessor. The pain in bn is excruciating. One could argue
that b+ and bn are too different from each other to make a straightforward comparison
possible. So b+ and bn are incomparable. With the rule of maximality, the sentence

7 In rational choice theory, “best” and “choiceworthy” are synonymous.
8 This diagrammatic convention will be used throughout this paper whenever possible (except in Figs. 6
and 9, showing a cycle of betterness).
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Fig. 2 Trip to Australia. Equal goodness (↔) is not transitive

“It ought to be that I go to Australia with a bonus of $100” is evaluated as false in
this model, while with the rule of strong maximality it is evaluated as true. The first
outcome may be considered counter-intuitive. This is shown in Fig. 2.

Contribution
This paper will present an axiomatic study of the various classes of models charac-
terized by the presence or absence of the weakened forms of transitivity mentioned
above. Reference will be made to five systems of increasing strength, one of them
being new.

This papermakes two observations. The first one is that quasi-transitivity, acyclicity
and Suzumura consistency make no difference to the logic. The axiomatic system
remains the same whether or not these conditions are introduced. This holds under
a rule of interpretation in terms of maximality and strong maximality. The second
observation is that the interval order condition gives rise to a new axiom, which varies
depending on the rule of interpretation.With maximality, one gets the principle known
(in the non-monotonic logic literature) as disjunctive rationality [42]. With strong
maximality, one gets a stronger principle, called the Spohn axiom [73]. This one is
equivalent to the principle of rational monotony [42], or Lewis [44]’s axiom CV. A
completeness theorem further substantiates these observations. For interval order, this
yields the finite model property and decidability of the associated calculus.9

Our results improve the state-of-the-art in dyadic deontic logic, but also in the
related areas of non-monotonic logic and the logic of counterfactuals. In particular,
they complement those ofMakinson, andKraus, Lehmann&Magidor (KLM) for non-
monotonic inference relations [42, 43, 47, 49]. These authors assume a form of the
limit assumption called smoothness or stopperedness. Such an assumption has been
criticized, notably by Lewis [44]. There is a call for understanding what happens in its
absence. We will see that the smoothness condition makes no difference to the issue
at hand, at least in the case of transitivity, quasi-transitivity, a-cyclicity and Suzumura
consistency. On the other hand, these authors work with a primitive strict or irreflexive
relation � (“strictly better than”) in the models while I will be using a primitive non-
strict relation � (“at least as good as”). The advantage of using a primitive non-strict
relation is that one can more easily distinguish between worlds that are tied or equally
good and worlds that are incomparable. This point is discussed in Section 2.2. One
can then provide a finer-grained semantical analysis, and disentangle different notions

9 The decidability of the other calculi is already known.
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of “best” like the above three, and different candidate weakenings of transitivity. Only
maximality and quasi-transitivity are considered by these authors.10

Our findings also offer a complementary perspective to those presented by
Lewis [44] in his work on the logic of counterfactuals. Lewis’ prime interest is in
strong logics of counterfactuals, for which the similarity relation is transitive and
total. Thus he does not address models that might be appropriate for weaker systems.
In [44] and also in [45] Lewis directs our attention to the systems that might be suitable
for a logic of conditional obligation. He designates his own preferred deontic system
as VN, providing it with various modelings, with the “preferred” one being formu-
lated in terms of sphere models. Transitivity is inherently embedded within a system
of spheres, corresponding to the nesting property among these spheres. It remains an
interesting question whether our proposed relaxations of transitivity find analogous
counterparts within this framework. In his [44, 46], he proposes two variant evalu-
ation rules for the conditional in terms of betterness, allowing to avoid some of the
side effects of letting the limit assumption go. It is not known what happens when
transitivity is relaxed.

This paper is organized as follows. Section 2 sets the stage and describes the
framework within which the investigation will be conducted. Section 3 deals with
the conditions of quasi-transitivity, acyclicity and Suzumura consistency. Section 4
deals with the condition of interval order. Section 5 concludes. The appendix gives
the proof of results which would have otherwise cluttered Sections 4 and 5.

2 Setting the Stage

I start by setting the stage, and by describing the framework being used. The language
L is defined by the following BNF:

Atomic formulas: p ∈ P

Formulas: A ∈ L

A ::= p |¬A | A ∨ A | �A | ©(A/A)

¬A is read as “not-A”, and A ∨ B as “A or B”. �A is read as “A is settled as true”,
and ©(B/A) as “B is obligatory, given A”. A is called the antecedent, and B the
consequent.

The Boolean connectives other than “¬” and “∨” are defined as usual. ♦A is short
for ¬�¬A. P(B/A) (“B is permitted, given A”) is short for ¬ © (¬B/A), ©A (“A
is unconditionally obligatory”) and P A (“A is unconditionally permitted”) are short
for ©(A/�) and P(A/�), where � denotes a tautology.

10 The interval order condition has been studied within the KLM setting by Booth and Varzinczak [9],
but in isolation, without considering other potential weakenings of transitivity, their focus being on strict
relations in the models, and on the usual notion of maximality.
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2.1 Semantics

Definition 1 (Preference model) A preference (or betterness) model is a structure
M = (W , �, v) in which:

(i) W �= ∅ (W is a non-empty set of possible worlds, called the universe);
(ii) � ⊆ W × W (intuitively, � is a betterness or comparative goodness relation;

“a � b” can be read as “world a is at least as good as world b”);
(iii) v : P → P(W ) (v is an assignment, which associates a set of possible worlds

to each atomic formula p).

A model is said to be finite, if its universe has finitely many worlds. � is the
asymmetric (or strict) part of � defined by a � b iff (if and only if) a � b and b � a.
The symmetric part ≈ of � is called equal goodness, and is defined by a ≈ b iff a � b
and b � a. The incomparability relation is noted ‖, and is defined by a‖b iff a � b
and b � a. � is said to be reflexive, if for all a, a � a. � is said to be transitive, if for
all a, b and c, a � b and b � c imply a � c. Finally � is said to be total, if for all
a and b, either a � b or b � a. Note that totality implies reflexivity. Note also that,
by definition, � is irreflexive (for all a, a � a) and asymmetric (for all a and b, if
a � b then b � a). The transitive closure of � is written as tc(�) (or, more succinctly,
as ��), and is defined in the usual way. A similar notation is used for the transitive
closure of �.

Fact 2 (i) If � is transitive, then �=��; (ii) if � is transitive, then �=��; and (iii)
��⊆��.

Proof Straightforward. ��
Before defining the truth-conditions for the connectives, I need to introduce an extra

notion, that of a world’s equal goodness (in Bradley’s terminology, indifference) class.
As usual, ‖A‖M denotes the truth-set of A in M , i.e., the set of worlds in M at which
A holds. I drop reference to M when it is clear what model is intended. The transitive
closure of ≈ on ‖A‖ is denoted ≈A, and is defined as follows: for all a, b ∈ ‖A‖,
a ≈A b iff (1) a = b, or (2) there is a finite sequence of A-worlds a1, ..., an (n ≥ 2)
with a1 = a, ..., an = b and ai−1 ≈ ai (for i = 2, . . . , n). The equal goodness class
of a in A is {b : a ≈A b}.
Fact 3 The following applies:

(i) If a ≈Ab, c ∈ ‖A‖ and b ≈ c, then a ≈Ac;
(ii) ≈�A⊆≈A, where ≈�A is the restriction of ≈ to ‖A‖;

(iii) If � is reflexive and transitive, then ≈A⊆≈�A.

Proof (i) follows from the definition of ≈A.
For (ii), assume a ≈ b with a, b ∈ ‖A‖. If a = b, then the claim follows by part

(1) in the definition of ≈A. If a �= b, then the claim follows by part (2).
For (iii), assume � is reflexive and transitive, and let a ≈Ab. Hence a, b ∈ ‖A‖. If

a ≈Ab holds in virtue of part (1) in the definition of ≈A, then the claim follows from
the reflexivity of �. If a ≈Ab holds in virtue of part (2) in the definition of ≈A, then
there is a finite sequence of A-worlds a1, ..., an (n ≥ 2) with a1 = a, an = b and
ai−1 ≈ ai (for i = 2, . . . , n). By transitivity of �, it follows at once that a ≈ b. ��
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Definition 4 (Satisfaction) Given a preference model M = (W , �, v) and a world
a ∈ W , the satisfaction relation M, a � A (read as “world a satisfies A in model
M”) is defined as follows:

M, a � p iff a ∈ v(p)

M, a � ¬A iff M, a � A

M, a � A ∨ B iff M, a � A or M, a � B

M, a � �A iff ∀b M, b � A

M, a � ©(B/A) iff best(‖A‖) ⊆ ‖B‖

When no confusion can arise, I omit the reference to M and simply write a |� A.
Intuitively, the evaluation rule for the conditional obligation operator stipulates that
©(B/A) is true whenever all the best A-worlds are B-worlds. I allow for variation
in the way “best” is defined, and distinguish between the following three rules of
interpretation (in the rightmost cell, the letter “s” is mnemonic for “strong”):

max rule opt rule s-max rule
best(‖A‖) = max�(‖A‖) best(‖A‖) = opt�(‖A‖) best(‖A‖) = maxs�(‖A‖)

where

a ∈ max�(‖A‖) ⇔ a |� A & ¬∃b (b � A & b � a)

a ∈ opt�(‖A‖) ⇔ a |� A & ∀b (b |� A → a � b)

a ∈ maxs�(‖A‖) ⇔ a |� A & ∀b
(
(b |� A & b ≈Aa) → ¬∃c (c |� A & c � b)

)

Intuitively, an A-world a is maximal, if it is not (strictly) worse than any other
A-world. It is optimal if it is at least as good as every A-world. It is strongly maximal,
if any world b in a’s equal goodness class in A is not (strictly) worse than any other
A-world.

Proposition 5 We have:

(i) opt�(‖A‖) = max�(‖A‖) if � is total;
(ii) maxs�(‖A‖) = max�(‖A‖) if � is reflexive and transitive.

Proof (i) is straightforward. For (ii), the left-in-right inclusion follows from the fact
that a ≈Aa. For the converse inclusion, assume � is reflexive and transitive. Let a be
such that a ∈ max�(‖A‖) and a /∈ maxs�(‖A‖). From the latter, ∃b, c s.t. b |� A,
c |� A, b ≈Aa and c � b. By Fact 3 (iii), b ≈ a, and so by transitivity c � a, a
contradiction. ��

The notions of semantic consequence, validity and satisfiability are defined as usual.
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2.2 Non-strict vs. Strict Betterness

In the introductory section, with reference to the work of Makinson, Kraus, Lehmann
andMagidor, I said that the advantage of using a primitive non-strict betterness relation
is that one can more easily distinguish between worlds that are equally good (or tied)
and worlds that are incomparable. If one uses a primitive non-strict relation �, it is
a straightforward matter to distinguish between the two. The formal definitions were
given in Section 2.1. Two worlds are equally good if � holds between them in each
direction. They are incomparable if � holds in no direction. Suppose only the strict
relation � is available. Because a strict relation is asymmetric (if a � b, then b � a),
one cannot simply replace � with � in the previous definition to get equal goodness
in terms of �. Rott [65, p. 158] offers the following variant definition. Two worlds are
equally good if they have exactly the same sets of dominating and dominated elements.
Two worlds are incomparable if they are not equally good, and none is strictly better
than the other. Formally:

a ≈̇ b ⇔ ∀c : c � a ⇔ c � b and a � c ⇔ b � c (tie)

a‖̇b ⇔ a � b and b � a and a ˙�≈ b (gap)

According toRott, condition (tie) “captures exactlywhatwewant, at least if the relation
in question is transitive” [65, p. 158]. He asks: “How could two [worlds] possibly
satisfy this condition, and yet be called incomparable in terms of [�]?” [ibid.] A
problem immediately arises in Bradley’s example in Fig. 1. For a‖̇c to hold, it must
be the case that a � c. For b ≈̇ c to hold, it must be the case that a � c (as a � b).
Thus the configuration shown in this example cannot be modeled. The same holds for
the example shown in Fig. 2. Small, imperceptible worsenings accumulate, becoming
significant and creating an incomparability between b+ and some bi (1< i ≤n). World
bi in the sequence acts as a threshold, where the property of incomparability with b+
is not only established but also inherited by its successors. For b+‖̇bi to hold, it must
be the case that b+ � bi . For bi−1 ≈̇ bi to hold, it must be the case that b+ � bi . I am
not aware of any alternative proposal (other than Rott’s). The problem disappears if
� is taken as primitive.

2.3 Limit Assumption

Lewis [44]’s well-known limit assumption (LA) rules out sets of worlds without a
“limit” (viz. a best element). Its exact formulation varies among authors. It exists in
(at least) the following two basic forms, where best ∈ {max�, opt�,maxs�}:

Limitedness

If ∃a s.t. a |� A then best(‖A‖) �= ∅ (LIM)

Smoothness (or stopperedness)

If a |� A, then: either a ∈ best(‖A‖) or ∃b s.t. b � a & b ∈ best(‖A‖) (SM)
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A betterness relation � will be called “opt-limited”, “max-limited” or “s-max-
limited” depending on whether (LIM) holds with respect to opt�, max� or maxs�.
Similarly, itwill be called “opt-smooth”, “max-smooth” or “s-max-smooth” depending
on whether (SM) holds with respect to opt�, max� or maxs�. For pointers to literature,
and the relationships between the versions of LA cast in terms of optimality and
maximality, see [55, 57]. Proposition 6 below clarifies how the versions of LA in
terms of maximality and strong maximality relate to one another. For the reader’s
convenience, these relationships are represented in an implication diagram with the
direction of the arrow representing that of implication. This is Fig. 3. The implication
relations shown in the picture on the left-hand side holdwithout restriction, while those
shown on the right-hand side hold under the hypothesis that � meets the property (or
pair of properties) displayed as labeled.

Proposition 6 We have:

(i) s-max-smoothness ⇒ max-smoothness; s-max limitedness ⇒
max-limitedness; s-max-smoothness ⇒ s-max-limitedness;
max-smoothness ⇒ max-limitedness;

(ii) Given reflexivity and transitivity, max-smoothness ⇒ s-max-smoothness, and
max-limitedness ⇒ s-max-limitedness;

(iii) Given totality, s-max-limitedness ⇒ s-max-smoothness, and
max-limitedness ⇒ max-smoothness.

Proof For (i), assume � is s-max-smooth. Let a |� A and a /∈ max�(‖A‖). By
Proposition 5 (ii), a /∈ maxs�(‖A‖). So ∃b |� A s.t. b � a and b ∈ maxs�(‖A‖). By
Proposition 5 (ii) again, b ∈ max�(‖A‖), and the claim is proved. The implication
“s-max-limitedness ⇒ max-limitedness” is proved similarly. The third and fourth
implications follow at once from the definitions involved.

(ii) follows from Proposition 5 (ii).
For (iii), assume � is s-max-limited, and consider some a such that a |� A and a /∈

maxs�(‖A‖). Hence ∃b, c s.t. b ≈Aa, c |� A and c � b. By the opening assumption, ∃d
s.t. d ∈ maxs�(‖A‖). Suppose, to reach a contradiction, that a � d. Since d ≈A d, by
definition it follows that d � a. But, then, by Fact 3 (i) b ≈A d, and d /∈ maxs�(‖A‖).
So one must conclude that a � d. By totality, d � a, and so d � a. This shows that
� is s-max-smooth. The other implication is proved similarly. ��

Fig. 3 Limit assumption
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Fig. 4 Systems

2.4 Hilbert Systems

The systems of interest are shown in Fig. 4. They are of increasing strength. A line
between two systems indicates that the system to the left is contained in the system
to the right. E, F, F+(CM) and G have been around for some time now.11 F+(DR) is
new.

All the systems contain the classical propositional calculus and the modal system
S5.12 Then they add the following axiom schemata:

• For E (the naming follows [55]):

© (B → C/A) → (©(B/A) → ©(C/A)) (COK)

© (B/A) → � © (B/A) (Abs)

�A → ©(A/B) (O-nec)

�(A ↔ B) → (©(C/A) ↔ ©(C/B)) (Ext)

© (A/A) (Id)

© (C/A ∧ B) → ©(B → C/A) (Sh)

• For F: axioms of E plus

♦A → ¬(©(B/A) ∧ ©(¬B/A)) (D�)

• For F+(CM): axioms of F plus

(©(B/A) ∧ ©(C/A)) → ©(C/A ∧ B) (CM)

• For F+(DR): axioms of F plus

© (C/A ∨ B) → (©(C/A) ∨ ©(C/B)) (DR)

• For G: axioms of F plus

(P(B/A) ∧ ©(B → C/A)) → ©(C/A ∧ B) (Sp)

11 E, F and G are Åqvist [2, 4]’s. F+(CM) is from the study [55]. Their Hanssonian counterparts may
be found in Goble [33]. F+(CM) is to G what the KLM system P is to their system R [42, 43]. Note the
so-called principle of consistency preservation−the analog of (D�), with consistency used as a surrogate of
possibility−is not part of the latter two.
12 S5 is characterized by the rule of necessitation (“If � A, then � �A”), and the K, T and 5 axioms (5 is
♦A → ♦�A).
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(COK) is the conditional analogue of the familiar distribution axiom K. (Abs) is
the absoluteness axiom of Lewis [44], and reflects the fact that the ranking is not
world-relative. (O-nec) is the deontic counterpart of the familiar necessitation rule.
(Ext) permits the replacement of necessarily equivalent sentences in the antecedent
of deontic conditionals. (Id) is the deontic analogue of the identity principle. (Sh) is
named after Shoham [72, p. 77], who seems to have been the first to discuss it. The
question of whether (Id) is a reasonable law for deontic conditionals has been much
debated. A defense of (Id) can be found in Hansson [35], Prakken and Sergot [61] and
Parent [54]. Intuitively, (D�) rules out the possibility of conflicting obligations, for a
possible antecedent. It entails the following version of the Kantian principle “ought
implies can”:

©(B/A) → (♦A → ♦(A ∧ B)) (Ought2Can)

(CM) is the principle of cautious monotony from [42]. It says that fulfilling an obliga-
tion in a given context does not modify our other obligations in the same context. (DR)
is the principle of disjunctive rationality. It says that if a disjunction of states of affairs
triggers an obligation, then at least one disjunct taken alone triggers the obligation
in question. (Sp) is named after Spohn [73]. In E, it is equivalent to the well-known
principle of rational monotony [42] and Lewis [44]’s axiom CV. It says that realizing
a permission does not affect our other obligations arising in the same context:13

(P(B/A) ∧ ©(C/A)) → ©(C/A ∧ B) (RM)

For future reference, I note the following (the label “RW” is borrowed from the non-
monotonic logic literature, and is mnemonic for “Right weakening”; the label “VCM”
is short for “Very cautious monotony”, and is taken from Goble [31]):

Proposition 7 We have:

If �E B → C then �E ©(B/A) → ©(C/A) (RW)

�E (©(B/A) ∧ ©(C/A)) → ©(B ∧ C/A) (AND)

�F+(CM) ©(B ∧ C/A) → ©(C/A ∧ B) (VCM)

�G (©(B/A) ∧ ©(C/A)) → ©(C/A ∧ B) (CM)

Proof For (RW) and (AND), see [57, Theorem 3.1]. For (VCM), assume©(B∧C/A).
By (RW), ©(B/A). By (CM), ©(B ∧ C/A ∧ B). By (RW) again, ©(C/A ∧ B). For
(CM), see [57, Theorem 3.3 (v)]. ��

The notions of syntactical consequence, theoremhood, consistency and weak (resp.
strong) completeness are defined as usual. Unless stated otherwise completeness is
understood in its strong sense.

Theorem 8 is established in [55, 56] for the max rule and the opt rule. In part (ii) of
the theorem, it is understood that max-limitedness is used when deontic formulas are

13 For a proof of their equivalence, see [57, Theorem 3.3 (iv)].
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interpreted using the max rule, and opt-limitedness is used when they are interpreted
using the opt rule. A similar remark applies to parts (iii) and (iv).

Theorem 8 (i) E is sound and complete with respect to the class of all preference
models; (ii) F is sound and complete with respect to the class of preference models in
which � is max-limited (resp. opt-limited); (iii) F+(CM) is sound and complete with
respect to the class of preference models in which � is max-smooth (resp. opt-smooth);
and (iv) G is sound and complete with respect to the class of preference models in
which � is max-smooth (resp. opt-smooth), transitive and total.

Proof See [55, 56]. ��
Imentioned thatE,F,F+(CM),F+(DR) andG forma series of systemsof increasing

strength. The inclusions E ⊂ F ⊂ F+(CM)⊂ G are known. I show F+(CM) ⊂ F+(DR)
⊂ G.

Theorem 9 (i) (DR) is a theorem of G; (ii) (CM) is a theorem of F+(DR); (iii) (DR)
is not a theorem of F+(CM); (iv) (Sp) is not a theorem of F+(DR); and (v) (D�) is not
a theorem of E+(DR).

Proof For (i), the argument draws on Makinson [49, p. 94]. Assume ©(C/A ∨ B)

and ¬ © (C/A). To show: ©(C/B). If ¬ © (¬A/A ∨ B), then ©(C/(A ∨ B) ∧ A)

by (RM). This yields ©(C/A) by (Ext), in contradiction with the second opening
assumption. So ©(¬A/A ∨ B). If ¬©(¬B/A ∨ B), then ©(C/(A ∨ B) ∧ B) by
(RM).This yields the desired conclusion©(C/B)by (Ext). So assume©(¬B/A∨B).
By (AND), ©(¬A ∧¬B/A ∨ B). By (Id), (AND) and (RW), ©(B/A ∨ B). From this
and the first opening assumption one gets©(C/B) by (CM) and (Ext). This concludes
the proof.

For (ii), assume ©(B/A) and ©(C/A). By (AND), ©(B ∧ C/A). By (Ext),
©(B ∧ C/(A ∧ B)∨ (A ∧ ¬B)). By (DR), either (a) ©(B ∧ C/A ∧ B) or (b) ©(B ∧
C/A ∧ ¬B). In case (a) (RW) yields ©(C/A ∧ B) as required. So assume (b) holds.
By (Id), ©(A ∧ ¬B/A ∧ ¬B). From this and (b) one gets ©(B ∧ ¬B/A ∧¬B) using
(AND) and (RW).By (RW) and propositional logic,©(B/A∧¬B)∧©(¬B/A∧¬B).
(D�) then yields ¬♦(A ∧ ¬B). By S5 �(A ↔ (A ∧ B)), and so by (Ext) the second
opening assumption yields ©(C/A ∧ B) as required.

For (iii), (iv) and (v), see Corollary26. ��

2.5 Weakenings of Transitivity

I list below the weakened forms of transitivity discussed in this paper.

Definition 10 Let � be a given relation.

• � is quasi-transitive, if � is transitive;
• � is acyclic, if a �� b implies b � a;
• � is Suzumura consistent, if a �� b implies b � a;
• � is an interval order, if � is reflexive and Ferrers (a � b and c � d imply a � d

or c � b).
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Fact 11 If � is an interval order, then:

(i) � is “negatively” transitive (i.e., a � b and b � c imply a � c);
(ii) � is total (i.e., a � b or b � a).

Proof For part (i), let a � b and b � c. By Ferrers, a � c or b � b. By reflexivity,
the latter is impossible, and so only the former applies.

For part (ii), let a and b be in W . By reflexivity, a � a and b � b. By Ferrers, a � b
or b � a. ��

The relationships between these conditions can be depicted as in Fig. 5. The arrow
symbol is used to represent implication. Transitivity and interval order are independent.
Transitivity implies quasi-transitivity and Suzumura consistency, but not the other way
around. Each of quasi-transitivity and Suzumura consistency implies acyclicity, but
the converses fail. Quasi-transitivity and Suzumura consistency are independent, as
are interval order and Suzumura consistency.

I state these relationships in full.

Proposition 12 The following applies:

(i) Interval order ⇒ quasi-transitivity;
(ii) Transitivity ⇒ quasi-transitivity and Suzumura consistency;

(iii) Quasi-transitivity or Suzumura consistency ⇒ acyclicity.

Proof For (i), assume � is an interval order. Suppose a � b and b � c. By definition
of �, a � b, b � c, b � a, and c � b. By negative transitivity (see Fact 11 (i)) c � a.
By totality (see Fact 11 (ii)), a � c. By definition of �, a � c.

For (ii), assume� is transitive. First, I consider the case of quasi-transitivity.Assume
a � b and b � c. By definition, a � b and b � c. By transitivity of �, a � c. By
hypothesis, b � a. By transitivity of � again, c � a. Hence a � c as required.

Next, I consider the case of Suzumura consistency. Assume, per absurdum, that �
is not Suzumura consistent. Hence, for some a and b, a �� b but b � a. The latter
implies that a � b, by definition, while the former implies that a � b, by Fact 2 (i).
Contradiction.

For the first half of (iii), assume that � is quasi-transitive, but not acyclic. Hence,
for some a and b, a �� b but b �a. Given quasi-transitivity, the former implies a �b,

Fig. 5 Implication relations
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by Fact 2 (ii). Combined with the latter, one gets a � a, by quasi-transitivity again.
This contradicts the irreflexivity of �.

For the second half of (iii), assume � is Suzumura consistent. To see acyclicity, let
a �� b. By Fact 2 (iii), a �� b, and so b�a by Suzumura consistency. ��
Proposition 13 The following applies:

(i) Interval order or quasi-transitivity or Suzumura consistency � transitivity;
(ii) Interval order � Suzumura consistency;

(iii) Acyclicity � quasi-transitivity or Suzumura consistency;
(iv) Quasi-transitivity � Suzumura consistency;
(v) Transitivity � interval order.

Proof Let �= {(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b), (a, c)}. � is an inter-
val order and is quasi-transitive (and hence acyclic), but not Suzumura consistent (and
hence not transitive).

Let �= {(a, b), (b, c)}. � is Suzumura consistent (and hence acyclic), but not an
interval order nor quasi-transitive (and hence it is not transitive).

Let �= {(a, a), (b, b)}. � is transitive, but not Ferrers, and hence not an interval
order. ��

Proposition 14 considers the case of a finite preference model, and tells us which
weakening of transitivity “enforces” which form of the limit assumption. I give the
weakestweakeningof transitivity having such an effect. It should not comeas a surprise
that smoothness requires a stronger condition than limitedness to be “enforced” in the
model.

Proposition 14 Suppose W is finite.

(i) If � is quasi-transitive, then � is max-smooth (but not necessarily s-max-smooth);
(ii) If � is acyclic, then � is max-limited (but not necessarily s-max-limited);

(iii) If � is Suzumura-consistent, then � is s-max-limited.

Proof For the first claim in part (i), see [55, Proposition 4]. Figure6 establishes
the second claim. � is (vacuously) quasi-transitive, but not s-max-smooth. We have
maxs�(‖p‖) = ∅.

For the first claim in part (ii), the argument is virtually the same as for part (i) except
that the weaker condition of acyclicity is invoked. Let � be acyclic, and suppose a1 |�
A. Assume to reach a contradiction that (a)∀a if a |� A then ∃b s.t. b |� A and b � a.

Fig. 6 Failure of s-max-smoothness. (Reflexive loops are omitted)
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Fig. 7 Failure of s-max-limitedness (cont’d). It is understood that each world satisfies A

Successive applications of (a) yields an infinite sequence of increasingly better A-
worlds a1 ≺ a2 ≺ ... ≺ an ≺ .... Acyclicity guarantees that they are all distinct. This
contradicts the assumption of finiteness of W .

Figure 6 also shows the second claim in part (ii).� is acyclic, but not s-max-limited.
For part (iii), the argument is similar. Suppose a1

1 |� A. Assume to reach a contra-
diction that � is not s-max-limited. The obtained sequence of A-worlds is organized
in “floors” as in Fig 7. To avoid a proliferation of symbols, the labels “A” are not
shown. For all i ≤n, a1

i /∈ maxs�(‖A‖), and a1
i+1 is the world (to be called a “witness”)

which makes this so. This is because, for all i ≤ n, a1
i+1 � bi . In the presence of

Suzumura consistency, one gets an infinite sequence of witnesses (all distinct). To see
why, define ↓ bi (1≤ i ≤ n) as {x : bi �� x}. When generated, each witness a1

i+1 is
“new”, in the sense that, for all i ≤ n, a1

i+1 /∈↓ bi ∪ {bi }. Suppose not. So, for some
i ≤ n, a1

i+1 ∈↓bi ∪ {bi }. We already have a1
i+1 � bi . By irreflexivity of �, bi �= a1

i+1,
so bi �� a1

i+1. By Suzumura consistency, a1
i+1 �� bi . Contradiction. ��

2.6 Selection Functions

This section provides some background information on so-called selection function
semantics, through which the proof of completeness will make a detour. The argument
will be in two steps. The first one consists in establishing the result formodels equipped
with a selection function. The second one consists in deriving from this the analog
result for models with a betterness relation. Perhaps a direct argument is possible, but
I leave it open.

Stemming from Stalnaker [74] and generalized by Chellas [16], such a semantics
was adapted to the present setting by Åqvist [4]. I call these new structures “selection
models”, to distinguish them from those described above. In models of this sort, the
betterness relation � is replaced with a so-called selection function f from formulas14

such that, for all A in L , f(A) ⊆ W . Intuitively, f(A) outputs all the best worlds

14 I adopt the definition proposed by Stalnaker, Lewis [44, p. 77] and Åqvist, for whom f takes a formula
(rather than a set of possible worlds) as input. In contrast, many scholars tend to follow Chellas [16, p. 134],
who defines the domain of f as the set of all the subsets of W . A selection function of the second type is
sometimes called “propositional” (as opposed to a “sentential” one). A problem with the second approach
is that there is no guarantee that all X ⊆ W is the truth-set of a formula, and thus expresses a proposition.
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satisfying A. The evaluation rule for the dyadic obligation operator is phrased thus:

M, a � ©(B/A) iff f(A) ⊆ ‖B‖M

As before I will drop the reference to M when it is clear what model is intended. The
relevant constraints for f are:

If ‖A‖ = ‖B‖ then f(A) = f(B) (syntax-independence)

f(A) ⊆ ‖A‖ (inclusion)

f(A) ∩ ‖B‖ ⊆ f(A ∧ B) (Chernoff)

If ‖A‖ �= ∅ then f(A) �= ∅ (consistency-preservation)

If f(A ∨ B) ⊆ ‖C‖ then f(A) ⊆ ‖C‖ or f(B) ⊆ ‖C‖ (s-drat)

If f(A) ∩ ‖B‖ �= ∅ then f(A ∧ B) ⊆ f(A) ∩ ‖B‖ (Arrow)

The names used for the first four and the sixth constraints are from [57]. All these
constraints have known counterparts within the framework of rational choice the-
ory (for an overview, see Moulin [52]). The third constraint is identical to so-called
Chernoff [18]’s condition also known as Sen’s condition α. The label (s-drat) is from
Goble [32].

For future reference I note the following:

Proposition 15 (syntax-independence), (inclusion), (consistency-preservation) and
(Arrow) imply (s-drat).

Proof Assume f(A ∨ B) ⊆ ‖C‖. Suppose f(A ∨ B) ∩ ‖A‖ �= ∅. Using both (syn-
tax-independence) and (Arrow), we get the desired result:

f(A) = f((A ∨ B) ∧ A) ⊆ f(A ∨ B) ∩ ‖A‖ ⊆ f(A ∨ B) ⊆ ‖C‖

Suppose f(A ∨ B) ⊆ ‖¬A‖. If f(A ∨ B) ∩ ‖B‖ �= ∅, then (Arrow) and (syntax-inde-
pendence) immediately yields the desired result:

f(B) = f((A ∨ B) ∧ B) ⊆ f(A ∨ B) ∩ ‖B‖ ⊆ f(A ∨ B) ⊆ ‖C‖

So assume f(A∨B)⊆‖¬B‖. Hence f(A∨B)⊆‖¬A ∧ ¬B‖. By (inclusion), f(A∨B)

= ∅. By (consistency-preservation), ‖A∨B‖ = ∅ = ‖B‖. By (inclusion) f(B) = ∅ ⊆
‖C‖ as required. ��

The following result will be used later on.

This creates a problem in the proof of completeness when verifying that in the canonical model f verifies
the required constraints, like (Chernoff) and (consistency-preservation). The use of a sentential selection
function allows us to bypass such a problem. An alternative strategy is to modify the standard formulation
of the constraints put on f and make them relative to an extra parameter, the set P of all propositions (see
McNamara [50] for an example of implementation of this strategy in another context).
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Theorem 16 (i) E is sound and complete with respect to the class of selection models
in which f meets (syntax-independence), (inclusion), (Chernoff); (ii) F is sound and
complete with respect to the class of selection models in which f also meets (consis-
tency-preservation); (iii) F+(DR) is sound and complete with respect to the class of
selection models in which fmeets in addition (s-drat); and (iv)G is sound and complete
with respect to the class of selection models in which f meets (syntax-independence),
(inclusion), (Chernoff), (consistency-preservation) and (Arrow).

Proof Soundness is straightforward. Proofs of completeness are given by Åqvist [4]
for E, F and G. To extend the argument to F+(DR), one just needs to verify that
the proposed canonical model satisfies (s-drat). To be precise, one works with the
canonical model generated from a given maximal consistent set (MCS) w. For some
MCS a to be in its universe, it must be the case that {A : �A ∈ w} ⊆ a. And a ∈ f(B)

iff {C : ©(C/B) ∈ w} ⊆ a.
The argument for (s-drat) appeals to the truth-lemma, stating that the truth-

conditions of formulas in a world coincide with the set-membership relation between
formulas and maximal consistent sets. Let f(A) � ‖C‖ and f(B) � ‖C‖. Hence ∃a, b
such that a ∈ f(A), b ∈ f(B), a �|� C and b �|� C . By the truth-lemma, C /∈ a and C /∈
b. Hence©(C/A) /∈ w and©(C/B) /∈ w. By (DR), it follows that©(C/A∨B) /∈ w.
A standard argument establishes that {D : ©(D/A ∨ B) ∈ w} ∪ {¬C} is consistent,
and can be extended to aMCS, call it c. By (O-nec), c is in the universe of the canonical
model. By construction c ∈ f(A ∨ B) and C /∈ c so that c /∈ ‖C‖, by the truth-lemma.
Hence f(A ∨ B) � ‖C‖ as required. ��

3 Quasi-transitivity, Acyclicity and Suzumura Consistency

I start with quasi-transitivity, acyclicity and Suzumura consistency. First, together with
Theorem 8, Theorem 17 tells us that under the max rule the assumption of transitivity
has no impact in the presence or absence of the limit assumption: imposing transitivity
adds no new theorems to the logic.

Theorem 17 (i) Under the max rule, E is sound and complete with respect to the class
of preference models in which � is transitive; (ii) under the max rule, F is sound and
complete with respect to the class of preference models in which � is max-limited and
transitive; and (iii) under the max rule, F+(CM) is sound and complete with respect
to the class of preference models in which � is max-smooth and transitive.

For E and F, the crux of the argument consists in showing that, starting with a given
preference model, one can transform it into one in which the betterness relation is
transitive in such a way that it may be guaranteed to satisfy exactly the same formulas.
This is what the adjective “equivalent” refers to in the statement of the theorem below.
The precise definition of this notion is best explained once the construction has been
given.

Theorem 18 [Goble [33]] For every model M = (W , �, v), there is a model M ′ =
(W ′, �′, v′) in which �′ is transitive and such that under the max rule M and M ′ are
equivalent. Furthermore, if � is max-limited, then �′ is also max-limited.
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Proof I recall the construction.15 Let M = (W , �, v). Define M ′ = (W ′, �′, v′) as
follows:

• W ′ = {〈a, b, n〉 | a, b ∈ W , n ∈ ω}
• 〈a, b, n〉 �′ 〈c, d, m〉 iff (1) 〈a, b, n〉 = 〈c, d, m〉 or

(2)

⎧
⎨

⎩

(a) b = d & n ≥ m
and
(b1) c �= d & a = c or (b2) c = d & a � c

• v′(p) = {〈a, b, n〉 | a ∈ v(p)}
The verification that the construction actually does the desired job proceeds via a series
of lemmas, for which we refer the reader to [33, p. 44 sqq] or [57, Theorem C1]. The
two models are equivalent in the following sense: for all formulas A, all a, b ∈ W and
all n ∈ ω, a |� A iff 〈a, b, n〉 |� A. ��

For F+(CM), the proof is different. The reader is referred to [32, Theorem 56] or
[57, Theorem 4.2] for more details.

While a number of theorems have been presented in the literature on the iddleness
of transitivity under a rule of interpretation in terms of maximality (see also Grossi &
al. [34]),16 the following extremely simple corollary seems to have been overlooked:

Theorem 19 (i) Under the max rule, E is sound and complete with respect to the class
of preference models whose relation � is quasi-transitive, Suzumura consistent or
acyclic; (ii) under the max rule, F is sound and complete with respect to the class
of preference models whose relation � is max-limited and either quasi-transitive,
Suzumura consistent or acyclic; and (iii) under the max rule, F+(CM) is sound and
complete with respect to the class of preference models whose relation � is max-smooth
and either quasi-transitive, Suzumura consistent or acyclic.

Proof Soundness follows from the fact that none of the axioms and rules appeal to the
conditions of quasi-transitivity, Suzumura consistency and acyclicity. Completeness
follows from Theorem17 and Proposition12 above. Where � is a set of formulas,
suppose � � A in, e.g., E. According to Theorem17 (i), � ∪ {¬A} is falsifiable in a
preference model in which � is transitive. By Proposition12, � ∪ {¬A} is falsifiable
in a preference model in which � is quasi-transitive, Suzumura consistent or acyclic.
Hence � �|� A w.r.t. the class of preference models in which � is quasi-transitive,
Suzumura consistent or acyclic. For F and F+(CM), the argument is similar. ��
These results extend to the classes of models as specified in the statement of Theo-
rem 19 whose relation � is in addition reflexive. They also carry over to the rule of
interpretation in terms of strong maximality:

15 A similar one may be found in Schlechta [68, p. 77].
16 Their systemMOU is equivalent toE.MOU has (Triv)©(�/A) in place of (O-nec), and the extra axiom
(L-Ext) �(B ↔ C) → (©(B/A) ↔ ©(C/A)). (Triv) is derivable from (O-nec), since this one gives
�� → ©(�/A) and �� is a theorem. Suppose �(B ↔ C), and hence �(B → C). (O-nec) and (COK)
give ©(B/A) → ©(C/A), and likewise for the converse implication. Thus, both (Triv) and (L-Ext) are
theorems of E. Suppose �A holds. So �(A ↔ �) holds. By (Triv) ©(�/B), and so ©(A/B) by (L-Ext).
Hence, (O-nec) is a theorem ofMOU.
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Theorem 20 (i) Under the s-max rule, E is sound and complete with respect to the
class of all preference models, and with respect to the class of those whose relation
� is transitive, quasi-transitive, Suzumura consistent or acyclic; (ii) under the s-max
rule, F is sound and complete with respect to the class of preference models whose
relation � is s-max-limited, and with respect to the class of those in which in addition
� is transitive, quasi-transitive, Suzumura consistent or acyclic; and (iii) under the
s-max rule, F+(CM) is sound and complete with respect to the class of preference
models whose relation � is s-max-smooth, and with respect to the class of those in
which in addition � is transitive, quasi-transitive, Suzumura consistent or acyclic.

Proof For the soundness half, it is enough to verify that all the axioms and rules are
valid under the s-max rule. I show (Sh) and (CM).

• For (Sh), suppose that a |� ©(C/A ∧ B). Let b be such that b ∈ maxs�(‖A‖)

and b |� B. Suppose, to reach a contradiction, that b /∈ maxs�(‖A ∧ B‖). Hence
there are c and d with b ≈A∧B c, d |� A ∧ B and d � c. We have b ≈A c and
d |� A, so that b /∈ maxs�(‖A‖), contrary to the opening assumption. Hence
b ∈ maxs�(‖A ∧ B‖), and so b |� C as required.

• For (CM), assume� is s-max-smooth, and leta be such thata |� ©(B/A) anda |�
©(C/A). Consider also some b such that b ∈maxs�(‖A ∧ B‖). Suppose, to reach
a contradiction, that b �∈ maxs�(‖A‖). We have b |� A. By s-max-smoothness, it
follows that there is some c � b such that c ∈ maxs�(‖A‖). Clearly, c |� A ∧ B.
Since b ≈A∧B b, one gets that b /∈ maxs�(‖A ∧ B‖), a contradiction. So b ∈
maxs�(‖A‖), and hence b |� C , which suffices for a |� ©(C/A ∧ B).

The completeness half follows from Theorem17 (extended to models whose rela-
tion � is reflexive), Proposition5 (ii) and Proposition12. Suppose � � A in, e.g.,
E. According to Theorem17 (i) and Proposition12, under the max rule � ∪ {¬A}
is falsifiable in a preference model in which � is reflexive and transitive, and hence
quasi-transitive, Suzumura consistent and acyclic. By Proposition5 (ii), under the s-
max rule � ∪ {¬A} is falsified in the same model. Hence under the s-max rule � �|� A
w.r.t. the class of all preference models, and the class of those in which � meets the
appropriate conditions. For F and F+(CM), the argument is similar. ��

The result also holds for each class of models mentioned in the statement of The-
orem20 whose relation � is also reflexive.

Proposition 21 below clarifies the status of the law:

(©(A2/A1) ∧ ... ∧ ©(A1/An)) → ©(An/A1) (loop)

(loop) captures a restricted form of transitivity for the conditional obligation operator.
Kraus, Lehmann and Magidor [42, p. 187] observe that in their setting, where a state
is identified with a set of valuations or possible worlds, the principle (loop) is the
syntactical counterpart of quasi-transitivity. Their observation does not carry over to
the present setting. By itself, quasi-transitivity does not give us (loop) under either
rule of interpretation.

Proposition 21 (loop) Under the max rule (resp. s-max rule), it holds that:
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(i) (loop) is not valid in the class of preference models whose relation � is quasi-
transitive;

(ii) (loop) is derivable in F + (C M), and hence (by Theorems 8(iii) and 20(iii))
valid in the class of preference models whose relation � is max-smooth (resp.
s-max-smooth).

Proof For (i), consider the instance of (loop) where n = 3, and put W = {ai : i ∈ ω},
ai � a j iff i ≥ j , and V (p) = {a1}, V (q) = W , and V (r) = ∅ for all other atomic
formulas r ∈ P. � is quasi-transitive since ≥ is. Under the max rule, it holds that:

a1 |� ©(q/p)

a1 |� ©(r/q)

a1 |� ©(p/r)

a1 �|� ©(r/p) (witness: a1)

� is reflexive and transitive, since ≥ is. Therefore, the above point also holds under
the s-max rule, by Proposition 5 (ii).

For (ii), assume ©(A2/A1), ... and ©(A1/An). First, we show that (�) for all i ,
j s.t. ©(A j/Ai ) is in this loop, ©(Ai → A j/

∨n
k=1 Ak). Let ©(A j/Ai ). By (RW),

©(Ai →A j/Ai ). By (Ext), ©(Ai →A j/(
∨n

k=1 Ak) ∧ Ai ). By (Sh), ©(Ai →(Ai →
A j )/

∨n
k=1 Ak). By (RW), ©(Ai→A j/

∨n
k=1 Ak). This shows (�). Now, by (�) and

(AND), it follows that ©(
∧n−1

i=1 (Ai→Ai+1)∧ (An→A1)/
∨n

k=1 Ak). By (Id), (AND)
and (RW), ©(

∧n
k=1 Ak/

∨n
k=1 Ak). By (VCM), ©(

∧n
k=2 Ak/(

∨n
k=1 Ak) ∧ A1). By

(Ext), ©(
∧n

k=2 Ak/A1). By (RW), ©(An/A1). ��
The next section deals with our fourth candidate weakening of transitivity: the

interval order condition.

4 Interval Order

I start with the max and opt rules. They can be handled simultaneously, because given
the assumption of totality the two come to the same thing.17 Intuitively the interval
order conditionmay seem to be at odds with the s-max rule. For instance, the condition
is not met in the motivating example shown in Fig. 1. For the sake of completeness, I
will nevertheless consider such a rule as well.

I will assume that models are finite. The rationale for this is purely technical.
As we will soon see, the main (completeness) proof relies on such an assumption.
Consequently, the result is formulated as a weak completeness theorem with respect
to the class of finite models. It establishes a match between theorems and validities
only. This point is further discussed after the proof of Theorem 28, on p. 24 f., and
after Corollary 41, on p. 28 f.

Theorem 22 (Soundness, opt and max rules) Under the max and opt rules, F+(DR)
is (weakly) sound with respect to the class of finite preference models whose relation
� is an interval order.

17 A similar result (but in a slightly different, KLM-style setting) is reported by Booth and Varzinczak [9].
Their proof is different and has not been published yet. I have drawn on Rott [66] whose setting remains
very different.
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Proof The axioms other than (D�) and (DR) are valid regardless of the properties of�.
(D�), the distinctive postulate ofF, calls for max-limitedness (resp. opt-limitedness). It
holds, given the assumption of finiteness of themodels and the interval order condition,
by Proposition 5 (i), Proposition12 (i) and (iii) and Proposition 14 (ii). It suffices to
show that (DR) is validated, given the interval order condition. I give the argument for
the max rule only. It applies mutatis mutandis to the opt rule.

Suppose (i) max�(‖A ∨ B‖) ⊆ ‖C‖ but (ii) max�(‖A‖) �⊆ ‖C‖ and (iii)
max�(‖B‖) � ‖C‖. From (ii), ∃a s.t. a ∈ max�(‖A‖) and a �|� C . By (iii), ∃b s.t.
b ∈ max�(‖B‖) and b �|� C . By (i), a /∈ max�(‖A ∨ B‖) and b /∈ max�(‖A ∨ B‖).
So ∃c � a s.t. c |� A ∨ B and ∃d � b s.t. d |� A ∨ B. Clearly, c |� B and d |� A.
This is illustrated with Fig. 8. By Ferrers, a � d and b � c would imply a � c or
b � d. But a � c and b � d. So a � d or b � c. Suppose the first applies. By totality,
d � a, so that d � a, contradicting the fact that a ∈ max�(A). Now suppose b � c.
By totality again c � b, so that c � b, contradicting the fact that b ∈ max�(‖B‖).
This completes the proof. ��

Theorem 23 (Soundness, s-max) Under the s-max rule, G is (weakly) sound with
respect to the class of finite preference models whose relation � is an interval order
and s-max-limited.

Proof (D�), the distinctive axiom of F, is validated given s-max-limitedness.
The proof of validity of (Sp) appeals to the assumption of totality only. Suppose

(i) maxs�(‖A‖) ⊆ ‖B → C‖, (ii) maxs�(‖A‖) ∩ ‖B‖ �= ∅ and (iii) maxs�(‖A ∧
B‖) ∩ ‖¬C‖ �= ∅. From (iii), ∃a ∈ maxs�(‖A ∧ B‖) such that a �|� C . By (i), a /∈
maxs�(‖A‖). Hence ∃b, c s.t. b ≈A a, c |� A, and c � b. From (ii), ∃d ∈ maxs�(‖A‖)

such that d |� B. By totality, either (α) d � a or (β) a � d. Suppose (β) applies. By
definition, d ≈A d. But d ∈ maxs�(‖A‖), so a |� A and a � d imply d � a. Suppose
(α) applies. By definition a ≈A∧Ba. But a ∈ maxs�(‖A ∧ B‖). So d |� A ∧ B and
d � a imply a � d. Either way a ≈ d. From this and b ≈Aa, one gets b ≈Ad, by
Fact 3 (i). It then follows that d /∈ maxs�(‖A‖), a contradiction. One concludes that
maxs�(‖A ∧ B‖) ⊆ ‖C‖. ��
Remark 24 Unlike with Theorem 22, the form of the limited assumption needed to val-
idate (D�), s-max-limitedness, must appear in the statement of the soundness theorem,
Theorem 23. This is because in a finite model the interval order condition does not
imply s-max-limitedness. Consider, e.g., M = (W , �, v), where

• W = {a, b, c}

Fig. 8 Disjunctive rationality
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Fig. 9 Failure of s-max-limitedness in a model whose relation � is an interval order. (Reflexive loops are
omitted)

• � = the reflexive closure of {(a, b), (b, a), (b, c), (c, b), (a, c)}
• V (p) = W for all atomic formulas p ∈ P

This is shown in Fig.9. In this model, the interval order condition is met, but not
s-max-limitedness. For all p, ‖p‖ �= ∅, but a ≈p c while a � c, so maxs�(‖p‖) = ∅.

Before addressing completeness, I justify the claims of independence appearing in
the statement of Theorem 9.

Proposition 25 (i) There is a preference model whose relation � is max-smooth, in
which (DR) is falsified under the max rule; (ii) there is a preference model whose
relation � is an interval order and max-limited, in which (Sp) is falsified under the
max rule; and (iii) there is a selection model in which f meets (syntax-independence),
(inclusion), (Chernoff) and (s-drat), in which (D�) is falsified.

Proof For (i), put M = (W , �, v)with W = {a, b, c, d}, � = {(c, a), (d, b)}, v(p) =
{a, d}, v(q) = {b, c}, v(r) = {c, d} and v(s) = W for all other atomic formulas
s ∈ P. � is quasi-transitive. By Proposition14 (i), � is max-smooth, since W is finite.
©(r/p ∨ q) holds under the max rule, but not ©(r/p) nor ©(r/q). Hence (DR) is
falsified.

For (ii), put M = (W , �, v) with W and � as in Remark 24, v(p) = W , v(q) =
{b, c}, v(r) = {a, b} and v(s) = W for all other atomic formulas s ∈ P.� is an interval
order, and hence acyclic, by Proposition 12 (i) and (iii). Since W is finite, � is max-
limited, by Proposition 14 (ii). ©(q → r/p) and P(q/p) both hold under the max
rule, but not ©(r/p ∧ q). For max�(‖p‖) = {a, b} while max�(‖p ∧ q‖) = {b, c}.
Hence (Sp) is falsified.

For (iii), define M = (W , f, v) as follows: W = {a}; f(A) = ∅ for all A ∈ L ; and
v(p) = ∅ for all atomic formulas p ∈ P. f meets (syntax-independence), (inclusion),
(Chernoff) and (s-drat). The formulas ♦¬p, ©(q/¬p) and ©(¬q/¬p) hold at a.
Hence (D�) is falsified. ��
Corollary 26 (Independence) (i) (DR) is not a theorem of F+(CM); (ii) (Sp) is not a
theorem of F+(DR); and (iii) (D�) is not a theorem of E+(DR).

Proof For (i), note that under the max rule F+(CM) is sound with respect to the class
of models in which � is max-smooth. So if (DR) was a theorem of F+(CM), (DR)
would be valid in the class of preference models in which � is max-smooth. This
contradicts Proposition 25 (i).

For (ii), the argument is similar. Under themax ruleF+(DR) is soundwith respect to
the class of preference models in which � is max-limited and an interval order. If (Sp)
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was a theorem of F+(DR), (Sp) would be valid in this class of models, contradicting
Proposition 25 (ii).

For (iii), E+(DR) is sound with respect to the class of selection models in which
f meets (syntax-independence), (inclusion), (Chernoff) and (s-drat). If (D�) was a
theorem of E+(DR), (D�) would be valid in this class of models, contradicting Propo-
sition 25 (iii). ��

Corollary26 (iii) explains why (DR) and (D�) are considered separately. It also
gives us the following:

Proposition 27 (Incompleteness)E+(DR) is not (weakly) complete with respect to the
class of finite models whose relation � is an interval order.

Proof By Proposition12 (i), Proposition14 (i) and Proposition 6 (i), (D�) is valid in
the class of finite models in which � is an interval order, and hence max-limited. By
Corollary26 (iii), (D�) is not a theorem in E+(DR). Hence, there exists a formula that
is valid in the class of finite models in which � is an interval order, but not derivable
in E+(DR). ��

The final part of the paper is devoted to establishing the following result.

Theorem 28 (Completeness, opt and max) Under the opt and max rules, F+(DR) is
(weakly) complete with respect to the class of finite preference models whose relation
� is an interval order.

The proof takes a detour through the modeling in terms of selection functions. It
will be helpful to draw in the concept of expressibility described in Goble [30]. Briefly,
a model M is said to meet the expressibility constraint when any set of worlds in M
is expressible by some formula A:

∀X⊆ W ∃A ∈ L s.t. X = ‖A‖ (expr)

An immediate corollary is that, in a selection model M meeting (expr), f is (in the
terminology of Schlechta [68]) “definability-preserving”:

∀A ∈ L ∃B ∈ L s.t. f(A) = ‖B‖ (dp)

Theorem 28 follows from Theorem 16 (iii) combined with Theorems 29 and 31:

Theorem 29 (F.m.p., selection functions) F+(DR) has the finite model property
(f.m.p.) with respect to selection functions. That is, if A is satisfiable in a selection
model M = (W , f, v) in which f meets (syntax-independence), (inclusion), (Cher-
noff), (consistency-preservation) and (s-drat), then A is satisfiable in a finite such
model M� = (W �, f�, v�) meeting condition (expr).

Proof The proof extends that for F in [57]. One must perform two extra verifications.
First, onemust show that, if fmeets (s-drat), then so does f�. Second, onemust establish
that (expr) is fulfilled. Details are given in Appendix A. ��
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The following property (I give it Rott [66]’s name) is closely related to (s-drat):

Either f(A) ⊆ f(A∨ B) or f(B) ⊆ f(A∨ B) (II+)

Our completeness result relies on the following fact, made possible by (expr) and its
corollary (dp):

Fact 30 (i) (II+) implies (s-drat); and (ii) given (expr), (s-drat) implies (II+).

Proof For (i), suppose (II+) holds, and assume f(A ∨ B) ⊆ ‖C‖ for a given C . It
follows at once that either f(A) ⊆ ‖C‖ or f(B) ⊆ ‖C‖ as required.

For (ii), assume (expr) and (s-drat) both hold. By construction, f(A ∨ B) ⊆ W . By
(dp), ∃C s.t. f(A ∨ B) = ‖C‖. Trivially, f(A ∨ B) ⊆ f(A ∨ B) = ‖C‖. By (s-drat), it
follows that f(A) ⊆ f(A ∨ B) or f(B) ⊆ f(A ∨ B). ��

Now for the crux of the argument:

Theorem 31 For every finite selection model M = (W , f, v) in which f meets (syn-
tax-independence), (inclusion), (Chernoff), (consistency-preservation), (s-drat) and
(expr), there is a preference model M ′ = (W , �, v) (with W and v unchanged) in
which � is an interval order, such that under the max or opt rules M ′ is equivalent
with M.

Proof Starting with M = (W , f, v), define M ′ by putting a � b iff ∃A s.t. ‖A‖M =
{a, b} and a ∈ f(A). ��
Lemma 32 � is total (and hence reflexive).

Proof of Lemma 32 This follows at once from (expr), (consistency-preservation) and
(inclusion). ��

Lemma 33 � is Ferrers.

Proof of Lemma 33 Assume a � b and c � d. By definition ∃A s.t. a ∈ f(A) and
‖A‖ = {a, b} and ∃B s.t. c ∈ f(B) and ‖B‖ = {c, d}. Hence ‖A ∨ B‖ = {a, b, c, d}.
By (II+), a ∈ f(A ∨ B) or c ∈ f(A ∨ B). Assume a ∈ f(A ∨ B). By (expr), ∃C s.t.
‖C‖ = {a, d}. By (Chernoff), f(A∨B)∩‖C‖ ⊆ f((A∨B)∧C). So a ∈ f((A∨B)∧C).
Clearly, ‖(A∨ B) ∧C‖ = {a, d}. So by definition of �, a � d as required. If c ∈
f(A ∨ B), then a similar argument yields c � b. ��

Lemma 34 establishes equivalence between models.

Lemma 34 For all a, M, a |� A ⇔ M ′, a |� A.

Proof of Lemma 34 By induction on A. The only case of interest is when A :=
©(C/B). It will help to note that, under the inductive hypothesis, ��
Sub-lemma 35 a ∈ f(B) ⇔ a ∈ opt�(‖B‖) ⇔ a ∈ max�(‖B‖).
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Proof of Sub-lemma 35 The equivalence of the right pair is immediate, given totality
of �. Therefore, I focus on the equivalence of the left pair.

(⇒) Assume a ∈ f(B). By (inclusion), M, a |� B. By the inductive hypothesis,
M ′, a |� B. Let b be s.t. M ′, b |� B. By (expr), ∃C s.t. ‖C‖M = {a, b}. By (Chernoff),
f(B)∩‖C‖ ⊆ f(B ∧C). So a ∈ f(B ∧C). By the inductive hypothesis, M, b |� B. So
‖B ∧ C‖M = ‖C‖M . By (syntax-independence), a ∈ f(C). So a � b, which suffices
for a ∈ opt�(‖B‖).

(⇐) Let a ∈ opt�(‖B‖). ‖B‖M is finite, since W is finite. Let a1, ..., an be an enu-

meration of the elements of ‖B‖M . By the inductive hypothesis, ‖B‖M ′ = {a1, ...an}.
a is one of these elements. By the opening assumption, a � ai , for all i ∈ {1, ..., n}.
By definition of �, ∀ai (i ∈ {1, ..., n}) ∃Ai s.t. ‖Ai ‖M = {a, ai } and a ∈ f(Ai ). For
instance, a ∈ f(A1) and a ∈ f(A2). By (II+), it follows that a ∈ f(A1 ∨ A2). The
number of Ai ’s is finite. Reiterating this argument n times one reaches the conclusion
that a ∈ f(A1 ∨ A2 ∨ ... ∨ An). But ‖B‖M = ‖A1 ∨ A2 ∨ ... ∨ An‖M . By (syntax-in-
dependence), a ∈ f(B) as required. ��

With Sub-lemma 35 in hand, it is a straightforward matter to show that the two
models are equivalent. Details are omitted.

The proof of Theorem 28 can now begin. I show the contrapositive, i.e., if A is
not derivable in F+(DR), then A is not valid in the class of finite preference models
whose relation � is an interval order. Suppose A is not derivable in F+(DR). By The-
orem 16 (iii), A is false in some world a in some selection model M1 = (W1, f1, v1)
whose selection function f1 meets (syntax-independence), (inclusion), (Chernoff),
(consistency-preservation) and (s-drat). By Theorem 29, A is false in some world
b in some finite selection model M2 = (W2, f2, v2) in which f2 meets (syntax-inde-
pendence), (inclusion), (Chernoff), (consistency-preservation), (s-drat) and (expr). By
Theorem 31, there is a finite preference model M3 = (W2, �, v2) whose relation �
is an interval order, in which A is false at b. Hence A is not valid in the class of finite
preference models whose relation � is an interval order.

Theorem 28 is stated as a weak completeness theorem with respect to the class
of finite models. Theorem 28 can be strengthened into a weak completeness theorem
irrespective of the cardinality of the models as long as limitedness is made explicit in
the statement of the theorem. In other words, Theorem 28 also holds with respect to
the class of models whose relation � is an interval order and max-limited (resp. opt-
limited). Nevertheless, Theorem 28 falls short of establishing strong completeness.
In other words, it does not guarantee a correspondence between the syntactic and
semantic consequence relation while also accommodating a potentially infinite set of
assumptions. That is due to the need to take the path through finite models.

To elaborate further, the proof of Theorem 31 specifically relies on the input model
beingfinite and fulfilling condition (expr). These twoproperties are “enforced” through
the application of the filtration method (see Appendix A). Let us try to re-run the proof
of Theorem 28 and make it an argument for strong completeness, starting with the
assumption that A is not provable from a set � of assumptions. A problem arises
in the proof of the finite model property with respect to selection models, Theorem
29. For weak completeness, the “filter” is the set of ¬A’s sub-formulas, where A is
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the formula appearing in the statement of the completeness theorem. Such a set is
finite, and hence the filtrated model M� is also finite, while meeting (expr). For strong
completeness, the filter contains � ∪ {¬A}. Because such a set is potentially infinite,
there is no guarantee that the filtrated model M� is finite, and meets (expr). I leave
open the possibility of establishing strong completeness of F+(DR) by other means.

The added value of the finitary method proposed in this paper is that it gives us the
finite model property with respect to preference models, and also decidability of the
associated calculus.

Corollary 36 (F.m.p., preferences) If under the max rule (resp. opt rule) A is satisfiable
in a preference model M = (W , �, v) whose relation � is an interval order and max-
limited (resp. opt-limited), then under the max rule (resp. opt rule) A is satisfiable in
a finite such model.

Proof The argument is straightforward, using Theorems 29, 31 and the following
observation: if under the max rule (resp. opt rule) A is satisfiable in a prefer-
ence model M = (W , �, v) whose relation � is an interval order and max-limited
(resp. opt-limited), then A is satisfiable in a selection model M ′ = (W , f, v) (with
W and v unchanged) in which f meets (syntax-independence), (inclusion), (Cher-
noff), (consistency-preservation) and (s-drat). Define f by putting, for all A ∈ L ,
f(A) = max�(‖A‖) (resp. opt�(‖A‖)). Note that, in the proof of Theorem 31, the
relation � derived from f is max-limited (resp. opt-limited). ��

The theoremhood problem (“Is A a theorem?”) in E, F, F+(CM) and G is decid-
able.18 As a spin-off result of Theorem 28, one also gets:

Corollary 37 The theoremhood problem in F+(DR) is decidable.

Proof The argument is standard, and is omitted. (See, e.g., [17].) ��
I turn to completeness under the s-max rule.

Lemma 38 Given (Arrow), the relation � as defined in the proof of Theorem 31 is
transitive.

Proof of Lemma 38 Assume a � b and b � c. So ∃A, B s.t. {a, b} = ‖A‖, a ∈ f(A),
{b, c} = ‖B‖ and b ∈ f(B). By (expr), ∃C s.t. {a, c} = ‖C‖. Clearly {a, b, c} =
‖A ∨ B ∨ C‖. If one can show that a ∈ f(A ∨ B ∨ C), then we are done, because
by (Chernoff) one gets a ∈ f((A ∨ B ∨ C) ∧ C), and then by (syntax-independence)
a ∈ f(C), which suffices for a � c.

By (consistency-preservation) and (inclusion), at least one of a, b and c is in f(A ∨
B∨C). Suppose it isb. Then, f(A∨B∨C)∩‖A‖ �= ∅. By (Arrow), f((A∨B∨C)∧A) ⊆
f(A ∨ B ∨ C) ∩ ‖A‖. By (syntax-independence), f((A ∨ B ∨ C) ∧ A) = f(A), so
that a ∈ f(A ∨ B ∨C). Now suppose c ∈ f(A ∨ B ∨C). A similar argument yields
b ∈ f(A∨ B ∨C), fromwhich a ∈ f(A∨ B ∨C) follows. Either way, a ∈ f(A∨ B ∨C)

as required. ��
18 See, e.g., [3, 57].
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Theorem 39 (F.m.p., selection functions, cont’d) G has the finite model property
(f.m.p.) with respect to selection functions. That is, if A is satisfiable in a selection
model M = (W , f, v) in which fmeets (syntax-independence), (inclusion), (Chernoff),
(consistency-preservation) and (Arrow), then A is satisfiable in a finite such model
meeting condition (expr).

Proof See [3, p. 34] and [57, Theorem 5.10]. ��
With this in hand, one shows:

Theorem 40 (Completeness, s-max) Under the s-max rule, G is (weakly) complete
with respect to the class of finite preference models whose relation � is an interval
order and s-max-limited.

Proof To establish this result, we need only make a few adjustments to the proof of
the corresponding completeness theorem for F+(DR), Theorem 28. Suppose A is not
derivable inG. By Theorem16 (iv), A is false in someworld a in some selectionmodel
M1 = (W1, f1, v1) in which f1 meets (syntax-independence), (inclusion), (Chernoff),
(consistency-preservation) and (Arrow). By Theorem39, A is false in some world b
in some finite selection model M2 = (W2, f2, v2) in which f2 meets (syntax-inde-
pendence), (inclusion), (Chernoff), (consistency-preservation), (Arrow) and (expr). In
this model, f2 meets (s-drat), by Proposition 15. As before, by Theorem 31, there is
a finite preference model M3 = (W2, �, v2) whose relation � is an interval order,
in which under the max rule A is false at b. In this model, � is reflexive. Because f2
meets (Arrow), � is also transitive, by Lemma 38. Using Proposition 5 (ii) it follows
that in M3 the s-max rule and the max rule coincide. Also s-max-limitedness follows
by Proposition 12 (ii) and Proposition 14 (iii). Thus, the analog of Theorem 31 allows
us to conclude that under the s-max rule A is falsified in a finite preference model
whose relation � is an interval order and s-max-limited. ��

It is worth mentioning that, in Theorems 23 and 40, s-max-limitedness can be
replaced with Suzumura consistency.

Corollary 41 Under the s-max rule, G is (weakly) sound and complete with respect
to the class of finite preference models whose relation � is an interval order and
Suzumura consistent.

Proof For soundness, it suffices to invoke Proposition 14 (iii). For completeness, it
is enough to remark that (as defined in the proof of Theorem 40) the relation � is
Suzumura consistent, since it is transitive, Proposition 12 (ii). ��

Unlike Theorem 28, Theorem 40 can be strengthened into a strong completeness
result. This follows at once from [55, Theorem 9], which establishes strong complete-
ness of G under the max rule with respect to the class of models whose relation � is
transitive, total, and max-limited.19 Let � be the consistent set of formulas whose sat-
isfiability must be established. Consider the canonical model used in the proof of [55,
Theorem 9]. The relation � in this model is max-limited, transitive and total (hence

19 I owe this remark to an anonymous referee.
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reflexive).20 � is satisfiable under the max rule. By Proposition 5 (ii), � is satisfiable
under the s-max rule. By Proposition 6 (ii), � is s-max-limited. A total and transitive
relation is Ferrers, and hence an interval order.

What is striking with the s-max rule is not so much completeness, but soundness.
The interval order condition boosts the logic from F+(CM) to G. This is in sharp
contrast with the rule of maximality, where the interval order condition is not sufficient
for the validity of (Sp), but one needs plain transitivity (in addition to totality).21

Completeness has an interest in its own right. It makes it clear that no new axiom apart
from (Sp) must be added.

It is also worth stressing that under the s-max rule (Sp) requires only totality (cf.
Theorem 23). Furthermore, given totality, s-max-limitedness and s-max-smoothness
are equivalent, by Proposition 6 (i) and (iii). It follows that, under the latter rule, G
is also complete with respect to the class of models whose relation � is total and
s-max-limited (or s-max-smooth). Hence, given totality and s-max-limitedness (or
s-max-smoothness), Ferrers is idle.

Note, finally, that an analog of Corollary 36 is available:

Corollary 42 If under the s-max rule A is satisfiable in a preference model
M = (W , �, v) whose relation � is an interval order and s-max-limited (or s-max-
smooth), then under the s-max rule A is satisfiable in a finite such model.

Proof This conclusion is derived from Theorem 39 and the counterpart of Theo-
rem 31. It is also based on a similar extra observation as employed in the proof of
Theorem 36. ��

5 Conclusion

A number of completeness theorems were reported, which enhance our understanding
of the role of transitivity and some candidate weakenings of it: quasi-transitivity,
Suzumura consistency, acyclicity and the interval order condition. Reference was
made to five systems of increasing strength: E, F, F+(CM), F+(DR) and G.

Our first finding is that, under the max and strong max rules, the conditions of
transitivity, quasi-transitivity, acyclicity andSuzumura consistencymake no difference
on the logic. The same system (E, F or F+(CM)) is sound and complete with respect to
their matching classes of models irrespective of whether the condition is fulfilled. Our
second finding is that the interval order condition corresponds to a new axiom, which
varies depending on the choice of the rule of interpretation. Under the max rule, the
latter condition validates the principle of disjunctive rationality, and hence it boosts
the logic from F+(CM) to F+(DR). Under the s-max rule, the condition validates
the Spohn axiom, corresponding to the principle of rational monotony, or Lewis’s
axiom CV. The condition boosts the logic from F+(CM) to the stronger system G.
These last two points were substantiated further through the establishment of a weak
completeness theorem with respect to the class of finite models, yielding the finite
model property and decidability.

20 Note the argument for transitivity appeals to (Sp), the distinctive axiom of G.
21 See Table 2.
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Table 1 Soundness and completeness results

Property of � max s-max

−

E E

+ acyclicity

+ Suzumura consistency

+ quasi-transitivity

+ transitivity

limitedness

F F

+ acyclicity

+ Suzumura consistency

+ quasi-transitivity

+ transitivity

smoothness

F+(CM) F+(CM)

+ acyclicity

+ Suzumura consistency

+ quasi-transitivity

+ transitivity

interval order1 F+(DR)2 G3

1 With limitedness
2 Weak completeness w.r.t. finite models and weak completeness tout court
3 Weak completeness w.r.t. finite models and strong completeness

Table 1 recapitulates the above points. The left-most column shows the condition on
the betterness relation. The other columns show the corresponding systems under each
rule of interpretation. It is understood that in each column limitedness and smoothness
are cast in terms of the appropriate notion of best.

These findings are interesting, but they do not give us the full story yet. I indicate
two obvious directions for future research. This will give me the opportunity to nuance
the above points.

First, the outcome is likely to be different, if another notion of best is used like
maximality-in-the-limit or variations thereof, where there are no best worlds, but
(non-empty) sequences of ever-better ones, which approximate the ideal (see, e.g.,
[14, 44, 62, 68]). The role of quasi-transitivity, Suzumura consistency and acyclicity
under the opt rule remains to be understood too. Table 2 provides a concise overview
of additional significant findings in dyadic deontic logic, putting them side-by-side
with the results stated in Theorem8.22 This table should be self-explanatory. I only
briefly comment on the new axiom (transit). It captures a principle of transitivity for
a notion of weak preference given by A ≥ B =de f P(A/A ∨ B):23

22 The interested reader can find in [32, 34, 57] supplementary information. Analog results for Hansson’s
original family of DSDL systems may be found in [33]. Kratzer’s semantics is axiomatized in [31]. Results
for multiplex semantics are given in [28, 29]. Analytic sequent calculi for E and Fmay be found in [20, 21].
23 Cf. [44, p. 54].
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Table 2 Main existing results

Property of � max opt Reference

−
E E [34, 56]+ reflexivity

+ totality

transitivity }
E

}
E+(Sp)+(transit)

[33, 34, 57]

+ reflexivity [33, 34, 57]

+ totality E+(Sp)+(transit)+(DR) as for max [34]

limitedness
F F [32, 56]+ reflexivity

+ totality

smoothness
F+(CM) F+(CM) [32, 55]+ reflexivity

+ totality

smoothness
⎫
⎬

⎭
F+(CM) G [32, 53, 55, 57]+ reflexivity

+ transitivity

+ transitivity/totality G

P(A/A ∨ B) ∧ P(B/B ∨ C) → P(A/A ∨ C) (transit)

In [32, p. 48] it was conjectured that, under the opt rule, E+(Sp)+(transit) is complete
with respect to the class of models whose relation � is transitive.24 This point is
echoed in [57, Section 4.3]. Goble’s conjecture was settled in the positive in [34, The-
orem 70], where the pair {(Sp), (transit)} is replaced by an axiom called “Disjunctive
monotony” (DM), also known as “γ +” or “strong expansion”:25

©(B/A ∨ C) ∧ P(C/A) → ©(B/C) (DM)

The fact that (DM) is equivalent with {(Sp), (transit)} is shown in Appendix B. It is
interesting to remark that a syntactical counterpart of the transitivity of betterness is
obtained, but only at the cost of using a stronger notion of best, which (as mentioned)
is often considered less appropriate when the possibility of incomparability is kept

24 Goble does not refer to E, but to its counterpart for a semantics in which the ranking is made relative
to worlds, and a distinction is drawn between assessable and non-assessable worlds. (Sp) is replaced with
(RM) and the reflexivity of the betterness relation is mentioned. The system is called DDL-0.RT.
25 See [27, 67]. For the completeness of E+(Sp)+(transit), take the canonical model given for G in [53]
and [57, Definition 4.10], and delete condition (a) in the definition of the betterness relation. Re-run the
proof for G in [53] with appropriate editing, using Lemma 57 in [34] for the right-to-left direction of the
induction for ©(−/−). Let wB be a shorthand for {C : ©(C/B) ∈ w}, where w is the MCS from which
the canonical model is generated. The lemma reads: where b ∈ opt�(‖B‖) and � = {D : wD ⊆ b}, if
wB is inconsistent, then {B} ∪ {¬D : D ∈ �} is consistent. This allows to by-pass the fact that (D�) is no
longer available.
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open. A similar remark applies to the max rule under totality. I have not looked into
the question of whether quasi-transitivity, acyclicity and Suzumura consistency have
a counterpart under the opt rule.

Second, the restriction to finite models creates some discrepancy between the first
three weakened forms of transitivity as shown in Table 3. These differences are due to
the fact that, when a model is finite, a given condition may or may not enforce a given
form of the limit assumption.

Under the max rule, the choice between one of “acyclicity/Suzumura consistency”
and one of “quasi-transitivity/transitivity” makes a difference. First, Suzumura con-
sistency entails acyclicity. This one in turn entails max-limitedness, which validates
(D�). Hence under the max rule F is (weakly) sound with respect to the class of finite
models in which� is acyclic, and with respect to the class of those in which� is Suzu-
mura consistent. It would be interesting to know if F is also complete with respect to
these two classes of models. As shown by Fact 43, (CM) is falsifiable in each of them.
Fact 43 also considers strong maximality.

Fact 43 There exists a finite preference model M = (W , �, v) whose relation � is
Suzumura consistent (and hence acyclic), but not max-smooth (and hence not s-max-
smooth), in which (CM) is falsified under the max and s-max rules.

Proof Consider M = (W , �, v) where W = {a, b, c}, � is the reflexive closure of
{(a, b), (b, c)} and v(p) = W , v(q) = {a, c}, v(r) = {a} and v(s) = ∅ for all other
s ∈ P. � is Suzumura consistent, and hence acyclic. � is not max-smooth, since
c |� p, max�(‖p‖) = {a} and a � c. Hence � is not s-max-smooth either, by
Proposition 6 (i). Under each rule, a |� ©(q/p), a |� ©(r/p) and a �|� ©(r/p ∧ q)

(witness: c). ��
Transitivity implies quasi-transitivity, which in turn entails max-smoothness, and
hence (CM) is validated. Therefore under the max rule F+(CM) is sound with respect
to the class of finite models in which � is either transitive or quasi-transitive.

With strong maximality, the picture is slightly different. To facilitate comparison, I
assume reflexivity of �. First, acyclicity and quasi-transitivity do not validate (D�) nor
(CM). Indeed, Fig. 9 tells us that s-max-limitedness, and hence s-max-smoothness,
may fail in a finite model whose relation � is an interval order, and hence quasi-
transitive or acyclic. Second, Suzumura consistency entails s-max-limitedness, hence
validating (D�). Fact 43 adds to this that (CM) remains falsifiable. By contrast, in the
presence of reflexivity, transitivity entails s-max-smoothness, hence validating (CM).

Table 3 Correspondences (finite
models)

Property of � max s-max

acyclicity }
(D�)

−
Suzumura consistency (D�)

quasi-transitivity }
(CM)

−
transitivity (CM)1

1 With reflexivity of �
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Therefore, Suzumura consistency boosts the logic from E to F, and transitivity from
F to F+(CM). Other things being equal, acyclicity and quasi-transitivity do not have
these effects.

Appendix A: Proof of Theorem 29

I restate the theorem to be established:

Theorem 29 (F.m.p., selection functions) F+(DR) has the finite model property
(f.m.p.) with respect to selection functions. That is, if A is satisfiable in a selection
model M = (W , f, v) in which f meets (syntax-independence), (inclusion), (Cher-
noff), (consistency-preservation) and (s-drat), then A is satisfiable in a finite such
model M� = (W �, f�, v�) meeting condition (expr).

Proof The proof given here extends the one given for E, F and G in [3, 57]. I recall
the definition of the notion of filtration, and the main steps of the proof. I only carry
out in detail the verification of two new claims.

� denotes a non-empty and finite set of sentences closed under sub-formulas. §
stands for a designated atomic formula in �. Put � = § → § and ⊥ = ¬�. For
any selection model M = (W , f, v), the equivalence relation ≡� on W is defined by
setting

a ≡� b iff for every A in � : a � A iff b � A

Given a ∈ W , [a] will be the equivalence class of a under ≡� . Given some �, we
define the translation function τ , transforming every formula into a formula whose
atomic formulas are all in �. Function τ is defined as follows:

τ(p) =
{

p if p ∈ �

§ if p /∈ �

τ(¬A) = ¬τ(A) τ (A ∨ B) = τ(A) ∨ τ(B)

τ (�A) = �τ(A) τ (©(B/A)) = ©(τ (B)/τ(A))

Since neither � nor ⊥ are primitive symbols, and � is non-empty, there is always one
such atomic formula § in �. The filtration of M = (W , f, v) through � is the model
M� = (W �, f�, v�) where:

(i) W � = {[a] : a ∈ W };
(ii) f�(A) = {[a] : ∃b ∈ [a] & b ∈ f(τ (A))};
(iii) v�(p) = {[a] : a ∈ v(τ(p))} for all p ∈ P.

We have:

Fact 44 Let �, τ and M be as above. Then, for all A ∈ L and all a, b ∈ W , if a ≡� b,
then a � τ(A) iff b � τ(A).
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The so-called filtration theorem comes in two versions:

Fact 45 (Filtration theorem)

(i) For all A ∈ � and all a ∈ W , M�, [a] � A iff M, a � A;
(ii) For all A ∈ L and all a ∈ W , M�, [a] � A iff M, a � τ(A).

The first claim to be verified concerns (s-drat). One must show the following:

Lemma 46 In a filtered model M�, f� meets (s-drat), if f does.

Proof of Lemma 46 Suppose f�(A ∨ B) ⊆ ‖C‖M�
. First, we show that f(τ (A ∨ B)) ⊆

‖τ(C)‖M . Let a ∈ f(τ (A ∨ B)). Since a ∈ [a], [a] ∈ f�(A ∨ B) by definition of
f�. From the opening assumption, [a] |� C . By Fact 45 (ii), a |� τ(C). Hence,
f(τ (A ∨ B)) ⊆ ‖τ(C)‖M . By definition of τ , f(τ (A)∨τ(B)) ⊆ ‖τ(C)‖M . By (s-drat)
for f, f(τ (A)) ⊆ ‖τ(C)‖M or f(τ (B)) ⊆ ‖τ(C)‖M . Now, suppose for a reductio that
f�(A) � ‖C‖M�

and f�(B) � ‖C‖M�
. Hence ∃[a] s.t. [a] ∈ f�(A) and [a] �|� C .

By Fact 45 (ii), a �|� τ(C). Also ∃[b] s.t. [b] ∈ f�(B) and [b] �|� C . By Fact 45 (ii),
b �|� τ(C). By definition, ∃c s.t c ∈ [a] and c ∈ f(τ (A)), and ∃d s.t d ∈ [b] and
d ∈ f(τ (B)). By Fact 44, c �|� τ(C) and d �|� τ(C). Hence f(τ (A)) � ‖τ(C)‖M and
f(τ (B)) � ‖τ(C)‖M . Contradiction. ��

The second claim to verify concerns (expr). One must show that M� fulfills this
condition. For the reader’s convenience, I outline the main steps of the argument
as given by Goble [30], who uses a different filtration method, called “thin” (or, in
Gabbay’s terminology, “selective”).

LetB(�) denote the Boolean closure of�, i.e.,B(�) is the smallest set of formulas
such that � ⊆ B(�), and if A, B ∈ �, then A ∨ B ∈ B(�) and ¬A ∈ B(�). It
is a straightforward matter to show that the filtration theorem, Fact 45, generalizes to
B(�):

Lemma 47 Let M be a selection model and M� be its filtration through �. Then for
all A ∈ B(�) and all a ∈ W :

M�, [a] � A iff M, a � A.

Proof of Lemma 47 Proof by induction on A. If A = p or �B or ©(C/B), then
A ∈ �, and the claim follows from Fact 45 (i). If A = B ∨ C or A = ¬B, the result
follows directly from the inductive hypothesis. ��
Lemma 48 Let M be a selection model and M� its filtration through �. M� is distin-
guishable in the following sense: for all [a], [b] ∈ W �, if [a] �= [b], then there is some
A ∈ B(�) such that M�, [a] |� A but M�, [b] �|� A.

Proof of Lemma 48 Suppose [a] �= [b]. So either (i) ∃c s.t. c ∈ [a] and c /∈ [b], or (ii)
∃d s.t. d /∈ [a] and d ∈ [b]. Suppose (i) applies. From c /∈ [b], one gets (i.a) ∃A ∈ �

s.t. b |� A and c �|� A, or (i.b) ∃A′ ∈ � s.t. b �|� A′ and c |� A′. In case (i.a), the
claim is verified for ¬A. Indeed, [b] |� A, by Fact 45 (i), and so [b] �|� ¬A. On the
other hand, a �|� A, since a ∼� c. So by Fact 45 (i) [a] �|� A, hence [a] |� ¬A. In
case (i.b), the claim is verified for A′. Case (ii) is handled similarly. ��
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Lemma 49 For all [a] ∈ W �, there is A ∈ B(�) such that ‖A‖M� = {[a]}.
Proof of Lemma 49 This is [30, Lemma 2]. ��
Lemma 50 For all X ⊆ W �, there is A ∈ B(�) such that ‖A‖M� = X.

Proof of Lemma 50 This is [30, Lemma 3]. ��

This completes the proof of Theorem 29.

Appendix B

Proposition 51 shows the relationship between (DM) and the pair {(Sp)+(transit)},
aka {(RM)+(transit)}.

Proposition 51 (i) Each of (Sp) and (transit) is a theorem of E+(DM); and (ii) (DM)
is a theorem of E+(Sp)+(transit).

Proof For (i), I begin with (Sp). Assume ©(B → C/A) and P(B/A). By (Ext),
©(B → C/A∨(A∧ B)). Assume, to reach a contradiction, that©(¬(A∧ B)/A). By
(RW), ©(A →¬B/A). By (Id), (AND) and (RW), ©(¬B/A), contradicting the sec-
ondhypothesis. So¬©(¬(A∧B)/A), i.e., P(A∧B/A). By (DM),©(B → C/A∧B).
By (Ext), ©(B → C/A ∧ B ∧ B). By (Sh), ©(B → (B → C)/A ∧ B). By (Id),
(AND) and (RW), ©(C/A ∧ B) as required.

For (transit), suppose P(A/A ∨ B) and P(B/B ∨ C). Assume, to reach a contra-
diction, that ©(¬A/A ∨ C). By (Ext), ©(¬A/(A ∨ B ∨ C) ∧ (A ∨ C)). By (Sh) and
(RW), ©(¬A/A ∨ B ∨C). By (Ext), ©(¬A/(A ∨ B ∨C)∨ ((A ∨ B)∧ (A ∨ B ∨C)).
Suppose, to reach a contradiction, that ©(¬(A ∨ B)/A ∨ B ∨C). By (Ext), ©(¬(A ∨
B)/B ∨ C ∨ A ∨ B). By (DM), either ©(¬(A ∨ B)/B ∨ C) or ©(¬(A ∨ B)/A ∨ B).
In the first case, by (RW), ©(¬B/B ∨ C), contradicting the second assumption. In
the second case, by (RW), ©(¬A/A ∨ B), contradicting the first assumption. So
¬© (¬(A ∨ B)/A ∨ B ∨C). By (RW), ¬© (¬((A ∨ B)∧ (A ∨ B ∨C))/A ∨ B ∨C),
i.e., P((A∨ B)∧(A∨ B ∨C)/A∨ B ∨C). By (DM), ©(¬A/(A∨ B)∧(A∨ B ∨C)).
By (Ext), ©(¬A/A ∨ B), in contradiction with the first assumption. Hence one must
conclude that ¬ ©(¬A/A ∨ C), i.e., P(A/A ∨ C).

For (ii), assume ©(B/A ∨ C) and P(C/A). I break the argument into cases:
Case 1: ©(¬C/A ∨ C). By (transit), either (i) ©(¬C/(A ∧ C) ∨ C) or (ii)
©(¬(A ∧ C)/(A ∧ C) ∨ A). Case (ii) is not possible. By (Ext), (Id), (AND) and
(RW), ©(¬C/A), contradicting the second opening assumption. So case (i) must
hold. By (Ext), ©(¬C/C). By (Id), (AND) and (RW), ©(B/C).
Case 2: ¬ © (¬C/A ∨ C), i.e., P(C/A ∨ C). From the first opening assumption,
©(C → B/A ∨ C), by (RW). By (Sp) and (Ext), ©(B/C).
Either way, ©(B/C) as required. ��

Proposition 52 clarifies the relationship between E+(Sp)+(transit) and the systems
studied in this paper.
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Proposition 52 The following applies:

(i) E ⊂ E+(Sp)+(transit);
(ii) E+(Sp)+(transit) ⊂ G;

(iii) E+(Sp)+(transit) and F (resp. F+(CM), F+(DR)) are distinct, in the sense that
none is contained in the other.

Proof For (i), thatE⊆E+(Sp)+(transit) is obvious. To show the containment is proper,
it suffices to remark that under, e.g., the max rule each of (Sp) and (transit) is falsifiable
in the class of all preference models (see [57, Observations 2.10 and 2.12]), and so
none is derivable in E, by Theorem 8 (i).

For (ii), note, first, that (transit) is derivable in G (see [33, Lemma 5(2)]). This
shows that E+(Sp)+(transit) ⊆ G. That the containment is proper follows from the
fact that under the opt rule (D�) is falsifiable in the class of models whose relation �
is transitive, and the fact that under the opt rule E+(Sp)+(transit) is sound with respect
to this class of models (see, e.g., [57, Observations 2.9 and 2.11]).

For (iii), the previous point about (D�) establishes that none of F, F+(CM) and
F+(DR) is contained in E+(Sp)+(transit). To show that E+(Sp)+(transit) is not con-
tained in F, F+(CM) or F+(DR), it suffices to invoke Theorem 9 (iv) and the fact that
F ⊂ F+(CM) ⊂ F+(DR). ��

Note that, inE, (Sp) does not derive (transit) (although it does inG, as just observed).

Proposition 53 (i) Under the s-max rule, E+(Sp) is sound with respect to the class
of preference models whose relation � is total; and (ii) there is a preference model
whose relation � is total in which (transit) is falsified under the s-max rule.

Proof (i) was already observed in the proof of Theorem 23. For (ii), put M = W , �, v)

with

• W = {a, b, c, d}
• �= the reflexive closure of {(a, b), (c, b), (a, c), (c, a), (d, c), (d, a), (b, d)}
• v(p) = {a, c}, v(q) = {b} v(r) = {d} and v(s) = W for all other s ∈ P.

� is total.We havemaxs�(‖p∨q‖) = {a, c}, maxs�(‖q∨r‖) = {b} andmaxs�(‖p∨r‖)

= {d}. Hence, P(p/p∨q) and P(q/q ∨r) hold, but not P(p/p ∨ r). ��
Corollary 54 (transit) is not a theorem of E+(Sp).

Proof This can be inferred from Proposition 53 using the same line of reasoning as
before. ��
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