
Journal of Philosophical Logic
https://doi.org/10.1007/s10992-024-09745-8

Counterpart Theory and Actuality

James Milford1

Received: 13 May 2022 / Accepted: 19 January 2024
© The Author(s) 2024

Abstract
Lewis (The Journal of Philosophy, 65(5), 113–126, 1968) attempts to provide an
account of modal talk in terms of the resources of counterpart theory, a first-order
theory that eschews transworld identity. First, a regimentation of natural language
modal claims into sentences of a formal first-order modal language L is assumed. Sec-
ond, a translation scheme from L-sentences to sentences of the language of the theory
is provided. According to Hazen (The Journal of Philosophy, 76(6), 319–338, 1979)
and Fara &Williamson (Mind, 114(453), 1–30, 2005), the account cannot handle cer-
tain natural language modal claims involving a notion of actuality. The challenge has
two parts. First, in order to handle such claims, the initial formal modal language that
natural language modal claims are regimented into must extend L with something like
an actuality operator. Second, certain ways that Lewis’ translation scheme for L might
be extended to accommodate an actuality operator are unacceptable. Meyer (Mind,
122(485), 27–42, 2013) attempts to defend Lewis’ approach. First, Meyer holds that
in order to handle such claims, the formal modal language L∗ that we initially regi-
ment our natural language claims into need not contain an actuality operator. Instead,
we can make do with other resources. Next, Meyer provides an alternative translation
scheme from L∗-sentences to sentences of an enriched language of counterpart theory.
Unfortunately, Meyer’s approach fails to provide an appropriate counterpart theoretic
account of natural language modal claims. In this paper, I demonstrate that failure.
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1 Counterpart Theory

According to David Lewis, we should understand our modal talk in terms of the
resources of his counterpart theory, a first-order theory that eschews transworld iden-
tity.
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The language of counterpart theory (CT) is a standard first-order language LCT

(with identity) whose signature includes exactly: (i) for every n ≥ 1, denumerably-
many n-ary predicate constants Fn

1 , Fn
2 , ...; (ii) two unary predicate constants A and

W ; (iii) two binary predicate constants I and C ; and (iv) the individual constant @.1

The additional four predicate constants are to be read as follows:

Wx x is a world
I xy x is in y
Ax x is actual

Cxy x is a counterpart of y

The individual constant @ is employed to denote the actual world.
The theory CT contains exactly the following LCT-sentences, which impose con-

ditions on objects, worlds, and the counterpart relation:

(P1) ∀v1∀v2(Iv1v2 → Wv2)

Objects are only in worlds.

(P2) ∀v1∀v2∀v3((Iv1v2 ∧ Iv1v3) → v2 = v3)

No object is in more than one world.

(P3) ∀v1∀v2(Cv1v2 → ∃v3 Iv1v3)
Any object that is a counterpart is in a world.

(P4) ∀v1∀v2(Cv1v2 → ∃v3 Iv2v3)
Any object that has a counterpart is in a world.

(P5) ∀v1∀v2∀v3(((Iv1v2 ∧ Iv3v2) ∧ Cv1v3) → v1 = v3)

An object is a counterpart of no object in its world other than itself.

(P6) ∀v1∀v2(Iv1v2 → Cv1v1)

Any object in a world is a counterpart of itself.

(P7) ∃v1(Wv1 ∧ ∀v2(Iv2v1 ↔ Av2))

There is a world containing exactly all actual objects.

(P8) ∃v1Av1
Some object is actual.

(A) ∀v1(Wv1 ∨ ∃v2 Iv1v2)
Each object is a world or is in some world.

(B) ∀v1(Wv1 → Iv1v1)
Each world is in itself.

(C) ∀v1(∀v2(Iv2v1 ↔ Av2) ↔ v1 = @)

@ is the actual world.2

1 Lewis [12, 113–116] presents counterpart theory. The original language of the theory includes no indi-
vidual constants. However, the addition of @ here is an innocuous simplification.
2 (P1)-(P8) are given in [12]. (A) is included because Lewis notes that “the domain of quantification is to
contain every possible world and everything in every world” [12, 114]. Note that Lewis’ ontology includes
more objects than every world and everything in every world. Namely, his ontology also includes (at least)
sets and transworld sums. However, in a later postscript, Lewis clarifies that the language of counterpart
theory is best understood as quantifying only over worlds and objects in worlds. (B) is also included to
account for Lewis’ clarification in a later postscript. Note that from (A) and (B), every object in the domain
of quantification is in a world. In the context of discussing counterpart theory, my use of individual concerns
exactly all those objects in worlds. Finally, (C) is included to characterise the primitive @.
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Lewis analyses his counterpart relation in terms of similarity. Schematically: indi-
vidual b1 in world w1 is a counterpart of individual b2 in world w2 iff b1 is (i)
appropriately similar to b2, and (ii) at least as similar to b2 as any other individ-
ual in w1 is. As a result, Lewis holds that: (a) the counterpart relation need not be
symmetric; (b) the counterpart relation need not be transitive; and (c) an entity need
not have at most one counterpart per world.

The central idea in using the resources of CT to understand our modal talk is that
de re modal claims are to be understood in terms of the counterpart relation (rather
than transworld identity).

2 A Translation Scheme

To capture the counterpart theoretic analysis of our modal talk, Lewis provides a
method for translating natural language modal claims into LCT-sentences [12, 116–
118].

First, we assume a regimentation of natural language modal claims into sentences
of a standard first-order modal language L, whose modal operators are exactly 
 and
�, and whose signature contains exactly: for every n ≥ 1, denumerably-many n-ary
predicate constants Fn

1 , Fn
2 , ...

Next, we define a translation scheme that maps an L-sentence to an LCT-sentence.
The translation of L-sentence φ is φ@, to be read as: φ holds at the actual world.

To define this, we simultaneously define by recursion, for every α ∈ [VAR ∪{@}],
a unary function (.)α: Form(L) → Form(LCT). We read φα as: φ holds at world α.3

(i) (Px1...xn)α is Px1...xn .
(ii) (x1 = x2)α is x1 = x2.
(iii) (∼φ)α is ∼(φα).
(iv) (φ → ψ)α is (φα → ψα).
(v) (∃xφ)α is ∃x(I xα ∧ φα).
(vi) (∀xφ)α is ∀x(I xα → φα).
(vii) (
φ(x1, ..., xn))α is

∃w∃y1...∃yn(Ww ∧ I y1w ∧ Cy1x1 ∧ ... ∧ I ynw ∧ Cynxn∧
(φ(y1, ..., yn))w).

3 VAR is the set of individual variables. For simplicity, when presenting formulas in this paper, I may omit
some brackets. In which case, assume the written string is an abbreviation of a formula that is bracketed
to the left. Sometimes, to stress scope, I shall include additional brackets that are not part of the object
language formulas. Notation-wise, for an L-formula φ with n-many free variables, for distinct (from each
other) individual variables x1, ..., xn , the L-formula φ(x1, ..., xn) is the same as φ, except that every free
occurrence of its first free variable is replaced with x1, ..., and every free occurrence of its nth free variable is
replaced with xn . Of course, the following is not yet a recursive definition of the function (.)α as for clauses
(vii) and (viii), we have given a string containing the meta-variables w, y1, ..., yn (which range over the
individual variables of our object language), but no way to determine exactly which individual variables are
contained in the output. For simplicity, I shall leave this specification implicit and talk in terms of strings
involving meta-variables ranging over object language variables. The only desideratum in determining the
object language variables is that the resultant translation scheme does not deliver formulas with incorrectly
bound occurrences of individual variables.
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For some world w, w-counterpart y1 of x1, ..., and w-counterpart yn of xn , φ
holds of y1, ..., yn at w.

(viii) (�φ(x1, ..., xn))α is
∀w∀y1...∀yn((Ww ∧ I y1w ∧ Cy1x1 ∧ ... ∧ I ynw ∧ Cynxn) →
(φ(y1, ..., yn))w).

For every world w, w-counterpart y1 of x1, ..., and w-counterpart yn of xn , φ
holds of y1, ..., yn at w.

For examples of the translation scheme:

(∀xFx)@ is ∀x(I x@ → Fx)
(�∀xFx)@ is ∀y(Wy → ∀x(I xy → Fx))
(∀x�Fx)@ is ∀x(I x@ → ∀y∀z((Wy ∧ I zy ∧ Czx) → Fz))

For an example of the overall translation process:

(1) Some individual is rich but could have been poor.
(1∗) ∃x(Rx ∧ 
Px)
(1∗∗) ∃x(I x@ ∧ Rx ∧ ∃w∃y(Ww ∧ I yw ∧ Cyx ∧ Py))

3 Actuality

One of the central challenges made against Lewis’ overall account is that it cannot
handle certain natural language modal claims involving a notion of actuality [3, 10].

The challenge has two parts. First, in order to handle certain natural languagemodal
claims involving a notion of actuality, the initial formal modal language that natural
language modal claims are regimented into must extend L with something like an
actuality operator A.

Second, certain ways that Lewis’ translation scheme for L might be extended to
accommodate an actuality operator A are unacceptable. That is, certain candidate
clauses for A in the recursive definition of our function (.)α are unacceptable.

Let LA be the extension of L with exactly A. Hazen argues that we cannot extend
(.)α with either of the following clauses for A [10, 330]:

(∃-A) (Aφ(x1, ..., xn))α is
∃y1...∃yn(I y1@ ∧ Cy1x1 ∧ ... ∧ I yn@ ∧ Cynxn∧
(φ(y1, ..., yn))@).

For some actual counterpart y1 of x1, ..., and some actual counterpart yn of xn ,
φ holds of y1, ..., yn at @.

(∀-A) (Aφ(x1, ..., xn))α is
∀y1...∀yn((I y1@ ∧ Cy1x1 ∧ ... ∧ I yn@ ∧ Cynxn) →
(φ(y1, ..., yn))@).

For every actual counterpart y1 of x1, ..., and every actual counterpart yn of
xn , φ holds of y1, ..., yn at @.
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For example, if we adopt (∃-A), then the supposedly intuitively unsatisfiable LA-
sentence (2) is translated to an LCT-sentence that is satisfied by some LCT-structures
that model CT.

(2) 
∃x(A∃yx = y ∧ AFx ∧ A∼Fx)

Proof (2)@ is:
∃u(Wu ∧ ∃x(I xu∧
∃z(I z@ ∧ Czx ∧ ∃y(I y@ ∧ z = y))∧
∃z(I z@ ∧ Czx ∧ Fz)∧
∃z(I z@ ∧ Czx ∧ ∼Fz))).

Let M be an LCT-structure that models CT such that some non-actual individual d
has an actual counterpart d1 that is F and an actual counterpart d2 that is not F . Then
M satisfies (2)@. ��

The problem is that a non-actual individual may have multiple actual counterparts,
some of which are F , and some of which are not F .

Fara & Williamson [3] go further. They show that in virtue of each of (a) the
potential of a non-actual individual having multiple actual counterparts, and (b) the
potential of a non-actual individual having no actual counterparts, Lewis’ translation
scheme for L cannot be extended to accommodate an actuality operator by unpacking
the actuality operator as a kind of logical quantifier over actual counterparts.

We can block this actuality challenge against Lewis’ translation account by adopt-
ing additional axioms concerning counterparts. For example, we might hold that each
individual has exactly one actual counterpart. However, given Lewis’ analysis of the
counterpart relation in terms of similarity, such a condition seems extremely implau-
sible.

4 Meyer [16]

In response to this actuality challenge, Meyer [16] presents a counterpart theoretic
analysis of natural languagemodal talk that retainsLewis’ overall translation approach,
but whose formal modal language L∗ that we initially regiment our natural language
claims into does not contain an actuality operator.

4.1 The Eliminability of A

The motivating idea behind Meyer’s approach is that A is not required for an account
of natural language modal claims.We can work with a formal modal language without
A (given we have certain other expressive resources). He writes [16, 33]:

“The actuality operator allows us to make claims about the actual world inside
the scope of other modal operators. That is a nice feature, but describing the
actual world is something we could do already, by using unmodalized sentences

123



J. Milford

outside the scope of other operators. Offhand, one would therefore expect the
actuality operator tomake nodifference to the expressive capacity ofmodal logic.
Whenever a claim about the actual world is made within the scope of another
modal operator, we should be able to move the claim outside that operator’s
scope, where we no longer need the actuality operator to talk about the actual
world.
However, this assumes that the rest of our logic is strong enough to permit this
kindof transformation, and that is not always the case.The actuality operator does
make a difference in expressive capacity when it is combined with a quantified
modal logic that is too weak to permit its elimination. But there is no reason why
counterpart theorists should measure the expressive capacity of their theory of
modality against such a weak system, rather than against a stronger one from
which [A] can be eliminated.”

As [9] shows, A is eliminable in propositional modal logic. We can capture this in
model theoretic terms. Let L+ be the standard propositional modal language with A
and assume it is interpreted with its usual Kripkean semantics. L+-formulas φ and ψ

are equivalent iff for every L+-structure M , M satisfies φ (at the actual world of the
structure) iff M satisfies ψ (at the actual world of the structure). The eliminability of
A for this logic amounts to: for every L+-formula φ with an occurrence of A, there
is an equivalent L+-formula ψ with no occurrence of A. Meyer himself [15, 234]
demonstrates this for the temporal analogue of modal propositional logic.4

As [8, 9] note,A is not eliminable forLA interpretedwith the usual varyingquantifier
domain Kripkean semantics. Here, let LA-formulas φ andψ be equivalent iff for every
varyingdomainLA-structureM , andvariable assignment s forM ,M satisfiesφ relative
to s (at the actual world of the structure) iff M satisfies ψ relative to s (at the actual
world of the structure). Then the ineliminability of A for this logic amounts to: for
some LA-formula φ with an occurrence of A, there is no equivalent LA-formula ψ

with no occurrence of A. For example, consider 
∃x∼A∃yx = y [9, 622]. Meyer [15]
notes this for an analogous varying quantifier domain temporal semantics.

However, Meyer [16] makes an eliminability claim concerning A for a certain
enriched constant quantifier domainmodal semantics. This is close to the eliminability
claim made in [15] concerning the now operator N for a certain enriched constant
quantifier domain temporal semantics.

The motivating idea with Meyer’s enriched constant quantifier domain modal
semantics is that we can enrich a first-order modal language with resources that allow
us to talk about (i) “existence", and (ii) sets of n-tuples of members of our overall
domain of individuals.5

Meyer’s semantics can be captured as follows [16, 35–38; 15, 238–245].6 First, the
language LA,M of the semantics is the extension of LA with exactly: E , ∈, <, >, and

4 See Theorem 2 of [15]. Also see [11].
5 There are echoes of the third strategy of [2] (section VI) in the approach.
6 I have made an adjustment in this presentation of Meyer’s semantics. In his presentations, Meyer talks
just of “set variables X , Y , Z , ..." And he talks of a variable assignment of a structure mapping each set
variable to a set in the hierarchy of sets built up from D (the hierarchy that takes the members of the overall
domain D as urelements). Set variables range over sets in the hierarchy. However, the motivation of the
enrichment of the language is to be able to talk about (i) “existence", and (ii) sets of n-tuples of members of
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for every n ≥ 0, denumerably-many n-ary set variables V n
1 , V n

2 , ...7 We include the
following clauses in our inductive definition of the LA,M-formulas:

• For every individual variable x , [Ex is an LA,M-formula].8

• For every n ≥ 0, all individual variables x1, ..., xn , and every n-ary set variable
Xn , [< x1, ..., xn >∈ Xn is an LA,M-formula].

• For every ∗ ∈ {∃,∀}, set variable X , and LA,M-formula φ, [∗Xφ is an LA,M-
formula].

An LA,M-structure M is a tuple <W, R, D, dom, w@, I> such that:

• W and D are non-empty sets.
• R ⊆ W2.
• dom: W → P(D).
• w@ ∈ W.
• I is a function from the set of extralogical predicate constants that, for every n ≥ 1
and n-ary predicate constant P , assigns to P a function that assigns to each w ∈
W a subset of dom(w)n .

These elements represent, respectively: a set of worlds, the accessibility relation
betweenworlds, the overall domain of individuals, the “existing" individuals ofworlds,
the actual world, and an interpretation of the extralogical vocabulary.9

A variable assignment s for an LA,M-structureM assigns to each individual variable
amember of D, and for every n ≥ 0, to each n-ary set variable amember ofP(Dn). For
a variable assignment s and variablesα1, ..., αn , let s[o1,...,on/α1,...,αn ] be the assignment
that agrees with s, except that o1 is assigned to α1, ..., and on is assigned to αn .

For an LA,M-structure M , we simultaneously define by recursion, for each w ∈ W,
and variable assignment s ofM , a unary satisfaction function vM,w,s : Form(LA,M) →
{1, 0} as follows:

(i) vM,w,s(Px1...xn) = 1 iff < s(x1), ..., s(xn) >∈ I(P)(w).
(ii) vM,w,s(x1 = x2) = 1 iff s(x1) = s(x2).
(iii) vM,w,s(∼φ) = 1 iff vM,w,s(φ) = 0.
(iv) vM,w,s((φ → ψ)) = 1 iff vM,w,s(φ) = 0 or vM,w,s(ψ) = 1.
(v) vM,w,s(∃xφ) = 1 iff for some d ∈ D, vM,w,s[d/x](φ) = 1.
(vi) vM,w,s(∀xφ) = 1 iff for every d ∈ D, vM,w,s[d/x](φ) = 1.
(vii) vM,w,s(
φ) = 1 iff for some w+ ∈ W such that Rww+, vM,w+,s(φ) = 1.
(viii) vM,w,s(�φ) = 1 iff for every w+ ∈ W such that Rww+, vM,w+,s(φ) = 1.
(ix) vM,w,s(Aφ) = 1 iff vM,w@,s(φ) = 1.

our overall domain D. So, in my presentation, as we shall see, I have assigned an arity to each set variable
and restricted the range of an n-ary set variable to P(Dn ). This is all we need for the eliminability thesis.
7 M for Meyer’s resources.
8 Meyer [16, 38] states that (i) one could allow formulas EX , where X is a set variable, and (ii) there are
multiple ways in which the semantics might handle such a formula. He there proposes to ignore the issue,
so I have excluded formulas of this kind here.
9 Note that in addition to an overall set of individuals, our structures specify world domains (which will
be used to interpret the primitive E). Further, the extension of an n-ary predicate constant at a world w is a
subset of dom(w)n . This follows the formal presentation in [15].
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(x) vM,w,s(Ex) = 1 iff s(x) ∈ dom(w).
(xi) vM,w,s(< x1, ..., xn >∈ Xn) = 1 iff

< s(x1), ..., s(xn) >∈ s(Xn).

(xii) vM,w,s(∃Xnφ) = 1 iff for some S ∈ P(Dn), vM,w,s[S/Xn ](φ) = 1.
(xiii) vM,w,s(∀Xnφ) = 1 iff for every S ∈ P(Dn), vM,w,s[S/Xn ](φ) = 1.

Finally, for an LA,M-structure M , and variable assignment s of M , we define the
unary function vM,s : Form(LA,M) → {1, 0} as follows:

vM,s(φ) = vM,w@,s(φ).

This is thought of as describing satisfaction simpliciter of an LA,M-formula at an
LA,M-structure relative to a variable assignment.

So much for the semantics. Say that two LA,M-formulas φ and ψ are equivalent iff
for every LA,M-structure M , and variable assignment s for M , vM,s(φ) = vM,s(ψ).
The eliminability claim concerning A that [16] makes is that for every LA-formula φ,
there is an equivalent LM-formula ψ .10

Meyer [15] covers the temporal analogue of this thesis [15, 243, Theorem 4].Meyer
[16] informally discusseswhy this result holds for themodal version. For our purposes,
it is sufficient to consider two examples. First, consider:

(3) There could have been something that does not actually exist.
(4) It might have been that everyone who is in fact rich was poor.

For (4), following the approach of [2], we restrict our attention to the plural de
re reading. Given Meyer’s semantics, two formulas which supposedly capture the
conditions of (3) and (4), respectively, are the following:

(3∗) 
∃x(Ex ∧ ∼AEx)
(4∗) 
∀x(ARx → Px)

Meyer states that the following are, respectively, equivalent:

(3∗∗) ∃x(
Ex ∧ ∼Ex)
(4∗∗) ∃X(∀x(< x >∈ X ↔ Rx) ∧ 
∀x(< x >∈ X → Px))

The idea with converting an LA-formula φ to an LM-formula ψ is that in ψ , we try
to capture the relevant features about w@ (that φ imposes) outside the scope of any
modal operators which shift our evaluation world away from w@.

For the simple case of (3∗) and (3∗∗), to capture (3∗), we present a formula that,
outside of any modal operators, captures the relevant feature about w@, namely that
some d ∈ D in the domain of some world is not in dom(w@).

For the case of (4∗) and (4∗∗), in (4∗∗) we antecedently introduce a set S = {d ∈
D : d ∈ I(R)(w@)}. That is, the set containing exactly all individuals that are R at the
actual world. Then, within the scope of the possibility operator occurrence, we can
use individual membership of S to capture the property of an individual being R at
the actual world.11

10 LM is the language that results from removing A from LA,M. Note that every LA-formula and LM-
formula is an LA,M-formula.
11 Notice that if we didn’t restrict the range of set variables as I have suggested, (4∗∗) would be handled
slightly differently. In (4∗∗) we would be antecedently introducing a set S whose intersection with D is
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4.2 A Counterpart Theoretic Account

Meyer states thatwe can employ this eliminability result when presenting a counterpart
theoretic account. He calls his approach the antecedent elimination strategy, andwrites
[16, 33–34]:

“Instead of uniformly translating subformulae of type [Aφ] into counterpart the-
ory, I want to propose an antecedent elimination strategy that makes do without
this operator altogether. We first eliminate all occurrences of [A] by translating
the modal claims in question into a quantified modal logic in which this oper-
ator is redundant. After that, we apply a slightly modified version of Lewis’s
translation scheme to the resulting [A-free] sentences to generate substitutes in
counterpart theory. This provides a systematic counterpart treatment of sentences
involving [A]"

And [16, 40]:

“We begin by regimenting all modal claims about physical objects in [LM inter-
preted with Meyer’s semantics]. By doing so, we eliminate all occurrences of
the actuality operator [A]. After that, we apply our revised translation scheme
to these [A]-free sentences to produce substitutes in counterpart theory."

The idea, it seems, is that for a given natural language modal claim φ, we first
regiment φ as an LM-sentence ψ that (when interpreted with Meyer’s semantics)
supposedly captures φ. Next, we apply Meyer’s translation scheme that maps an LM-
sentence ψ to a sentence of the language of Meyer’s counterpart theory.

The language LCT
M of Meyer’s counterpart theory is the extension of LCT with

exactly: ∈, <, >, and for every n ≥ 0, denumerably-many n-ary set variables
V n
1 , V n

2 , ....12 We include the following clauses in our inductive definition of the LCT
M -

formulas:

• For every n ≥ 0, all individual variables x1, ..., xn , and every n-ary set variable
Xn , [< x1, ..., xn >∈ Xn is an LCT

M -formula].
• For every ∗ ∈ {∃,∀}, set variable X , and LCT

M -formula φ, [∗Xφ is an LCT
M -formula].

The LCT
M -structures are the LCT-structures. The definition of satisfaction is extended

in the obvious way. Next, Meyer’s counterpart theory itself seems to be the counterpart
theory of Lewis. That is, CT: the set containing exactly (P1)-(P8), (A), (B), and (C).

Finally, the translation of LM-sentence φ is φ@. To define this, we simultaneously
define by recursion, for every α ∈ [VAR ∪{@}], the function φα: Form(LM) →
Form(LCT

M ) [16, 37–40]:

(i) (Px1...xn)α is (I x1α ∧ ... ∧ I xnα ∧ Px1...xn).

{d ∈ D : d ∈ I(R)(w@)}. That is, the intersection contains exactly all individuals that are R at the actual
world. Then, within the scope of the possibility operator occurrence, we can use individual membership of
S to capture the property of an individual being R at the actual world.
12 The language of Meyer’s counterpart theory includes no individual constants. However, the addition of
@ is an innocuous simplification again.
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(ii) (x1 = x2)α is (I x1α ∧ I x2α ∧ x1 = x2).
(iii) (Ex)α is I xα.
(iv) (< x1, ..., xn >∈ Xn)α is (I x1α ∧ ... ∧ I xnα∧ < x1, ..., xn >∈ Xn).
(v) (∼φ)α is ∼(φα).
(vi) (φ → ψ)α is (φα → ψα).
(vii) (∃xφ)α is ∃x(φα).
(viii) (∀xφ)α is ∀x(φα).
(ix) (∃Xnφ)α is ∃Xn(φα).
(x) (∀Xnφ)α is ∀Xn(φα).
(xi) (
φ(x1, ..., xn))α is

∃w∃y1...∃yn(Ww ∧ I y1w ∧ Cy1x1 ∧ ... ∧ I ynw ∧ Cynxn∧
(φ(y1, ..., yn))w).

(xii) (�φ(x1, ..., xn))α is
∀w∀y1...∀yn((Ww ∧ I y1w ∧ Cy1x1 ∧ ... ∧ I ynw ∧ Cynxn) →
(φ(y1, ..., yn))w).

Notice that the clauses for the truth-functional connectives and modal operators
remain the same as Lewis’. The differences are that (a) quantifiers are not trans-
lated as world-relative, and (b) the atomic clauses add world membership conditions.
Meyer’s idea with the atomic clauses is that he is supposedly building back in world-
relativisation of sentences removed from the first-order quantifier clauses.

For example, then, (3∗∗) and (4∗∗) are translated, respectively, as follows:

(3∗∗) ∃x(
Ex ∧ ∼Ex)
(3∗∗∗) ∃x(∃w∃y(Ww ∧ I yw ∧ Cyx ∧ I yw) ∧ ∼I x@)

(4∗∗) ∃X(∀x(< x >∈ X ↔ Rx) ∧ 
∀x(< x >∈ X → Px))
(4∗∗∗) ∃X(∀x[(I x@∧ < x >∈ X) ↔ (I x@ ∧ Rx)]∧

∃w[Ww ∧ ∀x((I xw∧ < x >∈ X) → (I xw ∧ Px))])

5 Against Meyer’s Account

A central desideratum for Meyer’s account is that a natural language modal claim
φ is translated to an LCT

M -sentence that presents an acceptable counterpart theoretic
analysis of φ. Unfortunately, Meyer’s account does not meet this desideratum. In this
section, I present two examples of this failure.

For the first example, consider Meyer’s toy case: the translation of (4) to (4∗∗∗).
Notice that (4∗∗∗) just says that there is a set S such that (a) of the actual individuals
d@, [d@ is in S iff d@ is R], and (b) there is a world w such that of the w-individuals
dw, if dw is in S, then dw is P .

The first conjunct ∀x[(I x@∧ < x >∈ X) ↔ (I x@ ∧ Rx)] that is supposed
to define S in fact does not define S, but merely gives membership conditions for
actual individuals. Given the first conjunct, it is open whether S contains non-actual
individuals. The second conjunct ∃w[Ww∧∀x((I xw∧ < x >∈ X) → (I xw∧Px))]
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then gives us a conditional for w-individuals. Namely, that if they’re in S, then they
are P . In no part of the statement is a counterpart relation mentioned.

Let M be an LCT
M -structure that models CT such that (i) there is a single actual

individual d that is R, (ii) d has no counterparts that are P , and (iii) there is a non-
actual world. Then (4∗∗∗) is true at M . This is because there is a set S such that (a) for
all actual individuals b, b is in S iff b is R, and (b) for someworldw, everyw-individual
b in S is P (namely, S = {d}). However, it seems that if every actual rich individual has
no counterpart that is poor, then our counterpart theoretic analysis should not render
(4) true. So, Meyer’s analysis of (4) is unacceptable.

To push the point further, if there is a single actual individual that is rich, then it
seems the following natural language modal claims should have the same truth-value:

(4) It might have been that everyone who is in fact rich was poor.
(5) Someone in fact rich could have been poor.

On Meyer’s approach, (5) is straightforwardly regimented to the following
LM-sentence:

(5∗) ∃x(Rx ∧ 
Px)
This is then translated to the following LCT

M -sentence:

(5∗∗) ∃x(I x@ ∧ Rx ∧ ∃w∃y(Ww ∧ I yw ∧ Cyx ∧ I yw ∧ Py))

However, notice that at our LCT
M -structure M that models CT such that (i) there is

a single actual individual d that is R, (ii) d has no counterparts that are P , and (iii)
there is a non-actual world, (5∗∗) is false even though (4∗∗∗) is true. That is, we have
an LCT

M -structure M that models CT where there is a single actual individual that is
rich, and yet the counterpart theoretic translations of (4) and (5) do not have the same
truth-value.

The issue here is that whilst (5) receives an acceptable counterpart theoretic trans-
lation, (4) does not.

Let us now consider the second example of the failure ofMeyer’s account to provide
acceptable counterpart theoretic translations of natural language modal claims.

Given that Meyer’s translation scheme reuses certain clauses from Lewis’ original
scheme, his account inherits some of the problems that Lewis’ exhibits. In particular,
Meyer reuses Lewis’ clauses for the possibility and necessity operators. However,
given the way Lewis sets these up, the possibility and necessity operators are inter-
preted as expressing weak notions of possibility and necessity, respectively. That is,
what is possible/necessary of individuals when they all exist. As a result, a problem
that Lewis’ overall acount faces is that it cannot render true certain natural language
claims concerning contingent existence. To see this, consider:

(6) Some individual could have failed to exist.

On Lewis’ account, this would be regimented as:

(6∗) ∃x 
 ∼∃yx = y

Which is translated to the unsatisfiable:
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(6∗∗) ∃x(I x@ ∧ ∃w∃z(Ww ∧ I zw ∧ Czx ∧ ∼∃y(I yw ∧ z = y)))

However, certainly a later Lewis would want his counterpart theoretic analysis of
(6) to allow it to be true.13 Indeed, by 1986, Lewis has seemingly given up on the
strategy of regimenting natural language modal claims into sentences of a formal
modal language L∗, alongside presenting a counterpart theoretic interpretation of L∗,
at least in part because he was unable to produce a version of the strategy that delivers
an appropriate analysis of modal claims concerning existence. In [14], after discussing
issues with capturing such natural language claims [14, 8–12], he writes [14, 12–13]:

“What is the correct counterpart-theoretic interpretation of the modal formulas
of the standard language of quantified modal logic? Who cares? We can make
them mean whatever we like. We are their master. We needn’t be faithful to the
meanings we learned at mother’s knee - because we didn’t. If the language of
boxes and diamonds proves to be a clumsy instrument for talking about matters
of essence and potentiality, let it go hang. Use the resources of modal realism
directly to say what it would mean for Humphrey to be essentially human, or to
exist contingently"

Now, notice that Meyer inherits the problem of being unable to render true certain
contingent existence claims. Presumably, onMeyer’s account, (6)would be regimented
as:

(6+) ∃x(Ex ∧ 
∼Ex)

Which is translated to the unsatisfiable:

(6++) ∃x(I x@ ∧ ∃w∃y(Ww ∧ I yw ∧ Cyx ∧ ∼I yw))

However, presumably Meyer does want his account to be able to render (6) true.
First, holding that (6) is a contradiction would be an unusual position for the defender
of counterpart theory to adopt. Second, if (6+) is meant to in some sense capture (6)
when interpreted with Meyer’s antecedent semantics, and (6+) is satisfiable according
to that antecedent semantics, then it would be ostensibly strange for Meyer to hold
that we arrive at the correct counterpart theoretic interpretation of (6) by first captur-
ing it in a logic which renders it satisfiable, and then translating to an unsatisfiable
LCT
M -sentence.

6 Methodology

We have seen that Meyer’s particular account fails to deliver acceptable counterpart
theoretic analyses for certain natural language modal claims. In this section, I addi-
tionally highlight the strange nature of Meyer’s methodology.

Recall that Lewis’ overall strategy is to provide an account of a natural language
modal claim φ by (a) regimenting φ into L, (b.i) presenting CT, and (b.ii) presenting
a translation scheme from L-sentences to LCT-sentences.

13 Even in [12], Lewis notes that his account is in the frying pan for rendering the translation of L-sentence
∀x�∃yx = y valid [12, 119].
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It is worth noting that (b.i) and (b.ii) together generate a semantics for L. Indeed,
Lewis himself notes that his original account effectively presents an interpretation for
the “standard language of modal logic" [14, 9].

To capture this, let us first define the notion of an L-sentence φ being satisfied by an
LCT-structure M that models CT: M satisfies φ iff M satisfies φ@. Second, we define
a consequence relation: for set � of L-sentences and L-sentence φ, � |�CT φ iff for
every LCT-structure M that models CT, if [∀γ ∈ �, M satisfies γ ], then M satisfies φ.

Given this, Lewis’ overall account is really a version of a common strategy to
present an account of natural language modal talk: presenting a semantics for a formal
modal language L∗ (leaving implicit a regimentation of natural languagemodal claims
into L∗-sentences).

Lewis’ account is an interesting version of this strategy because of the indirect
nature of the specification of the semantics for L. However, this indirect approach
is not essential to the semantics: one can specify a direct model theory for L that is
equivalent to Lewis’ semantics (in the sense that it has the same consequence relation).

Crucially, when Lewis applies this strategy, his regimentation of natural language
modal claims into L ostensibly does not rely on an antecedent semantics for L.

In contrast, Meyer relies on his antecedent semantics for LM to complete an initial
regimentation of natural language modal claims into LM-sentences. His counterpart
theory and translation scheme combined then generate another semantics for LM. That
is, to present a counterpart theoretic analysis of a natural language claim φ, Meyer
first requires us to consider the analysis of φ generated by his antecedent semantics,
and then to derive the counterpart theoretic analysis (a competitor to the analysis of
his antecedent semantics) from this. This is a strange approach given how ostensibly
different Meyer’s antecedent semantics is to counterpart theory.

At the very least for this strategy to be appropriate, it seems that the antecedent
semantics for LM and the counterpart theoretic semantics for LM (generated by the
combination of (i) the first-order theory CT, and (ii) a translation scheme from LM-
sentences to LCT

M -sentences) should be equivalent (in the sense of having the same
consequence relation when restricted to LM-sentences). However, Meyer’s account
does not achieve this, and, more generally, Meyer’s antecedent semantics arguably
cannot be equivalent to an acceptable counterpart theoretic semantics. I turn to these
two points now.

To see that Meyer’s antecedent semantics for LM and his counterpart theoretic
semantics for LM are not equivalent (in the given sense), consider the following LM-
sentence:

(6+) ∃x(Ex ∧ 
∼Ex)

Aswe sawearlier, this is a contradiction onMeyer’s counterpart theoretic semantics.
However, it is satisfiable on the antecedent semantics.

On the general point, a popular motivation for adopting a counterpart theoretic
analysis of natural languagemodal claims is to be able to render true certain “contingent
identity" statements. To introduce the point, consider Gibbard’s material constitution
case [7]:

Suppose that (i) at the exact time of its creation, a lump of clay, called ‘Lumpl’, is
formed into a statue, called ‘Goliath’, and (ii) after a short while, the clay statue is
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vaporised. Here, then, the lump and the statue are (a) created at exactly the same
time, and (b) destroyed at exactly the same time.

The lump and the statue occupy exactly the same time period, and are spatially
coincident throughout, seemingly sharing, for each instant, exactly the same physical
properties. Given this, some take it to be natural to identify the lump and the statue.
However, it could have been that instead of being vaporised, the statue was instead
squished into a ball. Here, it seems that the lump of clay survives the squashing, but
the statue does not. So, in this counterfactual scenario, it seems that we cannot identify
the lump and the statue. Some thus hold the following:

(7) For some x , for some y, x and y are identical, but could have been distinct.14

Lewis [13] posits multiple counterpart relations in order to render certain “contin-
gent identity" statements true. In a similar fashion, wemight posit multiple counterpart
relations and allow that (7) is rendered true by there being an actual individual d and
world w such that d has exactly one lump w-counterpart l, and exactly one statue
w-counterpart s (where s �= l).

However, it seems that any supposed capture of (7) as an LM-sentence φ interpreted
with Meyer’s antecedent semantics will render φ unsatisfiable. Even if we extended
LM with additional resources, it is unclear how (7) would be captured by a sentence φ

of that language (interpreted with a suitably enriched version of Meyer’s antecedent
semantics) that is satisfiable. As a result, if our counterpart theoretic semantics gen-
erated by a theory and translation scheme is meant to be equivalent to the antecedent
semantics, it will render φ unsatisfiable.

7 Final Remarks

The main result of this paper is that Meyer’s account fails to provide an acceptable
counterpart theoretic analysis of certain natural language modal claims. In addition, I
highlighted the strange nature of Meyer’s methodology.

However, it does not follow that there is no acceptable counterpart theoretic analysis
of natural language modal claims. Recall that the challenge of [3, 10] has two parts.
First, in order to handle certain natural language modal claims involving a notion
of actuality, the initial formal modal language that natural language modal claims
are regimented into must extend L with something like an actuality operator A. Sec-
ond, certain ways that Lewis’ semantics for L might be extended to accommodate an
actuality operator A are unacceptable. That is, certain candidate clauses for A in the
recursive definition of our function (.)α are unacceptable.

A natural response to this challenge is to accept the first part of the challenge, and
instead provide an alternative counterpart theoretic semantics for the initial formal
modal language (which we concede includes something like A). Indeed, this overall
response is the most common in the literature. One can either provide such a seman-
tics via Lewis’ indirect approach, or via the direct specification of a model theory. For

14 The notion of distinctness I employ here requires that for x and y to be distinct, x and y must exist.
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example, Forbes [4–6], Ramachandran [17–19], and Sider [21] each provide a coun-
terpart theoretic semantics for a certain formal modal language via Lewis’ indirect
approach. Russell [20] and Bacon [1] each provide a counterpart theoretic seman-
tics for a certain formal modal language via a model theory. The failure of Meyer’s
account, and issues with his methodology, do not count generally against this kind of
response.15
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