Journal of Philosophical Logic (2024) 53:247-291
https://doi.org/10.1007/s10992-023-09731-6

n

Check for
updates

A Step Towards Absolute Versions of Metamathematical
Results

Balthasar Grabmayr'

Received: 16 October 2021/ Accepted: 6 November 2023 / Published online: 29 November 2023
© The Author(s) 2023

Abstract

There is a well-known gap between metamathematical theorems and their philosoph-
ical interpretations. Take Tarski’s Theorem. According to its prevalent interpretation,
the collection of all arithmetical truths is not arithmetically definable. However, the
underlying metamathematical theorem merely establishes the arithmetical undefin-
ability of a set of specific Godel codes of certain artefactual entities, such as infix
strings, which are true in the standard model. That is, as opposed to its philosophi-
cal reading, the metamathematical theorem is formulated (and proved) relative to a
specific choice of the Godel numbering and the notation system. A similar observa-
tion applies to Godel’s and Church’s theorems, which are commonly taken to impose
severe limitations on what can be proved and computed using the resources of certain
formalisms. The philosophical force of these limitative results heavily relies on the
belief that these theorems do not depend on contingencies regarding the underlying
formalisation choices. The main aim of this paper is to provide metamathematical
facts which support this belief. While employing a fixed notation system, I showed in
previous work (Review of Symbolic Logic, 2021, 14(1):51-84) how to abstract away
from the choice of the Godel numbering. In the present paper, I extend this work by
establishing versions of Tarski’s, Gddel’s and Church’s theorems which are invariant
regarding both the notation system and the numbering. This paper thus provides a
further step towards absolute versions of metamathematical results which do not rely
on contingent formalisation choices.

Keywords Self-reference - Diagonalisation - Incompleteness - Notation systems

B Balthasar Grabmayr
balthasar.grabmayr @uni-tuebingen.de

1 Department of Philosophy, University of Tiibingen, Bursagasse 1, 72072 Tiibingen, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10992-023-09731-6&domain=pdf
http://orcid.org/0000-0003-3326-8030

248 B. Grabmayr

1 Introduction
1.1 Self-Reference and Notation

In mathematical writings, the choice of the notation system is typically taken to be
irrelevant. This attitude is usually based on the idea that notational features are on
par with typographical details of English texts. While one font may be more con-
venient than another for certain purposes, nothing essential depends on this choice.
An important exception are self-referential contexts, which are particularly sensitive
to the underlying notation system. To illustrate, consider the following two English
sentences which only differ with regard to their fonts:

(1) This sentence contains italics.
(2) This sentence contains italics.

Here, the choice of font clearly matters, as (1) is false while (2) is true.!

Self-reference features centrally in fundamental metamathematical theorems. For
example, the standard proofs of Tarski’s Theorem and Godel’s First Theorem proceed
by constructing arithmetical sentences which deny their own truth and provability
respectively. The metamathematical counterparts of such self-referential sentences
are fixed points.” Let -7 be a naming device, i.e., a mapping from formal expressions
to closed terms which serve as their names. Given an arithmetical formula ¢(x), we
call a sentence A a fixed point of ¢, if we can establish in some designated theory
or model that ¢(" A7) iff A. Once such fixed points are established, Tarski’s, Godel’s
and Church’s theorems can be easily derived.? Thus, the invariance of these theorems
regarding notation systems and numberings reduces to the problem of constructing
fixed points for any given notation system and numbering.

In analogy to the informal heuristics above, the choice of a notation system sig-
nificantly affects the metamathematical study of fixed points. While fixed points
are usually constructed by means of diagonalisation, they can also be obtained by
Smullyan’s [56, 59] method of normalisation. Informally, the norm of an expression
is the expression followed by its own quotation. Smullyan’s method thus formalises
the self-referential mechanism which underlies Quine’s famous version of the Liar
paradox:

“Yields falsehood when appended to its own quotation” yields falsehood when
appended to its own quotation. [51, p. 9]

The success of this method to obtain fixed points highly depends on the employed
notation system. Specifically, normalisation yields fixed points for Polish notations,

1 Another example is given by the sentence “This sentence contains 1 Arabic numeral” and its notational
variant “This sentence contains I Arabic numeral” based on Roman numerals.

2 Here, self-reference is reduced to the weak fixed point property. While this reduction is sufficient for the
purposes of this paper, it is too weak to capture “true” self-reference. For a study of the latter the reader is
referred to [24, 25, 27, 28, 30, 49].

3 In this paper, I am concerned with the version of Godel’s Second Theorem which is based on Lob’s
derivability conditions. By the De Jongh-Sambin fixed point theorem (see, e.g., [4, chapter 8]), this version
of Godel’s Second Theorem is in fact equivalent to the (weak) Diagonal Lemma.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 249

but collapses when employing infix notation [59, pp. 87-88]. Similarly, the variant of
near normalisation [59, p. 86] delivers fixed points for infix notations, but fails for
notation systems which only contain well-formed expressions (for examples of such
notation systems see below). In other words, Smullyan’s construction methods for
fixed points are highly sensitive to the employed notation system.

In this paper I will show that every method for constructing fixed points necessar-
ily fails for certain deviant notation systems. Even worse, I will introduce notation
systems which give rise to provable consistency sentences, definable truth predicates
and computable decision procedures, in violation of the famous metamathematical
theorems due to Tarski, Godel and Church. However, I will argue that these deviant
constructions are not genuine counterexamples of these theorems, since they rely on
inadmissible choices in the formalisation process. By building on work in [22], T will
prove the invariance of Tarksi’s, Godel’s and Church’s theorems with regard to admis-
sible notation systems and admissible Godel numberings. This work thus provides
absolute versions of metamathematical results which do not rely on contingent for-
malisation choices. In doing so, I make use of a novel method of constructing fixed
points which avoids the tedious arithmetisation of the numeral and the substitution
function.

The plan of this paper is as follows. In Section 2, I introduce some terminology
and give further motivation. Section 3 provides a brief survey of the abundance of
notation systems found in the literature. In Section 4, I introduce a general algebraic
framework for notation systems. In particular, this framework accommodates all the
examples reviewed in Section 3. Section 5 provides deviant notation systems which
resist diagonalisation and violate famous metamathematical theorems due to Tarski,
Godel and Church. In Section 6, I put forward admissibility criteria of notation systems
which are analysed relative to the given metamathematical context. Finally, I prove
the invariance of the syntactic and the semantic fixed point lemma with regard to
admissible notation systems and Gédel numberings in Section 7. Moreover, I establish
the invariance of important versions of Tarksi’s, Godel’s and Church’s theorems.

2 Technical and Philosophical Preliminaries

2.1 Arithmetical Languages

We start by introducing formal languages.

Definition 2.1 A language L is a quadruple (A, F, R, a) such that

1. A, F, R are pairwise disjoint sets and a: F U R — w is a function;

2. A is the set of the logical symbols ‘=, ‘A’, ‘V’, ‘=, ‘>’ ‘=" V' T’
3. Each f € Fis called a function symbol of L of arity a(f).

4. Each R € R is called a relation symbol of L of arity a(R).

A function symbol of arity 0 is also called a constant symbol. The elements of F UR
are the non-logical symbols of L.

@ Springer

250 B. Grabmayr

According to our definition, the logical symbols of a language are fixed, while
the non-logical symbols may vary.* In this paper, I am only concerned with finite
languages, i.e., languages which only contain finitely many non-logical symbols. An
important example is the language Lo of Peano Arithmetic whose non-logical symbols
are the constant symbol ‘0’, the unary function symbol ‘S’ and the binary function
symbols ‘4’ and ‘x’.

Definition2.2 Let £L = (A, F,R,a) and L' = (A, F,R/,a’) be languages. We
say that L is a sublanguage of L', in symbols: £L C L/, if F € F', R € R’ and
a(s) =a'(s) foralls €¢ FUR.

Let A, be the finite alphabet which contains the symbols of £ together with the
auxiliary symbols ‘v’, 7’, °(" and °)’. Let A} denote the set of finite strings over Ap
and let * denote the concatenation operation on A7.. For better readability, we often
omit the use of quotation symbols and the concatenation operation. For instance, for
s, t € AZO we write s/ instead of s * ‘7’ and (S¢) instead of ‘(S” % ¢ * °)’, etc.

Fixed points rely on a naming device for formal expressions. We call an injective
function o: S — a numbering of S. We write "5 for the standard numeral a(s)
of the «-code of s.

Definition 2.3 Let £ be a language. An L-structure is a pair (D, I) such that D is a
non-empty set and / is a function that assigns to each k-ary function symbol of £ a
function from D to D and to each k-ary relation symbol of £ a k-ary relation on D,
for k > 0. Moreover, I assigns to each 0-ary function symbol an element of D and to
each O-ary relation symbol a designated truth value (say, T or F).

Definition 2.4 Let £, £’ be languages with £ C £'. An L -structure (D', I’} is called
an L'-expansion of an L-structure (D, I), if D = D’ and I and I’ coincide on the
non-logical symbols of £, i.e., I and I’ interpret the non-logical symbols of £ in the
same way.

Definition 2.5 Let N denote the standard model of Ly. We call a pair (£, N) an
interpreted language, if N is an L-structure. We say that (£, N) is arithmetically
interpreted, if L 2 Lo and if N is an L-expansion of N. We also call N an arithmetical
interpretation of L.

2.2 Informal vs. Precise Metamathematical Theorems

Tarski is commonly taken to have shown that the collection of all arithmetical truths
is not arithmetically definable (see, e.g., [31, p. 43]). This philosophical or informal
rendering of Tarski’s Theorem can be based on the following metamathematical result:

Claim 2.6 Let (£, N} be an arithmetically interpreted language and let Sent, be the
set of L-sentences. The set {¢ € Sent, | N |= ¢} is not definable in .

4 This particular choice of logical symbols will allow for a more convenient presentation. The results of this
paper also hold for any other set of logical symbols which contains a quantifier and a functionally complete
set of connectives.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 251

The vigilant reader will justifiably complain that Claim 2.6 is still not sufficiently
precise to qualify as a metamathematical theorem. This is because neither the set Sent »
has been fully specified, nor what it means for a subset of Sent, to be (un-)definable
in A\ (at least if that set contains objects different to numbers). A precise definition
of Sent/ requires the choice of a notation system ¢ for £. Notation systems are based
on data structures, which consist of designated objects such as strings, trees, sets, etc.
together with means for their manipulation. Moreover, a notation system ¢ specifies
the grammatical roles of these data items and thus provides sets Term,, Fml, and Sent,
of (-terms, (-formulas and (-sentences respectively (all of this will be made precise in
Section 4). For example, the infix notation system inf for £ comes with the set A7, of
strings over Az, which contains the set Sentj,s of infix sentences of L.

The second indeterminacy can be eliminated by employing a Godel numbering.
Accordingly, we say that a subset S € D is definable in N relative to a numbering
a: D — o, if a(S) is definable in A. That is, by using a numbering we reduce
definability in A/ of sets of non-numbers to definability in V" of sets of numbers, which
is defined model-theoretically as usual.” For example, let y be a standard numbering
of A7 based on prime factorisation. Using infix notation and the numbering y, we can
transform Claim 2.6 into the following precise version of Tarski’s Theorem:

Theorem 2.7 Let (L, N') be an arithmetically interpreted language. Then the set
{¢ € Sentjns | N |= @} is not definable in N relative to y.

While being precise, Theorem 2.7 is no longer sufficiently general to adequately
justify the philosophical interpretation of Tarski’s Theorem, which is independent of
any specific choice of formalisation. In order to overcome this shortcoming, a version
of Tarski’s Theorem is required which conjoins the generality of Claim 2.6 with the
preciseness of Theorem 2.7. In other words, a precise metamathematical result is
called for, which establishes the invariance of Tarski’s Theorem regarding reasonable
choices of the notation system and the numbering.

The importance of formalisation independent metamathematical results has been
already observed by Visser [66], though he is sceptical as to whether this can be
achieved: “We believe that for all reasonable choices we have [G6del’s second] theo-
rem. However, the quantifier over reasonable choices, is ‘unmathematical’. We must
articulate just what a reasonable choice is, and this seems scarcely possible” (p. 544).
In this paper, I will take up Visser’s challenge. Building on previous work [22], T will
show how we can abstract away from the choice of the numbering and the notation
system in the formulation of Godel’s, Tarski’s and Church’s theorems, thus obtaining
precise metamathematical invariance results.

5 For a definition of definability see [43, p. 19]. We will see later that the definiens does not depend on the
choice of the notation system.

6 This work will not abstract away from all formalisation choices in the case of Godel’s Second Theorem.
For an overview of the theorem’s dependency on these choices see [7].

@ Springer

252 B. Grabmayr

3 An Abundance of Notation Systems

While it is evident that the choice of the numbering is highly arbitrary, the contingency
resulting from the choice of notation might appear less obvious. In order to convince
the reader that also this formalisation choice comes with plenty of alternatives, [briefly
survey the abundance of notation systems used in the literature.

3.1 Notation Systems on Strings

Recall that a precise rendering of Claim 2.6 requires the formalisation of arithmetical
truths as certain artefactual formal entities, which are typically called well-formed
expressions of a formal language. Consider, for example, the simple arithmetical truth
that

(S) Every natural number has a successor.
One option is to formalise (S) as the infix string

Vv@v/((Sv) = vr)))

as we did in the formulation of Theorem 2.7. However, this choice of notation is highly
arbitrary, as there is a multitude of prima facie equally adequate alternatives.

To begin with, there are several minor variants of the infix notation system on strings,
including omission of the pair of the outermost parentheses, omission of parentheses
around strings of the form St, etc. Moreover, instead of using parentheses, we may
alternatively use clusters of dots to disambiguate expressions (see below). A nota-
tion system on strings which satisfies unique readability without any use of auxiliary
symbols proceeds by placing the “constructor symbols” before its arguments. This
notation is called prefix notation or Polish notation, in reference to the nationality
of its originator Jan Lukasiewicz. Using Polish notation, (S) can be represented by
vvavs = Swvr.” Its postfix variant, which proceeds by placing constructor symbols
directly after their arguments, is called Reverse Polish notation or postfix notation and
yields the formalisation vv/vSv/ = 3V of (S).

Moreover, the left-to-right direction of written formal language is clearly contin-
gent. Itis easy to imagine a different course of history in which we would write ordinary
English as usual from left-to-right, but formal expressions in a right-to-left direction,
in reverse to today’s Arabic or Hebrew writing, where ordinary language is written
from right-to-left, while formal mathematical expressions are written from left-to-
right. Hence, there are no principled reasons against the adequacy of a “right-to-left”
infix notation.®

All string notations described above are based on the alphabet A » which contains a
symbol for each quantifier, connective and non-logical symbol of the given language L.
This is not without alternative either. For example, using Peano’s [47] notation system,
which later heavily influenced the notation system of the Principia Mathematica, (S)

7 In this example, quantifiers Q are conceived of as binary constructors which map its arguments x and ¢
to the string Qx¢.

8 This notation system is employed in some Hebrew textbooks of the 19th century [9, Section 5].

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 253

can be formalised as (x).(3y).x+ = y.? Here, universal quantification is not imple-
mented by an alphabetical symbol, but by a construction rule based on variables and
auxiliary symbols. In a similar vein, Ramsey [52] suggests to represent negation not
by an alphabetical symbol such as —, but by writing the negated expression upside
down. According to Ramsey’s system, for example, (Vv(3v/ (/A = (AS)))) formalises
the result of negating the matrix in (S).'? According to Ramsey “such a symbolism is
only inconvenient because we are not trained to conceive complicated symmetry about
a horizontal axis” (p. 162), yet there are no principled reasons against the choice of
such a notation system (at least in the context of classical reasoning). A consequence
of this notation system is that each formula is syntactically identified with its dou-
ble negation, thus directly incorporating the (classical) logical redundancy of double
negation proclaimed by Ramsey [52] and Frege [19].

So far we have considered a number of distinct, prima facie equally adequate, nota-
tion systems on strings of symbols. But why should strings be treated as a privileged
data structure for notation systems in the first place? Surely, strings provide a suitable
base for the representation of language, since they allow for the (effective) generation
of infinitely many data items from a given (finite) alphabet. For example, any string
can be generated by finitely many applications of the concatenation operation to alpha-
betical symbols. However, in the next section we will see that there are alternative data
structures which seem to serve as equally suitable bases for notation systems.'!

3.2 Algebraic and Tree-theoretical Notation Systems

One may take the ability of strings to faithfully reflect the linearity of spoken or writ-
ten as a reason to ascribe them a privileged status for the representation of language.
However, precisely this proximity to ordinary language is repeatedly taken as a rea-
son against the adequacy of language representation based on strings. For example,
Dummett notes that “the linear arrangement of the words in a sentence of natural
language conceals ... the complexity of the rules which govern the way a sentence
may be formed out of its constituent words or other subordinate expressions” [11,
p- 2]. Kleene advocates non-linear notation of proofs along similar lines by arguing
that “[t]he linear arrangement of proofs has been traditional, no doubt because oral
language is necessarily linear, and written language more conveniently so for ordinary
purposes” [35, p. 307], however, “trees show the logical structure better, and thus help
us in our reasoning about that structure” [ibid]. Two-dimensional notation systems,
such as Frege’s Begriffsschrift [18] or tree notation, exhibit the construction history of
the well-formed expressions of £ more directly, since they abstract away from certain
artefacts of linear notation. For instance, even though Polish and postfix notation sys-

9 Peano uses the symbol + both for addition and the successor operation. See [47, p. XVI].

10 The underlying alphabet must be chosen carefully in order to ensure unique readability. For example,
for no alphabetical symbols a, b should a be identical to the result of rotating b along the horizontal axis.
11" An alternative structure, i.e., generation procedure, for strings can be found in [8]. Instead of using
concatenation, strings are constructed by “successor functions” s, for each a € A, which append the
alphabetical symbol a to any input string.

@ Springer

254 B. Grabmayr

tems on strings permit unique readability without the use of auxiliary symbols, they
still incorporate the ad-hoc convention that the conjunction symbol either precedes or
succeeds its conjuncts. These artefacts can be eliminated, once the conjunction of two
formulas ¢ and v is formalised as the ordered labelled tree

A
/\ (1)
¢ Y

According to the resulting notation system, well-formed expressions of £ are identified
with their parsing trees (this notation system is employed in [63]). Returning to our
example, (S) can then be represented by the ordered labelled tree displayed in Fig. 1.

The transition from surface syntax to more abstract notation systems can be pursued
even further. To begin with, we may conceive of the distinction between the infix
notations (¢ A ¥) and (i A @) as yet another artefact of linear notation, obscuring the
fact that both expressions fulfil exactly the same linguistic or logical role in certain
contexts. In Frege’s [20] words,

[that “B and A” has the same sense as “A and B” we may see without proof by
merely being aware of the sense. Here we have a case where two linguistically
different expressions correspond to the same sense. This divergence of expressive
symbol and expressed thought is an inevitable consequence of the difference
between spatio-temporal phenomena and the world of thoughts. (p. 393)

By employing abstract instead of linear notation, we can to some extent narrow this gap
between symbols and thought. Accordingly, the conjunction of ¢ and v (or more accu-
rately, of the unordered pair {¢, ¥}) may be represented by the unordered labelled tree
visualised in Eq. 1, thus directly incorporating the commutativity of conjunction into
the resulting notation system. Other symmetrical features of the represented language
can be implemented similarly, such as the commutativity of identity, disjunction, etc.
In yet another step towards abstract syntax, we may conceive of the distinction between
the conjunctions of the two unordered pairs {¢, {, x}} and {{p, ¥}, x} as another
artefact of linearity, veiling the underlying logical role of conjunction. Accordingly,
we may represent the conjunction of the unordered tuple {¢y, . .., ¢i}, with k > 2, by
the labelled tree

A
/N @)
1 P

% Pk
A
VAN
v 3
PN

/ e

[VRN
S /
| I
\' \

Fig. 1 Parsing tree notation

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 255

The resulting notation system thus directly implements both the commutativity and
associativity of conjunction.'?

Notation systems are frequently based on other tree-like structures. Let (), be the
n-ary operation on a set A which is given by (), (bo, ..., by—1) := (bg, ..., by_1). The
result of closing an alphabet A » under a given finite number of such operations yields
a set of nested lists, which are also called S-expressions. The set of S-expressions,
together with its constructor operations (),, not only serves as the fundamental data
structure for the programming language Lisp, but also provides the basis for notation
systems used in metamathematics. While Feferman [15] employs nested ordered pairs,
which are obtained by closing A under ()2, Kleene’s generalized arithmetic entities
[34, §50] result from the closure of A » under the operations ()1, ()2 and ()3. Kleene then
formalises well-formed expressions of £ on nested lists by a prefix system, similarly to
the case of Polish string notation. For example, according to Kleene’s notation system,
(S) can be formalised as the nested list

(Vov, (3, (V) (=, (Sov), (V).

Moving even further towards an abstract algebraic approach, Rasiowa and Sikorski
[53], Hajek and Pudlédk [26] and Béziau [3] conceive of formal expressions simply as
elements of certain absolutely free algebras which are generated by the constructor
symbols of L (see also [28, p. 71 .13 According to this approach, formal expressions
are identified up to isomorphism with elements of the {var, ter, fml}-sorted term alge-
bra Ty) of (L), where X (L) contains suitable constants and constructor symbols
for £ (see Definition 4.2 below). For example, (S) can be formalised as the X (£)-term

univ(v, exists(nvar(v), equ(fcts(e(v)), e(nvar(v)))))

of Ty (z), where v is a constant symbol of sort var and univ, exists, equ, fcts,
nextvar and e are function symbols of X (L) of suitable type. (For details see
Definition 4.2.)

3.3 Notation Systems on Sets and Numbers

The notation systems considered thus far are essentially based on string-theoretical or
tree-theoretical data structures. Another approach is to base notation systems on set-
theoretical data structures, such as the structure of hereditarily finite sets (this approach
can be found in [60, p. 5], [16, section 5.1], [17] and [39, p. 83]). This is usually done
by first encoding finite strings or trees as hereditarily finite sets. The well-formed
expressions of £ can then be formalised as strings or trees in any old way. Already the

12 Unordered tuples should here be understood as multi-sets, which distinguish between different occur-
rences of the same expression. Once we consider sets, i.e., if we no longer distinguish between multiple
occurrences of elements, the resulting notation system also directly implements the idempotence of con-
junction (see [20, p. 393, footnote 21]).

13 Béziau [3] is only concerned with propositional expressions, however the scope of his arguments can
also be extended to first-order expressions.

@ Springer

256 B. Grabmayr

first step of this approach involves arbitrary choices, for instance, regarding the set-
theoretical encoding of finite strings or sequences. To begin with, finite sequences may
be represented by functions whose domain consist of an initial segment of w. Alterna-
tively, following Hausdorff [29], finite sequences can be defined recursively as nested
ordered pairs, where ordered pairs are defined as (x, y)g := {{x, T}, {y, {T}}}, or
by the nowadays more standard definition (x, y)x := {{x}, {x, y}} due to Kuratowski
[40]. This approach yields a multiplicity of notation systems on sets. For example, any
notation system on strings can be either implemented on functions on initial segments
of w, on finite Hausdorff-sequences, on Kuratowski-sequences, etc.

Even though the resulting notation systems on sets mimic notation systems on
strings or trees, set-theoretical notation systems differ from their string- or tree-
theoretical counterparts with respect to their underlying data structure. I briefly
illustrate the relevance of this difference by considering the notation system which
implements finite conjunctions of arbitrary arity greater than 1 outlined above. If such
anotation system is based on a tree-theoretical data structure as in Eq. 2, then for each
number n > 1 a constructor operation for n-ary conjunction is required. Hence, the
underlying data structure cannot be finitely generated (see also Appendix A). How-
ever, by encoding finite conjunctions as hereditarily finite sets, the resulting notation
system can be based on a set-theoretical data structure which is finitely generated.
This is because hereditarily finite sets can be generated from the empty set either
by the union and singleton operations, or by the adjunction operation A given by
Alx, y) :==x U {y}.

Finally, notation systems can be based on numerical data structures by taking
expressions to be numbers. For example, this approach is pursued by Feferman [13,
p. 42] and McGee [44, p. 19]. Tree-like notation systems on numbers result from
Feferman’s [13] or Kleene’s [34] approaches. String-like notation systems on num-
bers result from Godel’s [21] or Smullyan’s [58] numberings (identifying expressions
with their codes).

3.4 Quantification and Cross Reference

Another aspect of formalisation pertains to the ways cross-reference is achieved in the
context of quantification. While traditional notation systems use variables to link quan-
tifiers to their positions in predicate expressions, Quine-Bourbaki notation achieves
cross-reference by drawing curved lines between quantifier occurrences and their
argument positions. This notation was developed by Quine [50, p. 70] and Bourbaki
(5, Section 1].14 Using Quine-Bourbaki notation on strings, for example, (S) can be
formalised as
7N N\ 3)
vIisg=0).
Similarly, Quine-Bourbaki notation can be implemented on trees, according to which
(S) can be represented by the graph given in Fig. 2 (this notation is used in [54] in

14 Bourbaki uses this notation for Hilbert’s epsilon operator rather than quantifiers. Further use and dis-
cussion of this notation can be found in [1, section 1.6], [12, Section 4], [62, pp. 13-15], [33, section IX],
[55, section 23.4], [65, footnote 7], [6, section 1.4] and [68, Section 4].

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 257

4>v

=

Fig.2 Quine-Bourbaki tree notation

the context of A-terms). Both notation systems abstract away from the use of bounded
variables, thus directly incorporating the logical redundancy of expressions which are
identical up to «-conversion, i.e., up to renaming of bounded variable occurrences.
These notation systems therefore do justice to the intuition that “we want to think of
bound variables as mere placeholders” and “think of [Vx(x = x)] as being the same
as Yy(y =), much the way we think of Y 7_, i? and Yo j? is being the same
sum” [1, p. 21].

Another notation system which dispenses with the use of bounded variables is due
to de Bruijn [10] and was initially developed for A-terms (for an application of this
notation in the context of first-order languages see [46]). Instead of drawing lines, here
an argument position is uniquely linked with a quantifier occurrence by indicating the
number of quantifiers that appear on the unique path in the formula’s parsing tree
between the argument and quantifier occurrence. The resulting number is called the
de Brujn index of the considered argument position. For example, when representing
(S) in this notation, the de Brujn index of the argument position which corresponds to
the universal quantifier is 1, since the existential quantifier occurs in the path between
them (see also Fig. 3). Since here expressions are formalised as ordered trees, as

= - <C

Fig.3 De Bruijn-index notation

@ Springer

258 B. Grabmayr

opposed to graphs used in Quine-Bourbaki tree notation, de Bruijn-index notation
allows for proofs by tree-induction.

4 A Unified Framework for Notation Systems

Plan of the Paper The previous section provides a multiplicity of, prima facie equally
adequate, notation systems. Each choice of notation turns Claim 2.6 into a different
precise metamathematical statement. In the remainder of this paper, I will examine
the extent to which the specific choice of notation system can be abstracted away in
the formulation of metamathematical results such as Tarski’s Theorem. I will proceed
in three steps.

Step 1 The main goal of this paper is to prove that Tarski’s, Godel’s and Church’s
theorems hold for all (reasonable) notation systems. The problem with for-
mulating such invariance claims is that notation systems are not precisely
delimited mathematical objects. Hence, quantification over all notation sys-
tems is “‘unmathematical” (see [66, p. 544]). I will solve this problem
by introducing a general algebraic framework for notation systems, which
models each notation system by a well-defined mathematical object (see Sec-
tion 4)."5 The introduced framework thus permits a mathematically precise
quantification over all notation systems. Moreover, the framework is suffi-
ciently general to accommodate all the examples provided in Section 3.

Step 2 Within this framework, I will introduce deviant notation systems which give
rise to provable consistency sentences, definable truth predicates and com-
putable decision procedures, in violation to the famous metamathematical
theorems due to Tarski, G6del and Church (see Section 5). However, I will
argue that these constructions are inadmissible. Here, I will formulate and
motivate mathematically precise notions of admissibility for notation sys-
tems (see Section 6).

Step 3 Finally, in Section 7, I will prove that Tarski’s, Godel’s and Church’s theorems
are invariant regarding admissible notation systems (as well as admissible
numberings).

4.1 Outline of the Framework

Recall that a language £ consists of a stock of symbols such as ‘A’ and ‘+’. Hence,
L merely specifies the basic vocabulary from which complex expressions can be built,
but it is left entirely open 1) what kind of objects the well-formed expressions of £
exactly are and 2) how complex expressions are built from simpler ones. The latter
two items are specified by a notation system for L.

In order to accommodate as many notation systems as possible, our framework
needs to satisfy two desiderata. First, it has to be ontologically neutral, i.e., permit

15 Algebraic approaches to formal language can be also found in [36] and [48]. However, given the different
aims of these authors, the details of their approaches differ from the framework presented in this paper.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 259

expressions to be all kind of objects such as strings, trees, sets, etc. Second, it has to
capture all possible ways complex expressions can be built from simpler ones.

In order to satisfy these desiderata, I first define for any given language L the
proto-expressions of L in abstract algebraic terms. Proto-expressions capture the very
“essence” of well-formed expressions such as terms and formulas and are as indepen-
dent from specific implementation details as possible. This will be made precise by
taking proto-expressions to be the elements of certain absolutely free algebras (see
below).

A notation system for £ can then be seen as an implementation (or projection) of
the abstract proto-expressions of £ into a set of designated objects such as strings,
trees, sets, etc. Different implementations thus correspond to different construction
methods for complex expressions.

4.2 Proto-Expressions

In Section 3, we encountered several ways of forming conjunctions. For example,
given two formulas ¢ and ¥, we may form the infix-conjunction (¢ A V), or the
Polish-conjunction Agyr. Both incorporate accidental features which are imposed by
the linearity of strings. So neither of them are the correct conjunction. Rather, (¢ A)
and A@ V¥ should be viewed as two different implementations of the proto-conjunction
of ¢ and ¥, which itself is as free from specific representational features as possible
(see also [28, p. 711]). I will now show how proto-expressions can be obtained by
abstracting away from the accidental features that befall systems such as infix and
Polish notation.

While the notation systems reviewed in Section 3 incorporate different accidental
features, they all have in common that they are functional with regard to the relevant
subexpressions. For example, the Polish and the infix conjunction-forming operation
can be viewed as functions which map any two formulas ¢ and ¥ to the string Apyr and
(¢ A) respectively. Also the other symbols of £ correspond to certain constructor
operations. For instance, the infix identity-forming operation maps two terms s and
t to the formula (s = ¢), while the Polish identity-forming operation transforms s
and ¢ into =st, and so on for the other symbols of L. Together, these constructor
operations permit the successive construction of each well-formed expression. Each
notation system ¢ thus corresponds to constructor operations which generate the set of
well-formed notations of ¢.

According to this algebraic approach, we think of each symbol of L as a syntactic
function transforming expressions of the appropriate grammatical category into com-
pound expressions. In this way, well-formed expressions are successively constructed
by operations which correspond to the symbols of £ and which respect the gram-
matical categories of variables, terms and formulas. In order to make this algebraic
approach precise, we map each language £ (in the sense of Definition 2.1) to a many-
sorted signature X (£) only consisting of function symbols. Corresponding to the three
grammatical categories of well-formed expressions, X (£) will distinguish between
the sorts var, ter and fml (see Appendix A). For example, each binary connective of
L will correspond to a function symbol in X (L) of type fml x fml — fml (see clause

@ Springer

260 B. Grabmayr

(8) of the definition below). In addition to containing functional counterparts of the
symbols of L, the signature X (L) will also contain function symbols permitting the
generation of variables (see clauses (1)—(3)). This will allow us to view the set of
well-formed expressions of £ as a ¥ (L£)-algebra.

Remark 4.1 An Q-algebra simply is an Q2-structure such that the signature 2 exclu-
sively contains function symbols (possibly of arity 0). Throughout this paper, I will
denote algebras by bold letters. The domain of an algebra A is denoted by |A|. For
better readability, I will also write Ty (z) for the domain [Ty)| of the term algebra
Tx(c). See Appendix A for further definitions and conventions.

We now carefully define the mapping X:

Definition 4.2 For each language £ = (A, F, R, a), we define the {var, ter, fml}-
sorted signature X (L) as follows:

(1) There is a constant symbol v of sort var in X (L);

(2) There is a function symbol nvar of type var — var in X(L);

(3) There is a function symbol e of type var — ter in £(L);

(4) If f € F,then fct is afunction symbol of type ter®”) :=ter x --- x ter — ter

a(f)—times

in £(L);'°

(5) There is a function symbol equ of type ter x ter — fml in X (L);

(6) If R € R, then predy is a function symbol of type ter*® — fml in = (L);

(7) There is a function symbol neg of type fml — fml in X(L);

(8) There are function symbols conj,disj, condandbicondof type fmlxfml —
fml in X (L);

(9) There are function symbols univ and exists of type var x fml — fml in
%(L);

(10) Nothing else is in X(L).

We call the elements of X (L) constructor symbols for L. Moreover, we call the fun-
damental operations of any X (L)-algebra constructor operations for L. That is, the
constructor operations are the interpretations of the constructor symbols in a given
algebra. See Appendix A for further definitions.

So far, we established that the well-formed expressions of a language £ can be
viewed as forming a X (£)-algebra. We now provide an abstract characterisation of
well-formed expressions which is no longer tied to any accidental features. Let C be
the set of constant symbols of X (L), i.e., C contains v and fct,, for each constant
symbol ¢ of L. We require a ¥(L)-algebra A of well-formed expressions of L to
satisfy the following two conditions:!’

(1) A doesn’t contain any unintended objects, i.e., objects which cannot be generated
by means of the constructor operations for £ from C. More precisely, |A] is
generated by A’s fundamental operations from the set {ca | ¢ € C} of objects
that are denoted by the constant symbols of X (L).

16 We use the convention that ter? is the empty string A. So in this case £ct y is a constant symbol of
sort ter.

17 The used terminology is introduced in Appendix A.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 261

(2) The elements of |A| satisfy unique readability. That is,

e no element cy is f(ay,...,a,), for any fundamental operation f of A, ele-
ments ay, ..., a, of |[A| and ¢ € C (where ca is the object in A denoted
by ¢);

e for all fundamental operations f, g of A and elements aj,...,a, and
by, ..., by of |A|, we have that

flar,....an) = g(b1, ..., bw)

impliesm =n, f = ganda; = b;,fori =1,...,n.

Put more succinctly, condition (1) requires that A is generated inductively by the
constructor operations for £ and condition (2) requires that A is generated freely by
the constructor operations for £ (see [1, chapter 1]).

These two conditions single out an X (£)-algebra up to (unique) isomorphism. !
Namely, an X (L£)-algebra satisfies (1)—(2) if and only if it is an absolutely free
¥ (L£)-algebra. Moreover, for any two absolutely free ¥ (L)-algebras A and B, there
is a unique X (L£)-isomorphism mapping A to B.

The canonical example of an absolutely free algebra is the term algebra Ty () of
% (L). Here, I will only provide a rough description of Ty), while relegating the
detailed definition to the appendix (Definition A.5). The domain T,z of T () is the
set of closed X (£)-terms, i.e., terms with no variables, and is divided into the sorts var,
ter and fml. The set T () is sometimes called the Herbrand universe of X (£). The set
Ty () is turned into the ¥ (£)-algebra Tyx () by interpreting each constant symbol ¢
of X (L) as the symbol c itself and by interpreting each function symbol o of X (L) as
the corresponding term-forming operation. For example, the X (Lg)-constant symbol
fcto of sort ter is interpreted in Ty) as £ctg. Moreover, fcts is interpreted in
Tyx () as a unary function that maps, for example, fctg to the term fcts(fcto).

We have seen that the elements of Tyx(s) are canonical representatives of
Y (L)-equivalence classes. Of course, only the latter are entirely free from accidental
features. However, in what follows, it will be convenient (albeit of course not neces-
sary) to work with canonical representatives instead of equivalence classes. Therefore,
I define the proto-expressions of £ as the elements of the term algebra of ¥ (L).

8

Definition 4.3 We call the elements of the term algebra of X (L) the proto-expressions

of L, or in short: p-expressions of L. In particular, we call X(L£)-terms of Tg‘z‘rﬁ),

Tée(r) and Tg?lﬁ) the p-variables, p-terms and p-formulas of L respectively (see also
Definition A.4).

Remark 4.4 The reader might wonder about clause (3) of Definition 4.2. The intended
interpretation of e is a sortal transfer function which embeds p-variables into p-terms.
A different and perhaps more natural way to embed variables into terms is to gener-
alise many-sorted logic to so-called order-sorted logic, by defining a partial ordering
relation on the set of sorts. The sort var can then be specified at the outset to be a
sub-sort of ter, without the use of an artificial transfer function. However, since this

18 See, e.g., [32, Observation 0.24.5].

@ Springer

262 B. Grabmayr

framework is not very well known, I retain many-sorted logic and refer the interested
reader to [45].

The following remark provides an alternative characterisation of the well-formed
expressions of £ in terms of absolutely free X (L£)-algebras.

Remark 4.5 An important desideratum for well-formed expressions is that we can
define functions on them by means of structural recursion. That is, we want to be able
to define a function on well-formed expressions by specifying the values of the constant
symbols of X (L) and by specifying the value of a complex expression ¢(¢1, .. ., @)
in terms of the values of ¢4, ..., #.

Each such specification yields a unique and well-defined function iff the set of
well-formed expressions forms an absolutely free X (£)-algebra. This is because A is
an absolutely free X (£)-algebra iff A satisfies the following universal property (see
Definition A.3):1?

For every X (£)-algebra B, there is a unique X (£)-homomorphism f: A — B.

Hence, the desideratum of structural recursion provides another (and equivalent)
abstract characterisation of the well-defined expressions of L as absolutely free X (£)-
algebras.

4.2.1 Logical Notions and Notations for Proto-Expressions

We can develop syntax for p-expressions in the same fashion as it is done for standard
notation systems such as infix strings. The p-variables are given by the w-sequence

v, nvar(v), nvar(nvar(v)), nvar(nvar(nvar(v))), ...

We will use x, y, z as metavariables ranging over p-variables. As usual, we will pre-
suppose that if, for example, x and y are used in one p-formula, they are distinct.

A p-formula of L is atomic, if it is of the form equ(z, 12) or predg(ty, ...,),
where 7y, ..., t; are p-terms of £ and R is a k-ary predicate symbol of L. So according
to the grammatical rules for p-expressions, only p-terms can feature in atomic p-
formulas. For this reason, each p-variable x can be turned into a p-term e(x) (see
Remark 4.4). Clearly, e(x) and e(y) are different p-terms for x # y. For example, the
identity statement equ(e(x), e(y)) is a p-formula, for any p-variables x and y, while
equ(x, y) is not.

Definition 4.6 Let ¢ be a p-formula. We call every occurrence of the string e(x) in ¢
an occurrence of the p-variable x in ¢. We now define what it means that an occurrence
of a p-variable is free in a p-formula.

e All occurrences of p-variables in atomic p-formulas are free.
e All occurrences of p-variables that are free in ¢ are also free in neg(¢p).

19 See [1, pp. 16-7] for a discussion of structural recursion and the universal property, which Avigad aptly
calls “recursion theorem”.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 263

e All occurrences of p-variables that are free in ¢ or i are also free in conj (¢, ¥),
disj(e, ¥), cond(e, V) and bicond(e, ¥).

e No occurrence of a p-variable x is free in p-formulas of the form univ(x, ¢) and
exists(x, ¢). All occurrences of p-variables different to x that are free in ¢ are
also free in univ(x, ¢) and exists(x, ¢).

We say that a p-variable x is free in a p-formula ¢, if there is a free occurrence of x
in @. If no occurrence of x is free in ¢, we say that x is bound in ¢. Let FV(¢) be the
set of p-variables that are free in ¢. Finally, a p-formula ¢ is called a p-sentence, if
FV(p) = 2.

I will often write ¢(x1, ..., x,) instead of ¢, if x1, ..., x, are among the free
p-variables in the p-formula ¢. In this case, I will also write ¢(¢1, . . ., t,) for the result
of simultaneous substitution of the p-term #; for all free occurrences of x; in ¢, for
i = 1,...,n. I tacitly assume that substitution is always performable, with bound
variables in ¢ being renamed if necessary. In order to avoid misunderstandings, I will
never use the letters ‘p’, ‘¢’ and ‘x’ to denote functions.

Definition 4.7 We define for every n € w the standard p-numeral num, of n recur-
sively as follows:

numy := fcto

num,+1 = fcts(num,)

As usual, we write "¢ for the Godel numeral numg) of the p-expression ¢,
where « is some numbering of p-expressions.

We can define certain arithmetical expressions in terms of the vocabulary
of Lo as usual. For example, we take lessthan(s,f) to abbreviate
exists(v, equ(fcty (e(v),s),t)), for any given p-terms s and ¢ of Lg.

An L-theory is a set T of p-sentences of L, called the axioms. We say that a
p-formula ¢ is derivable from 7', in symbols: T - ¢, if there is a Hilbert-style derivation
of ¢ which only employs the axioms of T and the axioms of predicate logic including
the identity axioms.

Important examples of Lo-theories are Peano arithmetic PA and the Tarski-
Mostowski-Robinson theory R (see [61, p. 53]). While these theories are typically
formulated using infix notation, here the axioms of PA and R are p-sentences.
For example, the infix schema m + 7 = m +n is usually taken as the first
axiom schema of R. Here, the corresponding axiom schema of R is given by
equ(fct4 (numy,, num,), num,y,) and similarly for the other axioms of R and PA.

Let M be an L-structure and let ¢ be a p-sentence of £. We define M F ¢ by
adapting the usual Tarskian clauses to p-expressions (see, e.g., [43, p. 11]).

4.3 Notation Systems

In the previous section, I introduced the proto-expressions of a given language L. I
will now make the idea precise that a notation system for £ is an implementation of

@ Springer

264 B. Grabmayr

the abstract proto-expressions of £ into some data structure, that contains designated
objects such as strings or trees. A notation system will thus be specified by two ingre-
dients: a data structure and an implementation. While the data structure delivers the
linguistic raw expressions as well as means for their manipulation, the implementation
maps each p-expression to some raw expression, which serves as its notation.

4.3.1 Data Structures

Data structures serve as fundamental concepts in the study of programming languages
in computer science.’’ In order to satisfy our desideratum of ontological neutrality,
a data structure may consist of any kind of objects, including (types of) acoustic
utterances or inscriptions, nested lists, trees, graphs, numbers, sets, etc. What all these
objects have in common, is that they can be generated from designated basic objects by
means of finitely many operations.?! For example, strings over some finite alphabet A
can be constructed by successively concatenating the alphabetical symbols of A, trees
can be constructed by certain tree-forming operations, and so on. A data structure can
roughly be characterised as consisting of a finite collection of data domains, designated
basic data items and fundamental operations on the data domain, such that all data
items of the data domains can be accessed from the basic data items by use of the
fundamental operations. The following definition makes this idea precise.

Definition 4.8 A data structure is a many-sorted finitely generated algebra (see Defi-
nition A.1).

For an example of a data structure that is not single-sorted see Example A.2.

Remark 4.9 Why are notation systems based on finitely generated algebras and not
merely on unstructured sets? As I will show in Section 4.4, the additional algebraic
structure ensures that we have robust and well-defined notions of computability and
definability for functions over arbitrary data structures. These notions will later play
an important role in the analysis of admissible notation systems (see Section 6).

By providing the “raw material” of the notation system, a data structure specifies
what kind of objects notations are. Without further specification, this raw material is
syntactically idle. For instance, the question whether the string =00 is a well-formed
formula can only be meaningfully asked relative to a notation device. To illustrate, =00
is well-formed w.r.t. Polish notation, but not well-formed w.r.t. infix notation. Hence, in
addition to providing a data structure D, we also need to specify the way p-expressions
are implemented into D. If, as in our example, the data structure comprises strings,
different implementations correspond to different notations on strings, such as Polish
or infix notation. In the next section, we make this idea precise.

20 For an algebraic treatment of data structures in computer science see [2].

21 The introduced framework is not capable to represent expressions as tokens of utterances or inscriptions.
This is because the underlying generation procedures correspond to total operations on the given data
structure. For instance, for any two formula notations of a given data structure there exists a notation which
represents their conjunction. While this principle is satisfied by types of utterances or inscriptions, it fails
when we consider tokens. In particular, concrete physical objects can only serve as notations if there are
infinitely many of them, since any data structure employed in the presented framework is countably infinite.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 265

4.3.2 Implementations of Proto-Expressions

Let £ be a language and let D be a fixed data structure. Recall that the algebra D
may have different sorts. We write [J|D| for the set of all elements of D’s domain,
irrespective of their sort. See also Definition A.1.

An implementation of the p-expressions of £ into D is a function

t: Ty — UIDI,

which preserves the syntactic structure of p-expressions and a modicum of logic (I
explain what that means in a moment).

Remark 4.10 Since Ty r) is a many-sorted set, ¢ is actually a family of functions
(gvar gter Lfml>, such that (Y maps p-variables to elements of the domain (_J|D| of D,
1" maps p-terms to elements of |_J|D| and (™ maps p-formulas to elements of | J|D|.
For the sake of better readability, I will often write ¢ instead of (Y2, ('°", (™) Any
specification of a function ¢ from p-expressions to elements of a data structure should
thus be officially thought of as specifying three functions (", /' and (/™! defined
on p-variables, p-terms and p-formulas respectively. See Appendix A for a careful
introduction of the many-sorted setting.

Let now ¢ be such a mapping of p-expressions to elements of | J|D|. We then call
t(p) the t-implementation of ¢ into D, which is also denoted by ¢,. We also call
@, a t-notation, or more specifically, a t-variable, t-term or t-formula, depending on
whether ¢ is a p-variable, p-term or p-formula (we will see in a moment that this is
well-defined).

An implementation ¢ will not be required to be injective, i.e., different p-expressions
may be implemented as the same object in D. An example of a non-injective imple-
mentation is given by the Quine-Bourbaki-notation (see Appendix B). We call two
p-expressions ¢ and v t-equivalent, in symbols: ¢ ~, ¥, if 1(¢) = ((¥). Clearly, =,
is an equivalence relation, which we call t-equivalence.

When implementing p-expressions into D, it is essential that the grammatical struc-
ture of p-expressions is preserved by the resulting ¢-notations and that (-equivalence
preserves a modicum of logic. More specifically, a function ¢ qualifies as an imple-
mentation if the following three requirements are satisfied.

First, we require the syntactic categories of (-variables, (-terms and ¢-formulas to
be well-defined. In other words, only p-expressions of the same syntactic category can
be mapped to the same object in D. More formally, for any ¢ € T3,) and ¢ € th)
we have that ¢ =, ¢ implies s = ¢. That is, t-equivalent p-expressions are of the same
sort.

Second, all the constructor operations for £ must be performable on ¢-notations.
For example, the conjunction of two (-formulas needs to be well-defined. That is, we
require that (-equivalent expressions yield (-equivalent outputs when applied to the
fundamental operations of the term algebra Ty). More formally, for every k-ary

@ Springer

266 B. Grabmayr

fundamental operation f of Ty) and p-expressions ¢, ..., ¢r and ¥y, ..., ¥y of
suitable type we have that

(01 ztwifori:1’"'7kimp1iesf((p]a"'7¢k) %[f(I//]5"'7wk)‘

The first and the second requirement are satisfied iff (-equivalence is a congruence
relation on Tx,(z).

Third, we require that it is well-defined to say that a (-formula has a certain number
of free variables. That is, any two (-equivalent p-formulas are required to have the same
number of free variables. As a result of this requirement, the grammatical category
of (-sentences is well-defined, namely, as the set of (-formulas which do not have any
free variables.

Fourth, we require that substitution of ¢-terms for t-variables in a (-formula is well-
defined.

Finally, we require that any two t-equivalent p-sentences are logically equivalent.

We summarise these minimal requirements for implementations in the following
definition:

Definition 4.11 Let D be a data structure. We call a function ¢: Tx(z) — (J/D| an
implementation of p-expressions of L into D, if the following holds:

(1) =, is a congruence relation on Ty (z);

2) If o =, ¥, then #FV(¢) = # FV(¥) for all p-formulas ¢, v;

(3) If o =, ¥ and #FV(p) = 0, then - bicond(e, ¥), for all p-formulas ¢, ¥;
@) Ifo=~, ¢, #FV(p) =k and s; =, t; for all i < k, then

(p(s()a st Sk—]) %l w(t()a L] tk—])a

for all p-terms s;, #; and p-formulas ¢, V.

Finally, we call (D, () a notation system for L, if D is a data structure and ¢ is an
implementation of p-expressions of £ into D.

All the examples exhibited in Section 3 can be viewed as notation systems in the
sense of Definition 4.11. A worked-out example for the Quine-Bourbaki notation
system can be found in Appendix B.

Remark 4.12 The term algebra Ty () of proto-expressions can itself be viewed as a
notation system (T's;(z), id) for £, where id is the identity function on T (). Here, the
proto-expressions themselves are the objects of our theorising, without any “detour”
via notation. I think that this option has its merits. However, the goal of this paper is to
show that Tarski’s, Godel’s and Church’s theorems hold for all reasonable conceptions
of syntax. Hence, I adopt the more flexible and general approach to syntax in this paper,
which accommodates the abstract conception captured by (T (1), id) as a special case.

The next lemma shows that implementations map distinct p-variables and p-terms
to distinct notations. In particular, each notation system contains infinitely many vari-
ables.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 267

Lemma 4.13 Let ¢ be an implementation of p-expressions of L into D. Let s,t be
p-terms or p-variables. Then s =, t iff s = t.

Proof Let s, f be p-terms with s ~, t. By clause (4) of Definition 4.11 we have
equ(s, s) =, equ(s, t).

If s doesn’t contain any p-variables, set ¢ := equ(s, s) and ¢ := equ(s,t). If s
contains the p-variables xp, ..., xz, let ¢ be the universal closure of equ(s, s), i.e.,

@ :=univ(xy, univ(xy, ...univ(xg, equ(s, 5)))).

Since =, is a congruence relation, ¢ is t-equivalent to the result of universally closing
equ(s, t) under x1, ..., X, i.e., to the p-formula ¢ of the form

Yo i=univ(xy, univ(xy, ... univ(xg, equ(s, t)))).

Since #FV(p) = 0, we have #FV(yy) = 0 by Definition 4.11.2. Moreover, - ¢.
Hence, by Definition 4.11.3, we have |- yr. But then s = ¢, since pure predicate logic
does not prove any p-sentence of the form i where s # .

If s, ¢ are p-variables, run the same argument for the p-terms e(s) and e(¢). O

The following lemma shows that the derivability relation is well-defined for -
formulas.

Lemma4.14 Let U and T be sets of p-sentences such that ((T) = 1«(U). Then T |+ x
iff U & x for every p-formula x.

Proof Let ¢ € T. Since «(T) = ¢(U), there is a € U such that ¢, = ,. But then
F bicond(e, ¥) by clause (3) of Definition 4.11. Hence, U + ¢. This shows that U
proves every member of 7. Hence, U proves all theorems of 7. The other direction
follows similarly. O

4.3.3 Logical Notions and Notations for (-Expressions

A large number of logical notions can be transferred to any notation system (D, ¢) for L.
Tobegin with, we say that a -formula ¢, is a t-sentence, if ¢ is a p-sentence. This is well-
defined by clause (2) of Definition 4.11. We write Var,, Term,, Fml, and Sent, for the
sets of (-variables, (-terms, (-formulas and (-sentences respectively. For any (-formula
¢, with k free variables and t-terms s, ..., Sx—1, we define ¢,(so, ..., Sk—1,) =
t(e(so, ..., Sk—1)). In order to show that this substitution operation is well-defined,
let ¥ be a p-formula and let g, . . ., fx—1 be p-terms such that ¢ ~, ¥ and s; ~, ¢; for
each j < k. By clauses (2) and (4) of Definition 4.11, we then have

(805 - s Sk—1) A Y0, -+ s te—1)s
and therefore ¢(p(sg, ..., Sk—1)) = (¥ (t0, ..., tk—1)).

@ Springer

268 B. Grabmayr

Since 7, is a congruence relation on Ty (), each of the fundamental operations of
Ty () correspond to well-defined constructor operations on ¢-expressions. For exam-
ple, there is a well-defined binary operation A, on Fml, given by

Adu(g), t(¥) = t(con] (g, ¥)).

The operation A, thus maps any two (-formulas to their (-conjunction. Also the
other fundamental operations of Ty) correspond to well-defined operations on
t-expressions. For the sake of better readability, I will take (¢, A,y,) to abbreviate
t(conj(e, ¥)). Thatis, I use the familiar infix notation in order to abbreviate certain
t-expressions. If the implementation ¢ is specified by the context, I will also occasion-
ally drop the index ¢, i.e., simply write (9 Ay). The aim of these conventions is simply
to make the subsequent material more readable. This convention extends to the other
constructor operations for £ along the following lines:

Definition 4.15 Let (D, ¢) be a fixed notation system for £. We now define operations
nvar,, &, fi, =, R, =, A, Vi, =, <>, V, and 3, (for each f € F and R € R) for
p-variables x, p-terms s, t, s1, . . . S and p-formulas ¢, ¥, @1, ... ¢ as follows:

&(x,) := t(e(x))
nvar,(x,) := t(nvar(x))
ﬁsh...sk[= 1(fcts(s1,...5)), foreachk-ary f € F
s,=t, ;= t(equ(s,1));
R[sh ... Sk, = t(predg(sy, ..., sk)), foreachk-ary R e R
—up = L(neg ()
(@A) = t(con](p, ¥))
(o V) == 1(disj(p, ¥))
(=) == t(cond(p, ¥))
(g ¥) = t(bicond(e, ¥))

Vi = t(univ(x, ¢))

Jx¢ = t(exists(x, ¢))

Each clause is well-defined, since ~, is a congruence relation on Ty). For the
sake of better readability, I will frequently identify &, (x,) with x,. For example, I will
write x,=y, instead of &,(x,)=¢,(y,), where x, y are p-variables. I will also employ
the usual bracketing conventions, such as omitting outer brackets, etc. For any n € o,
we write I+l[for the standard 1-numeral ((num,,) of n. Once again, this is well-defined,
since by Lemma 4.13, ((num,) = ((num,) implies n = m. If the context is clear, we
sometimes omit the index ¢.

Finally, we define the derivability and satisfiability relations for t-notations in a
similar “parasitic” fashion. For a set T of p-expressions we set T, := {t(¢) | ¢ € T}.
We say that a (-formula ¢, can be derived from a set of (-sentences 7}, in symbols:
T, - ¢, if T ¢. In order to see that this definition is well-defined, let U and v be

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 269

given such that 7, = U, and ¢, = ¥,. What we need to show is that T - ¢ iff U - .
Since - bicond(e, ¥) by clause (3) of Definition 4.11, it is sufficient to show that
T - ¢ iff U - ¢, which follows from Lemma 4.14.

Similarly, we say that a (-sentence g, is true in N\, in symbols: N = ¢,, if N = ¢.
Once again, this is well-defined by clause (3) of Definition 4.11.

4.4 Godel Numberings

For any notation system (D, ¢), a Godel numbering of D is an injective function from
D’s domain |_J |D| to . A numbering thus codes all the raw expressions of a data struc-
ture, and not only the well-formed ¢-notations. This framework reflects the widespread
custom in metamathematics that numberings are defined on the whole data structure
by simulating its fundamental operations. For instance, in the case of finite strings,
one typically first assigns numbers to the alphabetical symbols and then goes on to
define the Godel number of a string as a function of the Godel numbers of its entries
(e.g. based on prime factorisation in the tradition of Godel [21] or on k-adic notation
following Smullyan [57, 58]). Hence, these numberings are defined for the whole data
structure, i.e., the set of finite strings over the given alphabet, and not only for the set
of well-defined notations on strings. Moreover, these numberings essentially simulate
the structure of strings together with the concatenation operation (as given by the
semigroup A7 with domain A’ and fundamental operation x), rather than simulating
the structure of p-expressions directly (as given by the algebra T 5)).22

In this section, I will define what it means for a numbering of a given data structure
to be recursive or definable. These notions will play a central role in the subsequent
discussion of admissible numberings and notation systems. The main idea is that a
numbering is recursive, if it “simulates” all the fundamental operations of the data
structure by recursive functions. Similarly, a numbering is definable, if it “simulates”
the fundamental operations by definable functions. Here, I simply survey the material
relevant to this paper. Further details and proofs can be found in [23].

Let REC denote the set of (total) recursive functions. Let DEF(N\) denote the set
of numerical functions which are definable in A. In what follows, let C = REC or
C = DEF(N), for some arithmetical interpretation A of some £ 2 L.

It will be useful to allow also numerical functions which are only defined on a
proper subset of w to be contained in C. Let A € w and f: A — w be given. We then
define that f € C if the characteristic function of A is in C and the total extension f’
of f isin C, which is given by

fn) ifn e A;
fln) = .

0 otherwise.
Moreover, we say that a numerical relation R is in C, if its characteristic function is in
C. In particular, a function f: B — w is called recursive, if B C w is decidable and
there exists a total recursive function f': @ — w withdom(f’) = Band f' | B = f.

22 In the special case that the data structure of the notation system is taken to be (Tx(r).id) (see
Remark 4.12), the Godel numbering only codes the well-formed expressions and no residual “‘junk material”.

@ Springer

270 B. Grabmayr

The following notion of a tracking function will be of central importance in the
remainder of this paper:

Definition 4.16 Let Ag, ..., A and B be sets, forsome k > 0,andletw;: A; — Bbe
an injective function, foreachi < k.Let f: Ag X --- X Ar_1 — Ay be any function.
We call the operation

Jag, o s @0(Ag) X - X o1 (A1) — ar(Ag)
given by
o b0, - - br—1) = ar(f (g ' (o), ... o (br—1)),

the (ap, ..., ax)-tracking function of . If & = ; forall i <k, we also call fu,, . o

the a-tracking function of f. In that case we also write fy for fy, . .« -

Intuitively, the tracking function fy,, .. 4, simulates the function f on the set of
codes. This can be illustrated by the observation that fy,, .. «, 1S the unique function
that makes the following diagram commute

.....

Ag X -+ X Ap_q ;) Ay

L 4)
foz ,,,,, o
ao(Ag) X -+ X ap—1(Ap—1) — ar (Ag)

\LO(()XMXO[k,l

where ag x - -+ x ag_1(ao, ..., ak—1) := {ag(aop), . .., ax—1(ak—1)).
Tracking functions allow us to precisely capture the idea that a function on an
arbitrary data structure is recursive or definable relative to a coding.

Definition4.17 Let k > 0 and let A; be a set and «; be a numbering of A; for
each i < k. We say that a function f: Ag X -+ X Ay_1 — Ag is in C relative to

(a9, - .., ak),ifits {(ag, . . ., ag)-tracking function is in C. We say that a set (or relation)
S C Ag x --- x Ag_1isin C relative to {ap, . .., ar_1), if

(g X -+ x ag-1)(S) := {{ao(ao), ..., axk—1(ak-1)) | {ao, ..., ar—1) € S}
isin C.

Despite this apparent relativity to coding, I will now introduce robust notions of
computability and definability. I first make precise what it means that a numbering
simulates all the fundamental operations of the data structure by recursive functions
(and similarly for definability).

Definition 4.18 Let D be a many-sorted algebra and let « be a numbering of D. We
call « a C-numbering of D, if

(1) a(|D}*) is in C for each sort s of D;
(2) the a-tracking function of each fundamental operation of D is in C.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 271

We also call REC-numberings and DEF(N)-numberings recursive and N -definable
respectively. If there is a recursive numbering of D, then also call D recursive.

I will now show that the restriction to recursive numberings yields an absolute
notion of recursiveness. We first observe that C induces an important pre-order of
numberings:

Definition 4.19 Let o and 8 be numberings of a set A. We say that « is C-reducible
to B if there exists a function f € C such thata~!(n) = B~ o f(n) forall n € a(A).
We say that o and $ are C-equivalent, in symbols « ~¢ B, if « is C-reducible to 8 and
B is C-reducible to «.

The relation of C-reducibility is a pre-order on the set of numberings of A. Hence,
~c is an equivalence relation. For example, « ~rgc B iff the “translation functions”
between « and 8 are recursive.

Indeed, any two C-numberings of a data structure are equivalent in this sense:>>

Theorem 4.20 We have o ~¢ B, for any two C-numberings a and 8 of a data structure.

Moreover, the recursiveness and definability of a function over an arbitrary data
structure is invariant regarding equivalent numberings.

Lemma 4.21 Let A be a set and let a and B be numberings of A such that @ ~¢ .
We then have for every k =1, ... k:

(1) Afunction f: A¥ — A is in C relative to o iff f is in C relative to B;
(2) A relation R C A¥ is in C relative to a iff R is in C relative to B.

We have thus shown that the restriction to recursive and definable numberings
yield robust notions of recursiveness and definability of functions over arbitrary data
structure.

4.5 Absolute Versions of Metamathematical Results

The introduced algebraic framework provides us with precise quantifiers over notation
systems and numberings. That is, the informal claim that a given metamathematical
theorem is invariant regarding the choice of the notation system and the Gédel num-
bering can be rephrased as a precise metamathematical statement. We now return to
the problem to what extent we can abstract away from these choices in the formulation
of Tarski’s, Church’s and Godel’s theorems.

Question 4.22 Let (£,) be an arithmetically interpreted language, let (D, t) be a
notation system for £ and let & be a numbering of D. Under which assumptions on
(D,) and « is {@, € Sent, | N' = ¢,} not definable in NV relative to o?

Question 4.23 Let £ D Lo, let (D, ¢) be a notation system for £ and let « be a num-
bering of D. Under which assumptions on (D, ¢) and « is the function f: Sent, - w,
given by

0 if =

flo) = 1 if b g

23 Thisis a generalisation of a powerful theorem due to Mal’cev [42].

@ Springer

272 B. Grabmayr

not recursive relative to {«, id,,)?

We now turn to a popular formulation of Godel’s Second Theorem which is based on
Lob’s [41] derivability conditions. Note that Lob’s conditions are usually formulated
with respect to a specific numbering and notation system. We first make the used
notation system and numbering in the formulation of L&b’s condition explicit:

Definition 4.24 Let £ D Lj and let T be an L-theory. Let (D, ¢) be a notation system
for £ and let & be a numbering of D. A (-formula Pr{ (x) is then said to satisfy Lob’s
conditions relative to o and ¢ for T, in short: Lob(T, ¢, &), if for all (-sentences ¢,
and ¥;:

Lob1** T, I ¢, implies 7, - PrY ("¢, ™);
Lob2%t T, = (Pri(Cp) AP (T — ¢7) = P Ty ™);
Lob3™" 7, b Pré (",) = Pr ("Pri (T,) ™).

We ask to what extent we can abstract away from the notation system and the
numbering in the formulation of Gédel’s Second Theorem.

Question 4.25 Let £ D Lgandlet T D Rbe aconsistent r.e. ﬁ-theory.24 Let (D,) be
a notation system for £ and let & be a numbering of D. Under which assumptions on
(D, ¢) and o do we have that T, ¥ —Pr¥ ("L, ™) for every L£-formula Pr (x) satisfying
Lob(T, ¢, @)?

The following partial answers to these questions can be extracted from [22]. Let
A’ denote the semi-group with domain A7 and fundamental operation *. Let the
notation system be fixed and taken to be the infix system (A7, inf) on strings. Then
extra assumptions need to be imposed on the numbering, since there are deviant num-
berings of strings which violate Tarski’s, Church’s and Godel’s theorems. Moreover,
the condition of being a \/-definable numbering of A7. is sufficient for the invariance
of Tarski’s Theorem, while Church’s and Godel’s theorems are invariant regarding
recursive numberings of A7..

In the remainder of this paper we will examine the conditions under which these
theorems are invariant regarding numberings and notation systems. In doing so, we
will obtain complete answers to our questions.

5 Deviancy

In addition to there being deviant numberings, I show in this section that deviancy can
also occur on the level of the notation system. That is, there are contrived notation
systems which give rise to definable truth predicates, provable consistency sentences
and computable decision procedures, in violation to the fundamental theorems due to
Tarski, Godel and Church respectively. Hence, additional assumptions on the notation
system need to be imposed in order to establish the invariance of Tarski’s, Church’s
and Godel’s theorems.

24 Strictly speaking, a numbering is needed to make the claim precise that an L-theory is r.e. Lemma 4.21
shows that the choice of the numbering does not matter, as long as the numbering is recursive (see Defini-
tion 4.18).

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 273

5.1 Deviant Implementations

A simple way of constructing deviant notation systems proceeds as follows. Let A be
some finite alphabet. Let (e;);c, and (0;)ice be enumerations (without repetitions)
of the A-strings with even and odd length respectively. Moreover, let (¢;)ic, be an
enumeration (without repetitions) of the p-sentences of L that are true in N and let
(¥i)icw be an enumeration (without repetitions) of all the p-expressions of L that are
not p-sentences true in N. Let ¥ map ¢; to e; and y; to o;, for each i € .2 Hence,
K is an implementation of p-expressions of Lg into the semigroup A* of strings. So
(A*, k) is a notation system for L. Since the true k-sentences are precisely A-strings
of even length, Tarski’s Theorem fails. More precisely, the set {¢ € Sent, | N = ¢}
of true «-sentences is arithmetically definable (and even decidable), relative to some
standard numbering y of A*.

We obtain further deviant metamathematical results in a similar way. For example,
instead of enumerating all true sentences as above, let now (¢;);c, enumerate all PA-
theorems. Let (i), be an enumeration (without repetitions) of all the p-expressions
of Lo that are not PA-theorems. Let x be the implementation of p-expressions of Ly
into (A*, x) defined along the same lines as above, such that a p-notation is a PA-
theorem iff it has even length. Let now Even(x) be a p-formula which binumerates>®
the set of y-codes of A-strings of even length. Then Even(x),, satisfies Lob(PA, w, y)
and we have PA, - —Even("L,7), by the x{-completeness of PA, in violation
of Godel’s Second Theorem. Using the same idea, we obtain an implementation &
of p-expressions of Ly into A* by letting (¢;);ic, enumerate all logically valid p-
sentences. By definition, the characteristic function of the set Val(Lo)¢ of logically
valid & -sentences is recursive (relative to (y, id,)), hence violating Church’s Theorem.

More careful constructions yield deviant implementations which ensure the com-
putability and decidability of several syntactic operations and relations respectively.
For example, we can construct an 1mplementat10n v of p- expresswns of Ly into A*
such that the constructor operations Sv, F1, Xy, VAT Y, =, =y Ap, Vy, —> and <>,
are recursive (relative to the standard numbering y), while the set {¢ € Sent, | N = ¢}
of true v-sentences remains decidable.

Similarly,?” we can construct an 1mp1ementat10n 7 of p- express1ons of Ly into A*
such that the constructor operations S,,, +r, Xz, AVary, =5, Ay and V are recursive
relative to y, while the set (of codes of) PA-theorems is binumerable by a formula
Pry (x). In particular, Pr (x) satisfies Lob(T , 7, y) but

PA, F =Pr ("L,).

25 Strictly speaking, an implementation is a many-sorted function, see Remark 4.10. So officially, « is the
many-sorted function (k ¥, «'", Kfm1>, such that x V3, k€T and Ml map p-expressions of the relevant sort
to the A-strings specified above.

26 An arithmetical formula @ (x) binumerates a set of numbers A, if (1) n € Aiff T - om)and 2)n ¢ A
iff T F —¢@ (). Similarly, for k-ary relations. If no theory T is specified, we mean that ¢ (x) binumerates A
in R. Some authors use “strongly represents” instead of “binumerates”.

7 The construction of v and 7 proceeds along the same lines as the construction of the deviant numberings
n and § introduced in [22]. For example, let A contain a single element such that A* is isomorphic to the
semigroup (N, +). Setting v := 5 o inf and 7 := § o inf then yields the desired results, where inf is the
standard infix implementation of p-expressions into A*.

@ Springer

274 B. Grabmayr

Both notation systems (A*, v) and (A*,) thus yield deviant results, even though
they ensure the effectiveness of a large portion of syntax (relative to y). For instance,
the num-function (mapping numbers to their standard numerals) and the substitution
function for terms as well as for atomic formulas are recursive relative to y. In par-
ticular, both notation systems permit the binumeration of these important syntactic
functions. As we will see in Section 7.2, the constructions of v and 7 are optimal in
the following sense. There is no implementation v" which in addition to the construc-
tor operation above, also turns ¥, into a recursive operation, while still inducing a
definable set of arithmetical truths. Similarly, there is no implementation 7’ which in
addition to the constructor operation above, also turns ;-7,/ into a recursive operation,
while still violating Godel’s theorem. Hence, neither v nor 7 permit the (effective)
arithmetisation of the substitution function for complex formulas. Since the substitu-
tion function is needed in the standard proof of the Diagonal Lemma, this observation
explains why the standard proofs of Tarski’s and Godel’s results cannot be carried out
using these deviant notation systems.

5.2 Deviant Data Structures

In [22] deviant numberings are employed while keeping the notation system standard
and fixed. In the previous examples, deviancy results from a contrived implementation
of p-expressions, while employing a standard data structure as well as a standard
numbering. Deviant results can also be obtained from contrived choices of the data
structure. To see this, let (¥;);e» be an enumeration of all A z-strings that are infix-
sentences true in N and let (x;);c» be an enumeration of all other A, -strings. We
can then successively generate A*&) in a “zigzag” fashion by the unary operation 3 on
A, -strings given as follows:

30y = 1% if o =3
Vigr ifo = x.
Since each Ap,-string can be generated by 3 from v, (Azo, 3) 1s a data structure.
So <<A*Lo’ 3), inf) is a notation system for L. Consider now the numbering « of A*E0
which is given by
2i if ¢ =i

o =
@ =121 itg =y

Once again, the numbering o permits the construction of an arithmetical truth predicate
in violation to Tarski’s Theorem. In [22], o is shown to be inadmissible, since « is
not a recursive numbering of the “standard” data structure Azo, whose fundamental
operation is *. However, here o cannot be ruled out as inadmissible by the same
reasoning, since « is a recursive numbering of the given data structure (*Lo’ 3). This
is because the «-tracking function 3, of 3 is the successor operation An.n + 1 on w.
So the culprit in this example is the contrived choice of the notation system’s data
structure.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 275

These considerations show that there are three independent sources from which
deviant results can emerge: the data structure, the implementation of p-expressions
and the numbering.

5.3 The Failure of Diagonalisation

What all our deviant constructions have in common is that they violate some version of
the Diagonal Lemma. This matches our previous observation that no deviant notation
system permits the arithmetisation of the substitution function for complex formulas,
which is a crucial ingredient of the standard proof of the Diagonal Lemma.

More specifically, there is no p-sentence which is a PA-provable (y-)fixed point
of the u-formula —Even(x) w» where Even(x), is the deviant provability predicate
introduced in Section 5.1. To show this, assume that there is a u-sentence A, such that

PA, F —Even, ("A,) < A

If PA, = A, then PA, F Even, ("1,), since Even(x), numerates the set of PA-
provable u-sentences. But then PA,, F A -~ in contradiction to the consistency of
PA,. If PA, ¥ A, then PA, F —Even, ("2, 7), since Even(x),, also binumerates
the set of PA-provable p-sentences. But then we get PA/L = A, another contradiction.
Hence, no p-sentence is a PA-provable fixed point of —Even(x),.

A similar argument shows that there is no fixed point A, such that

N = —Even, (The) < Ay

6 Admissible Notation Systems

The previous section contains deviant notation systems which give rise to definable
truth predicates, provable consistency sentences and computable decision procedures.
In this section, I argue that these constructions are not genuine counterexamples to
Tarski’s, Godel’s and Church’s theorems. This is because the deviant notation systems
employ resources exceeding the considered formalism and therefore are inadmissible
choices in the formalisation process.

We start with the admissibility of numberings. In the context of Godel’s Second
Theorem for a consistent and r.e. L-theory T 2 R, I take every admissible number-
ing to be a recursive numbering of the underlying data structure. In the context of
Tarski’s Theorem and a given interpretation N, every admissible numbering is an
N -definable numbering. For a discussion and defence of these criteria see [22].28
Roughly speaking, the requirement of recursiveness ensures that the data structure’s
fundamental operations can be simulated by recursive operations on the set of codes.
This requirement, in turn, captures the idea that the arithmetisation of the given lin-
guistic expressions does not exceed the resources of the formal theory T [22]. From

28 The discussion in [22] is confined to the data structure (A*ﬁ, *) of strings together with concatenation.
Yet, my analysis and defence of these admissibility criteria given in [22] apply mutatis mutandis to arbitrary
data structures.

@ Springer

276 B. Grabmayr

similar considerations we extract the requirement that each admissible numbering in
the context of Church’s Theorem is a recursive numbering.

I now turn to the admissibility of notation systems. More specifically, I extract
minimal conditions for admissible notation systems.?” Once again, admissibility is
analysed relative to the metamathematical context, i.e., the given theory and the given
interpretation. If this analysis is correct, admissibility is a highly context- and theory-
sensitive notion.

6.1 Provability

I start by analysing the admissibility of the first component of notation systems. In the
context of Godel’s Second Theorem for a consistent and r.e. L-theory 7' 2 R, we are
essentially concerned with the question whether a sentence expressing 7"’s consistency
is derivable by means of T’s resources. It is therefore particularly important in this
context that admissible notation systems ensure that reasoning about the well-formed
expressions of £ via their notations requires no resources which lie outside the formal
system 7'. In order to make this precise, let (D, ¢) be a notation system for £. The first
requirement of the notation system’s admissibility is that the data structure D can be
encoded “effectively”. That is, admissible data structure are required to be recursive
(see Definition 4.18).

We now turn to the second component of a notation system. Recall that each imple-
mentation ¢ induces constructor operations on (-expressions, such as the ¢(-conjunction
operation A, (see Definition 4.15). The claim that the implementation ¢ only employs
resources of the formal theory T can be made precise by requiring that 7 “recog-
nises” or “knows”, i.e., proves certain facts about ¢. Specifically, we require (i) that
T “knows” whether or not two (-expressions denote the same element, (ii) that T
“knows” whether or not an element of the data structure is a t-variable, (-term or a
-formula and (iii) that 7 “knows” for any given (-formulas ¢,, ¥, and x, whether or
not %L(pl = i, whether or not ¢, A, ¥, = x,, and similarly for the other constructor
operations introduced in Definition 4.15.

We now consider each of these three clauses in detail.

(i) The first clause can be made precise by requiring that 7 binumerates the
t-equivalence relation =, relative to some recursive numbering o of Ty (). Since
ar.e.theory T O Rbinumerates exactly the recursive sets (see [61, corollary I1.7]),
this is tantamount to requiring that the relation =, is recursive.

(i) The second clause can be made precise by requiring that 7 binumerates the
sets Var,, Ter, and Fml, relative to some recursive numbering « of D. This is
tantamount to requiring that the sets Var,, Ter, and Fml, are recursive relative

to .
(iii) The third clause can be made precise by requiring that 7 binumerates the graph
of each of the constructor operations nvar,, &, f,, =, R, =, A, Vi, =, <,

V, and 3, (for each f € F and R € R). By [61, corollary I1.7] this is equivalent
to requiring that these operations are recursive (relative to «).

29 For the purposes of this paper it is sufficient to isolate necessary conditions of admissibility. I do not
claim that these conditions are sufficient for a notation system to be admissible.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 277

These extracted necessary requirements for admissible notation systems are sum-
marised in the next definition (taking C := REC):

Definition 6.1 Let ¢ be an implementation of p-expressions of £ into a data structure D.
We say that (D, () is a C-notation system for L, if the following holds:

(1) There is a C-numbering « of D;

(2) The relation &, on T is in C;

(3) Var,, Ter, and Fml, are in C relative to «;

(4) The constructor operations nvar,, &, f., =, R, =, A, Vi, =, <>, ¥, and 3,
(for each f € F and R € R) are in C relative to «.

We also call REC-notation systems and DEF(N)-notation systems recursive and
N -definable respectively.

Remark 6.2 The clause (2) of Definition 6.1 should be understood relative to some
C-numbering of Ty). That is, the relation &, on Tx () is in C, relative to some C-
numbering of Ty () and Var,, Ter, and Fml, are in C relative to some C-numbering of D.
Note that for every £ there is some standard C-numbering of Ty () (see, e.g., the proof
of Lemma 7.3). Clauses (3) and (4) are relative to the numbering «. By Lemma 4.21
and Theorem 4.20, membership-in-C is independent of the specific choices of these
numberings. Hence, Definition 6.1 does not rely on any particularities of the underlying
numberings.

Clauses (3) and (4) in the above definition entail that « induces a C-numbering of
the “X(L£)-algebra of t-expressions”. This can be made precise as follows.

Definition 6.3 Let (D, ¢) be a notation system for £. Let D, denote the E(ﬁ)—algebra
vyith.domain (Var,, Ter,, lel) apd with the fundamental operations nvar,, &, f,, =,
R, =, A, YV, =, <, ¥, and 3, (foreach f € Fand R € R).

If we ignore the codes of “junk expressions” of D, then we obtain a C-numbering
of the algebra D, from any given C-numbering of D.

Lemma 6.4 Let (D,) be a C-notation system for L. For every C-numbering o of D,
the restriction a | of a to Var, U Ter, U Fml, is a C-numbering of D,.

Proof This follows immediately from Remark 6.2 and clauses (3) and (4) of Defini-
tion 6.1. O

We have shown above that in the context of Godel’s Second Theorem which is
concerned with provability in a theory T, every admissible notation system (D, ¢) is
recursive.>’ We now turn to admissibility in the context of definability.

30 The admissibility of a notation system has been analysed relative to the theory T'. Yet, the extracted
criterion is theory-independent. This is because r.e. and consistent theories extending R binumerate precisely
the same sets and functions, namely, the decidable and recursive ones respectively. As soon as we consider
Godel’s Theorem in the context of non-r.e. theories, we obtain theory-dependent criteria of admissibility.

@ Springer

278 B. Grabmayr

6.2 Definability

According to its prevalent interpretation, Tarski’s Theorem imposes limitations on the
expressive resources of the given arithmetically interpreted language (£, N). In this
context it is therefore crucial that the used representation devices, such as the nota-
tion system, do not employ resources beyond (£, N')’s expressive power. So while
in the case of Godel’s Theorem, admissibility was analysed in terms of the deductive
resources of the theory T', here admissibility must ensure that reasoning about expres-
sions does not resort to expressive resources exceeding the language (£, A). This can
be made precise by requiring that for any admissible notation system (D, ¢), there is an
admissible numbering of the notation system’s data structure and that £ “expresses”
certain facts about ¢. Recall that every admissible numbering is an A/ -definable num-
bering of D. That £ “expresses” certain facts about ¢ can now be made precise by
requiring (i) that t-equivalence =, is definable in A/, (ii) that the sets Var,, Ter, and
le are definable in AV and (111) that the constructor operations nvar,, &, ﬁ, =, R[,

S A Vi, =>,, <>, Y, and 3, (for each f € F and R € R) are A/-definable. Thus,
when we scrutinise the expressive limits of an arithmetical interpretation of N (as in
Tarski’s Theorem), every admissible notation system is A -definable.

6.3 Computability

We now turn to Church’s Theorem, according to which the characteristic function of the
set of logically valid sentences is not computable. Hence, as opposed to provability and
definability above, here we are concerned with computational properties. Admissible
choices of notation systems in this context ensure that computations on expressions
do not resort to resources exceeding the used model of computation, i.e., the set
REC of recursive functions. In order to make this precise, we first require that every
admissible notation system (D, ¢) contains a recursive data structure D. This ensures
that the objects contained in the data structure can be encoded “effectively”. The
claim that computations on expressions do not resort to resources exceeding REC can
moreover be made precise by requiring that (functions of) REC decide and compute
relevant properties about (. By employing a minimal approach, we specifically require
(i) that (-equivalence =, is a decidable relation, (ii) that it is decidable whether or
not an element of the data structure is a (-variable, (-term or a (-formula and (iii) that
the constructor operations nvar,, &, for =0 Ry, =0y Auy Vi, =1, <>, Y, and 3, (for
each f € F and R € R) are recursive. We therefore conclude that every admissible
notation system in this context is recursive.

7 Invariance Results
7.1 Invariant Diagonalisation

Recall that the derivability relation on ¢-notations introduced in Section 4.3.3 is “par-
asitic” on p-expressions. As a result, the choice of notation does not affect which

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 279

theorems are derivable from given axioms. That is, for any two notation systems
(D,) and (E, k) for L, T, & ¢, iff T, & ¢, for every L-theory T and p-formula ¢.
Yet, the invariance of diagonalisation does not come for free. For as we have seen in
Section 5.3, some notation systems invalidate the Diagonal Lemma.

To further illustrate this point, let 7 2 R and let (Az, inf) denote the infix notation
system for £. By the standard version of the Diagonal Lemma we can find for every
inf-formula ¢;¢ with one free variable an inf-sentence Ajns such that

Tint & @inf("Ainf) <> Ainf,

for some standard numbering y of A7.. Let now (D, ¢) be any given notation system
for £. We can then conclude that

T E@("hinf) < Ay

However, this is not the desired Diagonal Lemma for (D, ¢), since the fixed point A is
“used” in (-representation, while it is “mentioned” in inf-representation. Hence, more
work is needed to obtain a version of the Diagonal lemma which is independent of the
underlying (admissible) notation system.

In this section, we establish the following syntactic and the semantic versions of
the Diagonal Lemma which are invariant regarding admissible notation systems and
numberings.

Lemma7.1 Let L D Ly be a language and let T 2 R be a L-theory. Let (D, () be a
recursive notation system for L and let « be a recursive numbering of D. For every
(-formula @, with one free variable there is a t-sentence A, such that

T Eo (A ™) <A

Lemma7.2 Let (L, N) be an arithmetically interpreted language. Let (D, 1) be an
N -definable notation system for L and let o be an N -definable numbering of D. For
every i-formula ¢, with one free variable there is a (-sentence A, such that

N Eo(A S A

In order to prove these lemmas, we first define a self-referential numbering for the
algebra D, of L—expressions.31 Recall that C is REC or DEF (), for some arithmetical
interpretation N of some language £ 2 Ly.

Lemma7.3 Let (D,) be a C-notation system for L. Then there is a self-referential
C-numbering § of D,. That is, for each \-formula @, with exactly one free variable there
is a number m € w such that §(¢,(m)) = m.

31 Self-referential numberings were introduced by Kripke [37, 38], Feferman [14] and Visser [64]. The
construction given in this paper closely mimics Visser’s [64] numbering X. See [25] for a systematic study
of self-referential numberings.

@ Springer

280 B. Grabmayr

Proof We start by defining a “standard” numbering y of Ty). For definiteness, let

o', ..., 09 be an enumeration of the symbols of ¥ (£). We now recursively define y

by setting

2i + 1 if t = o' is a constant symbol;

t) = . .
v) 2‘pi/(”)~-~p,f(”‘) ift =oc'(t1,...,1);

where p; is the (i 4+ 1)-th prime number and ¢, 1, . . ., #; are p-expressions. Clearly,
y is a recursive numbering of Ty). Moreover, y induces a numbering y of D, by
setting

Y () :=min{y (¢) | ¢ ~ ¥}.

Since ~, isin C, ¥ is a C-numbering of D,.

Let (., j) jew be an enumeration without repetitions of the (-formulas with exactly
one free variable, which is induced by ¥ in the following sense: for all i, j € w we
have i < jiff Y(¥.;) < ¥ (¥, ;). We observe that

(1) The functionn — ¥, , is in'C relative to (id, ¥);
(2) The numeral function n — 7 is in C relative to (id, y);
(3) The substitution function ¥, ;, t, = ¥, (1) is in C relative to .

We now define § by setting

8(x,) =2-yY(x,), forevery t-variable x,;
8(t,) =2-y(t,), forevery (-term 1,.

For every (-formula ¢, we set
s _ |21 ifn=mink | g = Ok T,
|27 it # Y@k + 1), forall.

Clearly, § is a numbering of D,. In order to show that § is self-referential, let ¢, be a
-formula with exactly one free variable. Let/ € w such that ¢, = v, ;. Let

7 := min {k | Y QTET) = Yok 2k + 1)} .

By definition of §, we then get §(¢p, (ﬁ)) = m for m := 2n + 1. Hence, § is self-
referential.

We observe that the sets §(Var,), §(Ter,) and §(Fml,) are in C. To see this in the
case of §(Fml,), we distinguish two cases.

Case 1: m = 2n + 1, for some n € w. Now check whether for all k < n

Y Win@n + 1)) # P Wk @k + 1)).

If yes, then m € 6 (Fml,). If no, then m ¢ &(Fml,). Note that by (1)—(3), this “decision
procedure” is in C.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 281

Case 2: m = 2n, for some n € w. Now check whether n € Y (Fml,). If yes, then
m € §(Fml,). If no, then m ¢ §(Fml,). Since ¥ (Fml,) is in C, we have thus shown that
8(Fml,) isin C.

Next, we show that (i) 7 0 8~! € Cand (ii) 0 ! € C. In order to show (i), let
m € §(D,). If m = 2n + 1 for some n € w, then output ¥ (¥, ,(2n + 1)). By (1)-(3)
this procedure is in C.

If m = 2n for some n € w, then output r. Once again, this procedure is in C. Hence,
¥ 08! € C, which concludes the proof of (i).

Inorder to show (ii), letm € ¥ (D,). Decide whether m is (the y-code) of a (-formula

of the form v, ; (2] + 1) for some ! € w. If not, then output 2m. If yes, then output
2 - min {k |V QTF D) = Yor Ok T 1)} ey

By (1)-(3) this procedure is in C. Hence, § o ¥ ~1 e ¢, which concludes the proof of
(ii).

By (i) and (ii) have § ~¢ ¥. Using Lemma 4.21 and the fact that ' is a C-numbering
of D,, we conclude that also § is a C-numbering of D,. O

We now prove Lemma 7.2 by using a self-referential numbering.

Proofof Lemma 7.2 Let (D, ¢) be an N -definable notation system and let & be an N/ -
definable numbering of D. By Lemma 6.4, the restriction o[of « to Var,UTer, UFml, is
an N\ -definable numbering of D,. By Lemma 7.3 there is a self-referential \-definable
numbering § of D,. Hence, § ~pgrr(n/) o by Theorem 4.20. Therefore, the function
§o ozr_l is N-definable. So there is a (-formula f,(x,, y,) that defines (the graph of)
the function & o | ™!

Let now ¢, (x,) be a given (-formula with free variable x,. Define

) o= 32 (fi(z, y)AR()).

Since § is self-referential, there is a number m such that 6 (¥, (ﬁ)) =m.
Hence, rlﬂl (n;1)—'(S = n;1, and therefore

NE v, (rwl(m*w)ﬁ) & (D).

Since ! . .
Soa [T (a(y(m))) = 8(h.(m)),
we have e A
NE (T ™ n@n ™).
Hence,

NE o (™) < v (Twan ™).
Setting A, = ¥, (), then yields

NE (pz('—)w—la) < AL

@ Springer

282 B. Grabmayr

(]
The proof of Lemma 7.1 proceeds similarly:

Proofof Lemma 7.1 Let (D, t) be a recursive notation system and let @ be a recursive
numbering of D. By Lemma 6.4, the restriction « [of « to Var, U Ter, U Fml, is a
recursive numbering of D,. By Lemma 7.3 there is a self-referential recursive number-
ing § of D,. Hence, § ~rrc «f by Theorem 4.20. Therefore, the function § o « [_1 is
recursive. Let now ¢, be a (-formula with one free variable. Since § o o [_1 is injective,
by Lemma 4.10 & 4.11 of [22] there exists a (-formula y, with one free variable and
a (-formula f, with two free variables which binumerates (the graph of) § o [™! such
that

RE f,(1,m) = (p.(n) <> Y (m)); (5)
for all n € a(Var, U Ter, U Fml,) and m € §(Var, U Ter, U Fml,). Since & is self-
referential, there is a number m such that 6 (¥, (W)) = m. Hence, ’_IﬂL (11;1)16 = m, and
by Leibniz’s Law v, (", (1) °) <> v, (ii7). Now we have

8 oal Na(y,(m))) = (v, (m)).

and therefore] s
R £ (T ™, Tyin ™).
An application of Eq. 5 yields

R (™) &y (Tw@n ™).
Hence, R, F ¢, ("¢, (m)) <> ¢, (m). Setting A, = v, (m), then yields
.o (A7) < A

O

Remark 7.4 The proofs given above provide a new method for constructing syntac-
tic and semantic fixed points. An interesting feature of this method is that it entirely
sidesteps the tedious arithmetisation of the numeral function and the substitution func-
tion. Thus, self-referential numberings provide a fruitful proof-technique, even if the
proved result is formulated with respect to a standard numbering.

7.2 Formalisation Independence

We now introduce precise invariant versions of Godel’s, Tarski’s and Church’s theo-
rems, thus answering the questions of Section 4.5.

Using Lemma 7.1 and the usual schematic “modal reasoning” we can derive the
invariance of Godel’s Second Theorem regarding admissible notation systems and
numberings.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 283

Theor'em 75 Let L D Lo and let T O R be a consistent L-theory. We have
T, ¥ =Pr¥ ("L,), for every recursive notation system (D, t) for L, for every recursive
numbering o of D and for every L-formula Pr (x) satisfying Lob(T , t, a).

We immediately obtain from Lemma 7.2 the invariance of Tarski’s Theorem regard-
ing admissible notation systems and numberings.

Theorem 7.6 Let (L, N) be an arithmetically interpreted language. For every
N -definable notation system (D, 1) for L and every N -definable numbering o of
D, the set {p, € Sent, | N |= ¢,} is not definable in N relative to a.

Finally, we prove the invariance of Church’s Theorem.

Theorem 7.7 Let L D Lg. For every recursive notation system (D, t) for L and every
recursive numbering o of D, the function f: Sent, — w, given by

_)0 FEe
fe): :1 if 1 o

is not recursive relative to {a, id,).

Proof Let £ D L. Assume that {¢, € Sent, | = ¢,} is decidable relative to «. Then
there is a «-formula v, (x,) which binumerates {¢, € Sent, | = ¢,} in EA, relative
to «. Let x,(x,, y,, z,) be a (-formula which binumerates the graph of the constructor
operation —, relative to o. We define

Pr.(x,) = 3z, (X[(r/'\EAﬁ“, X, zl) A w[(zl)) ,

where /\EAL, denotes a finite axiomatisation of EA,. We now show that Pr,(x,)
binumerates the set of theorems of EA, in EA, relative to a. If EA, = ¢, then
F AEA, = ¢, by the deduction theorem. Hence, EA, I v, ("EA, > ¢,) and there-
fore EA, = Pr, (", ™). If EA, ¥ ¢, then ¥ /\EAL — ¢, by the deduction theorem.
Hence, EA, F =, ("EA, = ¢, %) and therefore EA, - —Pr, ("¢,). By Lemma 7.1
there is a (-sentence A such that

EA, F =Pr,("A,) <> A,. (6)
We derive the desired contradiction by showing that neithqr EA, = XA, nor EA, ¥ —'-)H.
IfEA, - A, then EA, F Pr,("A,). Hence by Eq. 6 EA, = —A,, in contradiction to the

consistency of EA,. If EA, ¥ A,, then EA, F =Pr, (", 7). Hence by Eq. 6 EA, - A, in
contradiction to EA, F* A,. O

7.3 Conclusion

It is a well-known phenomenon in metamathematics that the fundamental theorems
due to Godel, Church and Tarski are understood and interpreted in a formalisation

@ Springer

284 B. Grabmayr

independent way. Yet, their precise formulations rely on several specific formalisation
choices. This gap is aptly described by Visser [67], who observes that “[n]o mathe-
matical treatment of G2 correctly reflects our intuitive insight which is independent
of the long sequence of design choices usually associated with the formulation of G2”
(p- 81). The main purpose of this paper has been to bridge this gap by turning our
intuitive insights into precise metamathematical invariance claims. According to my
approach, the insight of formalisation independence is thus captured by quantifying
over all admissible notation systems and numberings.

Appendix A. Many-Sorted Algebras

Let S = {s0, ..., sk} be a set (of sorts), for some k € w. The family A := (A%);es
is called an S-sorted set. We sometimes write (Ag, ..., Ax) for the family A. For
technical convenience, I will assume throughout that for any S-sorted set (A*)scs, we
have AS N A’ = @ forall s #t € S. We sometimes want to consider the elements of
a family A, without distinguishing their sorts. In that case we take the union |, g A°
of all sets A%, which we also write as | A.

The basic set-theoretic notions can be defined for S-sorted sets in the usual sortwise
fashion. More specifically, let A and B be S-sorted sets. We say that A is finite, if A
is finite for each s € S. We write A C B, and call A an S-sorted subset of B, if
A* C B® for every s € S. We moreover set AN B := (A® N B%)scs and define
general S-sorted intersections in a similar way. Moreover, we call the S-sorted set
(fS: AS — B®);es an S-sorted function, which we denote by f: A — B. Wecall f
injective (or surjective), if f* is injective (or surjective) for each s € S. Finally, we
write & for the S-sorted set (F)ses.

Let S* denote the set of finite sequences over S, including the empty sequence A.
In the context of signatures, we exclusively write sg X --- X si_; for the sequence
(505 ..., 8k—1). An S-sorted algebraic signature Q2 is a finite $* x S-sorted set
(Q2%%)wes+ ses of pairwise disjoint, non-empty finite sets. We say that o is a symbol
of Q and write 0 € Q, if 0 € (J,cgv se5 2" The elements of Q" are called
Sfunction symbols of type w — s and of sort s. If a function symbol has type A — s,
we also call it a constant symbol of sort s.

Many-sorted algebras consist of a many-sorted domain, as well as designated ele-
ments and fundamental operations defined on that set. The following definition makes
this precise.

Definition A.1 An Q-algebra A is an ordered pair ({|A|*)ses, (0A)seq), Such that

e |A|® are non-empty sets, for all s € S;

e 0a € |Al® if o is a constant symbol of sort s;

o oa: AP x ... x |APIR®) 5 |A}* if o is a function symbol of type w — s,

where lh(w) denotes the length of w.

We call (|A|*)secs the domain of A, which we sometimes write as |[A|. If we do not
want to distinguish between different sorts, we consider the union |, |A|*, which
we sometimes write as | |A|. Finally, we call the functions o4, with o € Q, the
fundamental operations of A.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 285

Let A, B be Q2-algebras. An Q2-homomorphism from A to B is an S-sorted function
o: A — B, such that

e a’(0a) = o, for all constant symbols o € ©; and
o o!(oalal,...,ay)) = op(@’(ay),...,a"(a,)), for all a; € |A|% (with
1 <i < n) and every function symbol ¢ € Q of type s1 X - -+ X 5, = 5.

We say that an S-sorted subset B of the domain |A| is closed under the fundamental
operations of A, if for every function symbol o € Q¥>* and by € B*MD ..., bihw) €
BYhW) we have oa (b, ..., bihw)) € B*. Let now X be an S-sorted set with
X C |AJ. We call

Cla(X) := m{B | X € B and B is closed under the fundamental operations of A}

the algebraic closure of X. We say that a set U is generated by the fundamental

operations of A from X, if U = Cla(X). We call A minimal, if Clp (@) = |A|. We

call A finitely generated, if there is a finite S-sorted set X such that Cla (X) = |A].
We now provide an example of a finitely generated algebra that is not single-sorted.

Example A.2 Let S contain the two sorts label and tree. A labelled binary tree is a tree
where each node has at most two subtrees, called the left and right subtree respectively.
Moreover, each node of the tree is labelled by exactly one element of some non-empty
set L of labels. For a graphical representation of a labelled binary tree see Fig. 4.

Let By, be the set of all labelled binary trees with labels from L. Let [a] be the tree
in Bz, which only consists of a root with label a € L. Let Q2 be a S-sorted signature
containing the following function symbols:

leaf : label — tree

right: label x tree — tree

left: tree x label — tree

both: tree x label x tree — tree

We now turn By, into an Q2-algebra B, by setting

° |BL|label = L and |BL|tree — BL;
o leafp, (a) = [a]

as
e N
075 a4
e s AN
as as a
/ N N
ai as as
e
ai

Fig.4 Labelled binary tree

@ Springer

286 B. Grabmayr

e rightg, (a, T') adds to [a] the right subtree 7'.
o leftg, (T, a) adds to [a] the left subtree T.
e bothg, (T, a, U) adds to [a] the left subtree T and the right subtree U.

The algebra By is finitely generated, as long as the set L of labels is finite.

We now introduce the notion of initiality, which is of central importance in abstract
algebra.

Definition A.3 Let 2 be a class of Q2-algebras and let D € 2. If for every E € A
there is a unique ©2-homomorphism a*: D — E, then we say that D has the universal
property for 2 and we also call D initial in 2.

If D is initial in the class Mod(€2) of all 2-algebras, we also call D an absolutely free
Q-algebra.

An important example of an absolutely free algebra is the term algebra T, defined
as follows.

Definition A.4 For each s € S, the set TSS2 of Q-terms of sort s is the smallest set such

that

() @ CTg;
(2) Ifo € Qisoftypes; x --- X s, > sand 1] € T}, ..., 1, € Ty, then the string
o(ty, ..., ty)isin TS,

The S-sorted set T, is called the Herbrand universe of 2. Each element of | Tg, is
called an Q-ferm.

We can naturally transform the Herbrand universe T of €2 into an Q-algebra Tq
as follows:

Definition A.5 Let T be the Herbrand universe of ©2. We turn T, into an Q-algebra
Tg by setting

e o1, := o, for each constant symbol o € Q;

o org(t, ... 1) = cr(tl,...,t,z), for each fu?ction symbol o € Q of type s1 X
o x s, > sandtermsty € T, ... 1, € T,

We call the resulting 2-algebra Tg the term algebra or Herbrand algebra of Q2.

Appendix B. Quine-Bourbaki notation

In what follows, I show how the Quine-Bourbaki notation system (see Section 3.4)
can be accommodated in the framework developed in Section 4.

Let A be the finite alphabet which contains the symbols of Ly together with the
auxiliary symbols ‘v’, ‘7, ‘[0°, ‘(’ and ‘). Let HIF 4 be the set of hereditarily finite sets
with the elements of A as urelements. HIF 4 together with the adjunction operation
A given by A(x,y) := x U {y} forms a finitely generated algebra HF 4. Assume
that finite sequences of elements of HIF 4 and the concatenation operation * on finite
sequences are defined in HIF 4 in a fixed and standard way.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 287

It will be convenient to conceive of A-strings as sequences sg * - - - * §,, where
each sequence entry s; is either a symbol of A or the result of appending finitely
many strokes / to v such that v % 7 is not a subsequence of sg * - - - x s5,. Call such a
sequence simplified. In simplified sequences, we treat A-strings of the form v/. ../ as
“alphabetical symbols” of length 1.

Consider now an ordered pair (sg * - - - % s,,, C), such that the sequence sg * - - - *x s,
is simplified and such that C is a (possibly empty) set of unordered pairs {i, j} with
i # j < n.In what follows, the ordered pair (sg * - - - x5, C) will represent the result
of adding curved lines to the A-string sg * - - - * s, as follows: there is a curved line
between s; and s; iff {i, j} € C.

We now define an implementation ¢ of p-expressions of Lo into HF 4. We write the
projection to the i-th component as (-, -);, for i = 1, 2. For example, (s, C); = s.
Moreover, for any unordered pair {i, j} of numbers, we write {i, j}+n for {i+n, j+n},
forn € w.

We first define the implementation ("' of p-variables into HF 4 recursively as fol-
lows.

M () i=(v, @)

M (nvar(x)) = (x)1 7, D)

ter

We now define the implementation ¢*" of p-terms recursively as follows:

(e (x)) =" (x)
(*T(fctp) :=(0, @)
T (Eots(t)) :=(S * ('), @)
(Tt (s, 1) i=((*"T(s)1 * + % (" (1) 1%), D)
T (Ect (s, 1)) :={(+"7(5)1 * X * (' (1) 1%), @)

We finally define the implementation (™ of p-formulas:

A equ(s, 1) 1= (S (5)1 * = % (1) 1%), D)
™ (neg(p)) :=(=* "™ ()1, {P + 1| P e ™ (p)})
™ (cong (g, ¥)) ==(™ (@)1 % A% ™YY 10, (P + 1] P e ™ (p))u
(P + (™ (@)) +2| P ™))

MM univix,) ==V * M) [0/ ()], (P + 1] P e ™ (p)o)U

{{1, n} | x occurs in the n-th entry of Lfml(w)l H

@ Springer

288 B. Grabmayr

MM exists(x,) =3 (M (p) [0/ ()], (P + 1] P e ™(g)}u
{{1, n} | x occurs in the n-th entry of Lfml(w)l H

where (™ (p)[0/0V3F (x)] is the result of substituting each occurrence of (V¥ (x)
in (™ (¢); by 0. We observe that ('™ (¢); and (™ (¢);[/:73% (x)] are simplified

sequences of the same length.
For any (distinct) p-variables x, y, z, the p-expression

univ(x, exists(y, conj(equ(x, fctgy), univ(z, neg(equ(fctg, fcty(fctgx, y)fctgy))))))
is implemented by ¢ as the same object, viz.
(VA =S0) AV(=(0 = (SU + 1)), {{1, 5}, {1, 19}, {2, 7}, {11, 21}})

which corresponds to the following Quine-Bourbaki notation (with the omission of
some parentheses):

VI (O=SHAY(—=0=S+0))

More generally, (-equivalence coincides with a-equivalence, i.e., syntactic identity up
to renaming of bounded variables.

Acknowledgements I am indebted to Arnon Avron, Volker Halbach, Léon Probst, Gil Sagi, Albert Visser
and two anonymous referees for their detailed and helpful comments. I would also like to thank Nachum
Dershowitz, Rea Golan, Michael Goldboim, David Kashtan, Carlo Nicolai, Lavinia Picollo, Carl Posy,
Johannes Stern, Dan Waxman and Lingyuan Ye for helpful conversations on topics presented in this paper.
Finally, I am grateful to the audiences of my talks on this material for their valuable feedback.

Author Contributions Not applicable.

Funding Open Access funding enabled and organized by Projekt DEAL. Open Access funding enabled
and organized by Projekt DEAL.

Data Availability Not applicable.

Declarations

Ethical Approval Not applicable.
Competing interests No competing interests.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 289

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

NN A

oo

10.

11.

12.

13.

14.
15.

16.
17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

. Avigad, J. (2022). Mathematical Logic and Computation. Cambridge University Press.
. Bergstra, J., & Tucker, J. (1987). Algebraic specifications of computable and semicomputable data

types. Theoretical Computer Science, 50(2), 137-181.

. Béziau, J.-Y. (1999). The mathematical structure of logical syntax. In W. Carnielli & I. M. L.

D’Ottaviano (Eds.), Advances in contemporary logic and computer science (pp. 1-17). American
Mathematical Society.

. Boolos, G. S. (1994). The Logic of Provability. Cambridge University Press.

. Bourbaki, N. (1954). Théorie des Ensembles. Paris: Hermann.

. Button, T., & Walsh, S. (2018). Philosophy and Model Theory. Oxford University Press.

. Cheng, Y. (2021). Current research on Godel’s incompleteness theorems. The Bulletin of Symbolic

Logic, pp. 1-52

. Corcoran, J., Frank, W., & Maloney, M. (1974). String theory. Journal of Symbolic Logic, 39(4),

625-637.

. Corry, L., & Schappacher, N. (2010). Zionist internationalism through number theory: Edmund Landau

at the opening of the Hebrew University in 1925. Science in Context, 23(4), 427-471.

De Bruijn, N. G. (1972). Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae,
75(5), 381-392.

Dummett, M. (1973). Frege: Philosophy of Language. Number 1. Harper & Row.

Evans, G. (1977). Pronouns, quantifiers, and relative clauses (i). Canadian Journal of Philosophy, 7(3),
467-536.

Feferman, S. (1960). Arithmetization of metamathematics in a general setting. Fundamenta Mathe-
maticae, 49, 35-92.

Feferman, S. (1984). Toward useful type-free theories. i. J. Symbolic Logic, 49(1), 75-111

Feferman, S. (1994). Finitary inductively presented logics. In D. M. Gabbay (Ed.), What is a Logical
System? (pp. 297-328). Oxford University Press.

Fitting, M. (2007). Incompleteness in the Land of Sets. College Publications.

Fitting, M. (2017). Russell’s paradox, Godel’s theorem. In Raymond Smullyan on Self Reference, pp.
47-66. Springer.

Frege, G. (1879). Begriffsschrift. Halle: Louis Nebert.

Frege, G. (1919). Die Verneinung. Eine logische Untersuchung. Beitrige zur Philosophie des deutschen
Idealismus, 1, 143—157. Reprinted as ‘Negation’ in Frege, G. (1984). Collected papers on mathematics,
logic, and philosophy. Blackwell, Oxford, UK. Page references are given for the translation.

Frege, G. (1923). Logische Untersuchungen. Dritter Teil: Gedankengefiige. Beitréiige zur Philosophie
des deutschen Idealismus, 3,36-51. Reprinted as ‘Compound Thoughts’ in Frege, G. (1984). Collected
papers on mathematics, logic, and philosophy. Blackwell, Oxford, UK. Page references are given for
the translation.

Godel, K. (1931). Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter
Systeme 1. Monatshefte fiir Mathematik, 38(1), 173—198. Reprinted and translated in Godel, K. (1986).
Collected Works. Vol. 1: Publications 1929-1936. Oxford University Press, Oxford. pp. 144-195
Grabmayr, B. (2021). On the invariance of Godel’s second theorem with regard to numberings. Review
of Symbolic Logic, 14(1), 51-84.

Grabmayr, B. (2021b). On the Philosophical Interpretation of Metamathematical Results. PhD thesis,
Humboldt University of Berlin.

Grabmayr, B., Halbach, V., & Ye, L. (2023). Varieties of self-reference in metamathematics. Journal
of Philosophical Logic, 52(4), 1005-1052.

Grabmayr, B., & Visser, A. (2023). Self-reference upfront: A study of self-referential Godel number-
ings. Review of Symbolic Logic, 16(2), 385-424.

Hajek, P., & Pudldk, P. (1998). Metamathematics of First-Order Arithmetic. Berlin, Heidelberg:
Springer.

@ Springer

http://creativecommons.org/licenses/by/4.0/

290

B. Grabmayr

27.

28.

29.
30.

31.
32.
33.

34.
35.
36.
37.
38.

39.
40.

41.
42.

43.

44.
45.

46.

47.
48.
49.
50.
S1.

52.
53.

54.
55.
56.
57.
58.
59.
60.
61.

62.
63.

Halbach, V., & Visser, A. (2014). Self-reference in arithmetic 1. Review of Symbolic Logic, 7(4),
671-691.

Halbach, V., & Visser, A. (2014). Self-reference in arithmetic II. Review of Symbolic Logic, 7(4),
692-712.

Hausdorff, F. (1914). Grundziige der Mengenlehre. Leipzig: Veit and Company.

Heck, R. K. (2007). Self-reference and the languages of arithmetic. Philosophia Mathematica, 15(1),
1-29.

Horsten, L. (2011). The Tarskian Turn: Deflationism and Axiomatic Truth. MIT Press.

Humberstone, L. (2011). The Connectives. MIT Press.

Kaplan, D. (1986). Opacity. In L. E. Hahn & P. A. Schilpp (Eds.), The Philosophy of W (Vol. Quine,
pp. 229-289). Open Court.

Kleene, S. C. (1952). Introduction to Metamathematics. North Holland.

Kleene, S. C. (1967). Mathematical Logic. Wiley.

Kracht, M. (2003). The Mathematics of Language. Walter de Gruyter.

Kripke, S. A. (1975). Outline of a theory of truth. Journal of Philosophy, 72(19), 690-716.

Kripke, S. A. (2021). Giodel’s theorem and direct self-reference. Online First: Review of Symbolic
Logic.

Kunen, K. (2009). The Foundations of Mathematics. College Publications.

Kuratowski, C. (1921). Sur la notion de 1’ordre dans la théorie des ensembles. Fundamenta Mathe-
maticae, 2, 161-171.

Lob, M. H. (1955). Solution of a problem of Leon Henkin. Journal of Symbolic Logic, 20(2), 115-118.
Mal’cev, A. L. (1961). Constructive Algebras I. Russian Mathematical Surveys, 16, 77-129. Reprinted
and translated in Wells, B. F. (1971). The Metamathematics of Algebraic Systems. North-Holland,
Amsterdam. pp. 148-214

Marker, D. (2002). Model Theory: An Introduction (Graduate Texts in Mathematics, Vol. 217). Springer,
2002 edition.

McGee, V. (1991). Truth. Hackett: Vagueness and Paradox.

Oberschelp, A. (1990). Order sorted predicate logic. In K. H. Blisius, U. Hedtstiick, & C. -R. Rollinger
(Eds.), Sorts and Types in Artificial Intelligence, pp. 7-17, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Paulson, L. (2015). A mechanised proof of Godel’s incompleteness theorems using Nominal Isabelle.
Journal of Automated Reasoning, 55(1), 1-37.

Peano, G. (1889). Arithmetices Principia Novo Methodo Exposita. Turin: Fratelli Bocca.

Peregrin, J. (2020). Philosophy of Logical Systems. Routledge.

Picollo, L. (2018). Reference in arithmetic. Review of Symbolic Logic, 11(3), 573-603.

Quine, W. V. (1940). Mathematical Logic. W. W. Norton, New York, 1 edition.

Quine, W. V. (1966). The ways of paradox. In W. V. Quine (Ed.), The Ways of Paradox and Other
Essays (pp. 3-20). New York: Random House.

Ramsey, F. P. (1927). Facts and propositions. Proceedings of the Aristotelian Society, 7, 153—170.
Rasiowa, H., & Sikorski, R. (1963). The Mathematics of Metamathematics. Drukarnia Uniwersytetu
Jagiellonskiego W Krakowie: Monografie matematyczne.

Sato, M. (2018). The data structures of the lambda terms. In K. Mainzer, P. Schuster, & H. Schwichten-
berg (Eds.), Proof And Computation: Digitization In Mathematics, Computer Science And Philosophy
(pp. 191-208). World Scientific Publishing.

Smith, P. (2003). An Introduction to Formal Logic. Cambridge University Press.

Smullyan, R. M. (1957). Languages in which self reference is possible. Journal of Symbolic Logic,
22(1), 55-67.

Smullyan, R. M. (1961). Theory of Formal Systems. Princeton, NJ: Princeton University Press.
Smullyan, R. M. (1992). Gédel’s Incompleteness Theorems. Oxford: Oxford University Press.
Smullyan, R. M. (1994). Diagonalization and Self-Reference. Clarendon Press.

Swierczkowski, S. (2003). Finite sets and Godel’s incompleteness theorems. Dissertationes Mathe-
maticae, 422, 1-58.

Tarski, A., Mostowski, A., & Robinson, R. (1953). Undecidable Theories. North-Holland, Amsterdam:
Studies in logic and the foundations of mathematics.

Tennant, N. (1978). Natural Logic. Edinburgh University Press.

Vermeulen, C. F. M. (2000). Text structure and proof structure. Journal of Logic, Language, and
Information, 9(3), 273-311.

@ Springer

A Step Towards Absolute Versions of Metamathematical Results 291

64.

65.

66.

67.

68.

Visser, A. (1989). Semantics and the liar paradox. In D. Gabbay & F. Guenthner (Eds.), Handbook of
Philosophical Logic (Vol. IV, pp. 617-706). Dordrecht: Reidel.

Visser, A. (2006). Categories of theories and interpretations. Lecture Notes in LogicIn A. Enayat, I.
Kalantari, & M. Moniri (Eds.), Logic in Tehran (pp. 284-341). Cambridge University Press.

Visser, A. (2011). Can we make the Second Incompleteness Theorem coordinate free? Journal of Logic
and Computation, 21(4), 543-560.

Visser, A. (2016). The second incompleteness theorem: Reflections and ruminations. In L. Horsten &
P. Welch (Eds.), Godel’s Disjunction: The Scope and Limits of Mathematical Knowledge (pp. 67-91).
Oxford University Press.

Wehmeier, K. (2018). The proper treatment of variables in predicate logic. Linguistics and Philosophy,
41(2), 209-249.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	A Step Towards Absolute Versions of Metamathematical Results
	Abstract
	1 Introduction
	1.1 Self-Reference and Notation

	2 Technical and Philosophical Preliminaries
	2.1 Arithmetical Languages
	2.2 Informal vs. Precise Metamathematical Theorems

	3 An Abundance of Notation Systems
	3.1 Notation Systems on Strings
	3.2 Algebraic and Tree-theoretical Notation Systems
	3.3 Notation Systems on Sets and Numbers
	3.4 Quantification and Cross Reference

	4 A Unified Framework for Notation Systems
	4.1 Outline of the Framework
	4.2 Proto-Expressions
	4.2.1 Logical Notions and Notations for Proto-Expressions

	4.3 Notation Systems
	4.3.1 Data Structures
	4.3.2 Implementations of Proto-Expressions
	4.3.3 Logical Notions and Notations for ι-Expressions

	4.4 Gödel Numberings
	4.5 Absolute Versions of Metamathematical Results

	5 Deviancy
	5.1 Deviant Implementations
	5.2 Deviant Data Structures
	5.3 The Failure of Diagonalisation

	6 Admissible Notation Systems
	6.1 Provability
	6.2 Definability
	6.3 Computability

	7 Invariance Results
	7.1 Invariant Diagonalisation
	7.2 Formalisation Independence
	7.3 Conclusion

	Appendix A. Many-Sorted Algebras
	Appendix B. Quine-Bourbaki notation
	Acknowledgements
	References

