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Abstract
An increasing amount of contemporary philosophy of mathematics posits, and theo-
rizes in terms of special kinds of mathematical modality. The goal of this paper is to
bring recent work on higher-order metaphysics to bear on the investigation of these
modalities. The main focus of the paper will be views that posit mathematical contin-
gency or indeterminacy about statements that concern the ‘width’ of the set theoretic
universe, such as Cantor’s continuum hypothesis. Within a higher-order framework I
show that contingency about the width of the set-theoretic universe refutes two ortho-
doxies concerning the structure of modal reality: the view that the broadest necessity
has a logic of S5, and the ‘Leibniz biconditionals’ stating that what is possible, in
the broadest sense of possible, is what is true in some possible world. Nonetheless, I
suggest that the underlying picture of modal set-theory is coherent and has attractions.

Modal logic has played a large role in contemporary philosophy ofmathematics.Many
ideas about mathematical objects, especially sets, have been fruitfully studied using
distinctivemathematical modalities according towhich somemathematical truths, and
perhaps also mathematical objects, are contingent.1

From theperspective ofmore traditionalmodalmetaphysics, the postulationof these
mathematical modalities carries some substantive commitments. They conflict with

1 These include, but are not limited to: [13, 14, 24, 34, 37, 45, 47, 55, 57, 62]. In the set-theoretic case,
examples of contingent statements put forward in the literature can be roughly divided into those about
height, such as large cardinal hypotheses, and those about width, such as the continuum hypothesis. This
trend is certainly not limited to contemporary philosophy of mathematics: there are, for instance, many
connections between intuitionistic mathematics and modal logic.

This paper has benefited greatly from discussions with Zach Goodsell, Chris Scambler, Joel Hamkins and
Jeff Russell on issues relating to this paper.
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two commonly held theses, found in Kripke [42]: (i) that the truths of mathematics are
metaphysically necessary (and that there is no metaphysical contingency about what
mathematical objects there are), and (ii) that metaphysical necessity is the broadest
kind of necessity there is. Given the first it follows that these mathematical modalities
are neither identical to, nor restrictions of the more familiar notion of metaphysical
necessity as it is normally understood: modal reality is richer than we thought.

This invites a number of further questions about the structure of modal reality, now
understood not as questions about the features of metaphysical modality specifically,
but about modalities in general and their relationships. The goal of this paper is to
explore some of these questions in the context of a specific higher-order theory of
modalities. In this framework, a notion of broad necessity emerges which has all
modalities—mathematical, metaphysical or otherwise—as restrictions.

My focus will be on the implications of views that posit mathematical contin-
gency or indeterminacy about statements that concern the ‘width’ of the set theoretic
universe—a prime example being Cantor’s continuum hypothesis. I will argue that this
requires rejecting two further orthodoxies concerning the structure of modal reality.

The first departure from orthodoxy is that we must embrace a radical rejection of
Brouwer’s principle—it is possible that there are truths that are possibly impossible
(Section 5). The rejection is radical because we must accept the existence of such
truths when ‘possible’ and ‘impossible’ are understood in their broadest senses. (It is
widely thought that Brouwer’s principle fails for the mathematical modalities. One
consequence of the more radical rejection, by contrast, is that it rules out backwards
looking modalities like those posited by Studd [62].)

The second departure fromorthodoxy (Section 6) is thatwemust reject the so-called
Leibniz biconditionals, stating that what is possible, in the broadest sense of possible,
is what is true in some broadly possible world; an assumption that has almost been
taken for granted in modal metaphysics, and has been very influential in epistemology,
philosophical logic, natural language semantics, and many other disciplines.

Common to both of these arguments is the idea that, if there is width contingency,
information encoding the membership conditions for merely possible subsets of an
actual set cannot exist in actuality or else the sets would actually exist after all (by
the separation axiom). Brouwer’s principle ensures that there are actual individuals
(things that might have been sets) corresponding to every merely possible set, and
these individuals contain information about their possible membership conditions.
The Leibniz biconditionals give us the ability to single out, using maximally specific
properties, merely possible sets, letting us do the same. Section 7 argues that these
conclusions hold even when we weaken the quantificational logic to accommodate
contingent existence. It is common in the literature on quantified modal logic to appeal
to a distinction between the ordinary “inner” quantifiers, and the “outer” quantifiers
which are governed by a classical quantificational logic. Thus even if the individuals
and properties encoding this information about possible membership conditions don’t
properly exist, but exist only in the outer sense, the same sort of reasoning can still
be applied. The view thus must accept a radical kind of contingency about what
there is: while the standard view is that there is only contingency about what there is
according to the inner quantifiers—the outer quantifiers have a “constant domain”—
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the view under consideration must allow even the classical outer quantifiers to have
an “expanding domain” interpretation.

In the final section of the paper I turn to the question of whether mathematical
contingency is viable, despite these negative results, and if so how pervasive it is.
I conjecture that against a minimal background logic of mathematical modality it
is consistent that there is a wide range of width contingency, and suggest that the
resulting picture still has attractions. On the other hand, some authors have suggested
that mathematical indeterminacy is so pervasive it could even arise in arithmetical
contexts.2 I end by pointing out that, against the same minimal background logic
for the mathematical modalities, arithmetic is determinate and non-contingent (cf.
Goodsell [31]), raising the prospect of a more general project to figure out what makes
a mathematical statement capable of being indeterminate or contingent.

1 Set-Theoretic Contingency: Height andWidth

Let’s begin by delineating some different motivations for positing mathematical con-
tingency. We will look at three different motivations for positing contingency about
the sets in the literature, and distinguish two distinctive sorts of contingency which
I’ll gloss as height and width contingency.

Motivations for positing height contingency can be traced back to Cantor himself.
Cantor’s view was that the transfinite ordinals—mathematical objects representing
the order-types of well-orders—continued indefinitely through the operations of tak-
ing successors and limits. Some have taken Cantor’s remarks to suggest a kind of
mathematical contingency. Not any collection of sets form a set, on pain of Russell’s
paradox. But they nonetheless could have formed a set—a stage Vκ of a possible larger
set-theoretic universe. Charles Parsons (Parsons [47]), and several subsequent authors,
have been more explicit about the modal in this formulation.3 For now we’ll give this
idea the following gloss:4

Height Extensibility Necessarily, the sets (whatever theymay be) are possibly a proper
initial segment of all the sets.

Here the sense of possibility in play is, presumably, not metaphysical possibility but a
primitive kind of mathematical possibility in need of further explication (I will offer
some tentative suggestions in Section 4).

More recently there has been significant interest in a different kind of indefinite
extensibility inspired by Paul Cohen’s method of forcing. Joel Hamkins, in a number

2 See [19, 64].
3 See [24, 45, 62]. I primarily draw from the latter two papers.
4 Actually Zermelo’s idea seems to be importantly different from that of Parsons’, formalized below.
Zermelo above is concerned with the structure of ZF-relations generally, without selecting any particular
one for attention, so his form of indefinite extensibility is one formulable in the language of pure higher-
order logic alone [7]. By contrast set-theory is often taken to be the study of one particular ZF-relation,
membership, and Parsons, Linnebo and Studd each formulate their versions of indefinite extensibility in
terms of it.
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of papers, has suggested that, even when we restrict ourselves to a particular infinite
stage Vα—‘the sets of rank α’—one can always consider a larger set theoretic universe
that contains more sets of that rank.5 For instance, the method of forcing lets one
describe, within any given set-theoretic universe, a larger one that contains more sets
of natural numbers.6 We have an explicitlymodal articulation of related ideas in Builes
and Wilson [14], Pruss [53], Scambler [55] .7 Let’s give this idea the following gloss:

Width Extensibility Necessarily, the sets of rankα (whatever theymay be) are possibly
properly contained in the sets of rank α.

Again, the notion of possibility here is a primitive mathematical one, which may
be identical to or orthogonal to the one appealed to above. These latter authors are
typically interested inWidth Extensibility because they want to make sense of the idea
that all sets are countable in a strictly modal sense:

Countabilism Every set is ‘countable’ in the sense that for any set x , it is possible that
there is an injection from the natural numbers to x .

For some motivations for Countabilism see Builes and Wilson [14], Meadows [46].8

Countabilism also follows from the following schema, where A can be any first-order
formula of set-theory and p � A(x̂1, . . . , x̂n) is a statement in the language of first-
order set-theory that expresses in the object language the claim that A(x1, ..., xn) is
true in every forcing extension by a generic filter containing p:9

ForcingPossibilism If there is a partial orderP and p ∈ P such that p � A(x̂1, . . . , x̂n),
then it’s possible that A(x1, . . . , xn).

Forcing Possibilism legitimizes a certain practice that seems commonplace among
set-theorists. The set-theorist I have in mind sets out theorizing in the language of set
theory. They may then consider various partial orders P belonging to the cumulative
hierarchy, and its associated collection of dense subsets D, and ask seemingly modal
questions of the form ‘what would the set-theoretic universe have looked like if there

5 See, for instance, [33].
6 One can even describe what these new sets of natural numbers will have to look like, although they will
be in some sense ω-inconsistent from the perspective of the present universe.
7 Hamkin’s also uses modal logic in his work to spell out the multiverse view–[32, 35]–but it seems clear
that his uses of the modal operator �A are really abbreviations for something quantificational: �A means
A holds in all forcing extensions of the universe, where this is a statement that can be articulated in the
extensional language of first-order set theory.
8 Builes and Wilson [14] argue that while height extensibilism can be motivated by a certain sort of
attitude to Russell’s paradox—the non-self-membered sets do not in fact form a set, they could have done—
Countabilism follows from taking a parallel attitude toward Cantor’s theorem.
9 Countabilism follows since, for any set, x , the partial order of finite partial functions from ω to x forces
the claim that x̂ is countable, so Forcing Possibilism implies that x is possibly countable. This principle also
implies the principleHE from Scambler [55]. A proof that HE and Countabilism are equivalent correspond
to theorems 3 and 4 of Scambler [55] (see p.1092). One difference is that Scambler’s framework uses plural
quantification.
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had been a filter that had intersected every element of D?’. For instance, P might
consist of finite bits of information about a potential function from ω to {0, 1} ordered
by informativeness, and the postulated filter then consists of a collection of these bits
of information that approximate a total function f : ω → {0, 1} which differs from
every actually existing function over somefinite bit of information (since, for any actual
function, the set of finite partial functions not contained in that function is dense).10

Consequently, by positing the possibility of such a filter we describe a possible set-
theoretic universe containing a new function from ω to {0, 1}. One might attempt to
make sense of this practice by interpreting the set-theorist’s quantifiers as initially
ranging over a restricted portion of the ‘real’ sets, and the possibility containing the
new filter as simply arising from enlarging the range of those quantifiers. But this
approach assumes there is a background universe of ‘real’ sets—consisting of all the
sets there are—yet the procedure for describing new sets can be applied just as readily
to this background universe of all sets as it can to any of its restrictions. Granted, it
is possible still to reduce this seemingly modal talk to extensional quantification over
possibilities, in the style of Lewis [43], even when it is applied to the entire universe of
sets.11 Each element ofPmaybe thought of as a ‘possibility’—in our running example,
the possibility specifies the behaviour of a new function on ω on finitely many of its
arguments. In the language of set theory, one can define a relation of a sentence
being ‘true at’ a possibility, from which we may paraphrase any claims of possibility
and necessity extensionally, in terms of existential or universal quantification over
possibilities. Nonetheless, I find the idea that the set-theorist is describing genuine
contingency about the set-theoretic universe to be deeply attractive.

Apart from Countabilism and Forcing Possibilism, contingency about the width
of the set-theoretic hierarchy can also be motivated by considerations of set-theoretic
indeterminacy. Cantor’s continuum hypothesis, which we will abbreviate CH, is the
claim that every infinite set of real numbers (identified with a certain set in our iterative
hierarchy) can either be put in one-to-one correspondence with the set of all real
numbers or can be put in one-to-one correspondence with the natural numbers. This
claim is, surprisingly, left unsettled by presently accepted mathematics: no currently
accepted axiomatic theory (whether first-order or higher-order) implies CH or implies
its negation.12 Perhaps this is a symptom of a deeper kind of indeterminacy about the
truth value of this statement. According to this picture, our state of ignorance about
the continuum hypothesis is akin to our ignorance about whether a borderline heap is a
heap or not: there is simply no fact of the matter, and so additional investigation would

10 More precisely, P consists of the finite partial functions ω⇀{0, 1} ordered by inculsion. Every actually
existing function f : ω → {0, 1} determines a filter of finite partial functions F (its finite subsets), but will
also be disjoint from one of the actual dense subsets of P, namely P \ F . Thus if there had been a filter of
partial functions that intersected every element of D, it’s union would have to be a totally defined function
on ω that doesn’t actually exist.
11 Lewis bases his reduction on a Kripke semantics, which trades on complete possibilities. While these
possibilities are partial, there is a parallel semantic treatment of modality in terms of quantification over
partial possibilities (see [39]), and so a parallel reduction of modal talk to extensional quantification is
possible in this context as well.
12 It is sometimes suggested that second-order set theory settles the continuum hypothesis (see [40] p150),
but these authors have a semantically defined theory in mind when they talk about by ‘second-order set
theory’.
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yield no headway. Indeterminacy seems to be a kind of contingency, and in order for
the continuum hypothesis to be contingent in this sense, it must be contingent what
real numbers there are.

2 Why dowe needmodalities?

What does the modal way of formulating these questions afford us? There is a way
of thinking about mathematical contingency that isn’t genuinely modal. Consider, by
analogy, the way that modality is treated by David Lewis: he uses modal operators, but
he ultimately paraphrases those operators away in extensional terms, using first-order
quantification over concrete possible worlds.13

The use of modal operators in Hamkins [33], like in Lewis, is similarly superficial,
and is ultimately spelled out in terms first-order quantification over universes—indeed
the modal operators in that setting can be eliminated entirely in terms of the first-order
set-theoretic primitives using forcing theoretic ideas. Similarly, a common story about
indeterminacy, supervaluationism, might make room for some sort of set-theoretic
indeterminacy without positing any genuine set-theoretic contingency. Indeterminacy,
for the supervaluationist, ismore perspicuously expressedby ametalinguistic predicate
than by a propositional operator. A sentence is indeterminate when there are several
candidate, or “admissible”, interpretations of the vocabulary appearing in the sentence,
some of which make the sentence true and others which make the sentence false.

In this section I’ll argue that these imitative uses of mathematical contingency
cannot properly capture indeterminacy or contingency about the width of the set-
theoretic universe. This inability follows, essentially, from the existence of categoricity
theorems that can be formulated and derived in a minimal (axiomatic) higher-order
logic. By contrast, I will suggest that genuinely modal formulations of contingency
and indeterminacy are not subject to these results.

Higher-order logic is a very natural framework for investigating these questions.
First, following (Williamson [68] p.422, Williamson [66] §4), we can express the
existence of genuine (as opposed to metalinguistic) contingency and indetermi-
nacy using a higher-order generalization into sentence position: ∃t p(♦p ∧ ♦¬p) or
∃t p(¬�p ∧ ¬�¬p). The truth of these sorts of existential generalizations do not
get preserved under attempts to paraphrase away modality, and may be thought to
capture the difference between genuine and ersatz contingency.14 Second, it seems to
be the appropriate framework for articulating the extensional paraphrases of mathe-
matical contingency claims. There are well-known difficulties with simply identifying
the supervaluationists’ admissible interpretations of ‘∈’, or Hamkins’ universes, with
first-order individuals, such as set-theoretic models.15 By contrast, if we can quan-
tify directly into the position of a binary predicate, such as ∈, things run much more
smoothly. This is because a higher-order generalization does not need to be understood

13 Lewis [44], and for further relevant discussion, Williamson [68] section 7.4.
14 For a discussion of one sort of problem that arises paraphrasing the propositional quantifiers in David
Lewis’s extensional framework, see Dorr [16].
15 See Section 1 of Williamson [65].
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as a notation for quantifying over another sort of individual, such as sets, classes or
properties—this would gain us nothing. We can rather think of them as devices for
making generalizations into grammatical positions other than that of a singular term.
The move from ‘John talks’ to ‘∃X John Xs’ has the same status as the move from
‘John talks’ to ‘∃x x talks’ — it is immediate and logical, and in neither case is it
dependent on the existence of abstract objects, like sets, classes, or properties. For if
‘John talks’ does not logically imply the existence of abstract objects, nothing that
‘John talks’ logically implies can either. Similarly, we do not need to rely on set-theory
to specify the intended interpretation of the higher-order quantifiers (a set-theoretic
interpretation of ∃R would not license the move from A(∈) to ∃R.A(R)), or even
to characterize its logic.16 Our approach will be axiomatic—much like axiomatic set
theory does not require a set-theoretic semantics to proceed, neither does higher-order
logic. Indeed, an argument due to Harris [36] suggests we do not need to specify the
meanings of the higher-order quantifiers in independent terms: the axioms and rules
governing the higher-order quantifiers pin them down uniquely, in the sense that any
other generalizing device satisfying them are logically equivalent when they appear
prefixed to any sentence.

Returning to the issue at hand, we can use higher-order generalizations to provide
a supervaluationist account of the indeterminacy of the continuum hypothesis:

Supervaluationism The symbol ‘∈’, as used by mathematicians, has multiple admis-
sible interpretations. Under some such interpretations ‘CH ’ is true, and under others
it is false.

Here ‘admissibility’ should be a higher-order predicate that combines with a binary
predicate to form a sentence, and the quantification in question is higher-order. Using
e, t and σ → τ respectively to indicate expressionswith the type of a name, a sentence,
and of an expression that combines with an expression of type σ to form an expression
of type τ , we can represent the admissibility predicate as an expression, Adm of type
(e → e → t) → t . We can then formulate the supervaluationist claim flatfootedly as:

1. ∃e→e→t RS(Adm R ∧ Adm S ∧ CH R ∧ ¬CH S)

where CH R is the result of replacing ∈, in the statement of the continuum hypothesis
in first-order set theory, with the second-order variable R, and ∃e→e→t is the device
for making generalizations into the position of a binary predicate. Statements about
universes can be given a similar higher-order rendition, without falling into the para-
doxes that would ensue if they were treated as further individuals. (Note, however, that
having sharply distinguished quantification from singular quantification over proper-
ties, we will follow a common practice of using talk of relations and properties in
English to indicate formal sentences that involve higher-order generalizations; strictly
speaking the indicated sentences do not quantify over properties or relations.)

16 It is common in mathematical logic to identify higher-order logic with the set of sentences true in full
extensional Henkin models. Apart from eluding axiomatization, this logic has the drawback of validating
the Fregean principle of extensionality in which propositions, properties and relations are individuated by
coextensiveness, ruling out any kind of genuine contingency in the logic.
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Fig. 1 The axioms of ZF

Now what sort of relations could be admissible interpretations of ‘∈’, or represent
the membership relation of a universe? The issues at stake here are parallel; we will
focus on the notion of admissibility to keep discussion brief. There are a great many
properties of relations that can be expressed in a higher-order language. An admissible
notion of membership, R, should of course be extensional: if two individuals in the
field of R are such that the same things bear R to them — i.e. R counts them as
sets with the same members — then they should be the same. Similarly, since sets
are built up in stages, it’s natural to think that an admissible notion of membership
should be well-founded, which can also be given a straightforwardly higher-order
formulation. Indeed, for each axiom of second-order ZF—listed in Fig. 1—there is a
corresponding property of relations which ought to be had by any candidate notion
of membership. These properties are obtained by replacing ∈ in the principles in
Fig. 1 with R, and restricting the quantifiers to the field of R—i.e. replacing ∀ex with
∀e(∃y(Rxy∨Ryx) → and doing similar things for ∃e (the restriction is necessary even
when R =∈ because we are interpreting ∀e as an absolutely general quantifier that
ranges over tables and chairs as well as sets). The conjunction of these five properties
is a single second-order sentence ZFR in a single higher-order variable R. Using the
device of λ-abstraction we get a definition belonging to the language of pure higher-
order logic:

ZF := λR.ZFR

Thus, our hypothesis is that admissible precisifications ofmembership areZF relations:

2. ∀e→e→t R(Adm R → ZF R)

In order for there to be indeterminacy in the supervaluational sense, there must be
variation between the ZF relations. However Zermelo [69] famously showed that the
variation you can have between ZF relations is very limited: ZF relations can differ
about their ‘height’—how long the iteration process continues—but cannot differ
about the ‘width’—what the sets are like at a particular stage. If you take the series of
stages V R

0 , V R
1 , ... of a ZF relation R—constructed by repeatedly applying Rs internal

powerset operation to its emptyset—they will be isomorphic to the stages V S
0 , V S

1 , ...

of another ZF relation S, provided those stages both are reached in the respective
constructions. It follows that the structure of the pure sets is pinned down uniquely
up to any given stage: the only freedom one has concerns how long the sequence of
stages extends. In particular we have

3. ∀e→e→t RS.(ZF(R) ∧ ZF(S) → (CH(R) ↔ CH(S)).
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Combined with the claim that admissible relations are ZF relations, we refute the
supervaluational account of the indeterminacy of CH: 1-3 are inconsistent. In gen-
eral, these extensional/metalinguistic alternatives to genuine contingency seem to only
make space for height contingency, not width contingency.

Now let’s considerwhat happens if we posit real contingency about the set-theoretic
universe: notmere indeterminacy aboutwhat our set-theoreticwords refer to, but rather
indeterminacy in the sets themselves, concerning how they are related to one another
by the membership relation.17 This indeterminacy would not be metalinguistic, but
a kind of contingency concerning the pattern of the membership relation among the
individuals. Here we must thus assume a notion of propositional indeterminacy that
is not reduced or explained in terms of linguistic indeterminacy, but is simply another
propositional operator alongside the other more familiar modal operators.

The logical situation with respect to Zermelo’s theorem is somewhat different here.
Zermelo’s theorem is, in some sense, an ‘intra-world’ constraint: no two ZF relations
from the same possibility can differ in width. But there is no obvious way to get an
‘inter-world’ analogue of Zermelo’s theorem. It’s instructive to look at one strategy for
proving such a theorem, and see where it might fail. The strategy would be to pick the
actual sets andmembership relation out in amodally rigid way, and then use Zermelo’s
theorem to compare the rigidified membership relation with the sets at possibilities
where they might have changed. Let us suppose, then, that we can rigidly pick out
to the things which are in fact sets and rigidly pick out the membership relation.
Call this rigid relation ∈∗. One might hope to argue, as above, that necessarily, ∈∗
and ∈ agree in width, i.e. that the actual sets are isomorphic to the sets under the
membership relation, whatever that might be at the relevant possibility, by appealing
to the necessity of Zermelo’s theorem. In which case ∈ and ∈∗ would agree about
CH, and of course the value of CH according to ∈∗ is not contingent given ∈∗ is by
stipulation rigid. However, in order to apply Zermelo’s theorem, we need that ∈∗ is not
only a ZF relation in actual fact, but necessarily a ZF relation. But crucially ∈∗ could
fail to satisfy the separation axiom, especially if we consider possibilities at which
there are new properties for the second-order quantifier to range over. For instance, if
it is possible that there be a set, x ⊆ N, of natural numbers that doesn’t in fact exist (as
one would expect for the contingency of CH) then there is a new property, λy.y ∈ x ,
which does not define a subset∗ of N according to ∈∗.

Similar morals may be drawn for the Width Extensibilist. What we observe, firstly,
is that the possibility of a ZF relation containing more sets of rank α cannot be actually
witnessed, for by Zermelo’s theorem any two ZF relations are isomorphic up to a given
rank (provided they both extend that far). Nonetheless, Width Extensibility is on first-
looks consistent with Zermelo’s theorem because the actual sets of rank α, whatever
theymight be, could possibly fail to contain all the sets of rank α, assuming there could
have been more properties and thus more conditions with which to define subsets of
sets with rank below α. We see then that both sorts of width contingency require the
possibility not merely of ‘new’ type e entities, but also of ‘new’ type e → t properties.

17 See Bacon [3], Goodsell [31]. On the possibility of non-linguistic indeterminacy, Goodsell writes “On
this conception, for arithmetic to be indeterminate is for the numbers themselves to have an indeterminate
structure, independently of how we speak about them” p.128.
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3 The Structure of Modal Reality

The sorts of mathematical contingency posited will have wider implications for the
structure of modal reality. In this section and the next three we articulate some of these
connections.

Several things require untangling before we can draw these implications. For a
start, what do we mean by the structure of modal reality? Often metaphysicians mean
by this various theses formulated in terms of a particular kind of modality, Kripke’s
notion of ‘metaphysical necessity’. But as this modality is used by Kripke and subse-
quent philosophers, mathematics is metaphysically necessary (see Kripke [42] p36).
It follows that the mathematical contingency and indeterminacy appealed to above
cannot be explained in terms of metaphysical contingency or any restriction of it, and
the possibilities on which mathematical indeterminacy and extensibility theses are
predicated are not metaphysical possibilities. These theses concern the structure of
modality in general, but not the structure of metaphysical necessity.

To theorize about the structure of modal reality in its entirety, we must be able
to talk about all the modal notions there are, metaphysical modality and otherwise,
and talk about the logical relationships between these modal notions. Crucial to this
enterprise is the ability to specify what it means for an operator to be a modality,
and to specify the logical relationships between modalities—when one modality is as
broad as another. (For instance, we have seen above that metaphysical necessity is
not as broad as mathematical necessity or determinacy.18) Indeed, higher-order logic
provides us with the perfect framework to carry this out, for in the language of higher-
order logic one can quantify directly into the positions occupied by sentences and by
sentential operators allowing one to formulate definitions of these notions. Once this
is done it is possible to then introduce a notion of broad necessity, an operator defined
as possessing every necessity: what is broadly possible concerns what is possible in
any sense of ‘possible’. We will argue that the study of the structure of broad necessity
has a good claim to being the study of the ‘structure of modal reality’ simpliciter.19

The possibilities posited by this notion can be seen, by definition, to subsume the
determinacy-theoretic possibilities and mathematical possibilities. It follows that any
possibilities in which the continuum hypothesis has a different truth value, or in which
there are more ordinals than there in fact are, will automatically be broad possibilities.
So principles about the structure of broad necessity can have a direct bearing on the
question of mathematical contingency and vice versa.

In order to start theorizing about modalities we face a choice. If we assume a
certain thesis about the granularity of reality—roughly, that propositions, properties
and relations are individuated relatively coarsely, by provable equivalence in aminimal
system of higher-order logic called H—it is possible to give completely reductive
definitions of being a modality, being as broad as, and broad necessity. If we wish
to be neutral on the matter of propositional granularity, we appear to need another

18 The case that metaphysical necessity is not as broad as determinacy can be made even with respect to
non-mathematical claims of vagueness, given the supervenience of the vague propositions on the precise;
see [2, 3].
19 Certainly it has a better claim to this than the study of metaphysical necessity, given the remarks above.

123

A. Bacon140



Fig. 2 Classicism, C

primitive. A higher-order predicate, Nec, being a necessity, of type (t → t) → t ,
is a natural primitive for this purpose.20 We will take the former route of pursuing a
logicist account of modality at the expense of neutrality of grain, but if you do not
accept this theory of granularity everything I say can in a precise sense be translated
into the latter framework by disregarding our definition of ‘Nec’, replacing subsequent
uses of it with the primitive, and restricting the quantifiers in an appropriate manner.21

The system we will work in, Classicism, or simply C, is axiomatized in Fig. 2.
The language of Classicism is that of higher-order logic: it contains infinitely many
variables of each type, constants → of type t → t → t and ∀σ of type (σ → t) → t
for each type t , and complex terms aremade exclusively by application and abstraction:
you can make a term (MN ) of type τ from terms M and N of types σ → τ and σ , and
you can make a term λx .M of type σ → τ from a term M of type τ and a variable,
x , of type σ . The other logical operations—disjunction, existential quantification, and
identity at each type—can be introduced by definition in any of the standard ways,
and as usual we will write these in infix notation where appropriate, and suppress λ

when it appears after a quantifier. The first seven axioms and rules in Fig. 2 we shall
call H, and encode a relatively neutral higher-order logic: it consists of the standard
axioms of classical logic for the quantifiers and truth-functional connectives, and an
axiom governing the behaviour of λ-terms. The Rule of Equivalence ensures that the
theory proves the claim that two propositions, properties or relations R and S are
identical whenever it can prove that R and S are coextensive.22 It is the last rule that
that distinguishes Classicism from more structured theories of granularity: it implies,
for instance, that being old and wise and being wise and old are the very same property
(λx .(Fx ∧Gx) =e→t λx .(Gx ∧ Fx)) on account of their being provably coextensive
from the laws of classical logic.

20 One could instead take broad necessity as the primitive, an approach taken in Dorr et al. [18]. However,
by taking being a necessity as primitive we can provide a justification for the posit of a broadest necessity,
rather than imposing that assumption by fiat.
21 The logicist account is spelled out in more detail in Bacon [2] and chapter 7 of Bacon [6], and the
theory with a primitive necessity predicate, Nec, in Bacon and Zeng [9]. The latter shows that the theory
Classicism used in Bacon [2, 6] is interpretable in their theory, and that their theory is indeed neutral about
the granularity of reality.
22 Other presentations of this system, with different axioms and rules, can be found in Bacon [2], Bacon
and Dorr [8].
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Using the purely logical language of higher-order logic it is possible to say that a
given operator, X of type t → t , has a ‘normal modal logic’. Roughly, it is normal if
the smallest collection of propositions containing (i) the tautologies, (ii) closed under
modus ponens, (iii) containing the claim that X satisfies the normality axiom, and
(iv) closed under X -necessitation are all true. Because we can quantify into sentence
position we can state what it means for an operator to be closed under modus ponens
with a single generalization:

MP-Closed := λX .∀p(X(p → q) → Xp → Xq)

Given a modal operator �, we can similarly say what it means for a ‘collection’
of propositions, represented by an operator Y of type t → t , to be closed under
necessitation for �: ∀p(Y p → Y (�p)).

Nec-Closed := λXY .∀p(Y p → Y (Xp))

We can then state that p is in the normal modal logic for � by saying that p belongs
to any collection of propositions that contains the tautology, is closed under modus
ponens and necessitation for X , and contains the claim that X is closed under modus
ponens (i.e. the K axiom):

InNormalModalLogicOf := λXp.∀Y (Y� ∧ MP-Closed Y∧
Y (MP-Closed X) ∧ Nec-Closed(X , Y ) → Y p)

Definition 3.1 (Weak Necessity) An operator, X, is a weak necessity iff every propo-
sition in its ‘normal modal logic’ is true.

WNec := λX .∀p((InNormalModalLogicOf X)p → p)

The notion of aweak necessity is sufficient for applications of normalmodal logic: if
one considers an interpreted propositional modal language in which ‘�’ is interpreted
by a weak necessity, then every theorem of the smallest normal modal logic, K, will be
true. A weak necessity is not only normal but necessarily so with respect to itself. In
metaphysics, however, a stronger notion of necessity is in play: a true necessitymustn’t
be contingently normal with respect to any other kind of necessity. A logically perfect
agent’s knowledge may be normal, and known by them to be so, but it is not usually
physically necessary, say, that they are logically perfect; so this agents knowledge is
not a necessity in the operative sense.

Definition 3.2 (Strong necessity) An operator X is a strong necessity iff, for every
weak necessity Y , it is Y -necessarily a weak necessity.

Nec := λX .∀Y (WNec Y → Y (WNec X))

Wecan now spell out what it means for one necessity to be as broad as another: there
must be a strict implication from one necessity to the other. It would be arbitrary to
single out any particular necessity to articulate this strict implication, so we require the
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implication to be strict in every possible sense. In fact, broadness is a special case of the
more general notion of entailment. In the below we write x for a sequence of varibles
x1...xn , σ for a sequence of type σ1...σn , and σ → τ for the type σ1 → ... → σn → τ .

Definition 3.3 (Entailment) Given two relations, R and S, of type σ → t , R entails S
iff for every necessity Z, it’s Z-necessary that any things standing in R stand in S.

≤σ := λRS.∀t→t Z(Nec Z → Z∀x(Rx → Sx))

We can also introduce ‘multi-premise’ entailment. If X of type (σ → t) → t rep-
resents a collection of propositions, properties or relations we say it entails another
proposition, property or relation R iff anything entailing everything in X entails R,
and we write this X ≤ R:

≤:= λXR∀S(∀T (XT → S ≤ T ) → S ≤ R)

Given two necessity operators, X and Y , we say that X is as broad as Y iff, X entails
Y , i.e. X ≤t→t Y .

We modeled our notion of a necessity on the idea of a normal modal operator. In a
normal modal logic one can prove that if some finite list of propositions, p1, ..., pn ,
are each necessary, so is anything that they jointly entail. The analogous infinitary
principle, that anything entailed by an arbitrary collection of necessary propositions
is also necessary by contrast, cannot be proven from the principles of normal modal
logic.23 Arguably there are necessities, such as having an objective chance of 1, that
do not satisfy this further principle, so we do not build it in to our definition. At any
rate, we can specify this further property:24

Definition 3.4 (Infinitely closed necessity)A necessity, X, is infinitely closed iff, when-
ever a proposition is entailed by the collection of all necessary propositions, that
proposition is also necessary: ∀q(X ≤ q → Xq).

Nec∞ := λX(Nec X ∧ ∀q(X ≤ q → Xq))

Of course, for any necessity, X , there is another necessity X∞ defined as being a
proposition that is entailed by the X necessities: X∞ := λp.X ≤ p.

Proposition 1 If X is a necessity, its infinite closure X∞ is an infinitely closed necessity
operator.

Finally, we define broad necessity as being necessary in every sense of necessity

Definition 3.5 (Broad Necessity) p is broadly necessary iff it’s X-necessary for every
necessity X

� := λp.∀X(Nec X → Xp)

23 Ifwe add infinite conjunctions to propositionalmodal logic, this strengthening is valid in the usualKripke
semantics, but not in variant semantics such as the topological semantics for S4, and so is not derivable
from K augmented with the logical laws governing infinitary conjunction.
24 See [9] p160.
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In order to justify the title ‘broad necessity’ one must show that� does indeed meet
our criteria for being a necessity, and that it is as broad as any other necessity. These
are verified by the following theorem.25

Theorem 2 The following are theorems of Classicism

1. Nec�
2. Nec∞ �
3. �∀X(Nec X → � ≤ X)

Next we list some theorems of Classicism that concern the logic of broad necessity.

Theorem 3 The following are theorems of Classicism or rules under which it is closed:
K ∀t p∀t q(�(p → q) → �p → �q)

T ∀t p(�p → p)

4 ∀t p(�p → ��p)

CBFσ ∀σ→t F(�∀σ x Fx → ∀σ x�Fx)

NEσ ∀σ x�∃σ y.x =σ y

Necessitation If A is a theorem of Classicism, so is �A

Note that the first three axioms and Necessitation ensures the theorems of S4 for �
belong to Classicism. The first three axioms straightforwardly fall out of the fact that
� is the broadest necessity. K is guaranteed by the fact that � is a necessity. T follows
from the fact that the truth operator (λp.p) is a necessity, and � is as broad as it; 4
follows from the idea that the composition of two necessities is a necessity, so that �
must be as broad as λp.��p.

Some care is needed when interpreting the theorems CBFσ and NEσ of Classicism.
In this paper we concieve of the symbols ∀σ and ∃σ as devices of generalization. The
job description of a generalization, like ∀σ x .Fx , is to express, in a single sentence,
something that without it could only be approximated with an infinite schema consist-
ing of the generalizations instances—formulas of the form Fa. It is this inference from
∀σ x .Fx to Fa in particular that is key in deriving CBFσ and NEσ . But these theorems
are not so attractive when we instead read the first-order ∀e and ∃e in terms of the
ordinary quantificational idioms of English — words like ‘everything’, ‘something’
and ‘exists’. Read that way NEe tells us that everything necessarily exists (in any sense
of ‘necessarily’ you might choose). Many philosophers—contingentists—regard this
is as obviously false. For these philosophers our ∀e and ∃e do not correspond in any
important sense to what exists. Nonetheless, contingentists usually have these general-
izating devices at their disposal under the guise of the so-called “outer” or “possibilist”
quantifiers. Often the outer quantifiers can be defined in terms of the modal operators

25 Proofs of all the theorems to follow may be found in Bacon [6] chapters 7 and 8.
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and the contingentists prefered quantifiers, but even if this is not possible, they can
also be introduced by stipulation via suitable introduction and elimination rules. We’ll
return to this issue in more detail in Section 7; the main point here is that contingentists
should be understanding the ensuing discussion in terms of these outer quantifiers.

4 Mathematical Necessity

This concludes our general theory of modality in higher-order logic. In order to apply
it to the present topic of mathematical modality and indeterminacy we must introduce
newnon-logical operator constants to the logical language to stand for these operations.
I will use the symbol�, andwill read it as the relevant sort ofmathematical necessity or
as determinacy depending on the application. For convenience we will use the terms
‘mathematically necessary’ and ‘mathematically possible’ in a way that is neutral
between these interpretations. Call the language of pure higher-order logic L, and the
result of adding � to it L�.

We must, of course, assume � is a necessity. However, it seems plausible that
it is also closed under arbitrary logical consequences so we will make the stronger
assumption:

Mathematical Necessity Nec∞ �

Let us call the result of adding Mathematical Necessity to Classicism C�.
Of course, “mathematical necessity” is a term of art, and it is certainly open to

someone to posit a notion of necessity that is not infinitely closed and attempt to
theorize about mathematical contingency in terms of that notion instead. But I think
the extra generality gained by weakening infinitary closure is minimal. No progress
will have been made if the continuum hypothesis, say, is technically mathematically
contingent, but the mathematical necessities still settle the continuum hypothesis, in
the sense that they either collectively entail it or entail its negation; the same goes for
any other claim about the width of the set-theoretic hierarchy. Thus on this picture we
shouldn’t care merely about contingency with respect to the mathematical modality,
but also about contingency with respect to the closure of mathematical necessity under
logical consequence, �∞ defined as λp.� ≤ p (recall Proposition 1).26

A second point that is relevant here is that the infinite closure of � can in many
contexts be derived. For instance, on the interpretation of � as the determinacy oper-
ator, one can derive infinite closure from the assumption that infinitary conjunction
is precise, and the assumption that applying precise operations to precise arguments

26 The two set-theoretic assumptions we make about � (outlined below) are either equally plausible when
made about �∞ or follow from the original assumptions about �, so someone insisting on theorizing in
terms of a notion of necessity that is not closed should take our uses of “mathematical necessity” to be
referring instead to the closure of their notion. These assumptions are: (i) that sets are modally rigid, and
(ii) that the axioms of set theory are necessary. It seems just as plausible that sets should be modally rigid
with respect to the closure of mathematical necessity as with respect to mathematical necessity. The claim
that the axioms of set theory of mathematically necessary implies that the axioms of set theory are entailed
(trivially) by mathematical necessities.
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yields precise results (see [5] section III).27 Or, on the reductive interpretations of �
discussed next (e.g. as broad necessity), infinite closure is also derivable by theorem
2.2 above.28

There is a long standing question for themodal extensibilists about the interpretation
of mathematical modality (see §2.3 of Studd [62]). Øystein Linnebo simply writes:

This is not metaphysical modality in the usual post-Kripkean sense. Rather, the
modality [...] is related to that involved in the ancient distinction between a
potential and an actual infinity. (Linnebo [45]p207)

But this tells us very little, and different authors have posited all sorts of modalities
to fill this role. Fine [24], for instance, posits, an ‘interpretational’ modality, whereas
Scambler a dynamic one relating to the abilities of an ideal reasoner (Scambler [55]
p1100). Studd [62], rejects these proposals, and likens the mathematical modalities
more to tense operators, although does not find an interpretation he is fully happy with.
To my mind, these replacements offer no more clarity.

The present framework, however, has an alternative to offer, namely that the relevant
sort of necessity is just broad necessity. Any charge of unclarity here is easily met,
for the notion of broad necessity is as clear as the logical operations from which it is
defined — quantification and the truth-functional operations.

The Broad Necessity of Mathematics � =t→t �

Under this hypothesis, the subsequent discussion would be greatly simplified.
Nonetheless, there are some philosophical views we wish to remain neutral about
that require us to keep them separate. Clearly any mathematical possibility is pos-
sible in the broadest sense, so it is the converse entailment that is at stake: is every
broad possibility mathematically possible? One might worry that broad possibility is
too broad. For instance, some authors have entertained the hypothesis that there is a
notion of logical necessity in which even mathematical theories, such as ZF∈, could
be contingent.29 But the failure of our hypothesis above doesn’t rule out precisely

27 Hartry Field (Field [20]) has suggested that rejecting the closure of the determinacy operator under
infinitary consequence is key to making sense of the paradoxes of higher-order vagueness, which is relevant
on that interpretation of �. But this is not the only solution: [5] provides a different route to avoiding those
paradoxes which avoids the expressive challenges that Field account faces (see also [1, 48] §3.1).
28 There is also amore local point to bemade, namely that the results in this paper only rely on infinite closure
in a small number of places and these appeals can be replaced by a variety of other plausible assumptions
that would have the same effect. The only point this assumption is used in Section 5 is in the proof that if
broad necessity satisfies the Barcan formula then� does too, and in Section 6 in the the proof that, given the
Leibniz biconditionals, mathematical possibility is truth is some mathematically possible world. Either of
these weaker assumptions alone would then suffice for the results in those sections. We mentioned already
the assumption that � = � automatically ensures the infinite closure of � due to the infinite closure of �,
but actually strengthening the assumption that sets are rigid with respect to mathematical necessity to the
same assumption with respect to broad necessity would also suffice.
29 These ideas can be formulated precisely in the present higher-order framework of Classicism— see, for
instance, [4, 6, 8] chapter 8. These views generally imply that distinct individuals can be broadly possibly
identical; on the other hand the idea that distinct sets are mathematically possibly identical would cause
trouble for the attractive idea that it’s mathematically necessarywhich elements a set has. Using Set Rigidity,
stated below, one can prove by transfinite induction that sets aremathematically necessarily distinct (Lemma
23 in Appendix A).
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defined notions filling the roles that we care about. For instance consider:

�ZF := λp.ZF∈ ≤ p

��= := λp.∃t q(q ∧ ♦q ≤ p)

The former builds in the necessity of ZF∈, whereas the latter the necessity of dis-
tinctness.30 The latter also has the virtue that it can be reductively defined in purely
logical terms, and even someone who believed in logical possibility could maintain
the necessity of ZF∈ with the force of � �=. Note that these reductive accounts of � are
all infinitely closed necessities, and so in the presence of these identifications Mathe-
matical Necessity is redundant. Of course, one might also wish to maintain that claims
about the concrete realm are not mathematically contingent, in which case even these
reductions are not plausible.31 We will not take sides on any of these issues—going
forward we treat � as a primitive.

Once we have singled out a suitable closed necessity �, we can formulate various
theses about the interaction of mathematical necessity with mathematical primitives.
Let us now add to the language of mathematical necessity,L�, a binary predicate ∈ of
type e → e → t . Call the resulting language L∈�. Here we make only two assump-
tions about the interaction of � and ∈. First, we will assume that it is mathematically
necessary that ∈ satisfies the axioms of higher-order ZF.

The Necessity of Set Theory �ZF∈

As we noted before, this is compatible with the view that ZF∈ is logically contingent,
and so contingent in the broadest sense.

Second, we assume that sets are ‘rigid’ in the sense that they cannot gain or lose
members. We can require rigidity with respect to many different modalities. Rigid-
ity with respect to the broadest modality implies rigidity with respect to any weaker
modality. Since we wish to remain neutral about the extent of broad contingency—
perhaps there could be contingency about the make up of a set relative to some
notion of ‘contingency’—we will only require sets to be rigid with respect the
mathematical modality/determinacy operator �. Here is how we say that a set, x ,
cannot gain members: if any property, F , possibly applies to some member of x
then there is in fact a member of x to which F possibly applies (for otherwise x
could have members that are not among its actual members). Here is how we say
that it cannot lose members: if, for any property F , there is some member of x that
is possibly F , then it’s possible that some member of x is F (for otherwise there is
some actual member of x that is possibly not a member of x). This means we want
∀e→t F(∃y ∈ x ∧ �Fx ↔ �∃e y(y ∈ x ∧ Fx)). This is essentially the dualized form
of the Barcan formula for the quantifiers restricted to ∈ x . In general we will define
what it means for a relation R : σ1 → ... → σn → t to be rigid as follows, writing
x for a sequence of varibles x1, ..., xn , Rx for Rx1...xn , ∀x for ∀σ1x1...∀σn xn , and

30 See [8, 18].
31 One reason we might want a notion of mathematical necessity like this would be to articulate a modal
sense in which mathematics is conservative over the concrete. See [17].
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σ → t for σ1 → ... → σn → t .

Rigid� = λR∀σ→t S(�∀x(Rx → Sx) ↔ ∀x(Rx → �Sx))

So we can now state our principle that sets are rigid:

Sets are Rigid ∀ex(Set x → Rigid� λy.y ∈ x)

Rigidity here is stated with respect to �, although there is a stronger notion of rigidity
stated in terms of broad necessity.

Observe that this principle is not the claim that the binary membership relation
is rigid: it is the claim that, for each set x , the unary property of belonging to x
is rigid. If membership were rigid there could be no contingency in the pattern of
membership claims. Note, too, that this principle is restricted to sets: it’s consistent
with this principle that a non-set, x , could become a set, in which case belonging to x
would not be rigid.32

Let me head off one potential confusion. If x is the set of all sets of rank α, the
claim Sets are Rigid implies that x cannot gain or lose elements. However, this does
not mean that there couldn’t have been more sets of rank α, it rather implies that if
there had been more sets of rank α x wouldn’t have contained them all. This confusion
becomes particularly tempting when we start using putative singular terms like Vα or
P(N) to refer to sets. Vα is not itself a term in the language of set theory, it is really a
definite description and so the property of belonging to Vα , λx .x ∈ Vα , can fail to be
rigid consistently with the principle Sets are Rigid.33.

One might think of our notion as a ‘vertical’ notion of rigidity: a rigid property
cannot change its extension from one mathematical possibility to a later one. There
is also a ‘horizontal’ notion of rigidity ruling out changes of extension between two
mathematical possibilities abreast of each other, which becomes relevant when� fails
to satisfy the convergence axiom: (��p ∧ ��q) → ��(p ∧ q).34 There is actually
broad agreement from both height and width extensibilists35 that the modal logic of
mathematical necessity is at least S4.2,which includes the convergence principle, sowe
can treat this as something of a side issue. But if we are not assuming convergence, then

32 A plausible strengthening of Sets are Rigid prefixes it with �; given this strengthening belonging to x ,
where x is a non-set, would have to become rigid once x is a set.
33 Observe too that our principle entails that individuals with nomembers— the empty set and urelements–
necessarily have nomembers. It doesn’t quite imply that urelements are necessarily urelements: for all we’ve
said an urelement might become identical to the emptyset because the system we are in does not rule out
the necessity of distinctness
34 According to the ordinary notion of rigidity defined above there could be two ‘divergent’ mathematical
possibilities where x is a set and has different extensions in both: perhaps, even, there is some y such
that �(Set x ∧ y ∈ x) and �(Set x ∧ y /∈ x). The rigidity of sets would ensure ��(Set x ∧ y ∈ x) and
��(Set x ∧ y /∈ x), but without convergence this state of affairs is consistent. By contrast, if every pair
of mathematical possibilities recognize as mathematically possible a common mathematical possibility,
rigidity ensures the extension of x is the same at the common possibility, and thus is the same at the original
pair.
35 See, for instance, [34, 45, 55, 62].
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Fig. 3 C�∈ adds these axioms to Classicism

wemight want to strengthen Sets are Rigid along these lines, and one of our arguments
(Theorem 7) will require this strengthening if convergence is not assumed.36

We will call the system we get by adding these principles to Classicism C�∈. The
additions to Classicism are summarized in Fig. 3. Of course, theseswe have considered
earlier can now be formulated precisely:

Forcing Possibilism ∃exy(PO x ∧ y ∈ x ∧ x � A(x̂1, . . . , x̂n) → �A(x1, ..., xn))
when A(x1, . . . , xn) is a first-order formula of L∈.

Countabilism ∀ex(Set x → �∃e f : N → x(∀ezw( f z =e f w → z =e w)))

here f : N → x means that f is a function from N to x , PO x states that x is a
partial order, and � is the forcing relation definable in the language of first-order set-
theory. These further principles will not be part of our neutral theory of mathematical
necessity and sets.Aswepointed out earlier, Countabilismcan be derived fromForcing
Possibilism. Note that Forcing Possibilism allows us to derive ‘metaphysical’ versions
of famous independence results in the object language:

Contingency of CH �CH∧�¬CH

The framework of C�∈ + Forcing Possibilism thus enables a thorough going modal
approach to independence proofs, letting us convert existing independence results
for metalinguistic claims about derivability into results about genuine mathematical
contingency.37

36 If x is a possible set (x may or may not be an actual set) then a condition of its being horizontally rigid
is that if something possibly belongs to x it necessarily does so whenever x is a set. So in the absence of
convergence we can strengthen Sets are Rigid by adding the axiom: ∀exy(�y ∈ x → �(Set x → y ∈ x)).
Given convergence and�Sets areRigid, this turns out not to be a strengthening of our theory ofmathematical
modality. For if the principle were false, then we would have that for some x and y, �(y ∈ x) and
�(Set x ∧ y /∈ x). �Sets are Rigid (and Lemma 23) would let us then prove that ��y ∈ x and ��y /∈ x ,
which is inconsistent using the convergence axiom.
37 Strictly speaking, Forcing Possibilism lets us derive contingency from forcing arguments. A strength-
ening of Forcing Possibilism for proper classes is needed, for instance, to accommodate proper class
forcing—although we need to be careful how we formulate it, as forcing with an arbitrary proper class may
not preserve the axioms of ZF. Note that not all independence results can correspond to contingency claims
— we will see later that C�∈ proves the non-contingency of arithmetical statements, so that Gödelian
arguments for the independence of certain arithmetical statements from our modal mathematical theory
will not correspond to any contingency. There is something special about the method of forcing according
to this.
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5 Brouwer’s Principle and the Barcan Formula

In this section and the next we’ll examine two questions: given the width contingency
hypothesis, what is the logic of mathematical necessity? and what are the implications
for the structure of modal reality more generally? We’ll begin in this section with
two key modal principles that might be thought to govern broad necessity: the Barcan
formula and Brouwer’s principle.

Consider a typical claim made by the modal extensibilist: that there could have
been more sets than there in fact are. There are two models you might have of this
possibility. The first maintains that there is a “constant” (i.e. non-contingent) domain
of individuals, and contingency about which sets there are is contingency about which
of those individuals are sets.38 The second model maintains that there are no actual
individuals that could have been the new sets: if there had been new sets, then they
would have been new individuals altogether.

The first model of set-theoretic contingency works well for the height extensibilist.
Essentially we are positing, in addition to the sets, a bunch of actual proper classes that
could have constituted a new layer of sets. But this model is not so good for the width
contingentist, because they are positing new subsets of things we already recognize
to be sets. Those new subsets cannot be characterized by properties we already have
access to, in actuality, because otherwise we could already obtain them by the separa-
tion axiom, which lets us create subsets of sets we already have from any condition.
The problem is that once we have actual individuals hanging around corresponding
to those merely possible subsets, those individuals contain the information we need
to define those subsets: if x is a merely possible set of natural numbers, say, we will
show (Theorem 7) that it is actually a set because we can still talk about what would
have belonged to x if it had been a set: {y ∈ N | �(Set x → y ∈ x)}. The rigidity of
sets ensures that this is the same as the set x would have been if it had been a set.39

It is worth emphasizing that this problem for the width contingentist can manifest
itself in a number of weaker logical settings. Consider, for instance, the contingentist
who prefers aweaker quantificational logic for quantificationalwords like ‘everything’
and ‘something’. For the contingentist, our generalizing devices that we have notated
∀e and ∃e correspond instead to what they call “outer quantifiers”, and their uses of
words like ‘everything’ and ‘something’ should be interpreted instead by restricting our
quantifiers ∀e and ∃e to things that exist. But it makes no difference to our argument
whether our merely possible set of natural numbers, x , exists in the outer or inner
sense: if we have some means of quantifying over it, then the information about its
possible membership conditions is accessible to us and we can construct the set in
question. On this picture the sort of contingency about what there is is radical: it

38 This model of indefinite extensibility is explored explicitly in Uzquiano [63]. But interestingly it could
also fit the theory of indefinite extensibility found in Linnebo [45], Studd [62], when we are explicit that
∀e means the outer quantifier: while these authors make claims to the effect that new individuals can come
into existence using their contingentist quantifiers, they typically also appeal to modalized quantifiers under
which the Barcan formula, discussed below, is valid under a certain translation.
39 It is here that we may need the stronger notion of rigidity in footnote 36, if we are not assuming
convergence.
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involves contingency even about what possible things there are, as stated using the
possibilist/outer quantifiers.

Resuming our assumption that the quantifiers are classical (interpreting them as
outer quantifiers, if necessary), how do we articulate this idea of there being new
individuals that don’t actually exist?Aproperty, F , characterizes somemerely possible
individuals if it’s possible for something to have had it, but no actual thing could have
had it. To say that there are no such properties is to say that there couldn’t be any
new individuals: ∀e→t F(♦∃ex Fx → ∃ex♦Fx). This principle (in its contrapositive
form) is often called the Barcan formula, BFe, and corresponds to the other direction
of CBFe (the converse Barcan formula). While CBFe tells us that things can’t go out
of existence, BFe says things can’t come into existence. As we noted in Theorem 3,
CBFe is in fact a theorem of Classicism, whereas BFe is not. This represents a deep
asymmetry in the logic of the classical quantifiers. (A similar asymmetry persists even
in the context of weaker quantificational logics: one can help oneself, either through
definition or otherwise, to wider outer quantifiers that have a classical quantificational
logic, but it’s consistent that even these classical quantifiers fail to satisfy the Barcan
formula. One might have thought that, just as we can introduce quantifiers which
validate the converse Barcan formula and the necessity of existence, it should also be
possible to introduce an even wider quantifier that is guaranteed to satisfy the Barcan
formula. But, unless onemakes further assumptions about the logic of broad necessity,
it is not possible.40)

Now let us ask what implications all of this has for the logic of broad necessity.
Of course, if we are to admit the mathematical possibility of new individuals then we
should also admit the broad possibility of such individuals so we should expect the
Barcan formula to fail for both mathematical and broad necessity alike. Perhaps more
surprising is the fact that wemust also reject the necessity of the Brouwerian principle:
B ∀t p(p → �♦p)

To deny this is to admit the possibility of truths that are possibly impossible in the
broadest sense of possible and impossible. Brouwer’s principle for broad necessity
is a part of the ‘orthodox’ package of views about modal reality, exemplified in, for
instance, Lewis [43] and Stalnaker [59], and in an explicitly higher-order context Fritz
[28], Goodsell and Yli-Vakkuri [30], Williamson [68]. This package usually comes
along with the view that metaphysical necessity is the broadest necessity, and its logic
is S5. Of course, this picture holds that B is not only true, but broadly necessary. This
is equivalent to saying that truth entails being possibly necessary:

B≤ λp.p ≤t→t λp.�♦p

Let us write C5 for the result of adding �B, or B≤, to Classicism. C5 contains all the
theorems of the modal logic S5 for broad necessity.

In order for there to be contingency about what individuals there are, in the widest
possibilist sense of there are, there must be contingency about what is possible, and

40 Related points are the subject of in progress work with Cian Dorr, Peter Fritz and Ethan Russo. In the
setting of Free Classicism (defined in Appendix B) one can formalize and prove the claim that if there
is a classical quantifier it is unique, and anything behaving logically like a free quantifier is provably a
restriction of it. Nonetheless, while one can prove necessitism and the converse Barcan formula for the
classical quantifier in this context, one cannot prove the Barcan formula.
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this is essentially what Brouwer’s principle rules out. Why is this so? The usual model
theoretic explanation of this rests on a certain possible worlds model theory in which
worlds are possible relative to other worlds, and the Brouwerian principle corresponds
to the symmetry of this relation of relative possibility.41 If one world, w, considers
another world, v, to be possible and to contain individuals in its domain that do not
belong to ws domain, then every world possible relative to v must contain those indi-
viduals (since individuals exist necessarily). This means the original world w cannot
be possible according to v, so the relation of relative possibility is not symmetric. In
short, Brouwer’s principle lets you look backwards and this is problematic for the
width contingentist, since (putting it very informally) it lets you ‘send information
back’ about the membership conditions for subsets of the natural numbers in the form
of the individuals that are those subsets there.

This explanation is unsatisfactory due its reliance on a particular model theory,
as well as possible worlds assumptions that we will have reason to question shortly.
Our job in the rest of the section is to make all of the above reasoning precise. First,
we will give a straightforward object language argument (due to Arthur Prior) that
Brouwer’s principle for the broadest modality implies the Barcan formula for the
broadest modality. Then we will show that the Barcan formula for broad modality
implies the Barcan formula for the mathematical modality. Finally, we will show that
the Barcan formula for themathematical modality lets us prove that Vα is rigid for each
ordinal α, ruling out width contingency. For the reasons outlined above, we cannot
prove in an analogous manner that V is rigid: there can be contingency about which
things are sets, there just cannot be contingency about which things are subsets of the
sets we already have—all such contingency comes from the height and not the width
of the universe.

Let us begin by explaining Prior’s derivation of the Barcan formula for broad
necessity from Brouwer’s principle for broad necessity.42 The Barcan formula says:

BFe� ∀e→t F(∀ex�Fx → �∀ex Fx)

We will argue contrapositively, and show that if there is a property only applying
to new/merely possible individuals, then there could have been be a truth which is
possibly impossible. F characterizes merely possible individuals if there could have
been Fs but there is nothing which could have been F . There are two possible cases:
either the true claim that nothing is possibly F is itself possibly impossible, in which
case we have a truth that’s possibly impossible. Or else it’s not, so that it’s necessarily
possible that nothing is possibly F . This means (given the necessity of existence) that
there couldn’t have been something that is necessarily possibly F . But there could
have been an F , which means that the claim that that thing is F is not necessarily
possible — i.e. is possibly impossible. In the latter case, the truth that is possibly
impossible is a merely possible truth.

41 See [15] pp17-21.
42 I offer an informal argument below, the formal version of this proof is found in Prior [51] p146 and
attributed to E.J. Lemmon. It is based on an earlier argument due to Prior [49].
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This style of argument can be run at any type whatsoever. In fact, we appealed to
nothing special about broad necessity in this argument. For any necessity, X , let us
write BFσ

X and BX for the Barcan formula and Brouwerian principle concerning X (i.e.
∀σ→t F(∀σ x .X(Fx) → X(∀σ x Fx)) and ∀t p(p → X¬X¬p)). Prior’s argument
establishes that, for any necessity whatsoever, the X -necessity of Brouwer’s axiom
for X , i.e. XBX , implies the Barcan formula for X , BFσ

X . So to summarize:

Theorem 4 (Prior)

1. C proves ∀X(Nec X → XBX → BFσ
X )

2. C5 proves BFσ
�.

If mathematical contingency requires failures of BFe�, as we have been suggesting,
it meanswemust reject the orthodox logic of C5. To complete this line of argument, we
next need to establish that the Barcan formula for broad necessity implies the Barcan
formula for mathematical necessity. Intuitively, if there couldn’t be new things in the
broadest sense of ‘could’, then there couldn’t be new things in any more restrictive
sense. One might naïvely take this to mean that the broad Barcan formula implies
the Barcan formula for any modality whatsoever. But this is not quite true. Some
counterexamples to the Barcan formula have nothing to do with the possibility of
new individuals, but to do with the failure of the necessity to be closed under infinite
conjunctions. For every individual there’s a chance of 1 that if it’s a point on the
dartboard the dart won’t land on it, but it doesn’t follow that there’s a chance of 1
that the dart won’t land on any point on the dartboard; so if having chance 1 is a
necessity, it doesn’t respect the Barcan formula irrespective of the status of the broad
Barcan formula. However, the Barcan formula for broad necessity implies the Barcan
formula for any necessity that is infinitely closed. It follows, too, that Brouwer’s axiom
for broad necessity implies the Barcan formula for every necessity that is infinitely
closed. We summarize this with the following theorem of the orthodox system C5

Theorem 5 ,

1. BFσ
� → ∀X(Nec∞ X → BFσ

X )

2. In C5, ∀X(Nec∞ X → BFσ
X )

The proof is included in Appendix A. As a straightforward corollary, we see that
the behaviour of mathematical modalities and determinacy are tightly constrained by
the behaviour of broad necessity:

Corollary 6 (C�) �B implies BFσ
� and BFσ

� implies BFσ
�.

Now, finally, we will show that Barcan for � (and thus Barcan for �, and Brouwer
for �) entails the rigidity of Vα , and that the rigidity of Vα in turn refutes the various
width contingency hypotheses we were interested in, such as the indeterminacy of the
continuum hypothesis and countabilism.

The first-order of business is to define the property Vα: being a set whose rank is
no greater that α. This is done by transfinite recursion:43

43 This can bemade into an explicit definition in the usualwayVγ = λx(∀Y (∀y¬Y0y∧∀α(Ord α∧∀y∀β ∈
α(y ⊆ Yβ → Yαy)) → Yγ x).
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V0 := λx .⊥
Vα := λx∀y(y ∈ x → ∃β ∈ αVβ y).

Where α is an ordinal (i.e. a transitive set that is totally ordered by membership:
∀ββ ′ ∈ α(β �= β ′ → β ∈ β ′ ∨ β ′ ∈ β)). It is usual in set-theory texts to use Vα as a
name for a set, whereas here it is a predicate. Our choice discourages the temptation
to think of Vα as automatically rigid in virtue of being a set, as we earlier cautioned
against.

The claim that there is no contingency about the width of the universe, then, is the
claim that for every ordinal α, Vα is rigid. Note that everything we say here is entirely
consistent with height contingency: for all we say, there could be new ordinals γ and
as a result new sets belonging to Vγ .

Theorem 7 (C�∈) Given BFe� (for broad necessity), being of stage α (i.e. Vα) is rigid
for every ordinal α.

What is going on here? Given the Barcan formula, the only way there could be
‘new’ sets is if there are already individuals hanging around that could have been
those new sets. Thus we arrive at the ‘first model’ mathematical contingency, where
there is a modally constant domain of individuals containing a whole bunch of non-
sets, and the contingency concerns which of those individuals are sets. As we pointed
out earlier, this model of set-theoretic contingency is unfriendly to width contingency;
the argument in the Appendix A essentially takes that informal reasoning and makes
it precise.

The significance of this result is that, for any ordinal α, there cannot be new sets
of rank α. Among other things, this implies the non-contingency of the continuum
hypothesis, and thus its determinacy on one way of reading �. For in order for it to be
indeterminate whether the continuum hypothesis is true one has to introduce new sets
with small ranks (ω + n for finite n): new sets of natural numbers, or new bijections
between sets of reals and reals. One can similarly refute countablism: if there is no
injection from N to x then this fact is necessary, for there cannot be any new injections
given BFe�. To make these remarks precise we introduce some useful concepts and
propositions, which are proven in Appendix A.

I will say that a formula of first-order set-theory is absolute with respect to a
transitive model M and class C of transitive models N ⊇ M extending M iff (i) when
it is satisfied by some elements of M it is also satisfied by those elements in any
member of C, (ii) if it is not satisfied by those elements in M it is not satisfied by them
in any extension in C. This has an obvious modal analogue:

Definition 5.1 (Modal Absoluteness) A formula A(x, y) is modally absolute iff the
formulas

• ∀ex(Set x ∧ A(x) → �Ax)
• ∀ex(Set x ∧ ¬A(x) → �¬Ax)

are both true, where x is short for a sequence of variables x1...xn, and Set x is short
for the conjunction Set x1 ∧ ... ∧ Set xn.

A sufficient condition for a formula of first-order set-theory to be absolute is if all
of the quantifiers in the formula are restricted by formulas that are not only absolute,
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but do not change their extensions across models. The modal analogue of this stronger
property is rigidity. In the present higher-order setting, we can similarly define a class
of first-order sentences that are provablymodally absolute: the smallest set of sentences
containing x ∈ y and containing ¬A, A ∧ B, ∀ex(C → A) whenever A and B are in
the set, and C is a rigid property of sets (Rigid�(λx .C) and λx .C ≤e→t Set are true).

Theorem 8 (C�∈) Suppose A(x) is a first-order set-theoretic formula with free vari-
ables x. If all the quantifiers in A(x) are restricted to rigid properties of sets, then A
is modally absolute.

The proof of this theorem is provided in the appendix. In practice we could dispense
with themetalinguistic notion ofmodal absoluteness: caseswherewe apply Theorem8
to a particular formula A(x) can be replaced by proving in the object language the two
formulas in Definition 5.1 from the assumption that the relevant predicates are rigid
(those restricting the quantifiers in A). But we need the concept to state Theorem 8,
and the theorem provides useful perspective on what we are actually doing when carry
out an argument that a particular formula is modally absolute because it is general,
whereas these particular arguments are not. There too the metalinguistic ascension is
often dispensible, and harmless.

Given Theorem 8 and Set Rigidity, any formula that’s provably equivalent to one
whose quantifiers are all restricted by set membership will be modally absolute. This
lets us derive the following useful facts:

Theorem 9 (C�∈) For any ordinal α, the following conditions are modally absolute.

1. being an ordinal less than α.
2. being a limit ordinal less than α.
3. being the smallest limit ordinal, the successor of the smallest limit ordinal, the

successor of the successor of the smallest limit ordinal...

moreover, the properties in 3. are rigid.

Note that while the property of being an ordinal is modally absolute, it needn’t be
rigid: every ordinal is necessarily an ordinal, but we have not ruled out the possibility
of there being further ordinals, in agreement with our previous claim that these results
are compatible with height contingentism.

Let us say that a first-order set-theoretic sentence is arithmetical if all the quantifiers
in the sentence are restricted by the predicate ‘belongs to the smallest limit ordinal’.
Notice that Theorems 9.3 and 8 immediately imply arithmetical sentences are non-
contingent in our background theory C�∈.

Corollary 10 (C�∈) �A ∨ �¬A is derivable in C�∈ for any arithmetical sentence A

Thus if there is set-theoretic contingency, it is not to be found in the arithmetical
statements of set-theory. We return to this asymmetry in the appendix.

While the non-contingency of arithmetic is unavoidable given our minimal back-
ground system, more interesting mathematical claims, like CH, can be contingent.
However, another corollary of the above is that in the presence of BFe� or �B, even
this sort of contingency disappears.
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Corollary 11 (C�∈)

1. BFe� → �CH ∨ �¬CH.
2. BFe� → ∀ex(Uncountable x → �Uncountable x)

where Uncountable x := ∀ex(∀e f : N → x¬ Injection f )

The consequents of these conditionals are thus outright theorems of C5:

Corollary 12 (C5�∈)

1. �CH ∨ �¬CH.
2. ∀ex(Uncountable x → �Uncountable x)

Thus The Contingency of CH and Countabilism are inconsistent in C5. The reason
this is true, roughly, is that CH is about sets of rank Vω+2: it’s equivalent to a formula
whose quantifiers are restricted to Vω+2. But given the modal absoluteness of Vα and
of ω + 2 (proven above) it follows by Theorem 8 that CH is modally absolute. Note
that the modal absoluteness of CH implies CH → �CH and ¬CH → �¬CH, so
�CH ∨ �¬CH follows from an instance of excluded middle.

More generally, by Theorem 7, any set theoretic statement that is equivalent to a
sentence that can be formulated using quantifiers restricted to Vα for some α will be
determinately true or false, and non-contingent in other senses of contingency. Thus
these arguments extend straightforwardly to other contentious axioms of set theory
such as the generalized continuum hypothesis up to some cardinal κ , Martin’s axiom
for partial orders up to cardinality κ , and so on. They do not extend to claims about
the ‘height’ of the universe, such as large cardinal hypotheses.

Might one take this to be an argument against width contingency? We certainly
do not have anything like a straightforward logical reductio of width contingency, for
Classicism on its own includes neither the Barcan formula or Brouwer’s principle, and
there very are natural models in which they fail.44

Theorem 13 The following are not theorems of Classicism
B ∀t p(p → �♦p)

5 ∀t p(♦p → �♦p)

BFσ
� ∀σ→t F(∀σ x�Fx → �∀σ x Fx)

Onemight, however, still see an objection to width contingency here. After all, isn’t
S5 in some sense the standard logic of necessity? I am not persuaded. If there ever
was an implicit decision within the philosophical community about which logic of
necessity is ‘standard’ it happened before mathematical modalities and determinacy
operators were being discussedwidely, andmost likely wasmadewith Kripke’s notion
of metaphysical necessity in mind. The failures of Brouwer’s principle posited here
are entirely compatible with its holding for the more restricted notion of metaphys-
ical necessity. It follows too that the Barcan formula may be valid for metaphysical

44 Several sorts of models are described in the appendices to Bacon [2], Bacon and Dorr [8] and in chapter
18 of Bacon [6].
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necessity, and that the continuum hypothesis is either metaphysically necessarily true
or necessarily false. And this too is entirely compatible with our diagnosis of the con-
tinuum hypothesis as indeterminate and thus contingent in the broadest sense (in this
case, then, it will be indeterminate whether CH is a metaphysical necessity or impos-
sibility). When it comes to positive arguments for the S5 principle, they are thin on
the ground. Some considerations are abductive, and come from the relative simplicity
and power of S5—the only schemas of propositional modal logic it doesn’t imply
are clearly invalid, whereas S4 leaves the validity of many modal principles open.45

But of course, nobody thinks that the theoretical virtues of simplicity and power can
outweigh the countervailing virtue of truth—after all ⊥ is simple and very powerful.
The theorist already convinced of the indeterminacy of the continuum hypothesis may
find much less mileage in these abductive considerations. Other arguments for the S5
principle are far less compelling, for they often appeal to the model theory of modal
logic in a patently illegitimate way—e.g. appealing to the idea that to be the broadest
necessity it must quantify over ‘all’ possible worlds in some set-theoretic model, with-
out taking into account that in the intended model (if there is one!) what worlds in the
model represent genuine possibilities could well be contingent.46 Finally, we should
also emphasize that broad necessity, as it has been introduced here, is not necessarily
a notion we had pretheoretically—intuitions about how it should behave should be
taken with a generous pinch of salt, and it is generally better to simply work with its
formal definition, being necessary for every necessity, and seewhere our philosophical
theorizing takes us.

6 The Leibniz Biconditionals

Let us now turn to another pervasive idea inmodalmetaphysics, the notion of a possible
world. Possible worlds can be wielded as a purely model theoretic tool for establishing
metalogical properties like consistency and invalidity in modal languages. In a model
of amodal language sentencesmight be interpreted by arbitrary sets of possibleworlds,
and these might serve as the domain for quantifiers binding sentence variables if the
language has them. In the present higher-order setting, this ensures various theorems
of Classicism are valid—Boolean identities, like ∀t pq((p∧q) =t (q ∧ p))—but also
ensures validities beyond Classicism. Because there are propositions modeled by the
singleton of a possible world, {w}, every consistent proposition is entailed by one of
these special world propositions, leading to distinctive validities. World propositions
are special because they are either fully contained or disjoint from any other set of
possible worlds.

45 Several broadly abductive arguments are made in Williamson [68]. Scroggs [56] shows that the only
modal logics extending S5 contain schemas to the effect that there are only n possibilities, for some finite
n. Fine [21] shows there are continuum many modal logics extending S4.
46 See [2] §5.4 for a critical discussion of these arguments. The point here is that themathematical objects of
the relevant model that in fact are representing genuine possibilities may not represent genuine possibilities
had things been sufficiently different. We should also keep track of the fact that if there is mathematical
contingency, the model itself might change its mathematical structure.
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However, metaphysicians often take possible world talk to be more than a mere
model theoretic tool. Someone taking the possible world model of propositions meta-
physically seriously should believe that these special world propositions exist.47 Given
our previous observation that singletons are consistent, and contained or disjoint from
(i.e. contained in the complement of) any other proposition,wewill adopt the following
definition of a world proposition:

World = λw.(♦w ∧ ∀t p(w ≤t p ∨ w ≤t ¬p))

World propositions are broadly possible propositions such that any other proposition
is either entailed by it or inconsistent with it. The latter condition ensures that worlds
settle all questions. The possible world metaphysician ought, then, to subscribe to the
Leibniz Biconditionals: that something is possible if and only if it is entailed by a
world proposition.

LBt ∀t p(♦p ↔ ∃w(Worldw ∧ w ≤t p))

As with Brouwer’s principle, we might also consider the necessitation of the Leibniz
biconditionals, �LBt . The necessitation is stronger and equivalent to the claim that
being possible is the same as being true at a possible world—a claim which might be
thought to better capture the idea that possibility can be analyzed in terms of possible
worlds:

LBt= ♦ =t→t λp∃w(Worldw ∧ w ≤t p)

It is worth noting that the possible worlds metaphysics encoded in LBt is a substantive
further commitment—it is not already a theorem of Classicism. Indeed, it doesn’t
follow from the Barcan formula, or even the Brouwerian axiom.48

Theorem 14 LBt is not a theorem of C5.

I have here brushed over an important choicepoint that arises in contexts where the
propositional Barcan formula, BFt�, fails. In this setting there could be ‘new’ questions
concerning the truth of propositions that do not in fact exist: in that case, wemightwant
to consider a strengthening of our definition ofWorld ensuring that worlds necessarily
settle all the questions, even new ones. This strengthening can be obtained by prefixing
a� to the second conjunct in our definition: a strong world is possible and necessarily
settles every question.49

SWorld := λw.(♦w ∧ �∀t p(w ≤t p ∨ w ≤t ¬p))

47 Whether world propositions simply are possible worlds, as Prior and Fine maintained (Prior and Fine
[50]), or simply guaranteed by the existence of possible worlds will not be important in what follows.
Once you have taken enough possible world machinery seriously, including notions like possible world and
true at, then for any world w, there is the proposition that every proposition true at w is true simpliciter.
Propositions of this form can play the role of world propositions in what follows.
48 See the first model described in Appendix D of Bacon and Dorr [8].
49 See [6] chapter 7.
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Anything that’s a strong world is a world, and the result of replacing world with strong
world in LBt yields a strengthening we will call the Strong Leibniz Biconditionals:50

SLBt ∀t p(♦p ↔ ∃w(SWorldw ∧ w ≤t p))

I myself am of the view that stronger notion of world better fits the notion at issue
in possible world metaphysics. But since the results I prove here do not need the full
strength of the Strong Leibniz biconditionals, I’ll work with the weaker notion in this
section. Theorems we prove later from the Leibniz biconditionals thus can also be
proven with the Strong Leibniz biconditionals so that nothing turns on our choice
about how to define world.

Like other principles we have encountered, such as the Barcan formula, there are
generalizations of the Leibniz biconditionals to other types. For instance, a property
theoretic version states that a property is possible (i.e. possibly instantiated) iff it is
entailed by a world property. In general:

LBσ ∀σ→t R(♦σ R ↔ ∃σ→tW (Worldσ W ∧ W ≤σ→t R))

where these notions are defined as follows.

Definition 6.1 Let x be a sequence of variables x1...xn of types σ = σ1, ..., σn.

♦σ := λR♦∃x Rx

¬σ := λRλx¬(Rx)

Worldσ := λW (♦σW ∧ ∀σ→t S(W ≤σ→t S ∨ W ≤σ→t ¬σ→t S))

For those used to thinking in the possible worlds framework, an intension of type
e → t (i.e. a function from worlds to extensions) is a world property at a given world
w if it has a non-empty extension at exactly one world that’s possible relative to w,
and at that world its extension contains exactly one individual. Thus LBe→t is valid in
model theories where the second-order quantifiers range over arbitrary functions from
worlds to extensions.

I take it that the Leibniz biconditionals are also part of the ‘orthodox’ view about
modal reality, found in, for instance, Lewis and Stalnaker.51 We are now in a position
to state our second connection between width contingency and the structure of modal
reality:

Width contingency requires possible failures of the Leibniz biconditionals.

50 The right-to-left direction of LBt is in fact a theorem of Classicism, since anything entailed by a possible
proposition (such as a world proposition) must be possible. The left-to-right direction of LBt follows from
SLBt , for if p is possible it is entailed by a strong world it is entailed by a world, since every strong world
is a world.
51 They are explicitly postulated, or derived, in the theories of Fritz [28], Goodsell and Yli-Vakkuri [30],
Williamson [68].
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What implications do the Leibniz biconditionals have for mathematical modalities?
Firstly we can show that if something is mathematically possible then it is true at a
mathematically possible world.52

Theorem 15 (C�) Given LBt , �p ↔ ∃w(Worldw ∧ w ≤ p ∧ �w)

Since C� only adds to Classicism the assumption that � is an infinitely closed
necessity, it is a quite general theorem of Classicism with the Leibniz biconditionals
that for any infinitely closed modality, X , a proposition is X -possible iff it is true at
an X -possible world. (It does not hold for necessities that are not infinitely closed.
Supposing, again, that having chance 1 is a necessity, then one can have chance-
possible propositions that are not true at any chance-possible world propositions. For
instance, its chance-possible that our dart hits the dartboard, because it has non-zero
chance. But each broadly possible world where it hits the dartboard has chance 0,
since a broadly possible world will settle the exact point that that the dart lands.)

We can now prove that the Leibniz biconditionals imply the rigidity of each stage
of sets.

Theorem 16 (C�∈) LBt→t and LBt imply that Vα is rigid for every ordinal α.

There is a way of glossing this argument with quantification over ‘possible sets’,
which is strictly speaking inaccurate but which nonetheless gives an intuition for what
is going on. The idea is to find, for any possible set, x , a world propertyW that applies
to just that set. From W we can define an actual set, y, containing just those actual
things that would have belonged to the W set, if W had been instantiated. Now the
members of y are all of lower rank, so we may assume for induction that the actual
sets of that rank are in fact the only possible sets of that rank, so x and y have the
same members, are identical, and thus that x actually exists. The proof in Appendix A
is essentially an attempt to make this informal idea precise without any illegitimate
quantification.

As before, we can obtain as two straightforward corollaries from the rigidity of Vα ,
the determinacy of the continuum hypothesis and the necessity of uncountability (and
so a refutation of Countabilism).

Corollary 17 (C�∈)

1. LBt ∧ LBe→t → �CH ∨ �¬CH.
2. LBt ∧ LBe→t → ∀ex(Uncountable x → �Uncountable x)

Corollary 18 (C�∈LBσ )

1. �CH ∨ �¬CH.
2. ∀ex(Uncountable x → �Uncountable x)

Observe that our proof rested not only on the existence of world propositions, but
also on a slightly less familiar consequence of naïve use of the possible worlds frame-
work— the existence of world properties. The propositional Leibniz biconditionals do

52 Unless otherwise stated, proofs of all numbered theorems and propositions to follow may be found in
Appendix A.
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not appear to entail the property Leibniz biconditionals. In light of this, I offer another
route to the property Leibniz biconditionals using a strengthening of the axiom of
choice. An ordinary second-order choice principle can be formulated by saying that
the universe of individuals can be well-ordered. By necessitating this principle we
ensure that there is a well-order of the universe at every possible world, although it
might witnessed by ‘new’ well-orders—that is to say, a worldw might entail that there
is a global well-order, while there is no relation such that w entails that it is a global
well-order. The strengthening of necessitated choice we will investigate is the idea
that for each world, there is a relation which that world entails to be a well-order

Strong Modal Choice ∀tw(Worldw → ∃e→e→t R w ≤ WO R)

With this principlewe can close the gap between the propositional and propertyLeibniz
biconditionals.

Theorem 19 (Classicism) Strong Modal Choice and LBt entail LBσ→t .

It should be noted that there could be width contingentists who reject the necessity
of the axiom of choice on the grounds that it, like the continuum hypothesis, is inde-
terminate or mathematically unsettled. This would, of course, be grounds to reject the
stronger principle of De Re Modal Choice. However this is a minority view, and most
mathematicians take the axiom of choice to be settled and in as good a standing as
other principles of set theory. The necessity of choice is validated, for instance, in the
modal logic of forcing, where � is interpreted as meaning truth in all generic forcing
extensions, since the truth value of the axiom of choice (unlike CH) is preserved in
generic extensions.

7 Free Logic

Our theory C�—Classicism plus the claim that � is a necessity that is closed under
infinitary consequence—has lead us to some striking results. First, Classicism, in
virtue of being closed under classical quantificational logic and necessitation for broad
necessity, proves the broadnecessity of existence,NNEe, and a closely related principle,
CBFe. Second, supplementing Classicism with the principles of S5 for the broadest
necessity lets us derive the non-contingency of the set theoretic universe up to a
given stage given somemodest assumptions ofmodal set-theory. Third, supplementing
Classicism with the Leibniz biconditionals lets us do the same.

Could the lover of width contingency restore orthodoxy in the second and third
respects, by rejecting it in the first respect? That is, could they retain S5 and the Leibniz
biconditionals by weakening quantificational logic and adopting instead a free logic
for the quantifiers? Unlike in classical logic, it is not possible to derive the necessity of
existence or the converse Barcan formula in free logic. Moreover, the Prior-Lemmon
proof of the Barcan formula within S5 is not sound in free logic. In short, things can
come and go into existence freely once classical quantificational logic is weakened,
giving us more options for making sense of mathematical contingency about which
sets exist. We earlier stipulated that in this setting one should read the symbols ∀σ in
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terms of the outer quantifiers. But one might wonder whether it is possible to also
reject outer quantifiers in the free logical setting, thereby avoiding these results?

Classicism individuates propositions, properties and relations by provable equiva-
lence in classical higher-order logic. So in order to explore this idea, we should look
into the parallel theory that individuates entities instead by provable equivalence in
free logic. That is we weaken the quantificational axioms of H along the lines of a
free logic and close under the rule of equivalence. Call this system Free Classicism, or
FC—it is defined in Appendix B. Within this framework one can provide definitions
of broad necessity and other notions of Section 3. Strengthening this system with
the principles of S5 and the Strong Leibniz Biconditionals yields the system being
proposed, which we can call FC5(SLB). The reader can find the details in Appendix B.

There is a vast literature on the topic of contingent existence in the framework of
higher-order logic that I will not attempt to contribute to.53 I will limit myself instead
to a couple of local points about its application to mathematical contingency.

First recall that width contingency seems to require at least the possibility of new
individuals, so that in a S5 setting we must also reject the necessity of existence. For if
there could have been new individuals, then, according to Brouwer’s principle, there
would have been a possibility (namely actuality) where those new individuals didn’t
exist. We must, furthermore, reject the necessity of existence not merely for concrete
individuals but for mathematical objects like sets.

There are some general reasons to think that sets exist of mathematical necessity,
that are quite independent of the issue of necessary existence for concrete objects and
other sorts of mathematical objects. There is a pervasive—and I think independently
attractive—idea that a set is determined by its members. This idea is articulated in
various ways in contemporary philosophy— sometimes it is the idea that the existence
of a set is completely grounded in the existence of its members, or that a set is ‘nothing
over and above’ its members.54 According to this idea, while a set could fail to exist at
a world if one of its members fails to exist, if all of its members at that world exist, the
set itself must exist.More generally, if a proposition (a world proposition or otherwise)
entails the members of x exist it must also entail x exists:

∀ex(Set x → ∀t p(∀e y ∈ x(p ≤ ∃ez.z = y) → p ≤ ∃ez.z = x))

If the proposition p is tautologous, we can infer that if the members of a set necessarily
exist, then so does the set

∀ex(Set x → ∀e y ∈ x�(∃ez.z = y) → �(∃ez.z = x))

We can prove the necessary existence of sets as follows. Suppose that there is a set,
x , that doesn’t necessarily exist. By the well-foundedness of membership, we may
assume without loss of generality that x is a possible non-existent of minimal rank, so
that all of its members necessarily exist. But then we have a contingently existing set

53 See [22, 26, 27, 29, 61, 68].
54 See [23]. Roberts [54] also articulates precisely the related idea that pluralities are nothing over and
above their members. The idea that sets are grounded in their members is ubiquitous in the grounding
literature: see, for instance, Fine [25] Section 4, or Berker [10].
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whose members necessarily exist. Assuming the necessity of our principles about set
existence, and thewell-foundedness ofmembership, this reasoning can be necessitated
so necessarily every set necessarily exists.

One might think that these sorts of thoughts are antithetical to various brands of
potentialism about sets. For instance, the height potentialist will typically maintain
that there are some pluralities—e.g. the non-self-membered sets—which do not form
a set but which could have done. Note, however, that our argument only applied to
things which already form a set: if x is a set then it couldn’t have gone out of existence
without at least one of its members going of out existence. The potentialist picture
is entirely consistent with this because the new set collating a previous non-set-sized
plurality of things is not already a set.

There is a more elementary argument for the necessary existence of sets that specif-
ically targets the width contingentist: that any set x ⊆ Vα necessarily exists, for any
givenα. The separation axiom, alongwith the assumption that the ZF axioms aremath-
ematically necessary, ensures that for any condition, A(y), it’s necessary that there is a
set containing all and only the individuals y such that A(y). Now, for any set x we have
the condition y ∈ x . So, it’s mathematically necessary that there is a set containing
all and only the y belonging to Vα such that y ∈ x , i.e. {y ∈ Vα | y ∈ x} necessarily
exists. Now one might object that this fails to establish the necessary existence of x ,
because as soon as x fails to exist it has no members, and so {y ∈ Vα | y ∈ x} is
the empty set. This would contradict the mathematical rigidity of sets, and so we may
already want to insist that even non-existent sets contain traces of their members. But
even if we grant the objection, the potentialist we are considering accepts a logic of
S5 for broad necessity, and believes in world propositions, and so can introduce the
set as follows. First, let w be the true world proposition. Then we have:

It’s mathematically necessary that there is a set containing all and only the y
belonging to Vα such that w ≤ (y ∈ x): {y ∈ Vα | w ≤ (y ∈ x)}.

In the context of C5 w ≤ behaves essentially like an actuality operator, letting us talk
about the actual membership conditions of x at any world, so that by separation x
must exist at every world.

There are further moves that certain sorts of higher-order contingentists might
make at this juncture: perhaps the property of belonging to x , λy.w ≤ (y ∈ x), fails
to exist whenever x fails to exist. But this move doesn’t really help: in order to retain
classical propositional logic, these contingentists must draw a distinction between the
satisfaction conditions of an open formula and the predicate you obtain from it by
λ-abstraction. The open formula w ≤ (y ∈ x) still lets us classify every set as either
satisfying it, or not, and so the separation axiom lets us prove that that there is a set of
sets of any given certain rank belonging to x .55

My second point relates to the fact that one can introduce ‘outer-quantifiers’ in
Free Classicism and read the previous results in terms of those outer quantifiers.

55 One could restrict the separation axiom to conditions specified by predicates, thus excluding conditions
specified with open formulas in one variable. But at this point we are no longer embracing the spirit of sep-
aration. An open formula, A(x), lets us classify each natural number in one of two ways. As we run through
the numberswemay find, for instance that A(0), A(1),¬A(2), A(3),¬A(4), ¬A(5), A(6), A(7) . . ., which
in turn specifies a list of numbers 0, 1, 3, 6, 7 . . . satisfying the formula A(x). It would be mathematically
revisionary to suggest that this list doesn’t correspond to a subset of the natural numbers.
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Now there are independent motivations for positing outer quantifiers. They let the
contingentist meet various expressive challenges that appear to beset their view. They
have introduction and elimination rules that pin down their inferential role uniquely
(see Harris [36]), so they could be introduced directly as new primitives. In some
contexts, however, it is impossible to avoid outer quantifiers because they can be
defined explicitly in terms of the contingentists quantifiers and modal operators—it
turns out that S5 with the Leibniz biconditionals is one of these contexts.

For instance, if we have an actuality operator and I want to say that every possible
individual is F I can say ‘necessarily, everything is F in actuality’. The formula
�∀ex@Fx thus simulates “possibilist quantification” over all possible individuals
provided at the actual world. While this paraphrase is materially adequate, this fact is,
of course, highly contingent: had different things been F , that paraphrase would still
evaluate with respect what is actually F and deliver incorrect results.56 Kit Fine (Prior
and Fine [50] p144) thus paraphrases quantification over all possible Fs by saying ‘the
true world proposition w (whatever it might be) is such that necessarily everything is
entailed by w to be F’.

It turns out that the assumptions built into FC5(SLB)—specifically the assumption
that every possible proposition is entailed by a strong world—ensures that this quan-
tifier behaves classically: see Theorem 26 in Appendix B. This means, among other
things, that they satisfy the converse Barcan formula and prove the necessity of exis-
tence. As we have observed already, we need additional modal assumptions about the
modal logic of� to show that classical quantifiers satisfy the Barcan formula—the S5
principles—but these are built into FC5(SLB) as well. Indeed, not only is every theorem
of Classicism derivable with respect to the outer quantifiers in FC5(SLB), but also the
theorems we get by adding S5 and the Strong Leibniz Biconditionals to Classicism.

Theorem 20 FC5(SLB) interprets C5(SLB).

Thus, for every theorem of C5(SLB) there is a corresponding a theorem (under trans-
lation) of FC5(SLB).57

This theorem paves the way for applying the results in Sections 5 and 6 in a con-
tingentist setting, provided that the non-logical assumptions from Section 4 can also
be defended on this interpretation. Although I am confident that it can be done, I will
not attempt to defend these non-logical assumptions under this reinterpretation. I will
instead side-step the issue and shift attention to some purely logical statements that
imply that there isn’t any mathematical contingency of the relevant sort.

56 See the discussion in Williamson [67] p685-686.
57 A certain sort of higher-order contingentist may reject the Strong Leibniz Biconditionals on the grounds
that existing propositions cannot be about non-existing individuals. On this picture strong worlds shouldn’t
exist, because they settle questions about merely possible individuals (see [60]). In this case a different
motivation and definition of the outer quantifiers is needed. I believe that this is possible using the results
from work in progress with Cian Dorr, Peter Fritz and Ethan Russo, where the assumption of the Strong
Leibniz Biconditionals can be weakened to the assumption that being true entails being entailed by a
truth (λp.p ≤t→t λp∃t q(q ≤ p) — an assumption that we believe can be motivated even in a higher-
order contingentist setting. It’s also worth pointing out that there are internal pressures for propositional
contingentists, like Stalnaker and Fine, to posit primitive outer quantifiers even if they cannot be defined,
since they are necessary for even expressing the idea that propositions do not exist unless the individuals
they are about exist (these worries are pressed in Fritz and Goodman [29]). Thanks to an anonymous referee
for pressing this concern.
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In this paper we have concerned ourselves with the set-theoretic continuum hypoth-
esis, which is stated in terms of the non-logical predicate ∈. However, there is another
purely logical claim that is closely related to the set-theoretic continuum hypothesis.
Let’s call it the higher-order continuum hypothesis. It is possible in higher-order logic
to say that a property’s extension is (i) countably infinite, (ii) that is has the size of
the first uncountable infinity (there is a bijection between it and the well-orders-up-to-
isomorphism on a countably infinite property) and (iii) has the size of the continuum
(there is a bijection between it and subproperties-up-to-extension of a countably infi-
nite property). We call these properties ℵ0, ℵ1 and Continuum. See Shapiro [58] p105.
Then we may formulate the continuum hypothesis as follows:

Higher-Order CH ∀e→t X(Continuum X ↔ ℵ1X)

Higher-order CH entails the set-theoretic continuum hypothesis, since if x is an
uncountable set of real numbers, the property of belonging to x , λy.y ∈ x , must
be at least ℵ1 sized, and at most continuum sized, and so Higher-Order CH implies it
is continuum sized.

What does our free logician say about higher-order CH? Of course in Free Classi-
cism, properties and relations, like sets, can exist contingently: what subproperties a
countably infinite property has may exist contingently, and the relevant bijective rela-
tions could also fail to exist making it very plausible that one could construct models
in which Higher-order CH is contingent. But suppose we consider yet another variant
of the continuum hypothesis, now formulated using the classical outer quantifiers. Let
us write A∗ for the result of replacing each occurrence of the free quantifiers in A with
the corresponding outer quantifier. We are now concerned with (Higher-Order CH)∗.

One might reasonably ask what relation this sentence bears to the mathematical
question of the continuum hypothesis. For that is formulated in familiar quantifica-
tional terms, whereas we have granted that the outer quantifiers may bear no relation to
ordinary quantificational words, as they appear in ordinary English. I won’t insist that
we refer to (Higher-Order CH)∗ as a ‘version of the continuum hypothesis’. However,
the question of whether it is true or not is nonetheless something that can be raised
and investigated in the pure language of higher-order logic. And, like the set-theoretic
continuum hypothesis and its vanilla higher-order variant, it does not seem to be some-
thing we can settle using any mathematical or logical methods presently available to
us. The reasons we have to think that Higher-order CH is indeterminate apparently
extend to (Higher-Order CH)∗.

The problem we are presented with is this. If we add to Classicism the principles
of S5 and the Leibniz biconditionals (or the Strong Leibniz Biconditionals) one can
prove the following schema, stating that there is no broad contingency in things stated
in purely logical terms:
No Pure Contingency P → �P , where P is closed and contains no non-logical
vocabulary.
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If purely logical statements cannot be broadly contingent, they cannot be mathemati-
cally contingent either. The argument for this is due to Zach Goodsell.58

Theorem 21 (Goodsell) C5(LB) proves No Pure Contingency.

But given Theorem 21, every theorem of C5(LB) translates to a theorem of FC5(SLB)
implying that (Higher-Order CH)∗ is not broadly contingent (and consequently is not
indeterminate or mathematically contingent).

I will not insist that (Higher-Order CH)∗ and Higher-Order CH must stand or
fall together, or that the methods necessary for settling either must be equally high-
powered. Indeed, one method for settling these questions is to make contentious
metaphysical posits that would imply their trivial truth or falsity, and so make an
asymmetric treatment of their indeterminacy seem less ad hoc. One emerging line
of thought in the width contingentist literature is the idea that any things whatsoever
could have been the image of a function on the natural numbers (cf. the weaker thesis
of Countabilism, that concerns sets). Perhaps, then, (Higher-Order CH)∗ is trivially
true because in terms of the possibilist quantifiers all properties are countable∗, and
so Continuum∗ X and ℵ∗

1X are vacuously coextensive. But contentious metaphysics
can equally settle the plain higher-order continuum hypothesis. The assumption that
there are in fact only countably many things settles it vacuously in exactly the same
way, much as the thesis of nominalism would too.

It is also very unclear why we should care about the indeterminacy or contingency
of the versions of CH formulated using the contingentist free-logical quantifiers. There
will be some restrictions of the outer quantifiers by properties under which Higher-
Order CH can have any combination of truth or falsity with contingency or necessity
(this ought to be so, for instance, if there are infinitely many things in the outer
sense of the quantifiers). The version of CH we have been calling Higher-Order CH
corresponds to the contingency of CH under a restriction of the outer quantifiers by the
property of existence, in a distinctively metaphysical and inflationary sense—a sense
that is not pinned down by anything like inferential role in the way that the classical
outer quantifiers are. It would be hard to convince mathematicians that this is the real
question they should be focusing on, and it is far from obvious that mathematics is
the appropriate methodology for settling it. According to the classical quantifiers, the
truth of an existential there are Fs can be inferred from a true instance, a is F , so
that if F is itself is expressed using only logical and mathematical vocabulary, logico-
mathematical methods can be used to settle the question of whether there are Fs. By
contrast, the conditions under which an individual exists in the more demanding sense
involves extra mathematical considerations. Consider, for instance, a debate about the
existence conditions for material objects, such as whether a table could have existed
without the matter that constitutes it. It’s a hard question, and we shouldn’t expect
the questions to become easier when we shift attention to set existence. Certainly
traditional mathematical methods are not equipped to answer these questions.

58 A proof is presented in Bacon and Dorr [8].
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8 Conclusion

I have argued that certain kinds of set-theoretic contingency require surrendering two
pieces of modal orthodoxy: that the broadest necessity has a logic of S5, and the Leib-
niz biconditionals, connecting what is possible with what holds at some maximally
specific possibility. Both of these modal doctrines deserve some scrutiny. The simplest
kind ofmodel ofmodal logic employs possibleworlds, and treats the broadest necessity
as quantifying unrestrictedly over all worlds in the model, so it is easy to see where the
orthodoxy may have originated. But model theory alone does not make for a positive
argument. We now know how to model modal logic without building in either of these
assumptions.59 One of these generalizations, possibility semantics—which replaces
the complete worlds of possible world semantics with incomplete possibilities—was
in fact implicit in Cohen’s original papers introducing the forcing method of the inde-
pendence.60 Furthermore, there are several positions in higher-order metaphysics that
require rejecting S5 for the broadest necessity—the philosophical terrain here is still
largely unexplored.61 But before we can sign off on width contingency, we need some
guarantee that there aren’t any unforeseen inconsistencies in the view. A strong version
of width contingency maintains, putting it informally, that all forcing extensions of
the set-theoretic universe are mathematically possible—the principle I earlier called
Forcing Possibilism. Indeed, I believe Forcing Possibilism to be consistent with our
background theory:62

Conjecture 22 Forcing Possibilism is consistent with C�∈.

Forcing Possibilism provides us with a particular view about how much mathemat-
ical contingency there is. It is natural to push this line of thought further, and ask if
even more radical visions of mathematical contingency are consistent. For instance,
could one posit mathematical possibilities corresponding not just to first-order models
obtained by forcing but to arbitrary models satisfying the ZF axioms? If this were con-
sistent it would represent a vision in whichmathematical contingency is as widespread
as possible: the axioms of ZF must express mathematical necessities, given that we
have a principle to that effect, but any statement independent of ZF would express
a mathematically contingent proposition. It turns out, however, that mathematical
contingency cannot be this rampant. We were able to derive (Corollary 10), in the
minimal background theory C∈�, that arithmetical statements are not mathematically

59 Sometimes it is argued that the broadest necessity must be modeled by a universal accessibility relation
(see for instance [43]). A similar argument can be made in the possibility framework. But this appeal
to model theory is questionable, and ignores the possibility that which ‘worlds’ of the model represent
genuine possibilities might itself be contingent, and so depend on what world you are evaluating at. For
further discussion of these sorts arguments, see [2] §5.4.
60 Work on possibility semantics formodal logic was initiated inHumberstone [39], and has been continued
more recently by Holliday and coauthors (see, for instance, [38]). Prior even to possible world semantics,
we had the algebraic approach to modal logic, found in Jonsson [11], that makes no assumptions akin to
the existence of possible worlds.
61 Bacon [6] chapter 8, and Bacon [8] section 2.4-2.6 overview some of the options here.
62 I have some partial models of of Forcing Possibilism and C�∈ for fragments of higher-order logic that
seem to generalize. However the verification of this conjecture will have to wait until a future occasion.
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contingent or indeterminate, even if they are independent of our favored axiomatic the-
ories (as, for instance, their consistency statements are).63 Determining where the line
between the set-theoretic statements that are necessary (determinate) and contingent
(indeterminate) lies is thus non-trivial. We know that the former includes at least all
the arithmetical statements, and the latter may include statements like the continuum
hypothesis, but figuring out more about where this line lies seems to be an important
avenue for further inquiry. For instance, it is a well-known fact that if the axiom of
choice is true in a model it is true in all forcing extensions of it, so we might consider
adding the axiom of choice to the list of claims that are mathematically necessary.64

A Appendix: Proofs of Theorems

Theorem 5 (C5)
∀X(Nec∞ X → BFσ

X )

Proof C5 contains the broad Barcan formula, BFσ
�.

Suppose that X is infinitely closed and that ∀σ x X(Fx). We want to show that
X(∀σ xFx). Since X is infinitely closed, it suffices to show that anything entailing every
X -necessary proposition also entails ∀σ xFx . Suppore r entails every X -necessary
proposition. Since Fx is X -necessary for every x , ∀σ x .�(r → Fx). By the broad
Barcan formula, �∀σ x(r → Fx) and so �(r → ∀σ xFx). Thus r entails ∀σ xFx as
required. Since X is closed under entailment, X(∀σ xFx). ��
Theorem 7 (C�∈)

Given BFe� (for broad necessity), being of stage α (i.e. Vα) is rigid for every ordinal
α.

Proof As we have noted (Theorem 5), BFe� for broad necessity implies the Barcan
formula for �, BFe�. Subsequent uses of the word ‘possibly’ and ‘necessarily’ in the
proof refer to � and �.

The proof is by transfinite induction. V0 is necessarily empty, and so vacuously
rigid.

Suppose that α is an ordinal, and for each β ∈ α, Vβ is rigid. We want to show that
Vα is rigid. Suppose �∃x(Vαx ∧ Fx). We must show ∃x(Vαx ∧ �Fx).

The Barcan formula ensures there is an x such that �(Vαx ∧ Fx), but we have no
guarantee that x is in fact Vα , or even if it is a set. Instead of directly showing x is

63 Corollary 10 is an analogue, in the present system, of Goodsell [31] result concerning the determinacy
of arithmetic; here Goodsell’s assumption of Rigid Comprehension is not needed due to our assumption
that sets have rigid membership conditions. Note that there is another form of possibilism which states
that there are broad possibilities corresponding to every model of ZF—indeed it’s consistent that anything
consistent with Classicism is broadly possible; see the constructions in appendix E of Bacon and Dorr [8]
and chapter 18 of Bacon [6].
64 One can actually derive this claim—AC → �AC—in the system obtained by adding the converse of
Forcing Possibilism to C�∈. The converse states that only claims made true by forcing are mathematically
possible; the possibility of AC failing then would imply the existence of a forcing condition that refutes
AC, and so AC would in fact be false.
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a set, we’ll define another set by separation containing the elements that would have
belonged to x if x had been a set, and show that this is a Vα set that is possibly F .

x ′ := {y ∈
⋃

β∈α

Vβ | �(Set x → y ∈ x)}

We can now show that x ′ is identical x as follows. Given the mathematical necessity
of Set Extensionality it suffices to show that necessarily if x is a set, x coextensive
with x ′: �(Set x → ∀y.(y ∈ x ↔ y ∈ x ′). We break this up into two claims:

1. �(Set x → ∀y(y ∈ x ′ → y ∈ x)
2. �(Set x → ∀y(y ∈ x → y ∈ x ′)
We establish 1 first. From the definition of membership in x ′, we immediately have
∀y ∈ x ′�(Set x → y ∈ x). Since Sets are Rigid, it follows that x ′-restricted quantifi-
cation satisfies BF, so we can infer�∀y ∈ x ′(Set x → y ∈ x). By applying first-order
logic under the scope of �, this is equivalent to 1.

To establish 2, it suffices to show ∀y�(Set x → (y ∈ x → y ∈ x ′)) by the Barcan
formula. Let y be an arbitrary individual. Now either y ∈ x ′ or y /∈ x ′. Suppose the
former. Then by the rigidity of set membership y is necessarily in x ′ and so�(Set x →
(y ∈ x → y ∈ x ′)) follows. Suppose, then, that y /∈ x ′. By the definition of x ′ this
would mean that �(Set x ∧ y /∈ x). It follows that �(Set x → (y ∈ x → y ∈ x ′)),
for if this were false we’d have �y ∈ x and by Sets are Rigid we could conclude
�(Set x → y ∈ x) contradicting the previous line. (It is here that we must use the
stronger version of Sets are Rigid outlined in footnote 36 if we are not assuming the
convergence axiom.)

By the necessity of Extensionality, we have shown that �(Set x → x = x ′).
�(Vαx ∧ Fx) thus entails �Fx ′. And by construction x ′ is Vα so ∃x(Vαx ∧ �Fx) as
required. ��
Lemma 23 (C�∈). Sets aremathematically necessarily distinct:∀exy(Set x∧Set y →
x �= y → �x �= y)

Proof Suppose the claim is false for contradiction. Choose x to be ∈-minimal such
that x possibly identical to some set it is distinct from. Choose y to be ∈-minimal such
that it is distinct from, but possibly identical to x .

Since x and y are distinct we may suppose, without loss of generality, that there is
some set z belonging to x but not belonging to y. By Set Rigidity, �z ∈ x . So �z ∈ y,
since �x = y. Since �∃z′ ∈ y.z′ = z it follows by Set Rigidity that ∃z′ ∈ y�z′ = z.
Since x is an ∈-minimal failure of the necessity of distinctness, z cannot be possibly
identical to anything distinct from it. It follows that whatever member of y that is
possibly identical to z is in fact identical to z, so that z is a member of y after all, a
contradiction. ��
Theorem 8 (C�∈)

Suppose A(x) is a first-order formula with free variables x. If all the quantifiers in
A(x) are restricted to rigid properties of sets, then A is modally absolute with respect
to the parameters y.
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Proof By Set Rigidity, x ∈ y is modally absolute, since if y is a set and x ∈ y
then by Set Rigidity x is necessarily in y. And if x /∈ y and y is a set, then by
the necessity of distinctness of sets x could not be identical to a member of y. The
necessity of identity and distinctness for sets ensures the modal absoluteness of x = y.
Suppose A and B are modally absolute. If for any sequence of sets x , A(x) and B(x ,
then the modal absoluteness of A and B ensures that �A(x) and �B(x) and so
�(A(x) ∧ B(x)). Similarly if ¬(A(x) ∧ B(x)) either ¬A(x) or ¬B(x) and so given
the modal absoluteness of A and B we have either �¬A(x) or �¬B(x) and in either
case �¬(A ∧ B) as required. The disjunction case is a dualization of the above, and
the negation case is trivial.

Now suppose B(yx) is modally absolute, and λy.A(yx) is a rigid property of
sets (λy.A(yx) entails Set). We will show the modal absoluteness of ∀e y(A(yx) →
B(yx). Let x be a sequence of sets, and suppose ∀e y(A(yx) → B(yx). By the modal
absoluteness of B we can conclude ∀e y(A(yx) → �B(yx)), and by the rigidity of A
we can get�∀e y(A(yx) → B(yx). On the other hand, if¬∀e y(A(yx) → B(yx) then
for some set y, (A(yx) ∧ ¬B(yx). By the modal absoluteness of B, �¬B(yx) and
by the rigidity of A, �A(yx) so �∃e y(A(yx)∧¬B(yx)), as required. The existential
case involves dualizing this argument. ��
Theorem 9 (C�∈)

Given the truth of the theorems of C�∈, the following formulas are modally absolute.
1. being an ordinal.
2. being a limit ordinal.
3. being the smallest limit ordinal, the successor of the smallest limit ordinal, the

successor of the succcessor of the smallest limit ordinal...

moreover, the properties in 3. are rigid.

Proof α is an ordinal if and only if α is (i) transitive ∀x ∈ α∀y ∈ x .y ∈ α) and (ii)
linearly ordered by membership (∀x ∈ α∀y ∈ α(x �= y → x ∈ y ∨ y ∈ x). All the
quantifiers in these definitions are restricted by conditions of the form ∈ z, which is
rigid by Set Rigidity, and entails sethood (by the definition of Set as λy∃x .y ∈ x).
Thus they are all modally absolute.

α is a limit ordinal if it is an ordinal and additionally ∀x ∈ α∃y ∈ α(x ∈ y) and
∃x ∈ α. These have the same property. α is the smallest limit ordinal iff it is a limit
ordinal, and for every x ∈ α x is not a limit ordinal. α is the successor of the smallest
limit ordinal iff every member of α is either belongs to the smallest limit ordinal or is
identical to it. Again, all quantifiers are restricted by membership to some set.

Finally we can show that the properties in 3 are rigid. Letω be the set that is actually
the smallest limit ordinal. By the modal absoluteness, ω is necessarily the smallest
limit ordinal, and uniquely so, since is a theorem of ZF that if two sets are the smallest
limit ordinal they are identical. Suppose it is possible that something is the smallest
limit ordinal is also F . Then it is possible that ω is F , and thus there is an actual
smallest limit ordinal, ω, which is possibly F . Similar strategies apply to the other
properties listed in 3. ��
Theorem 12 (C5�∈)
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1. �CH ∨ �¬CH.
2. ∀ex(Uncountable x → �Uncountable x)

Proof Let Vω+2y be the property ‘λy.for some setα,α is the successor of the successor
of the smallest limit ordinal, and y is Vα’. Using the results above, it is easily seen that
this property is rigid.

The continuum hypothesis can be formulated in such a way that all quantifiers are
restricted by the predicate Vω+2. Since this predicate is rigid, CH is modally absolute:
CH → �CH and ¬CH → �CH . This establishes 1.

Let x be an uncountable set, and suppose that α is an ordinal such that x ∈ Vα .
Then the claim that x ∈ Vα and is uncountable is equivalent to the claim that x ∈ Vα

and there is no set of ordered pairs belonging to Vα+3 that is an injective function
from the smallest limit ordinal to x . All of the quantifiers in this claim are similarly
restricted to rigid properties. ��
Theorem 15 (C�)

Given LBt , �p ↔ ∃w(Worldw ∧ w ≤ p ∧ �w)

Proof Mathematical Necessity states that anything entailed by the �-necessities must
be itself �-necessary. So any �-possibility is such that its negation is not entailed by
the �-necessities.

Thus if �p, � � ¬p. That is, for some r such that ∀q(�q → r ≤ q), r � ¬p.
This means ♦(r ∧ p), so by LBt , there is a world proposition w that entail r ∧ p. We
finally can see that w must be �-possible. For if not, then �¬w, and since r entails
every �-necessity, r ≤ ¬w. But since w ≤ r , w ≤ ¬w, contradicting the assumption
that w is a world.

The right-to-left direction is obvious. ��
Theorem 16 (C�∈)

LBt→t and LBt imply that Vα is rigid for every ordinal α.

Proof The proof is by transfinite induction. V0 is necessarily empty, and so vacuously
rigid.

Suppose that α is an ordinal, and for each β ∈ α, Vβ is rigid. We want to show that
Vα is rigid. Suppose �∃x(Vαx ∧ Fx). We must show ∃x(Vαx ∧ �Fx).

Since λx(Vαx ∧ Fx) is broadly possibly instantiated, it follows by the Leibniz
Biconditionals, LBe→t , that there is a world property W that that entails it, and by
Proposition15 itwill be aworld property that ismathematically possibly instantiated.65

We can use this world property to define the actual member of Vα that’s possibly F
explicitly:

x ′ := {y ∈
⋃

β∈α

Vβ | �∀x(Wx → y ∈ x)}

Roughly W singles out a merely possible set. x ′ is the set of ys in Vα that would
have belonged to the merely possible object picked out byW if it had existed. We can

65 �∃x(Vαx ∧ Fx) implies by Theorem 15 that there is a mathematically possible world proposition
w ≤ ∃x(Vαx∧Fx), and since♦∃x(w∧Vαx∧Fx) there is a world propertyW entailing λx(w∧Vαx∧Fx).
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now show that x ′ is identical to the merely possible W : i.e. we show �∀x(Wx →
x = x ′). Given the mathematical necessity of Set Extensionality and the mathematical
possibility ofW it suffices to show that necessarily whatever isW is coextensive with
x ′: �∀x(Wx → ∀y.(y ∈ x ↔ y ∈ x ′). We break this up into two claims:

1. �∀x(Wx → ∀y(y ∈ x ′ → y ∈ x)
2. �∀x(Wx → ∀y(y ∈ x → y ∈ x ′)

We establish 1 first. From the definition of membership in x ′, we immediately have
∀y ∈ x ′�∀x(Wx → y ∈ x). Since Sets are Rigid, it follows that x ′-restricted
quantification satisfies BF, so we can infer �∀y ∈ x ′∀x(Wx → y ∈ x). By applying
first-order logic under the scope of �, this is equivalent to 1.

To establish 2, we first show ∀β ∈ α∀y(Vβ y → �∀x(Wx → (y ∈ x → y ∈ x ′)).
Let β ∈ α and let y be an arbitrary set of rank β. Now either y ∈ x ′ or y /∈ x ′.
Suppose the former. Then by the rigidity of set membership y is necessarily in x ′
and so �∀x(Wx → (y ∈ x → y ∈ x ′)) follows. Suppose then that y /∈ x ′. By
the condition for belonging to x ′, this means that W doesn’t entail the property of
containing y. SinceW is a world property, it must entail the property of not belonging
to y, and thus must also mathematically necessitate it: �∀x(Wx → y /∈ x). So this
means �∀x(Wx → (y ∈ x → y ∈ x ′)), by applying some straightforward logic
under the � (namely that y /∈ x entails y ∈ x → y ∈ x ′).

This completes the argument that ∀β ∈ α∀y(Vβ y → �∀x(Wx → (y ∈ x → y ∈
x ′)). By the inductive hypothesis, Vβ is rigid, and so we can infer ∀β ∈ α�∀y(Vβ y →
∀x(Wx → (y ∈ x → y ∈ x ′)). Since α is a set and sets are rigid, we can also infer
�(∀β ∈ α∀y(Vβ y → ∀x(Wx → (y ∈ x → y ∈ x ′)). Thus �∀x(Wx → ∀y(y ∈
x → ∃β ∈ α.Vβ y → y ∈ x ′))) applying first-order logic under �. Recall that
necessarily whatever the W set is, it’s Vα: thus, necessarily, whatever the W set is,
if y belongs to it, y is in Vβ for some β ∈ α (by the definition of Vα ). That is we
have (a) �∀x(Wx → Vαx), (b) �∀x(Vαx ∧ y ∈ x → ∃β ∈ α.Vβ y) (by definition
of the V relation and the mathematical necessity of ZF). So putting this together
�∀x(Wx → ∀y(y ∈ x → y ∈ x ′))) as required.

Since W mathematically necessitates being identical to x ′ (�∀x(Wx → x = x ′),
and W is mathematically possible, it follows that �Wx ′. Finally, since W entails F it
follows that �Fx ′. By construction Vαx ′ so ∃x(Vαx ∧ �Fx) as required. ��
Theorem 18 (C�∈LBσ )

1. �CH ∨ �¬CH.
2. ∀ex(Uncountable x → �Uncountable x)

Theorem 19 (C)

De Re Modal Choice and LBt entail LBσ→t .

Proof We show LBe→t , since that is the instance required for Theorem 16, however
the proof generalizes trivially.

Suppose that♦∃xFx . By LBt , there is a world propositionw such thatw ≤t ∃xFx .
Let R be a relation which is necessarily a well-order, and consider the property
of being the R minimal F while w is true: W := λx(w ∧ Min RFx) where
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Min = λRFx(Fx ∧ ∀y(Fy → Rxy ∨ x = y)). Clearly W entails F . Let G be
another property. Since there is at most one minimal F of a well-order, we know that
�(WO R → ∀x(Min RFx → Gx) ∨ ∀x(Min RFx → ¬Gx)), and since �WO R,
�(∀x(Min RFx → Gx) ∨ ∀x(Min RFx → ¬Gx)). Since w settles every question
it either entails every R-minimal F is G, or that it’s not, �(w → ∀x(Min RFx →
Gx)) ∨ �(w → ∀x(Min RFx → ¬Gx)). Rearranging a little and appealing to the
definition of W this is �∀x(Wx → Gx) ∨ �∀x(Wx → ¬Gx) ��

B Appendix: Free Logic

In this appendix we provide the necessary background for the results discussed in
Section 7.

Free logic replaces the law of universal instantiation with its universal closure,
∀σ y(∀σ x Fx → Fy).Wemust then also add the principle that universal quantification
distributes over conditionals. We of course, may apply the analogous substitutions at
other types.

Free Instantiation ∀σ y(∀σ x Fx → Fy) provided y is not free in F .

Quantifier Normality ∀σ x(A → B) → (∀σ x A → ∀σ x B)

The remaining principles of H—Gen, and the laws governing the truth-functional
connectives and λ—remain the same. Let FH, ‘free higher-order logic’, be the result
of making these substitutions to H, ad Free Classicism, FC, the result of closing FH
under the rule of equivalence.

Because the logic of the quantifiers in Free Classicism is weaker than Classicism,
notions we defined using the quantification over all necessities—entailment, broad
necessity, world, etc—may behave in undesirable ways. For example, a natural quan-
tificational definition of property entailment in Free Classicism, �∀ex�(Fx → Gx),
is consistent with pathological situations where F entails G, a is F but a is not G.66

However, in Classicism many of the notions that we defined in terms of the classical
quantifiers can be given equivalent definitions in terms of identity, and because the
logic of identity in Free Classicism is classical, we can recover the desired behaviour
by using the identity-theoretic definitions instead. For instance, there is a long tra-
dition in logic, tracing back to George Boole, of defining entailment in terms of
identity. For properties F and G, F entails G when the property conjunction of F
with G (i.e. λx(Fx ∧ Gx)) just is F .67 The pathological situation mentioned above
cannot arise, for if F entails G and then F = (λx .Fx ∧ Gx). So by Leibniz’s law
Fa → (λx .Fx ∧ Gx)a, and thus Fa → Ga by β and propositional logic.

Proposition 24 In Classicism, the following identities are derivable:

66 Models of this will interpret a with an individual that does not belong to the domain of quantification at
any world. It is quite easy to generate an extensional model of Free Classicism in which ∀ex(Fx → Gx)
(and thus �∀ex�(Fx → Gx)), Fa and ¬Ga are all true.
67 Boole [12], p20 project Gutenberg.
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1. � = λp.p =t �
2. ≤σ = λRS(R ∧σ S =σ→t R)

3. SWorld = λw((w �=t ⊥) ∧ (λp(w ≤ p ∨ w ≤ ¬p) =t→t λp.�))

Proofs of 1 and 2 may be found in Bacon [6] p149. The first conjunct of the RHS
of 3, w �=t ⊥, is equivalent to ♦w by 1, and the second conjunct is equivalent to
�∀t p(� → (w ≤ p ∨ w ≤ ¬p)) by 2, and thus to �∀t p(w ≤ p ∨ w ≤ ¬p).

Perhaps it is possible to augment Free Classicismwith further principles that would
rule out these pathological situations, butwewill avoid the need for any further assump-
tions by adopting the identity theoretic definitions of these three notions listed in
Proposition 24 as our official ones when working in Free Classicism.

We can now define a possibilist quantifier along the lines of Fine’s definition dis-
cussed in Section 3:

�σ := λF∃tw(SWorldw ∧ w ∧ (λx .w ≤σ F)

where F has type σ → t and x has type σ .�eF means that, when w is the true strong
world proposition, the vacuous property of being such that w entails F . We have
replaced Fine’s �∀σ x�(w → Fx)—the potentially ill-behaved notion of entailment
mentioned above—with the corresponding identity theoretic entailment for reasons
detailed above.

We are now in a position to formulate the orthodox possible worlds metaphysics
within FreeClassicism.We can do this by adding to FC the StrongLeibnizConditionals
and the B schema and closing under the rule of equivalence as well as the background
logical rules, remembering, of course, that SWorld,≤, ♦, etc are now given in identity
theoretic terms.

SLBt ♦A ↔ ∃tw(SWorldw ∧ w ≤ A)

B A → �♦A

We will call the result FC5(SLB). Note that because necessitated quantificational
claims are weak in Free Classicism, merely adding the necessitations of the universal
closures of these principles to Free Classicism would fail to deliver identities that one
could obtain from the result of closing under the rule of equivalence.We could acheive
the same effect as closing under the rule of equivalence by adding a pair of identities
to Free Classicism. The claim that to be possible is to be true at some possible world,
and the claim that to be true entails to be necessarily possible.

SLBtλ ♦ =t→t λp(∃tw(SWorldw ∧ w ≤ p)
Bλ λp.p ≤t→t λp.�♦p

FC5 and FC(SLB) stand for the result adding, in the same way, only one of these
principles.

Lemma 25 FC5(SLB) contains A → ∃w(SWorldw ∧ w ∧ w ≤t A).

Proof First we show SWorldw → �SWorldw ∧ �(∃t p.w = p). Since SWorldw

is the conjunction of a distinctness claim and an identity claim, the necessity of the
first conjunct follows from the necessity of distinctness and the necessity of identity
both of which are well-known theorems of S5 with the classical axioms of identity.68

68 For the necessity of identity see [41], for the necessity of distinctness see [52], pp. 206-7.
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Using SLB, and the fact that w is necessarily possible, �∃tv(SWorld v ∧ v ≤ w). It’s
also necessary that for any strong world v ≤ w, w ≤ v. For w is necessarily a strong
world, and so must entail v or ¬v for any strong world v ≤ w, and it couldn’t entail
¬v since otherwise v ≤ ¬v by the transitivity of entailment, contradicting the fact
that v is possible. So necessarily, any strong world entailing w is identical to w, thus
�∃tv(SWorld v ∧ v =t w).

Now we argue that every strong world, w, entails (i) w, (ii) that w is an existent
strong world, and (iii) A → (w ≤ A). (i) is trivial, (ii) is established above. For
(iii), λp.w ≤t→t λp.(w ∧ (p → (λp�)p) since p → � is a tautology. And since
λp.� =t→t λp(w ≤ p ∨ w ≤ ¬p) (since w is a strong world) we have λp.w ≤
λp(w ∧ (p → (w ≤ p ∨ w ≤ ¬p))). We also have λp.w ≤ λp(w ∧ p → w � ¬p)
since w ∧ p → w � ¬p is a theorem of Free Classicism. Since operator entailment
is closed under propositional logic, λp.w ≤ λp(p → w ≤ p). Apply both these
operators to A and using β we get w and A → w ≤ A, and since the former operator
entails the latter, w ≤ (A → w ≤ A).

Putting (i),(ii) and (iii) together, we have that for every strong world, w, w ≤
(w ∧ SWorldw∃t p(p = w) ∧ (A → w ≤ A)). Using the fact that entailment
is closed under free logic we get w ≤ (A → ∃tw(w ∧ SWorldw ∧ w ≤ A))).
Since every strong world entails A → ∃tw(w ∧ SWorldw ∧ w ≤ A)) we can infer
�(A → ∃tw(w ∧ SWorldw ∧ w ≤ A))) by SLB. ��

Theorem 26 FC5(SLB) interprets C5(SLB)

Proof We map each term M of L to M∗, the result of substituting each free quantifier
∀σ with �σ . We wish to show that whenever A is a theorem of Classicism, A∗ is a
theorem of Free Classicism+.

Each tautology, instanceof B, and instanceofβη aremapped to tautologies instances
of B or instances of βη. Uses ofmodus ponens and the rule of equivalence are similarly
mapped to themselves. It remains to show that UI∗ and SLB∗ are theorems of FC5(SLB),
and, for Gen, that if (A → B)∗ is a theorem of Free Classicism+, so is (A → ∀x B)∗.

Let’s begin with UI. We will show generally that �σ F → Fa. Suppose �σ F , so
that there is some truth, p, such that λx(p ∧ Fx) =σ→t λx .p. Want to show Fa.
(λx .p)a =t p by β, and since p is true, we can conclude (λx .p)a. By the above
identity, λx(p ∧ Fx)a, so p ∧ Fa, and finally, Fa as required.

For the right-to-left direction of SLB∗ we show the dualized contrapositive version.
We will suppose that �tw(SWorldw → w ≤ A) and show �A. Expanding the
definition of �, the true strong world, v, is such that λw.v ≤ λw.(SWorldw →
w ≤ A). Applying ∀t to both sides we see that the claim that everything is such
that v (i.e. ∀t p.v)) entails that every strong world is entails A (i.e ∀tw(SWorldw →
w ≤ A)). Since v is true, everything is such that v, and so every strong world entails
A. By SLB, �A. For the converse of SLB∗ suppose �tw(SWorldw ∧ w ≤ A)—i.e.
λw.v � λw(Sw → w � A) where v is a true strong world. We want to show
♦A. It suffices to show ∃t u(SWorld u ∧ u ≤ A). Suppose for contradiction that
∀t u(SWorld u → u � A). By lemma there is a strong world v that is true and entails
∀t u(SWorld u → u � A), delivering also the corresponding entailment between
vacuous operators: λw.v ≤ λw∀u(SWorld u → u � A). Since being a strong world
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entails existence, we have λw.v ≤ λw(SWorldw → ∃t r .r = w). Since the right-
hand-sides of entailments are closed under free logical consequences, we have λw.v ≤
λw(SWorldw ∧ ∃t r .r = w → w � A) and so λw.v ≤ λw(SWorldw → w � A).
This contradicts our assumption.

For Gen it suffices to show that whenever we have a proof of A → B where x is
not free in B there is also a proof of A → �σ x B. Since we can prove A → B, we
can prove (λx(A → B))y ↔ (λx .�)y using β and so by the rule of equivalence we
then have λx(A → B) = λx .�.

Now we will show that A → ∃w(w ∧ SWorldw ∧ λx .w ≤ λx .B. Suppose A, and
letw be the true strong world entailing A (appealing to Lemma 25). Sow∧¬A =t ⊥.
Clearly λx .w ≤ λx(A → B) since λx .w ≤ λx .�.

λx(w ∧ (A → B)) =σ→t λx .w. The left-hand-side is λx .((w ∧ ¬A) ∨ (w ∧ B))

using Boolean equivalences that can be obtained from the Rule of Equivalence. Since
x isn’t free in A and w ∧ ¬A = ⊥ we can infer the the left-hand-side is λx .(w ∧ B)

by Leibniz’s law and Boolean equivalences. So λx(w ∧ B) = λx .w as required. ��
Funding Open access funding provided by SCELC, Statewide California Electronic Library Consortium
Open access funding provided by SCELC, Statewide California Electronic Library Consortium.

Availability of Data and Materials Not applicable

Declarations

Ethical Approval Not applicable

Competing Interests None

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bacon, A. (2015). Can the classical logician avoid the revenge paradoxes? Philosophical Review,
124(3), 299–352. https://doi.org/10.1215/00318108-2895327

2. Bacon, A. (2018). The broadest necessity. Journal of Philosophical Logic, 47(5), 733–783. https://doi.
org/10.1007/s10992-017-9447-9

3. Bacon, A. (2018). Vagueness and Thought. Oxford, England: Oxford University Press.
4. Bacon, A. (2020). Logical combinatorialism. Philosophical Review, 129(4), 537–589. https://doi.org/

10.1215/00318108-8540944
5. Bacon, A. (2020). Viii-vagueness at every order. Proceedings of the Aristotelian Society, 120(2), 165–

201. https://doi.org/10.1093/arisoc/aoaa011
6. Bacon, A. (2023a). A Philosophical Introduction to Higher-Order Logics. Routledge.
7. Bacon, A. (2023b). Zermelian extensibility. Unpublished manuscript
8. Bacon, A. & Dorr, C. (2021). Classicism. In P. Fritz, & N. K. Jones (Eds.), Higher-order Metaphysics.

Oxford University Press, forthcoming.

123

A. Bacon176

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1215/00318108-2895327
https://doi.org/10.1007/s10992-017-9447-9
https://doi.org/10.1007/s10992-017-9447-9
https://doi.org/10.1215/00318108-8540944
https://doi.org/10.1215/00318108-8540944
https://doi.org/10.1093/arisoc/aoaa011


9. Bacon, A., & Zeng, J. (2022). A theory of necessities. Journal of Philosophical Logic, 51(1), 151–199.
https://doi.org/10.1007/s10992-021-09617-5

10. Berker, S. (2018). The unity of grounding. Mind, 127(507), 729–777. https://doi.org/10.1093/mind/
fzw069

11. Jonsson, A. T. B. (1953). Boolean algebras with operators. Journal of Symbolic Logic, 18(1), 70–71.
https://doi.org/10.2307/2266339

12. Boole,G. (1847).TheMathematicalAnalysis of Logic:BeinganEssayTowards aCalculus ofDeductive
Reasoning. Cambridge, England: Macmillan, Barclay & Macmillan.

13. Brauer, E. (2020). The modal logic of potential infinity: Branching versus convergent possibilities.
Erkenntnis 1–19. https://doi.org/10.1007/s10670-020-00296-3.

14. Builes, D., & Wilson, J. M. (2022). In defense of countabilism. Philosophical Studies, 179(7), 2199–
2236. https://doi.org/10.1007/s11098-021-01760-8

15. Cresswell, M. J., & Hughes, G. E. (1996). A New Introduction to Modal Logic. Routledge.
16. Dorr, C. (2005). Propositions and counterpart theory. Analysis, 65(3), 210–218. https://doi.org/10.

1111/j.1467-8284.2005.00551.x
17. Dorr, C. (2010).Of numbers and electrons.Proceedings of theAristotelian Society, 110(2pt2), 133–181.

https://doi.org/10.1111/j.1467-9264.2010.00282.x
18. Dorr,C.,Hawthorne, J.,&Yli-Vakkuri, J. (2021).TheBoundsofPossibility:Puzzles ofModalVariation.

Oxford: Oxford University Press.
19. Field, H. (1998). Which undecidable mathematical sentences have determinate truth values. In H. G.

Dales, & G. Oliveri (Eds.), Truth in Mathematics, (pages 291–310). Oxford University Press, USA.
20. Field, H. (2003). A revenge-immune solution to the semantic paradoxes. Journal of Philosophical

Logic, 32(2), 139–177. https://doi.org/10.1023/a:1023027808400
21. Fine, K. (1974). An ascending chain of s4 logics. Theoria, 40(2), 110–116. https://doi.org/10.1111/j.

1755-2567.1974.tb00081.x
22. Fine, K. (1977). Properties, propositions and sets. Journal of Philosophical Logic, 6(1), 135–191.

https://doi.org/10.1007/bf00262054
23. Fine, K. (1994). Essence and modality. Philosophical Perspectives, 8(Logic and Language), 1–16.

https://doi.org/10.2307/2214160
24. Fine, K. (2006). Relatively unrestricted quantification. In A. Rayo, & G. Uzquiano (Eds.), Absolute

Generality, (pages 20–44). Oxford University Press.
25. Fine, K. (2012). Guide to ground. In F. Correia, & B. Schnieder (Eds.), Metaphysical Grounding,

(pages 37–80). Cambridge University Press.
26. Fritz, P. (2018). Higher-order contingentism, part 2: Patterns of indistinguishability. Journal of Philo-

sophical Logic, 47(3), 407–418. https://doi.org/10.1007/s10992-017-9432-3
27. Fritz, P. (2018). Higher-order contingentism, part 3: Expressive limitations. Journal of Philosophical

Logic, 47(4), 649–671. https://doi.org/10.1007/s10992-017-9443-0
28. Fritz, P. Forthcoming. From propositions to possible worlds
29. Fritz, P., & Goodman, J. (2016). Higher-order contingentism, part 1: Closure and generation. Journal

of Philosophical Logic, 45(6), 645–695. https://doi.org/10.1007/s10992-015-9388-0
30. Goodsell, Z., & Yli-Vakkuri, J. Logical Foundations of Philosophy. MS.
31. Goodsell, Z. (2022). Arithmetic is determinate. Journal of Philosophical Logic, 51(1), 127–150. https://

doi.org/10.1007/s10992-021-09613-9
32. Hamkins, J. D. (2003). A simple maximality principle. Journal of Symbolic Logic, 68(2), 527–550.

https://doi.org/10.2178/jsl/1052669062
33. Hamkins, J. D. (2012). The set-theoretic multiverse. Review of Symbolic Logic, 5(3), 416–449. https://

doi.org/10.1017/s1755020311000359
34. Hamkins, J. D., & Linnebo, Ø. (2022). The modal logic of set-theoretic potentialism and the

potentialist maximality principles. Review of Symbolic Logic, 15(1), 1–35. https://doi.org/10.1017/
s1755020318000242

35. Hamkins, J. D., Leibman, G., & Löwe, B. (2015). Structural connections between a forcing class and
its modal logic. Israel Journal of Mathematics, 201, 617–651.

36. Harris, J. H. (1982). What’s so logical about the “logical” axioms? Studia Logica, 41(2–3), 159–171.
https://doi.org/10.1007/BF00370342

37. Hellman, G. (1989). Mathematics Without Numbers: Towards a Modal-Structural Interpretation.
Oxford, England: Oxford University Press.

123

Mathematical Modality: an Investigation in Higher-order Logic 177

https://doi.org/10.1007/s10992-021-09617-5
https://doi.org/10.1093/mind/fzw069
https://doi.org/10.1093/mind/fzw069
https://doi.org/10.2307/2266339
https://doi.org/10.1007/s10670-020-00296-3
https://doi.org/10.1007/s11098-021-01760-8
https://doi.org/10.1111/j.1467-8284.2005.00551.x
https://doi.org/10.1111/j.1467-8284.2005.00551.x
https://doi.org/10.1111/j.1467-9264.2010.00282.x
https://doi.org/10.1023/a:1023027808400
https://doi.org/10.1111/j.1755-2567.1974.tb00081.x
https://doi.org/10.1111/j.1755-2567.1974.tb00081.x
https://doi.org/10.1007/bf00262054
https://doi.org/10.2307/2214160
https://doi.org/10.1007/s10992-017-9432-3
https://doi.org/10.1007/s10992-017-9443-0
https://doi.org/10.1007/s10992-015-9388-0
https://doi.org/10.1007/s10992-021-09613-9
https://doi.org/10.1007/s10992-021-09613-9
https://doi.org/10.2178/jsl/1052669062
https://doi.org/10.1017/s1755020311000359
https://doi.org/10.1017/s1755020311000359
https://doi.org/10.1017/s1755020318000242
https://doi.org/10.1017/s1755020318000242
https://doi.org/10.1007/BF00370342


38. Holliday, W. H. (2021). Possibility semantics. In M. Fitting (Ed.), Selected Topics from Contemporary
Logics. London: College Publications, forthcoming.

39. Humberstone, I. L. (1981). From worlds to possibilities. Journal of Philosophical Logic, 10(3), 313–
339. https://doi.org/10.1007/bf00293423

40. Kreisel, G. (1967). Informal rigour and completeness proofs. In I. Lakatos (Ed), Problems in the
Philosophy of Mathematics, (pages 138–157). North-Holland.

41. Kripke, S. A. (1971). Identity and necessity. In M. K. Munitz (Ed.), Identity and Individuation, (pages
135–164). New York: New York University Press.

42. Kripke, S. A. (1980). Naming and Necessity: Lectures Given to the Princeton University Philosophy
Colloquium. Cambridge, MA: Harvard University Press.

43. Lewis, D. (1986). On the Plurality of Worlds. Wiley-Blackwell.
44. Lewis, D. K. (1968). Counterpart theory and quantified modal logic. Journal of Philosophy, 65(5),

113–126. https://doi.org/10.2307/2024555
45. Linnebo, Ø. (2013). The potential hierarchy of sets. Review of Symbolic Logic, 6(2), 205–228. https://

doi.org/10.1017/s1755020313000014
46. Meadows, T. (2015). Naive infinitism: The case for an inconsistency approach to infinite collections.

Notre Dame Journal of Formal Logic, 56(1), 191–212. https://doi.org/10.1215/00294527-2835074
47. Parsons, C. (1983). Mathematics in Philosophy: Selected Essays, chapter Sets and Modality, pages

298–341. Cornell University Press.
48. Priest, G. (2010). Hopes fade for saving truth. Philosophy, 85(1), 109–140. https://doi.org/10.1017/

s0031819109990489
49. Prior, A. N. (1956). Modality and quantification in s5. Journal of Symbolic Logic, 21(1), 60–62. https://

doi.org/10.2307/2268488
50. Prior, A. N., & Fine, K. (1979). Times, worlds and selves. Synthese, 40(2), 389–408.
51. Prior, A. N. (1967). Past, Present and Future. Oxford University Press.
52. Prior, A. N., & Prior, N. (1955). Formal Logic. Oxford University Press.
53. Pruss, A. R. (2020). Might all infinities be the same size? Australasian Journal of Philosophy, 98(3),

604–617. https://doi.org/10.1080/00048402.2019.1638949
54. Roberts, S. (2022). Pluralities as nothing over and above. Journal of Philosophy, 119(8), 405–424.

https://doi.org/10.5840/jphil2022119828
55. Scambler, C. J. (2021). Can all things be counted? Journal of Philosophical Logic, 50(5), 1079–1106.

https://doi.org/10.1007/s10992-021-09593-w
56. Scroggs, S. J. (1951). Extensions of the lewis system s5. Journal of Symbolic Logic, 16(2), 112–120.

https://doi.org/10.2307/2266683
57. Shapiro, S. (1985). Intentional Mathematics. Elsevier.
58. Shapiro, S. (1991). Foundations Without Foundationalism: A Case for Second-Order Logic. Oxford,

England: Oxford University Press.
59. Stalnaker, R. (1976). Possible worlds. Noûs, 10(1), 65–75. https://doi.org/10.2307/2214477
60. Stalnaker, R. (2010). Merely possible propositions. In B. Hale & A. Hoffmann (Eds.), Modality:

Metaphysics, Logic, and Epistemology (pp. 21–32). Oxford University Press.
61. Stalnaker, R. (2012). Mere Possibilities: Metaphysical Foundations of Modal Semantics. Princeton

University Press.
62. Studd, J. P. (2013). The iterative conception of set: A (bi-)modal axiomatisation. Journal of Philosoph-

ical Logic, 42(5), 1–29. https://doi.org/10.1007/s10992-012-9245-3
63. Uzquiano, G. (2015). Varieties of indefinite extensibility. Notre Dame Journal of Formal Logic, 56(1),

147–166. https://doi.org/10.1215/00294527-2835056
64. Warren, J., &Waxman, D. (2020). A metasemantic challenge for mathematical determinacy. Synthese,

197(2), 477–495. https://doi.org/10.1007/s11229-016-1266-y
65. Williamson, T. (2003). Everything. Philosophical Perspectives, 17(1), 415–465. https://doi.org/10.

1111/j.1520-8583.2003.00017.x
66. Williamson, T. (2003b). Vagueness in reality. In Michael J. Loux & Dean W. Zimmerman (Eds.), The

Oxford Handbook of Metaphysics. Oxford University Press.
67. Williamson, T. (2010). Necessitism, contingentism, and plural quantification. Mind, 119(475), 657–

748. https://doi.org/10.1093/mind/fzq042
68. Williamson, T. (2013).Modal Logic as Metaphysics. Oxford, England: Oxford University Press.

123

A. Bacon178

https://doi.org/10.1007/bf00293423
https://doi.org/10.2307/2024555
https://doi.org/10.1017/s1755020313000014
https://doi.org/10.1017/s1755020313000014
https://doi.org/10.1215/00294527-2835074
https://doi.org/10.1017/s0031819109990489
https://doi.org/10.1017/s0031819109990489
https://doi.org/10.2307/2268488
https://doi.org/10.2307/2268488
https://doi.org/10.1080/00048402.2019.1638949
https://doi.org/10.5840/jphil2022119828
https://doi.org/10.1007/s10992-021-09593-w
https://doi.org/10.2307/2266683
https://doi.org/10.2307/2214477
https://doi.org/10.1007/s10992-012-9245-3
https://doi.org/10.1215/00294527-2835056
https://doi.org/10.1007/s11229-016-1266-y
https://doi.org/10.1111/j.1520-8583.2003.00017.x
https://doi.org/10.1111/j.1520-8583.2003.00017.x
https://doi.org/10.1093/mind/fzq042


69. Zermelo, E. (2010). On boundary numbers and domains of sets. new investigations in the foundations of
set theory. In Heinz-Dieter. Ebbinghaus & Akihiro Kanamori (Eds.), Ernst Zermelo: Collected Works
(Vol. I, pp. 401–429). Springer Verlag.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Mathematical Modality: an Investigation in Higher-order Logic 179


	Mathematical Modality: An Investigation in Higher-order Logic
	Abstract
	
	1 Set-Theoretic Contingency: Height and Width
	2 Why do we need modalities?
	3 The Structure of Modal Reality
	4 Mathematical Necessity
	5 Brouwer's Principle and the Barcan Formula
	6 The Leibniz Biconditionals
	7 Free Logic
	8 Conclusion
	A Appendix: Proofs of Theorems
	B Appendix: Free Logic
	References




